数学物理方法 第二章 复变函数的积分
复变函数及积分变换第二章
x
arg z在负实 轴上不连续.
若z0=x0+iy0不是原点也不是负实轴及虚轴上的点
arctan( y / x),
arg z arctan( y / x) π,
arctan( y / x), arctan( y / x),
x0 0
lim
z z0
arg
z
lim
( x, y)( x0
,
y0
)
arctan(
) ,则说函数 f(z) 在点 z0 处连 内每一点都连续,那么称函
数f(z)在区域D内连续.
定理2.3 若 f(z)、g(z) 在点z0连续,则其和、差、积、 商(要求分母不为零)在点z0处连续.
(1)多项式 w a0 zn a1zn1 an1z an 在整个复平
面上连续;
(2)任何一个有理分式函数
例2.2 判断下列函数在原点处的极限是否存在,若存
在,试求出极限值:
(1) f (z)
z Re(z) ; z
(2) f (z)
Re( z
z
2
2
)
.
解: (1)方法一
因为
f (z)
z
Re(z) z
z
所以 0,取 ,当0 z 时,总有
f (z) 0 f (z) z
根据极限定义 lim f (z) 0 z0
解:dw lim f (z Δz) f (z) lim (z Δz)n zn
dz Δz0
Δz
Δz 0
Δz
Δlizm0(Cn1 zn1 Cn2 zn2Δz
C n1 n
zΔz
n2
Cnn Δz n1 )
Cn1zn1 nzn1,
02复变函数微积分
数学物理方法
应用
v( x, y ) dv
2 2 u ( x , y ) x y 例2.5 已知解析函数f(z)的实部
且f(0)=0,试求出虚部和f(z) 。 解: v u 2 y x y
v u 2x y x
数学物理方法
2 xy C
(2)凑全微分显示法
dv( x, y) 2 ydx 2 xdy d (2 xy C )
v( x, y) 2 xy C
(3)不定积分法
v u 2x y x
v u 2y x y
v 2 y ( x) x
l l
l1 l 2
f ( z )dz f ( z )dz f ( z )dz
l1 l2
l
l
f ( z )dz f ( z )dz , 其中 l 是l的逆向
l
f ( z )dz
l
f ( z ) dz
f ( z)dz
l l
f ( z ) ds
那么有
u v v u , x y x y
上式称为柯西-黎曼条件。简称(C-R条件)
数学物理方法
证明:
1)若 y 0, x 0
f ( z z ) f ( z ) u ( x x, y ) iv( x x, y ) u ( x, y ) iv( x, y ) lim z 0 z 0 z x u ( x x, y ) u ( x, y ) v( x x, y ) v( x, y ) lim i lim z 0 z 0 x x u ( x, y ) v( x, y ) i x x lim
第二章复变函数的积分
f (z)dz lim f (k )(zk zk1)
l
积分n函 数k1
积分路径 一般来说,复变函数的积分值与积分路径有关.
2、复变函数积分计算方法
n
f (z)dz lim f (k )(zk zk1) n k 1
l
1)将复变函数的路积分化为两个实变函数的线积分
2)参数积分法
若积分曲线的参数方程z=z(t) ( ),dz z'(t)dt
则
f (z)dz f [z(t)]z'(t)dt
l
(极坐标法,通常用来计算积分路径为圆弧时的情况)
通常思路:
积分路径l为圆弧: 宗量用指数形式表示:
z z0
z z0 ei
n
n
f (z)dz f (z)dz;l lk
l
k 1 lk
k 1
f (z)dz f (z)dz
lAB
lBA
f (z)dz
l
f (z) dz ; dz
dx2 dy2 ds
l
Ms; M f (z) , s l的长度
用来求积分的估计值
r
1
z3 z
2
dz
z3 z r 1 z2
dz
(1)
z3
z r 1 z2
dz M
dz M
z r
ds Ms
z r
(2)
由(1)(2)式,得:
z3 dz Ms
z r 1 z2
M
1
r
3
r
2
s ds 2 r z r
数学物理方法第二章复变函数的积分
一般而言,复变函数的积分不仅与起点和终点有 关, 同时还与路径有关。
§2.2 柯西(Cauchy)定理
——研究积分与路径之间的关系 (一)单连通域情形 单连通域: 在其中作任何简单闭合围线,围 线内的点都是属于该区域内的点。 单连通区域的Cauchy 定理 :如果函数 f (z) 在闭 单连通区域 B 中单值且解析, 则沿 B 中任 何一个分段光滑的闭合曲线 l (也可以是 B 的 边界 l0 ), 函数的积分为零。
lim f( z z ) k)( k k 1
n
存在且与 k 的选取无关, 则这个和的极限称为 函数 f (z) 沿曲线 l 从 A 到 B 的路积分,记为
即
l
f (z) dz
n k k k 1
z ) d z lim f ( )( z z f(
l n k 1 max | z | 0 k
l 1 l 2
f (z)=Re (z)不是解析函数!
