【2011】西华大学专升本高等数学真题
四川省专升本(高等数学)历年真题试卷汇编1(题后含答案及解析)
四川省专升本(高等数学)历年真题试卷汇编1(题后含答案及解析) 题型有:1. 选择题 2. 填空题 4. 解答题 5. 综合题 6. 证明题选择题在每小题给出的四个选项中,只有一项是符合要求的。
1.当x→0时,a=是无穷小量,则( )A.a是比2x高阶的无穷小量B.a是比2x低阶的无穷小量C.a与2x是同阶的无穷小量,但不是等价无穷小量D.a与2x是等价无穷小量正确答案:C解析:故选C.2.= ( )A.eB.e-1C.一e-1D.一e正确答案:B解析:由于故选B.3.设y=lnx,则y″= ( )A.B.C.D.解析:y=lnx,故选C.4.设a<x<b,f′(x)<0,f″(x)<0,则在区间(a,b)内曲线弧y=f(x)的图形( )A.沿x轴正向下降且向上凹B.沿x轴正向下降且向下凹C.沿x轴正向上升且向上凹D.沿x轴正向上升且向下凹正确答案:B解析:当a<x<b时,f′(x)<0,因此曲线弧y=f(x)在(a,b)内下降.由于在(a,b)内f″(x)<0,因此曲线弧y=f(x)在(a,b)内下凹.故选B.5.球心在(-1,2,-2)且与xOy平面相切的球面方程是( )A.(x+1)2+(y-2)2+(z+2)2=4B.(x+1)2+(y-2)2+(z+2)2=2C.x2+y2+z2=4D.x2+y2+z2=2正确答案:A解析:已知球心为(一1,2,一2),则代入球面标准方程为(x+1)2+(y-2)2+(z+2)2=r2.又与xOy平面相切,则r=2.故选A.6.dx= ( )A.一2B.一1C.0D.1正确答案:C解析:因为被积函数是奇函数,所以在对称区间内dx=0.7.已知向量a=i+j+k,则垂直于a且垂直于y轴的向量是( )A.i—j+kB.i—j一kC.i+kD.i—k解析:根据题意知a=(1,1,1),设所求向量为(x,y,z),则故所求向量为i一k.8.下列级数中,条件收敛的级数是( )A.B.C.D.正确答案:C解析:对于A中所给级数≠0,因此发散,应排除A;对于B中所给级数,可知,因此发散,应排除B;对于D中所给级数考虑为p=2的P级数,可知其为收敛级数,从而知为绝对收敛,应排除D;对于C中所给级数的P级数,可知其发散.但是,注意到.由莱布尼茨判别法可知收敛,从而知其为条件收敛.故选C.9.微分方程y″+y=0的通解为( )A.C1cosx+C2sinxB.(C1+C2x)exC.(C1+C2x)e-xD.C1e-x+C2ex正确答案:A解析:由题意得微分方程的特征方程为r2+1—0,故r=±i为共轭复根,于是通解为y=C1cosx+C2sinx.10.设A是n阶矩阵,下列命题中错误的是( )A.AAT=ATAB.A*A=AA*C.(A2)n=(An)2D.(E+A)(E-A)=(E-A)(E+A)正确答案:A解析:因为A是n阶矩阵,所以AAT=故AAT不一定等于ATA,故选项A错误.填空题11.设二元函数z=ln(x+y2),则=___________.正确答案:dx解析:由于函数z=ln(x+y2)的定义域为x+y2>0.在z的定义域内为连续函数,因此dz存在,且又由于故12.=___________.正确答案:+C解析:13.过点(1,一1,0)与直线垂直的平面方程为___________.正确答案:x-2y+3z一3=0(或(x一1)一2(y+1)+3z=0)解析:∵直线垂直于平面π,∴π的法向量即为直线的方向向量,即n=s=(1,一2,3),且点(1,一1,0)在平面π上,∴(x-1)-2(y+1)+3z=0.14.=___________.正确答案:解析:令=u,则x=u2,dx=udu,当x=-1时,u=3,当x=1时,u=1,则原式=15.设A=,矩阵X满足方程AX+E=A2+X,则X=___________.正确答案:解析:由AX+E=A2+X(A—E)X=A2一E。
2011年专升本高数试卷
浙江省2011 年选拔优秀高职高专毕业生进入本科学习统一考试高等数学请考生按规定用笔将所有试题的答案涂、写在答题纸上。
选择题部分注意事项:1.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸规定的位置上。
2.每小题选出答案后,用 2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
不能答在试题卷上。
一、选择题(每个小题给出的选项中,只有一项符合要求:本题共有5个小题,每小题4分,共20分)1. 函数1()arcsin(1)ln()1x f x x x+=-+-的定义域为 ( ) A .[0,1) B .[0,2) C .(1,1)- D .(1,2]-2. 设(21)xf x e '-=,则()f x = ( )A .2112x e C -+B .1(1)22x eC ++ C .2112x e C ++D .1(1)22x e C -+ 3. 设()xf x e -=,则(ln )f x dx x '=⎰ ( )A .x e C -+B .1C x + C .x e C --+D .1C x -+ 4. 设()f x 连续,220()()x F x f t dt =⎰,则()F x '= ( ) A .4()f x B .24()x f x C .42()xf x D .22()xf x5. 下列级数中,条件收敛的是 ( )A .21sin n n π∞=∑ B.11(1)n n ∞-=-∑ C .12(1)3n n n ∞=-∑ D.1(1)n n ∞-=-∑二、填空题(只需在横线上直接写出答案,不必写出计算过程,本题共有10个小题,每小题4分,共40分)1. lim [ln(2)ln ]x x x x →+∞+-= . 2. 设函数sin , 0(), 0x x f x x a x ⎧≠⎪=⎨⎪=⎩在(,)-∞+∞内处处连续,则a = .3. 当0x →时,()f x 与1cos x -等价,则0()limsin x f x x x→= . 4. 设函数()y y x =由方程23ln()sin x y x y x +=+确定,则0x dy dx == . 5. 过点(1,2,1)-与直线2341x t y t z t =-+⎧⎪=-⎨⎪=-⎩垂直的平面方程为 .6. 计算不定积分2dx x x =+⎰ . 7. 221cos x x ππ-=+⎰ . 8. 已知(0)2,(2)3,(2)4f f f '===,则20()xf x dx ''=⎰ . 9. 已知微分方程x y ay e '+=的一个特解为x y xe =,则a = .10. 级数03!nn n ∞=∑的和为 .三、计算题(本题共有10个小题,每小题6分,共60分)1. 求极限tan 20lim tan x xx e e x x→-.2. 已知函数()x x y =由参数方程2ln(1)arctanx t t y t ⎧=-+⎨=⎩确定,求22d x dy .3. 已知函数()y y x =由方程sin cos 2xy e y x x +=确定,求dy dx4. 已知ln sin(12)y x =-,求dy dx.5. 计算不定积分2(1)xx xe dx e +⎰.6. 计算定积分10ln(1)x dx +⎰.7. 求cos()x z e x y =+的全微分.(超纲,去掉)8. 计算二重积分D σ,其中D 是由圆223x y +=所围成的闭区域.(超纲,去掉)9. 求微分方程22x y xy xe -'-=的通解.10. 将函数1()f x x=展开成(3)x -的幂级数,并指出收敛区间.四、综合题(本题3个小题,共30分,其中第1题12分,第2题12分,第3题6分)1. 平面图形由抛物线22y x =与该曲线在点1(,1)2处的法线围成.试求:⑴ 该平面图形的面积;⑵ 该平面绕x 轴旋转一周形成的旋转体的体积.2. 已知113()()f x f x x -=,求()f x 的极值.3. 设函数()f x 在闭区间[0,1]上连续,在开区间(0,1)内可导,且(0)0,(1)2f f ==.证明:在(0,1)内至少存在一点ξ,使得()21f ξξ'=+成立.。
2011年成人高考专升本《高数一》试题及答案
机动
目录
上页
下页
返回
结束
2.定义 设 是空间中一条有限长的光滑曲线, 义在 上的一个有界函数, 若通过对 的任意分割 和对 局部的任意取点, 下列“乘积和式极限”
( k ,k , k )
n
0
lim
f ( k ,k , k )sk
记作
k 1
f ( x, y , z ) d s
(由
1
f ( x, y , z ) d s
2
f ( x, y , z ) d s
组成)
( l 为曲线弧 的长度)
机动
目录
上页
下页
返回
结束
(5) 若在曲线弧 上,有
f ( x, y, z ) g ( x, y, z )
,则
f ( x , y , z ) ds
g ( x , y , z ) ds
机动
ds d y dx x x
上页 下页 返回 结束
目录
如果曲线 L 的方程为
则有
a
b
f ( x, ( x) ) 1 2 ( x) d x
如果方程为极坐标形式: L : r r ( ) ( ), 则
推广:
f ( r ( ) cos , r ( ) sin ) r 2 ( ) r 2 ( ) d
tk
k 1
t
(t ) (t ) d t
2 2
2
2
( k ) ( k ) t k ,
则