y i l2 o l1 1 l2
I1 Rez d z xd( x iy) 1 xd x i d y i 0 0 2 ( y = 0) (x=1)
1 1
1+i
l1 x
1 I 0 id y x d x 2 0 0 (x=0) ( y=i ) 2
l l l
v u u v d x d y i d x d y s s x y y x
又u、v 满足C-R条件 u v u v , x y y x
y
f ( z ) d z 0
l
B
l
o
第二章复变函数的积分
第二章 复变函数的积分在微积分学中,微分法与积分法是研究函数性质的重要方法。
同样,在复变函数中,积分法也跟微分法一样是研究复变函数性质十分重要的方法和解决实际问题的有力工具。
§2.1 复变函数积分的概念一、复变函数的积分设C 为平面上给定的一条光滑(或按段光滑)曲线。
若选定C 的两个可能方向中的一个作为正方向,那么就把C 理解为带有方向的曲线,称为有向曲线。
设曲线C 的两个端点为A 与B ,如果从A 到B 的方向作为C 的正方向,那么从B 到A 的方向就是C 的负方向,并把它记作-C 。
在今后的讨论中,常把两个端点中的一个作为起点,另一个作为终点。
除特殊声明外,正方向总是指从起点到终点的方向。
关于简单闭曲线的正方向是指当曲线上的点P 顺此方向沿该曲线前进时,临近P 点的曲线内部始终位于P 点的左方。
与之相反的方向就是曲线的负方向。
若光滑或逐段光滑的曲线C 的参数方程为)()()(t iy t x t z z +==,)(βα≤≤t (2.1) t 为实参数,则规定t 增加的方向为正方向,即由)(αz a =到)(βz b =的方向为正方向。
定义2.1 设函数)(z f w =定义在区域D 内,C 为区域D 内起点为A 终点为B 的一条光滑有向曲线,把曲线C 任意分成n 个弧段,设分点为:B z z z z z A n n ==-,...,,,1210 在每个小弧段上任取一点k ζ(图3.1),作和∑=∆=nk k k n z f S 1)(ζ其中1--=∆k k k z z z ,记=∆k s 的长度,}Δ{max 1k nk s δ≤≤=。
当n 无限增加,且δ趋于零时,如果不论对C 的分法及k ζ的取法如何,当n S 有唯一极限,那么称这个极限值为函数)(z f 沿曲线C 的积分,记作∑⎰=→=nk k kδCz ζf dz z f 1Δ)(lim )( (2.2)图2.1C 称为积分路径,⎰Cdz z f )(表示沿C 的正方向的积分,⎰-C dz z f )(表示沿C的负方向的积分。
数学物理方法课后答案 (2)
2
2+ 4 i
1+i
[( x 2 − y 2 ) + 2ixy ](dx + idy )
86 − 6i 3
= ∫ [ x 2 − (3 x − 2) 2 + 2ix(3 x − 2)](1 + 3i ) dx = −
(3)沿1 + i 到 2 + i ,再到 2 + 4i 的折线。
I =∫
2 1
2+ 4 i
L
∫ ∫
L
f (ξ )[
f (ξ ) Δ z ∫ L (ξ − z ) 2 (ξ − z − Δ z ) d ξ
ξ − z ( ξ − z − Δz )
2
d ξ , 现 在 讨 论 能 否 找 到 δ ( ε ), 使 当 Δ z < δ 时 d ,同 时 将 2