lim f [ ( k ) , ( k ) ]
2011年普通专升本高等数学真题汇总
2011年普通专升本高等数学真题一一. 选择题(每个小题给出的选项中,只有一项符合要求:本题共有5个小题,每小题4分,共20分)1.函数()()x x x f cos 12+=是( ).()A 奇函数 ()B 偶函数 ()C 有界函数 ()D 周期函数2.设函数()x x f =,则函数在0=x 处是( ).()A 可导但不连续 ()B 不连续且不可导()C 连续且可导 ()D 连续但不可导3.设函数()x f 在[]1,0上,022>dxfd ,则成立( ). ()A ()()0101f f dxdf dxdf x x ->>== ()B ()()0110==>->x x dx df f f dxdf()C ()()0101==>->x x dxdf f f dxdf()D ()()101==>>-x x dxdf dxdf f f4.方程22y x z +=表示的二次曲面是( ).()A 椭球面 ()B 柱面()C 圆锥面 ()D 抛物面5.设()x f 在[]b a ,上连续,在()b a ,内可导,()()b f a f =, 则在()b a ,内,曲线()x f y =上平行于x 轴的切线( ).()A 至少有一条 ()B 仅有一条().C 不一定存在 ().D 不存在二.填空题:(只须在横线上直接写出答案,不必写出计算过程,每小题4分,共40分)考学校:______________________报考专业:______________________姓名: 准考证号: ----------------------------------------------------------------------------密封线---------------------------------------------------------------------------------------------------2.设函数()x f 在1=x 可导, 且()10==x dx x df ,则()().__________121lim=-+→xf x f x .3.设函数(),ln 2x x f =则().________________________=dxx df4.曲线x x x y --=233的拐点坐标._____________________5.设x arctan 为()x f 的一个原函数,则()=x f ._____________________6.()._________________________2=⎰xdt t f dx d7.定积分().________________________2=+⎰-ππdx x x8.设函数()22cos y x z +=,则._________________________=∂∂x z9. 交换二次积分次序().__________________________,010=⎰⎰xdy y x f dx10. 设平面∏过点()1,0,1-且与平面0824=-+-z y x 平行,则平面∏的方程为._____________________三.计算题:(每小题6分,共60分)1.计算xe x x 1lim 0-→.2.设函数()()x x g e x f xcos ,==,且⎪⎭⎫⎝⎛=dx dg f y ,求dx dy .3.计算不定积分()⎰+.1x x dx4.计算广义积分⎰+∞-0dx xe x .5.设函数()⎩⎨⎧<≥=0,0,cos 4x x x x x f ,求()⎰-12dx x f . 6. 设()x f 在[]1,0上连续,且满足()()⎰+=12dt t f e x f x,求()x f .7.求微分方程xe dx dy dxy d =+22的通解. 8.将函数()()x x x f +=1ln 2展开成x 的幂级数.9.设函数()yx yx y x f +-=,,求函数()y x f ,在2,0==y x 的全微分. 10.计算二重积分,()⎰⎰+Ddxdy y x22,其中1:22≤+y x D .四.综合题:(本题共30分,其中第1题12分,第2题12分,第3题6分) 1.设平面图形由曲线xe y =及直线0,==x e y 所 围成,()1求此平面图形的面积;()2求上述平面图形绕x 轴旋转一周而得到的旋转体的体积.2.求函数1323--=x x y 的单调区间、极值及曲线的凹凸区间.3.求证:当0>x 时,e x x<⎪⎭⎫⎝⎛+11.__报考专业:______________________姓名: 准考证号------------------------------密封线---------------------------------------------------------------------------------------------------2011年普通专升本高等数学真题二一. 选择题(每个小题给出的选项中,只有一项符合要求:本题共有5个小题,每小题4分,共20分)1.当0→x 时,1sec -x 是22x 的( )..A 高阶无穷小 .B 低阶无穷小 .C 同阶但不是等阶无穷小 D .等阶无穷小2.下列四个命题中成立的是( )..A 可积函数必是连续函数 .B 单调函数必是连续函数 .C 可导函数必是连续函数 D .连续函数必是可导函数 3.设()x f 为连续函数,则()⎰dx x f dx d等于( ). .A ()C x f + .B ()x f.C ()dx x dfD .()C dxx df + 4.函数()x x x f sin 3=是( )..A 偶函数 .B 奇函数.C 周期函数 D .有界函数5.设()x f 在[]b a ,上连续,在()b a ,内可导,()()b f a f =, 则在()b a ,内,曲线()x f y =上平行于x 轴的切线( ).()A 不存在 ()B 仅有一条 ().C 不一定存在 ().D 至少有一条二.填空题:(只须在横线上直接写出答案,不必写出计算过程,每小题4分,共40分)__________=a .2.()()().___________________311sin lim221=+--→x x x x3..___________________________1lim 2=++--∞→xx x x x 4.设函数()x f 在点1=x 处可导,且()11==x dx x df ,则()()._______121lim=-+→xf x f x5设函数()x x f ln 2=,则().____________________=dxx df6.设xe 为()xf 的一个原函数,则().___________________=x f 7.()._________________________2=⎰x dt t f dxd 8.._________________________0=⎰∞+-dx e x9.().________________________2=+⎰-ππdx x x10.幂级数()∑∞=-022n nnx 的收敛半径为.________________三.计算题:(每小题6分,共60分) 1.求极限()()()()()x b x a x b x a x ---+++∞→lim.2.求极限()nnnn n n 75732lim+-++∞→.3.设()b ax ey +=sin ,求dy .4.设函数xxe y =,求22=x dx yd .5.设y 是由方程()11sin =--xy xy 所确定的函数,求(1).0=x y ; (2).=x dx dy .6.计算不定积分⎰+dx x x132.7.设函数()⎩⎨⎧≤<≤≤=21,210,2x x x x x f ,求定积分()⎰20dx x f .8.计算()xdte ex t tx cos 12lim--+⎰-→.9.求微分方程022=+dxdydx y d 的通解. 10.将函数()()x x x f +=1ln 2展开成x 的幂级数.四.综合题:(每小题10分,共30分)1. 设平面图形由曲线xe y =及直线0,==x e y 所围成, (1)求此平面图形的面积;(2)求上述平面图形绕x 轴旋转一周而得到的旋转体的体积. 2.求过曲线xxey -=上极大值点和拐点的中点并垂直于0=x 的直线方程。
最新西华大学专升本考试试题数学
西华大学2015年专升本考试试题(高等数学)一、判断题(把答案填在题中括号中,正确的打√,错误的打⨯,本大题共5个小题,每小题2分,总计10分)1、若级数1||n n a ∞=∑收敛,则级数1(1)n n n a ∞=-∑也收敛. ( )2、函数2x y x e =是微分方程20y y y '''-+=的解. ( )3、无穷小量的倒数是无穷大量. ( )4、方程2219z x +=在空间中所表示的图形是椭圆柱面. ( )5、n 元非齐次线性方程组AX B =有唯一解的充要条件是().r A n = ( )二、填空题(把答案填在括号中。