上 式 成 立 。 因 本 题 是 讨 论 Δ z → 0时 的 积 分 极 限 , 不 妨 令 Δ z < min z − ξ = d 代 入 有 Δ I ≤ δ
4 4 1 1 0 0
I3 = ∫ {[2(t2 + 3) + (2t)2 ]2dt + [3(2t)-(t2 + 3)]2tdt} = ∫ (24t 2 + 12 − 2t 3 − 6t )dt =
数学物理方法第2章复变函数积分-2016方案
(2.1.3)
(2) 化为参数积分计算.设积分曲线L的参数方程为z(t),
将z(t)及dz(t)=z'(t)dt代入式(2.1.4),可得
3
【例2.1.1】计算积分I=
其中曲线L是
(1)沿1+ i 到2+4 i 的直线,见图2.2(a);
(2)沿1+ i 到2+i,再到2+4 i 的折线,见图2.2(b);
§2.2.1 单通区域的柯西定理
定理 若函数f(z)在单通区域D 内解析,则f(z)在D内沿任意 闭曲线的积分为零
∮l f(z)dz = 0 (2.2.1)
证明 这个定理的严格证明比较复 杂, 为简单起见, 我们在“f(z)在D 内连续” 附加条件下证明这个定 理.
先将复变积分化为两个实变积 分的线性叠加
29
这就是解析函数的定积分公式,它与实变 函数中的牛顿-莱布尼茨公式具有相同的形 式。
通常把f(z)的原函数的集合
称f(z)的不定积分,式中C为复常数。
30
(2.2.8)
31
§2.2.3 复通区域的柯西定理
定理 若f(z)在闭复通区域 解析,则f(z)沿所
有内、外边界线(L=L0+ 之和为零
37
【2.2.2】试计算 其中积分回路分别(图2.11) (1) |z-i|=2;(2) |z+i|=2;(3) |z|=3.
38
解 首先,将被积函数分解为部分分式(利用通 分可以凑出来)
≠0
=0
39
40
【例2.2.3】若f(z)=1/(z-a) 在z=a的无心邻域内 连续,积分回路是以a点为圆心的圆弧
由于a点在D内随意变动时,柯西公式依然成立, 有时分别用z和x代替式 (2.3.1)的a和z。将柯西公 式改写为
数学物理方法第2章复变函数积分-2016
49
50
【例2.3.2】试计算积分,
积分回路L为x2 + y2=2x 解 (1) 积分回路的形状: (x-1)2+y2=1
(2)被积函数的奇点.
方程z4+1=0有四个根:z=exp[i (p+2kp)/4], k=0,1,2,3,因此,被积函数有四个奇点,但仅有 z1与z4位于积分回路之内
51
2. 复通区域的柯西公式
设f (z)在闭复通区域D中解析,a为D的内点, 则 式中积分沿D的内外边界线的正方向.
32
证明 为了应用单通区域的柯西定理,作割线把外边界线 L0与内边界线连接起来,将闭复通区域变成闭单通区域。
33
推论3 在f(z)的解析区域中,积分回路连 续变形时,其积分值不变.
证明 取变形前后的积分回路 作为复通区域 的内外边界 线,如图2.9所示.由式 (2.2.21a) 可得
移项后,改变l2的积分方向,即有
复变积分性质(5)及式(2.2.34),可证
43
由于e可任意地小,(q2-q1)为常量,式
(2.2.35)表明
可任意地小根据极限的定义,可得
44
2. 大圆弧引理
若j(z)在无穷远点的无心邻域内连续,在大 圆弧CR(z=Reiq, R→∞,q1<q<q2 )上
这两个引理为计算沿圆弧的积分带来方便. 2.3节将分别用来证明单通区域及无界区域的 柯西公式.