本大题共4个小题,每小题4分,总计16分)1、已知()f x 是R 上的连续函数,且(3)2,f =则3223212lim 156xx x x f x x x →∞⎛⎫-+⎛⎫-= ⎪ ⎪++⎝⎭⎝⎭( )2、由方程xyz 所确定的函数(,)z z x y =在点(1,0,1)-处的全微分dz =( ) 3、改变二次积分2220(,)y y I dy f x y dx =⎰⎰的次序,则I =( )4、22(sin )tan ,(01)f x x x '=<<,则()f x =( ) 三、求解下列各题(本大题共10小题,每小题6分,总计60分)1、求极限220tan lim.1cos xx x tdtx→-⎰2、设1sin ,0(),0,0x x f x xx ⎧≠⎪=⎨⎪=⎩求().f x ' 3、求不定积分5cos .⎰4、求曲线sin ,2x y x z ==上点(,0,)2ππ处的切线和法平面方程.5、求微分方程2dx xydy y dx ydy +=+的通解.6、求由曲线2,2y x x y =+=及x 轴所围成的区域绕x 轴旋转所成立体的体积.7、当,a b 为何值时,线性方程组1234512345234512345323022654332x x x x x a x x x x x x x x x b x x x x x ++++=⎧⎪+++-=⎪⎨+++=⎪⎪+++-=⎩有解. 当其有解时,求出其全部解.8、计算二重积分22ln(1),Dx y dxdy ++⎰⎰其中222:(0),D x y R R +≤>0,0.x y ≥≥9、计算曲线积分22,LI y xdy x ydx =-⎰其中L 是圆周222,x y a +=逆时针方向为正.10、判别级数的敛散性.(1)1!n n n n∞=∑ (2) 11cos4nn n ππ∞=∑ 四、证明题(本大题共2小题,每题7分,总计14分)1、设()f x 在[,]a b 上连续,在(,)a b 内可导,且()()0,f a f b ==证明在(,)a b 内至少存在一点ξ,使()2015()0.f f ξξ'+=2、证明:对0,2x π∀<<2tan cos xx x x<<成立.西华大学2014年专升本考试试题(高等数学)一、填空题(把答案填在括号中。
(完整)2011高数专升本试卷及答案,推荐文档
河北省2011年普通高校专科接本科教育选拔考试《数学(二)》(财经类)试卷(考试时间60分钟)说明:请将答案填写在答题纸的相应位置上,填在其它位置上无效。
一、单项选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个备选项中,选出一个正确的答案,并将所选项前面的字母填写在答题纸的相应位置上,填写在其它位置上无效)1.函数 91)1ln(2-++=x x y 定义域为( )A. (-1,+∞)B. (-1,3)C. (3,+∞)D. (-3,3)2.极限)(x 1x 2xx lim =⎪⎭⎫⎝⎛-∞→A.e 2B. 1C. 2D. e 2-3.已知函数⎪⎪⎩⎪⎪⎨⎧>+=<=021cos 00sin )(x x x x b x xaxx f 在定义域内连续,则)(=+b aA. 4B. 2C. 1D. 04.由方程3+=xy e y 所确定的隐函数)(x y y =的导数)(=dxdy-A. x e y y -B.yx e y - C.x e y y + D. x e y y --5.曲线1322+-=x x y 的凹区间为( )A. (]0,∞-B.[)+∞,0C.(]1,∞-D.[)+∞,16.已知某产品的总收益函数与销售量x 的关系为210)(2x x x R -=,则销售量x=12时的边际收益为( )A. 2B.2-C.1D.1-7.设)(x F 是)(x f 的一个原函数,则⎰=--)()(dx e f e xxA.C e F x +-)(B.C eF x+--)( C. C e F x +)( D. C e F x +-)(8.微分方程xe y y =-'满足初始条件00==x y的特解为( )A. )(c x e x+ B. )1(+x e xC.1-x eD. xxe9. 当( )时,齐次线性方程组⎪⎩⎪⎨⎧=++=++=++000321321321x x x x x x x x x λλλ 有非零解-A.1≠λB.2-≠λC.12=-=λλ或 D. 12≠-≠λλ且10.下列级数发散的是( )A. ∑∞=-11)1(n nn B.∑∞=-152)1(n n n C.∑∞=11n n D.∑∞=-121)1(n n n 二.填空题(本大题共5小题,每小题4分,共20分,将答案填写在答题纸的相应位置上,填写在其它位置上无效)11.已知2xe 为)(x f 的一个原函数,则⎰________)('dx x xf12.幂级数∑∞=--113)1(n n nn x 的收敛半径为_____________ 13.已知二元函数________________),ln(22=∂∂+=xzy x x z 则14.二阶方阵A 满足⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡10122111A ,则_____________=A 15.微分方程y y xy ln '=的通解为_____________________=y三.计算题(本大题共4小题,每小题10分,共40分,将解答的主要过程、步骤和答案填写在答题的相应位置上,填写在其它位置上无效) 16. 求极限⎪⎭⎫ ⎝⎛--→1e 1x 1lim x 0x 17.求由曲线2e y =与其在点)e ,1(处的切线及主轴所围成平面图形的面积。
11年专升本高数真题答案
2023年河南省普通高等学校选拔优秀专科毕业生进入本科阶段学习考试高等数学 解析:及解析一、选择题(每小题2分,共60分)1.解析:C.【解析】:202220x x x ->⎧⇒-<<⎨+>⎩,应选C.2.解析:B.【解析】:令1,x t +=,则1x t =-,有22()(1)2(1)21f t t t t =-+-+=+,所以()f x =21x +,应选B.3.解析:A.【解析】:根据奇偶函数地结论:一奇一偶函数地乘积为奇函数,应选A. 4.解析:C.【解析】:无穷小量与有界变量之积为无穷小量,因此01lim sin0x x x→=,应选C. 5.解析:B.【解析】:0(2)(3)lim5()5h f x h f x h f x h→+--'==,应选B.6.解析:D.【解析】:00sin(sin )sin lim lim 2x x x x x xx x→→++==,应选D.7.解析:B.【解析】:0lim ()0,lim ()1x x f x f x +-→→==,应选B.8.解析:D.【解析】:(sin )cos x x '''=-,应选D.9.解析:A.【解析】:(arcsin arccos )0arcsin arccos x x x x C'+=⇒+=取0x =,得arcsin arccos x x +=π2,应选A.10.解析:B.【解析】: 根据取得极值地第二充分条件知,0x 是函数()f x 地极小值点,应选B.11.解析:A.【解析】:1lim lim arcsin0;0x x y x x →±∞→±∞==→时,1arcsin y x=无意义,因此仅有水平渐近线,应选A.12.解析:D.【解析】:110222101111dx dx dx x x x --=+⎰⎰⎰,是二个q 广义积分都发散,因此原积分发散,应选D. 13.解析:B.【解析】:设函数()sin 1f x x x =+-,则(0)1,(1)sin1f f =-=,()cos 10f x x '=+>,方程有唯一实根,应选B.14.解析:A.【解析】:()cos f x x '=,则d ()()d cos d sin f x f x x x x x C '===+⎰⎰⎰,应选A.15.解析:C.【解析】:2π2π2costcost cos ()sin d cos 0x x x txxxF x et t e d t e π+++==-=-=⎰⎰,应选C.16.解析:A.【解析】:b x t tx x bd d te dt te dt xe dx dx =-=-⎰⎰, 应选A.17.解析:B.【解析】: ππ00sin d cos 2S x x x ==-=⎰,应选B.18.解析:A.【解析】: 根据微分方程通解地概念知,通解中一定含有两个任意常数,应选A.19.解析:D.【解析】:这是一阶线性微分方程,代入通解公式有通解为3333dx dx x x y e xe dx C e xe dx C --⎡⎤⎰⎰⎡⎤=+=+⎢⎥⎣⎦⎣⎦⎰⎰,应选D.20.解析:D.【解析】: 111010i j ki k =-+,应选D.21.解析:C.【解析】:因为a b b a ⨯=-⨯,应选C.22.解析:A.【解析】:直线地方向向量与平面法向量相互垂直,则直线在平面内或直线平行于平面;而点(0,0,0)不在平面内,应有直线平行于平面,应选A.23.解析:C.【解析】:222200111limlim lim lim sin sin 2x x x x y y y xy xy xy x x →→→→→→=⨯==,应选C.24.解析:D.【解析】: 偏导数都存在不一定连续,连续也不一定偏导数存在,应选D.25.解析:B.【解析】:lnln()ln x y dx dy dydz d d x y d y y x y y ++==+-=-+11(dx dy x y x y y =+-⇒++(1,1)dz =1()2dx dy -,应选B.26.解析:C.【解析】:{(,)|01,0x y y x ≤≤≤≤={}2(,)|01,01x y x y x≤≤≤≤-,应选C.27.解析:D.【解析】:因为1,1P Q y x∂∂=-=∂∂,则 (3)d (2)d L D Q P x y x x y y dxdy x y ⎛⎫∂∂-+-=-- ⎪∂∂⎝⎭⎰⎰⎰ 221Ddxdy S ∆=-=-=-⎰⎰,应选D.28.解析:B.【解析】: 根据二重积分地对称性可知,此积分值为零,应选B.29.解析:C.【解析】:A 、B 、D 都可以举出反例,对于C,利用反证法,假设1(||||)nn n ab ∞=+∑收敛,可得1||n n a ∞=∑收敛,从而1n n a ∞=∑是收敛,矛盾,应选C.30.解析:C.【解析】:令2x t -=,化为级数级数1nn n a t∞=∑在4t =-处收敛,问2t =处是否收敛地问题,根据阿贝尔定理绝对收敛,应选C.二、填空题(每小题2分,共20分)31.解析:1-e .【解析】:()()111100lim 1lim 1xx x x x x e ---→→⎡⎤-=-=⎢⎥⎣⎦.32.解析:3.【解析】:()()()()f x f x f x f x ''-=-⇒-=⇒()03f x '-=.33.解析:1-=x y .【解析】:11y k x'=⇒=,所以切线方程为1y x =-.34. 解析:C xx +-1ln.【解析】:1111ln |1|ln ||ln (1)1x dx dx x x C C x x x x x -⎛⎫=-=-++=+ ⎪--⎝⎭⎰⎰.35.解析:044=+'+''y y y .【解析】:2212xx C eC xe --+为通解说明特征方程有两个相等实根-2,所以4,4p q ==,故二阶常系数齐次线性微分方程为440y y y '''++=.36.解析:()3,2,1--.【解析】:根据关于y 轴地对称点地特点知,所求对称点为(-1,2,-3).37.解析:dy dx +.【解析】:()x ydz e dx dy +=+⇒(0,0)dz dx dy =+.38.解析:21-.【解析】:101dy y dx dy xdy ydx dx x--+++=⇒=+,当1x =时,0y =,所以(1,0)12dy dx =-.39.解析:321+.【解析】:从点(1,2)到点()方向向量为{s = ,单位化后为012s ⎧⎪=⎨⎪⎩ ,则(1,2)1(1,2)cos (1,2)sin 212x ff f lαβ∂=+=⨯+=+∂.40.解析:()1,1-.【解析】:1lim1nn n a R a →∞+==,所以收敛区间为(-1,1)。
2011高数真题解析(2012所有考点)
绝密★启用前2011年成人高等学校专升本招生全国统一考试高等数学(一)答案必须答在答题卡上指定的位置,答在试卷上无效。
一、选择题:1~10小题,每题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的,将所选项前的字母填涂在答题卡相应题号的信息点上。
1.解析:此题是极限的运算法则题型一:将极限值代入方程如果分母不得零,就将极限值直接带入方程求解。
(直接代入法) 题型二:将极限值代入方程如果分母得零,就不能用题型一的方法!先将方程因式分解或分子有理化等方法将式子中的零因子去除再将极限值代入求解。
例:a.00型因式分解去零因子 b. 00型分子有理化去零因子c.∞∞型式子中如果有高次幂就用最高次幂除分子分母d.∞-∞型一般处理方法是通分e.切记一定是00或∞∞可以用洛必达法则上下求导和无穷小量等价代换进行求解 【特殊角的三角函数值】(1)sin 00= (2)1sin62π=(3)sin 32π= (4)sin 12π=) (5)sin 0π= (1)cos 01= (2)cos 6π= (3)1cos 32π= (4)cos 02π=) (5)cos 1π=-(1)tan 00= (2)tan 63π= (3)tan 3π=(4)tan 2π不存在 (5)tan 0π=(1)cot 0不存在 (2)cot 6π= (3)cot 33π=(4)cot 02π=(5)cot π不存在重要公式(1)0sin lim 1x xx →= (2)()10lim 1xx x e →+= (2.1)e xxx =+∞→)11(lim (3))1n a o >= (4)1n = (5)lim arctan 2x x π→∞=(6)lim tan 2x arc x π→-∞=-(7)lim arc cot 0x x →∞= (8)lim arc cot x x π→-∞= (9)lim 0xx e →-∞=(10)lim x x e →+∞=∞ (11)0lim 1xx x +→=A.B. C.D.2.设,则解析:本题考导数此题和填空14题解析相同A.B.C.D.3.设,则解析:本题考微分求导后一定要加dx 微分公式与微分运算法则⑴()0d c = ⑵()1d x x dx μμμ-= ⑶()sin cos d x xdx =⑷()cos sin d x xdx =- ⑸()2tan sec d x xdx = ⑹()2cot csc d x xdx =- ⑺()sec sec tan d x x xdx =⋅ ⑻()csc csc cot d x x xdx =-⋅⑼()x x d e e dx = ⑽()ln x xd a a adx = ⑾()1ln d x dx x=⑿()1log ln xad dx x a= ⒀()arcsin d x = ⒁()arccos d x =⒂()21arctan 1d x dx x =+ ⒃()21arc cot 1d x dx x =-+ 微分运算法则⑴()d u v du dv ±=± ⑵()d cu cdu = ⑶()d uv vdu udv =+ ⑷2u vdu udvd v v -⎛⎫= ⎪⎝⎭A. B.C.D.4.设,则解析:本题考高阶求导, 高阶导数的运算法则 (1)()()()()()()()n n n u x v x u x v x ±=±⎡⎤⎣⎦ (2)()()()()n n cu x cu x =⎡⎤⎣⎦(3)()()()()n n nu ax b a uax b +=+⎡⎤⎣⎦ (4)()()()()()()()0nn n k k k n k u x v x c u x v x -=⋅=⎡⎤⎣⎦∑A.B.C.D.5.解析:本题考不定积分,解析和填空16题解析相同A.B.C.D.6.解析:本题考定积分用不定积分的方法积分后将上下值代入求解A.B.C.D.7.设,则解析:本题考偏导数,题型一:分母是y就对y求导把x看做常数求导。
2011年成人高考专升本高等数学一真题
一、选择题:1~l0小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的,将所选项前的字母填涂在答题卡相应题号的信息点上。
1.lim x→1x2+x+1x2−3x+3=A.0B.1C.2D.32.设y=x4,则y’=A.15x5B.14x3C.4x3D.x4lnx3.设y=x+lnx,则dy=A.(1+e x)d xB.(1+1x)dxC.1xdxD.d x4.设y=sinx,则y’’=A.-sinxB.sinxC.-cosxD.cosx5. ∫1x3dx=A. −22x2+CB. −2x2+CC. 22x2+CD. 2x2+C6. ∫x 5dx =1−1A. 12B. 13C. 16D. 07. 设z=arcsinx+e y ,则ðz ðy =A. √1−x 2+e y B. √1−x 2C.√1−x 2 D. e y8.在空间直角坐标系中,方程x 2+y 2=1表示的曲面是A.柱面B .球面C.锥面D.旋转抛物面9.设z=x 2-3y ,则dz =A.2xdx-3ydyB.x 2d x -3dyC .2xdx -3dyD.x 2dx -3ydy10.微分方程y ’=2y 的通解为y=A.Ce 2xB.C e x 2C.C x e xD.C x e 2x二、填空题:11~20小题,每小题4分,共40分。
将答案填写在答题卡相应题号后。
11. lim x→∞(1+4x )x = 12. 设函数f(x)={x 2+1,x ≤02a +x,x >0,在x=0处连续,则a= 13. 曲线y=2x 2在点(1,2)处的切线方程为y=14. 设y=e 2x ,则y’| x=1=15. 函数y =13x 3−x 的单调减少区间为16.∫11+x 2dx =17.∫(√x +x 2)dx =1018.过点(1,-1.-2)且与平面2x-2y+3z=0垂直的直线方程为19.设函数z=f (x ,y )可微,(x 0,y 0)为其极值点,则ðz ðx | (x0,y 0)=20.微分方程y’=x+1的通解为y=三、解答题:21~28题,共70分,解答应写出推理、演算步骤,并将其写在答原卡相应原号后。
陕西统招专升本高等数学真题10年真题(2011-2019)