(3)按复通区域的柯西定理及柯西公式计算以小圆周c1 和c2分别包围奇点z1和z4 ,则被积函数在外边界线l 与内边界线c1 , c2 所围的复通区域解析。按复通区 域的柯西定理,沿l的积分等于沿C1与C2积分之和, 后两个积分可按柯西公式算出,即
第二章 复变函数的积分
一.复变函数的积分
(复平面的路径积分) 复平面的路径积分)
∫ f (z )dz ≡ lim ∑ f (ξ )(z
l n →∞ k =1 k
l l
n
k
− z k −1 ) ≡ lim ∑ f (ξ k )dz k n→∞
k =1
n
∫ f (z )dz = ∫ u (x, y )dx − v(x. y )dy + i ∫ v(x, y )dx + u (x. y )dy
ez I =∫ 2 dz c ( z + 1) 2
z 2
2π i (n−1) f (ξ ) ∫ (ξ − z)n dξ = (n −1)! f (z) l
例:计算
z = a (> 1)
解:
I=∫
c1
e z /( z − i ) 2 e /( z + i) dz dz + ∫ 2 2 c2 ( z + i) ( z − i)
1
I 2 = ∫ xdz + ∫ xdz =
0
1
1+i
i
1 ∫ 0idy + ∫ xdx = 2 0 0
直线参数方程 : z = (1 + i)t或( y = x)
1
I 3 = ∫ t (1 + i )dt = 1 + i 2 0
(可见积分与路径有关)
例2
1+i
z 2 dz = ? 1)沿折线 0—1---1+i ∫
= 2π i [e z /( z + i) 2 ]′z =i + 2π i [e z /( z − i ) 2 ]′z = −i
复变函数的积分
i . l2 . O. .
1+i . l1 .
l1 .
1 .
x .
齐海涛 (山东大学威海分校)
数学物理方法
2010-3-25
7 / 21
复变函数的积分
. .. 试计算积分
Example 1.1
∫ I1 =
l1
. ∫ Rezdz, I2 =
l2
Rezdz, .
l 1 , l2 分别如下图所示. 两条路径的起点和终点相同, 均自z = 0至z = 1 + i. . .. . y . 解: i . l2 . O. . l1 . l2 . 1+i . l1 . x . 利用(1.2)易得: ∫ 1 ∫ 1 1 I1 = xdx + idy = + i; 2 0 0 ∫ 1 ∫ 1 1 0 · idy + xdx = . I2 = 2 0 0
齐海涛 (山东大学威海分校)
数学物理方法
2010-3-25
11 / 21
.
Cauchy 定理
证: 考虑图中以l1 , l2 , · · · , ln 为境界的复通区域 (图中只画出 l, l1 , l2 ), 作 适当的割线连接内外境界线, 原来的复通区域变成了以ABl1 , B′ A′ , l的A′ C段, CDl2 D′ C′ , l的C′ A段为境界线的单通区域, 而在此单通区域上f(z)是解析的. 根据单通区域Cauchy定理 ∮ ∫ ∮ ∫ ∫ f(z)dz + f(z)dz + f(z)dz + f(z)dz + f(z)dz l AB l B′ A′ CD ∮1 ∫ + f(z)dz + f(z)dz + · · · = 0
数学物理方法第二章
证明:对 [ f (z)]n 应用柯西公式
[ f (z)]n 1 [ f ( )]n d
2 i l z
若 |f(z)| 在l上极大值为M,|z| 的极小值为,l的长为s
f (z) n M n s
2
1
f
(z)
M
s
2
n
n
f (z) M
21
Liouville定理:如 f(z) 在全平面上解析,并且是有界 的,即 |f(z)| N,则 f(z) 必为常数。
f (z)dz f (z)dz f (z)dz f (z)dz
l
l1
l2
ln
13
柯西定理总结 1. 闭单通区域上的解析函数沿境界线的积分为零。
2. 闭复通区域上的解析函数沿所有内外境界线正方向 的积分和为零。
3. 闭复通区域上的解析函数沿外境界线逆时针方向的 积分等于沿所有内境ቤተ መጻሕፍቲ ባይዱ线逆时针方向的积分的和。
P Q y x
由于复变函数的积分可转化为两个实变线积分
z2
z2
z2
f (z)dz udx vdy i vdx udy
z1
z1
z1
因此可得到复变函数的积分与路径无关的充要条件