2011年陕西省普通高等教育专升本招生考试一、单项选择题:(本大题共5小题,每小题5分,共25分.在每小题给出的四个选项中,只有一项是符合题目要求的)1、下列极限存在的是()A 、11lim0-→x x e B 、xx 1sinlim 0→C 、xx x 1sinlim 0→D 、跳跃间断点2、设曲线22-+=x x y 在点M 处的切线斜率为3,则点M 的坐标是()A 、()0,2-B 、()0,1C 、()20-,D 、()4,2x()()=x 11()()ex 10+)C 、∞=1n )+⎪⎭⎫ ⎝⎛-1321nn 的值为()C 、22eπ5⎰21=y 32=-z y _______9、设函数()233,xy x y x f +=,则函数()y x f ,在点()1,1处的梯度为_______10、已知函数()x f 在[]1,0上有连续的二阶导数,且()()()31,21,10='==f f f ,则定积分()_______1=''⎰dx x f x 三、计算题(本大题共10小题,每小题8分,共80分.计算题要有计算过程)11、求极限()xdt t x x 40sin 1ln lim2⎰+→12、设参数方程⎪⎩⎪⎨⎧==+t e y ex tt cos 212确定了函数()x y y =,求22dx y d13、设函数()3129223-+-=x x x x f ,求()x f 的单调区间和极值14、设函数()y x x f z ln ,=,其中()v u f ,具有二阶连续偏导数,求xy z∂∂∂215、计算不定积分()⎰+xx dx 116、设函数()x f 在()+∞∞-,内具有二阶导数,且()()000='=f f ,试求函数()()⎪⎩⎪⎨⎧=≠=0,00,x x x xf xg 的导数.dxdy y -+122(){,2+x y x (⎰+=LxI 2L 的和()[⎰-Lxx f exoy ()x f 29+22、设函数()x f 在[]3,1上连续,在()3,1内可导,并且()()⎰=321dx x xf f ,证明:在()3,1内至少存在一点c ,使得()()c f c c f '-=2012年陕西省普通高等教育专升本招生考试一、单项选择题:(本大题共5小题,每小题5分,共25分.在每小题给出的四个选项中,只有一项是符合题目要求的)1、0=x 是函数()2cos 1x xx f -=的()B 、可去间断点B 、连续点C 、无穷间断点D 、跳跃间断点2、设()C e dx x f x +=⎰,则不定积分()⎰=dx e x f x ()B 、Ce x+2B 、C e x+21C 、C e x+221D 、Ce x+223、函数()⎨⎧<≥=11,22x x x f 在点1=x 处()C 、不连续D 、不能判断是否可导,则级数()∑∞=++11n n nu u收敛于()1u S +D 、12u S -)Ce x=-C 、Ce ex y=+-D 、Ce ex y=--5分,共25分)<≥0,0,x x 在0=x 处连续,则____=a 7、设函数x f 在点0x 处可导,且()20='x f ,则()()___lim000=∆∆--∆+→∆xx x f x x f x 8、设函数()222,,z y x z y x f ++=,则函数()z y x f ,,在点()1,1,1-处的梯度()1,1,1-gradf 为_____9、设方程⎰⎰=+-y t xxy dt e tdt 0sin 确定函数()x y y =,则____=dxdy10、曲面1222-+=y x z 在点()2,1,1处的切平面方程为_____三、计算题(本大题共10小题,每小题8分,共80分.计算题要有计算过程)11、求极限()xexx x x sin 1sin lim2--→12、设参数方程()⎪⎩⎪⎨⎧+==⎰-tt du u y e x 02123确定函数()x y y =,求0=t dx dy 13、求函数()()322x x x f -=的单调区间和极值14、设函数,(y x x f z =,其中f 具有二阶连续偏导数,求yx zx z ∂∂∂∂∂2,15、计算不定积分⎰+exx dx 1ln 116、计算二重积分+=dxdy y x I 22sin ,其中D 是由圆4222π=+y x 与直线x y =及y()1-xz1,求函数f 42=+y x2221、设曲线方程21xy -=(1)求该曲线及其在点()0,1和点()0,1-处的法线所围成的平面图形的面积(2)求上述平面图形绕y 轴旋转一周所得旋转体体积22、设函数()x f 在点[]1,0上连续,且()⎰=100dx x f ,证明:在()1,0内至少存在一点ξ,使得()()⎰=+ξξξ0dx x f f2013年陕西省普通高等教育专升本招生考试一、单项选择题:(本大题共5小题,每小题5分,共25分.在每小题给出的四个选项中,只有一项是符合题目要求的)1、0=x 是函数()21xe xf x -=的()A 、可去间断点B 、振荡间断点C 、无穷间断点D 、跳跃间断点2、不定积分⎰=dx x xsin ()A 、Cx +-cos2B 、C x +cos C 、Cx +cos 2D 、Cx +-cos)3,2-B 、2x D 、2x 0=ydy B 、x +22ln ln C y =ln D C)B 、∑∞=131n nD 、n 56、设函数xx f +=1,则()()=x f f 7、设函数()x f 满足()()20,00='=f f ,则极限()____lim 0=→xx f x 8、函数xxey -=的极大值为_______9、交换积分次序()⎰⎰=11______,xdy y x f dx 10、设L 为连接点()0,1和点()1,0的直线段,则对弧长的曲线积分为()⎰=+Lds y x _____三、计算题(本大题共10小题,每小题8分,共80分.计算题要有计算过程)11、求极限()xx x e x x 220sin cos 11lim2---→12、已知椭圆的参数方程⎩⎨⎧==tb y t a x sin cos 确定了函数()x y y =,求22dx yd dx dy ,13、求不定积分⎰+dxe x 1114、计算定积分⎰-=π42sin sin dxx x I 15、设函数⎪⎪⎭⎫⎝⎛=y x xyf z ,其中()u f 可导,求yzy x zx ∂∂+∂∂16、求函数()xyz z xy z y x f -+=32,,在点()2,1,10-P 处沿方向{}1,1,1--=l 的方向导数17、计算二重积分()⎰⎰+++=Dy x dxdy exy I 221,其中积分区域(){}1,22≤+=y xy x D(⎰+=Ly x I 其中L 是曲线x y sin =上由142+xe2分.应用题的计算要有计算过程,上连续,在(,0()⎰=1210dx x f ,证明:在()1,0()()=-'ξξf f (1)求该曲线在点()1,1处的切线方程(2)求该曲线和该切线及直线0=y 所围成的平面图形的面积(3)求上述平面图形绕x 轴旋转一周所得旋转体体积2013年陕西省普通高等教育专升本招生考试试题解析1、因为()∞===-=→→→→x x x x e x f x x x x x 1lim lim 1lim lim 020200,则为无穷间断点,故选C.2、原式⎰+-==C x x d x cos 2sin2,故选A.3、令()()()()1|,2|,22|,2,,3,2,13,2,13,2,122-=-====-+=---z y x F y F x F z y x z y x F ,则法向量{}1,2,2--=n ,通过点法式得平面方程为()()()032212=--+--z y x ,即0322=---z y x ,故选D.=为Dx9、由题可知⎩⎨⎧≤≤≤≤110y x x ,通过图形可知⎩⎨⎧≤≤≤≤y x y 010,故原式为()⎰⎰y dxy x f dy 010,10、L的直线方程为()1,01∈+-=x x y ,,则曲线积分为()()⎰⎰=='++-10122211dx dx y x x 11、解:原式1lim 1lim 222lim 211lim 22020*******22==-=-=--=→→→→x x x e x x xe xx x e x x x x x x x 12、解:,t b dtdxt a dt dy cos ,sin =-=则ta b t a t a b dtdx dx dy dt d dx y d t a b dt dx dt dy dx dy 32222sin 1sin 1csc 1,cot -=-⋅=⋅⎪⎭⎫ ⎝⎛=-==13、解:原式()⎰⎰⎰⎰++-=++-=+-=+-+=C e x e d e x dx e e dx dx ee e xx x x x x x x 1ln 11111114、解:原式=()⎰⎰⎰⎰-=-==-ππππππ02022022222|sin 21cos sin cos sin cossinsin1sinx xdxx xdxx dxx x dxx x⎪⎪⎭⎫⎝⎛'y x f ⎝⎛y x xf ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛'y x xyf y x f 2,31=)xy -=2,00=p )30131+⎭⎝17、解:令,sin ,cos θθr y r x ==而⎩⎨⎧≤≤≤≤πθ2010r ,则()ee e dr re d rdrd e I r r Dr -=⋅===+++⎰⎰⎰⎰2101101201|212222ππθθπ18、解:()()1,,1,+-=-+=y x y x Q y x y x P ,1,1=∂∂=∂∂y Px Q ,由格林公式知,积分与路径无关,则()()⎰⎰+=+-+-=2010221811ππdy y dx x I19、解:11lim 1lim lim11<+=+==∞→+∞→+∞→x n n nx n x u u R n n n n nn n ,则收敛半径为1=R 当1-=R 时,原函数为()∑∞=-111n nn收敛;当1=R 时,原函数为∑∞=11n n 发散;故收敛域为[)1,1-,令()∑∞==11n n x n X S ,则()[)1,1,11 (11)211-∈-=+++++=='-∞=-∑x x x x x x X S n n n ,则(--=x 1ln 22121 ⎝⎛=∞S n n 0=λ,y =2*1==B A ,解为*=y ,故微分为412-+x xe ⎰212()c f =令()()x f ex F x-=,又因为()x F 在[]c ,0上连续,在()c ,0内可导,且()()c F F =0,由罗尔定理得至少存在一点()()1,00⊂∈c ,ξ,使得()0='ξF ,即()()0=-'ξξf f .22、解:(1)因为切线斜率2|1='==x y k ,则切线方程为()121-=-x y ,即12-=x y (2)⎰=⎪⎪⎭⎫ ⎝⎛-+=⎪⎭⎫⎝⎛-+=1010232121|32214121y y y dy y y A (3)()()ππ30112210121244=⎥⎦⎤⎢⎣⎡--+=⎰⎰dx x x dx x V x2014年陕西省普通高等教育专升本招生考试一、单项选择题:(本大题共5小题,每小题5分,共25分.在每小题给出的四个选项中,只有一项是符合题目要求的)1、当0=x 时,是()()xx x f +=1ln 的()A 、可去间断点B 、跳跃间断点C 、无穷间断点D 、振荡间断点2、若()20='x f ,则极限()()=--+→hh x f h x f h 000lim ()A 、2-B 、2C 、4-D 、43、若不定积分()⎰+=C x dx x f 1,则()='x f ()x 121x32x 42=)+ds 1∞=n B 、∞=1n )138、不定积分_____)ln 1(2013=+⎰dx xx 9、过点()3,2,1且与直线11232+==-z y x 垂直的平面方程是_________10、微分方程yx ey +='的通解是_________三、计算题(本大题共10小题,每小题8分,共80分.计算题要有计算过程)11、求极限)1(sin lim224-⎰→x x x e x tdtt 12、设函数()x y y =由参数方程()⎩⎨⎧+==21ln arctan ty t x 所确定,求22,dx yd dx dy13、求不定积分⎰-dxx x 21ln 14、计算定积分求函数dx x x I ⎰+-=2212的全微分15、设函数()2,y x xy f z +=,其中()v u f ,具有二阶连续偏导数,求yx zx z ∂∂∂∂∂2,16、求函数z xy u 2=在点()1,1,1-P 处的梯度,并求该函数在P 点处沿梯度方向的方向导17、交换二次积分⎰⎰10122y x dx edy 的次序,并计算其值18、计算曲线积分()⎰++=Lxdy dx y I 22,其中L 为从点()0,1A 沿上半圆周122=+y x到xey 22-=的通解2小题,每小题10分,共20分.应用题的计算要有计算过程,()()010<⋅f f ,证明在()1,0内至少存在一点ξ,使得)1≤上一点处的切线,使该切线与直线1,0==x y 和曲线2xy =2015年陕西省普通高等教育专升本招生考试一、单项选择题:(本大题共5小题,每小题5分,共25分.在每小题给出的四个选项中,只有一项是符合题目要求的)1、点0=x 是函数()xx x f =的()A 、连续点B 、可去间断点C 、跳跃间断点D 、无穷间断点3、设极限()()()12lim 2000-=--→x x x f x f x x ,则点0x x =是函数()x f 的()B 、极大值点B 、极小值点C 、驻点,但非极值点D 、非驻点)0C C y =+>a 的取值有关0→h 7、已知当0→x 时,⎰22cos x dt t 与a x 是等价无穷小,则____=a 8、设方程e xy e y=+2确定了隐函数()x y y =,则___==x dxdy9、不定积分⎰=+____2sin 12cos dx x x10、设曲线4:222π=+y x L ,则对弧长的曲线积分()⎰=++L ds y x x ____sin 22三、计算题(本大题共10小题,每小题8分,共80分.计算题要有计算过程)11、求极限()xx x x e x x 30sin 1sin lim +-→12、设函数()x y y =由参数方程⎪⎩⎪⎨⎧=+=tey tx 331所确定,求22,dx y d dx dy 13、求不定积分dxex⎰14、计算定积分()⎰--+=442cos arctan ππdxx x I 15、设函数()xy y x f z ,2+=,其中f 具有二阶连续偏导数,求y x zx z ∂∂∂∂∂2,)z xy +2()1,1,1=l的方向导数)+22dy y x+++dy y x x )sin 1122,其中L 是从点)0≥到点B xxey -=122分.应用题的计算要有计算过程,21、设曲线C 的方程xe y =,(1)在曲线C 上求切点P ,使P 点处曲线C 的切线过坐标原点(2)求P 点处法线L 的方程(3)求由曲线C 、法线L 及y 轴所围成图形的面积A22、设函数()x f 在闭区间[]π,0上连续,在开区间()π,0内可导,证明在开区间()π,0内至少存在一点ξ,使得()()ξξξξcos sin f f -='2016年陕西省普通高等教育专升本招生考试一、单项选择题:(本大题共5小题,每小题5分,共25分.在每小题给出的四个选项中,只有一项是符合题目要求的)1、点0=x 是函数21()x e f x x-=的()A、连续点B、可去间断点C、跳跃间断点D、无穷间断点2、设在闭区间[]b a ,上,()0f x >,()()0,0<''>'x f x f ,令1()baS f x dx =⎰,2()()S f a b a =-,3[()()]2b aS f a f b -=+,则必有()312S S S <<C、213S S S <<D、132S S S <<)0,1,1(处的切平面方程为()B、4480x y z ++-=D、4480x y z +++=)CC 、Cy x =- D.Cy x =+22在2=x 处发散,则该幂级数在1-=x 处()C、发散D、敛散性不确定5分,共25分)6、极限0sin 2limln(1arcsin )x xx →+=7、已知当0x →时,sin 20xt dt ⎰与a x 是同阶无穷小,则常数=a8、定积分33(cos x x dx -+⎰=9、二元函数yz x =()0,1x x >≠的全微分=dz 10、设曲线L 为圆周122=+y x ,则弧长的曲线积分⎰=+Lds y x 22_______三、计算题(本大题共10小题,每小题8分,共80分.计算题要有计算过程)11、已知函数⎩⎨⎧<≥+=0,0,)(x e x b ax x f x,在0=x 处可导,试确定常数a 和b12、设函数()y y x =由参数方程2,21t x y t⎧=⎪⎨⎪=-⎩所确定,求dy dx ,22d y dx 13、求函数3()31f x x x =-+的极值点及其图形的拐点14、求不定积分arctan xdx⎰),其中f z x ∂∂,22zx ∂∂)1,1,1(2dy xy ,并计算积分值++dx y()2)0,0(O 经过点)0,1(A 到点e x y )1(+=220分.应用题的计算要有计算21、设0a b >>,1n >,证明:11()()n n n n nb a b a b na a b ---<-<-22、求曲线2y x =和y =所围成平面图形的面积S ,并求次图形绕x 轴旋转一周所形成的旋转体的体积V2017年陕西省普通高等教育专升本招生考试一、单项选择题:本大题共5小题,每小题5分,共25分。
西华大学高等数学考核参考答案(A 卷)
2a
2a
(0, 1 ) 是凸区间,[ 1 , + ∞)是凹区间, ( 1 , 1− ln 2a)是拐点。
2a
2a
2a 2
x
∫ 3、解:首先,当 x ≠ 0 时,令 xt = s ,则
g(x) =
1
f (xt)dt =
f (s)ds
0
∫0
x
x
∫ xf (x) − f (s)ds
gʹ(x) =
0
x2
其次,当 x = 0 时,由 f (x) 连续, lim f (x) = 2,知 x→0 x
0
0
6
五、参考答案及评分标准
证:设 F (x) = f (x) − x,则 F (x) 在[0, 1]上连续,在 (0, 1) 内可导,且 Fʹ(x) = f ʹ(x) −1
因为 F(0) = 0, F(1) = f (1) − 1 = 1 > 0, F(1) = f (1) −1 = −1 < 0 2 2 22 1
0
2 π
(sin
x
−
cos
x)dx
4
π
π
=
[sin
x
+
cos
]x 4 0
+ [− cos
x
− sin
]x
2 π
=
2(
2 −1)
4
1 x2
1 x cos x
∫ ∫ 3、原式=
−11+ x2 dx +
dx −1 1+ x2
1
1
∫ = 2 0 (1− 1+ x2 )dx + 0
+∞ exdx
11年专升本高数真题
2011年河南省普通高等学校选拔优秀专科毕业生进入本科阶段学习考试高等数学注意事项:答题前,考生务必将自己的姓名、考场号、座位号、考生号填写在答题卡上。
本试卷的试题答案必须答在答题卡上,答在试卷上无效。
一、选择题(每小题2分,共60分)在每小题的四个备选答案中选出一个正确答案,用铅笔把答题卡上对应题目的答案标 号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
1.函数()ln(2)f x x =- A .(,2)-∞B .(2,)-+∞C .(2, 2)-D .(0, 2)2.设2(1)22f x x x +=++,则 ()f x =A .2x B .21x + C .256x x -+ D .232x x -+3.设函数()()f x x -∞<<+∞为奇函数,()()g x x -∞<<+∞为偶函数,则下列函数必为奇函数的是 A.()()f x g x ⋅ B. [()]f g x C. [()]g f x D. ()()f x g x + 4.01lim sinx x x→= A.-1 B.1 C.0 D.不存在 5.设()1f x '=,则0(2)(3)limh f x h f x h h→+--=A .4B .5C .2D .16.当0x →时,下列无穷小量与x 不等价的是A.22x x -B. 321x e x --C.2ln(1)x x+ D.sin(sin )x x +7.设函数11,0()10,0x x f x e x ⎧≠⎪=⎨+⎪=⎩则0x =是A.可去间断点B.跳跃间断点C.连续点D.第二类间断点 8.函数sin x 的三阶导数是A .sin xB .sin x -C .cos xD .cos x -9.设[1,1]x ∈-,则arcsin arccos x x += A .π2B .π4C .0D .110.若00()0,()0f x f x '''=>,则下列表述正确的是 A .0x 是函数()f x 的极大值点 B .0x 是函数()f x 的极小值点C .0x 不是函数()f x 的极值点D .无法确定0x 是否为函数()f x 的极值点11.方程1arcsiny x=所表示曲线 A .仅有水平渐近线 B .仅有垂直渐近线C .既有水平渐近线,又有垂直渐近线D .既无水平渐近线,又无垂直渐近线 12.1211dx x -=⎰A.0B.2C.-2D.以上都不对 13.方程sin 10x x +-=在区间(0,1)内根的个数是 A.0 B.1 C.2 D.3 14.若)(x f 是x cos 的一个原函数,则=⎰)(d x f A .sin x C + B .sin x C -+C .cos x C -+D .cos x C +15.设2πcost ()sin d x xF x e t t +=⎰,则()F xA .为正常数B . 为负常数C .恒为零D .不为常数16.b tx d te dt dx=⎰ A.xxe - B. xxe C. b x e e - D. b xbe xe - 17.由曲线sin (0π)y x x =≤≤与x 轴所围成的区域的面积为A .0B .2CD .π18.关于二阶常微分方程的通解,下列说法正确的是 A .一定含有两个任意常数 B .通解包含所有解 C .一个方程只有一个通解 D .以上说法都不对19.微分方程3y y x '+=的通解是 A .221xy x Ce=++ B .1xy xe Cx =+- C .139xy x Ce =++D .31139x y x Ce -=+- 20.已知向量a i j k =++,则垂直于a 且垂直于y 轴的向量是 A .i j k -+B .i j k --C .i k +D .i k -21.对任意两个向量a ,b ,下列等式不恒成立的是 A .a b b a +=+B .a b b a ⋅=⋅C .a b b a ⨯=⨯D .2222()()a b a b a b ⋅+⨯=22.直线110x y z ==-与平面2=-+z y x 的位置关系是 A .平行 B .直线在平面内 C .垂直 D .相交但不垂直23.20limsin x y yxy →→的值为A .0B .1C .12D .不存在24.函数(,)f x y 在点),(00y x 处的两个偏导数0000(,),(,)x y f x y f x y 都存在是(,)f x y 在该点处连续的 A.充要条件 B.必要非充分条件 C.充分非必要条件 D.既非充分亦非必要条件 25.函数ln(1)xz y=+在点(1,1)处的全微分(1,1)dz = A .0 B .1()2dx dy - C .dx dy - D .11dx dy x y y-+ 26.设I= 122 0dy d x y x ⎰⎰,则交换积分次序后A.122 0d d x x y y ⎰⎰B.122 03d x x y y ⎰C .21122d 3d x x x y y -⎰⎰D .21122 0d 3d x x x y y +⎰⎰27.设L 为三个顶点分别为(1, 0)-,(0, 0)和(0, 1)的三角形区域的边界,L 的方向为顺时针方向,则(3)d (2)d Lx y x x y y -+-=⎰A.0B.1C.2D.-128.(,)|0,11,4D x y x y π⎧⎫=≤≤-≤≤⎨⎬⎩⎭则cos(2)Dy xy dxdy =⎰⎰ A.12-B.0C.14D.1229.若级数1nn a∞=∑与1nn b∞=∑都发散,则下列表述必正确的是A .1()nn n ab ∞=+∑发散B .1n nn a b∞=∑发散C .1(||||)n n n ab ∞=+∑发散D .221()n n n ab ∞=+∑发散30.设级数∑∞=-1)2(n n nx a在2x =-处收敛,则此级数在4x =处A.发散B.条件收敛C. 绝对收敛D. 收敛性不确定 二、填空题(每小题2分,共20分)31.()10lim 1xx x →-= .32.设()f x 为奇函数,则()03f x '=时,()0f x '-= . 33.曲线ln y x =上点(1,0)处的切线方程为_____________.34.1(1)dx x x =-⎰ .35.以2212xx C eC xe --+为通解的二阶常系数齐次线性微分方程为 _______.36.点(1,2,3)关于y 轴的对称点为 . 37.函数x yz e+=在点(0,0)处得全微分(0,0)dz = .38.由1x y xy ++=所确定的隐函数()y y x =在1x =处得导数为 .39.函数22z x y =+在点(1,2)处沿从点(1,2)到点()方向的方向导数等于 .40.幂级数11nn x n∞=∑的收敛区间为 . 三、计算题(每小题5分,共50分)41.用夹逼准则求极限222lim ...12n nn n n n n n →∞⎛⎫+++⎪+++⎝⎭的值.42.讨论函数221sin ,0()0,0x x f x xx ⎧≠⎪=⎨⎪=⎩在0x =处可导性. 43.求不定积分21xxe dx e +⎰. 44.求定积分1x xe dx ⎰.45.求微分方程32x y y y e '''++=的通解46.设()2=,z x y x ϕ+,且ϕ具有二阶连续偏导数,求2zx y∂∂∂.47.求曲面2=3e z xy -+在点2,1,0()处的切平面方程. 48.求二重积分D ,x ye d σ+⎰⎰其中D 是由直线1x y +=和两条坐标轴所围城的闭区域。
专升本试题(西华大学2011年高等数学)
2011年西华大学专升本《高等数学》考试题一、选择题(每小题4分,共16分)1、设⎪⎩⎪⎨⎧≤+>=0,3sin 0,tan )(x x x x x k x f ,且)(lim 0x f x →存在,则k 的值为() 2、设)2011()2)(1()(+++=x x x x x f ,则() 3、下列级数中发散的级数是()A 、∑∞=121n n B 、∑∞=+1211n n C 、∑∞=-2211n n D 、∑∞=11n n 4、若C x e dx x f x ++=⎰3sin )(的,则=)(x f ( D )A 、x e x 3sin +B 、x e x 3cos +C 、x e x 3sin 3+D 、x e x 3cos 3+二、填空题:(每题4分,共16分)1、设y x y x f ln 2sin ),(=,则=),2(e f x π;2、xx x x 2tan sin lim 20→的值等于 。
3、幂级数∑∞=+121n n n x n 的收敛半径=R ; 4、设C B A ,,都是n 阶方阵,0≠C 且C BC AC =-,则=-B A ;三、计算题(每小题8分,共48分)1、设)(x f 具有一阶连续导数,且2)0(,0)0(='=f f ,求20tan )cos 1(lim xx f x -→。
2、求2824+-=x x y 在]3,1[-上的最大值与最小值。
3、已知⎩⎨⎧=+=ty t x cos 12,求22dx y d 。
4、计算⎰⎰-+Ddxdy x y x )(22,其中D 由x y x y y 2,,2===围成的平面区域。
5、求微分方程⎪⎩⎪⎨⎧==+'1)2(2sin cos πy x x y y 的特解。
6、当λ为何值时,方程组⎪⎩⎪⎨⎧+=-++=-++=++-14271212432143214321λx x x x x x x x x x x x 有解。
西华专升本试题及答案
西华专升本试题及答案一、选择题(每题2分,共20分)1. 计算机科学中,以下哪个是操作系统的主要功能?A. 程序设计B. 内存管理C. 数据加密D. 网络通信答案:B2. 根据相对论,以下哪个说法是正确的?A. 时间是绝对的B. 质量是相对的C. 空间是不变的D. 速度是无限的答案:B3. 在经济学中,市场失灵通常指什么?A. 市场无法调节价格B. 市场无法满足需求C. 市场无法提供公共商品D. 市场无法实现完全竞争答案:C二、填空题(每空1分,共10分)1. 牛顿第二定律表达式为 \( F = ma \),其中 \( m \) 表示______,\( a \) 表示______。
答案:质量;加速度2. 根据国际贸易理论,比较优势是指一个国家在生产某种商品时,相对于其他国家具有______。
答案:较低的机会成本三、简答题(每题10分,共20分)1. 简述计算机网络中TCP/IP协议的作用。
答案:TCP/IP协议是互联网的基础协议,它定义了数据在网络中如何传输。
TCP负责在两个网络终端之间建立可靠的连接,确保数据包的正确传输;IP协议则负责将数据包从源地址路由到目的地址。
2. 解释什么是通货膨胀,并简述其可能带来的影响。
答案:通货膨胀是指货币供应量增加导致物价水平普遍上升的经济现象。
它可能导致购买力下降,储蓄价值减少,以及可能引发经济不稳定和投资决策困难。
四、论述题(每题15分,共30分)1. 论述可持续发展的重要性,并给出实现可持续发展的措施。
答案:可持续发展是指在满足当前需求的同时,不损害后代满足其需求的能力。
它的重要性在于保障资源的长期可用性,保护环境,以及促进经济的长期稳定增长。
实现可持续发展的措施包括:推广可再生能源使用,提高能源效率,保护生物多样性,实施循环经济,以及鼓励绿色消费等。
2. 分析全球化对当代社会经济的影响。
答案:全球化是指国家之间经济、文化、政治的相互联系和依赖程度加深的过程。
2011高等数学2
2011年成人高等学校专升本招生全国统一考试高等数学(二)试题一、选择题:1~10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1=--→11lim 21x x x ( C )。
A 0 B 1 C 2 D 3 知识点:计算0型极限:解:=--→11lim21x x x 212lim 1=→x x ; 或=--→11lim 21x x x =-+-→1)1)(1(lim 1x x x x 2)1(lim 1=+→x x 2 已知函数)(x f 的导函数13)(2--='x x x f ,则曲线)(x f y =在2=x 处的切线斜率是(C ).A 3B 5C 9D 11 知识点:切线斜率 )()(00x f x y k '='=, 本题91212)2(=--='=f k3 设函数21x y =, 则='y ( B )。
A 31x -B 32x -C31x Dx 1知识点:幂函数导数公式1)(-='a aax x 。
解:332222)()1(x x x x y -=-='='='--4已知函数)(x f 在区间(-∞,+∞)内单调增加,则使)2()(f x f >成立的x 的取值范围是( A )A (2,+∞)B (-∞,0)C (-∞,2)D (0,2) 知识点:单调增加的定义:21x x >时有)()(21x f x f >;本题2>x 时有)2()(f x f >5 设函数1cos +=x y ,则=dy ( C )。
A dx x )1(sin +B dx x )1(cos +C xdx sin -D xdx sin知识点:导数公式,求导规则 v u v u '±'='±)(,微分公式6⎰=-dx x x )sin (( B )。
专升本试题(西华大学2016(高等数学))
2016年西华大学专升本《高等数学》考试题一、判断正误(每小题2分,共10分)1、函数的极值点一定是驻点,但驻点不一定是极值点。
( )2、函数)(x f 在),(+∞-∞上连续,则对任意常数b a ,有⎰⎰+≤ba b a dx x f dx x f ]1)([)(。
( )3、方程x e x y y y 326=-'-''的特解形式可设为x e c bx ax x y 32)(++= 。
( )4、级数n n n x n )(!1⋅∑∞=在e x <时发散。
( ) 5、设21,ηη是非齐次线性方程组b AX =的两个解,则212ηη-任是b AX =的解。
( )二、填空题:(每题4分,共16分)1、设函数)(u f 具有连续偏导数,)(22y x f z +=,则全微分=dz 。
2、已知向量组T )0,1,1,1(1=α、T k )1,0,,0(2=α、T )1,0,2,2(3=α、T )1,12,0(4=α线性相关,则=k 。
3、二次积分⎰⎰=x e dy y x f dx I ln 01),(可改变积分次序为I = 。
4、幂级数n n n n n x ]43)1(31[0-+∑∞=的收敛半径为 。
三、求解下列各题(每小题6分,共60分)1、求极限)12111(lim 222nn n n n n n n -+++-++-+∞→ 。
2、设函数)(x f 在点0x x =处连续,且A x x x f x x =-→0)(lim0(A 为常数),问)(0x f '是否存在,若存在求其值。
3、求曲线⎩⎨⎧==-t tey e x 2在0=t 相应点处的切线与法线方程。
4、计算积分⎰+dx x xe x2)1(。
5、求微分方程0)ln (ln =-+dy y x ydx y 的通解。
6、求曲线2x y =与直线3,==y x y 所围成的区域绕y 轴旋转而成立体的体积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1页,共4页 四川七洲教育专升本教研中心 制卷
第2页,共4页 四川七洲教育专升本教研中心 制卷
2011年专升本试题(理工类)
课程名称:高等数学 考试时间:120分钟 考试院校:西华大学
考试方式:闭卷 年 月 日 共4页
注意事项:
1、满分100分,要求卷面整洁,字迹工整,无错别字。
2、考生必须按姓名、班级、学号完整、精准、清楚地填写在试卷规定的地方,否则视为废卷
3、考生必须在签到单上签到,若出现遗漏,后果自负。
4、如有答题纸,答案请全部写在答题纸上,否则不给分;考完请将试卷及答题卷分别一同交回,否则不给分。
试 题
一、填空题(把正确的答案写在横线上,本大题共5小题,每题3分,共计15分)
1.函数
()f x =的间断点是 。
2.
2(arctan )lim
x
x t dt = 。
3.设()f x 在2x =处可导,且(2)5f '=,求0
(2)(23)
lim
x f x f x x
→+--= 。
4.曲线sin cos 2x t y t =⎧⎨=⎩在相应于4t π=的点处的切线方程 。
5.若将函数1
()13f x x
=
-展开形成x 级数,其收敛区间为 。
二、选择题(把正确的答案写括号内,错选、多选均无分,本大题共
5小题,每题3分,共计15分)
1.当0x →时,下列变量中是无穷小的为( ) A. ln(12)x +
C. x e
D.cos x
x
2.下列广义积分中,发散的是( )
A. 1
+∞
⎰
B.11dx x +∞+⎰
C.1x e dx +∞-⎰
D.21(ln )dx
x x +∞⎰ 3.设二阶常系数齐次线性方程0y ay by '''++=的两个特征根是1和2,则该方程中的,a b 分别是( )
A.1,2
B.2,1
C.3,2
D.-3,2
4.=
----0
43
1
95702
5
104832( )
A.5
B.-5
C.3
D.-3 5.
设1
2200I dy x y dx =⎰
,则交换积分次序后I =( )
A.12
2
dx x y dx ⎰ B.1
22
3x y dy ⎰ C.2
1
122
3x dx x y dy -⎰⎰ D.2
1
1220
3x dx x y dy +⎰⎰
三、解答题(本大题共12小题,每题5分,共计60分)
1.求极限21lim(
)25
x
x x x →∞
++。
第3页,共4页 四川七洲教育专升本教研中心 制卷 第4页,共4页 四川七洲教育专升本教研中心 制卷
2.求方程710x y y y e '''-+=的通解。
3.计算曲线积分(sin 4)(cos )x x L
e y y dx e y x dy -++⎰,其中L 为上半圆周222()(0)
x a y a y -+=≥沿逆时针方向。
4.
λ为何值时,线性方程组1231232
12
31x x x x x x x x x λλλλλ++=⎧⎪
++=⎨⎪++=⎩无解,有唯一解,有无穷多个解。
有解时求它的全部解。
5.设D 是由曲线1xy =,y x =,2x =所围成的闭区域,求二重积分1D
x
dxdy y
+⎰⎰
6.设矩阵101111211A ⎡⎤
⎢⎥=-⎢⎥
⎢⎥--⎣⎦
,求1A -及1()A *-。
7.判断下列级数的敛散性 (1)11(2)n n n n ∞=++∑ (2)11
sin 3
n n n n ∞
=+∑
8.将21
()23
f x x x =--展为(1)x -的幂级数。
9.在曲线2
1(0)2
y x x =
≥上一点M 处作一条切线,使其与曲线及x 轴围成的平面图形的面积为1
3。
求 (1)切点M 的坐标; (2)过M 点的切线方程;
(3)该平面图形绕y 轴旋转一周的旋转体的体积。
10.
计算二次积分2
1
1sin x
I dy dx x
=⎰的值。
11.设()y y x =由方程2610y e xy x ++-=确定,求dx 。
12.求向量组12345(1,1,0,0),(1,2,1,1),(0,1,1,1),(1,3,2,1),(2,6,4,2)ααααα=-=--=-=-=-的秩和一个极大无关组,并用极大无关组表示其余向量。
四、证明题(本大题共1小题,共计10分)
1.设函数()f x 在[]0,1上连续,且()1f x <,证明方程02()1x
x f t dt -=⎰在(0,1)内有且仅有一个实
根。