7
单连通区域柯西定理: 如果函数f (z)在闭单连通域B上解析,则沿B上任
一分段光滑闭曲线l(也可以是B的边界),有
f (z) f ()dz
max f (z) f ()
2 0
C z
18
如果l是圆周z= +reiθ,
f () 1 2 f ( rei )d 2 0
这就是说,一个解析函数在圆心处的值等于它
在圆周的平均值。
复变函数与积分变换课件第2章
例:设f(z)在z0处连续,且f(z0)不等于0,那么可以
找到z0的一个邻域,在这个邻域内f(z)不等于0
1 导数的定义
定义 设函数w=f(z)在包含z0的某邻域D内有定义 ,点z0+⊿z∈D. 如果极限
f ( z0 Δ z ) - f ( z0 ) lim Δ z 0 Δz
存在, 则称f(z)在z0可导, 此极限值就称为f(z)在z0 的导数, 记作
பைடு நூலகம்
定义 如果函数f(z)不仅在z0可导,而且在z0的某 个邻域内的任一点都可导, 则称f(z)在z0解析。 如果f(z)在区域D内每一点解析, 则称f(z)在D内解 析, 或称f(z)是D内的一个解析函数(全纯函数 或正则函数)
如果f (z)在点z0不解析,就称z0是f (z)的奇 点。
(1) w=f (z) 在 D 内解析等价于在D内可导。 (2) 函数f (z)在 z0 点可导,未必在z0解析。 (3)函数在区域D内的点z处解析,则z 一 定是D的内点。
(4) f ( z ) z Re( z )
例3. 证明 sin ' z cos z
例4 如果f '(z)在区域D处处为零, 则f(z)在D内为一常
数 .
4.高阶导数
二阶及二阶以上的导数称为高阶导数
例 应用公式
sin( z
2
) cos z ,
(n) 求 sin z
1.解析函数的概念
例2
求f ( z) z 在z 0时的极限. z
z z0
例3 求极限 lim cos z 例4 证明 f ( z ) Re z
在z 0时的极限不存在 .
z
定理2
若 lim f ( z ) A lim g ( z ) B, 则
复变函数积分数学物理方法柯西定理推论及应用
M Q N 图 2.3
l
P D
定理 3 . 10 设 C C C 柯西定理2 1 2
Cn 是复周线, D I (C )
如果: ( 1) f ( z ) A( D), ( 2) f ( z ) C( D),
C
f ( z )dz f ( z )dz
例
中心,r为半径的正方向,n 为整数
dz 计算 c n 1其中 C 以 z0为 ( z z0 )
2i dz n 1 z z r ( z z ) 0 0
0
n0 n0
f
n
n! z 2 i
z
l
f
n 1
d , n 1, 2,
例 计算积分 I
l z
n
其中 n 为整数。 dz,
【解】 若回路 l 不包含 α,则被积函数在整个复平面上是解 析的,积分等于零;若 l 包含 α,但是 n
0,
则被积函数在
整个 l 内部解析,因而积分为零;对于 l 包含 α,且 n 情况,按照导数的柯西公式,可得:
0的
2i n 1 l ( z ) dz 0 n 1
k 1 k 1 n
n
Ck
C f ( z )dz 0,
f ( z )dz ,
C1
Cn
C3
C
C2
Ck
其中 C 及 Ck 均取正方向; D
这个定理可用来计算周线内部有奇点 的积分!
柯西积分公式
有界区域的单连通柯西积分公式
定理 (柯西积分公式) 如果 f ( z ) 在有界
区域D处处解析,L为D内的任何一条正向简单闭
复变函数的积分
第二章 复变函数的积分在微积分学中,微分法、积分法是研究函数性质的重要方法。
在复变函数中,微分法、积分法是研究复变函数性质的重要方法和解决实际问题的有力工具。
§2.1 复变函数的积分—复平面上的线积分一、复变函数积分的定义例:计算2421iiz dz++∫1.沿抛物线2y x =2.沿连接点124i i ++到的直线段3.1224i i i +++沿到然后再到的折线 解:1.抛物线参数方程为22,()(12)x t y t d z d t it i t d t==≤≤=+=+2其中1t 2则z =x +i y =t +i t242222222443241111()(12)[()4][22()]iiz dz t it i t dt t t t dt i t t t t dt++=++=−−++−∫∫∫∫三、解析函数的定积分公式在单通区域内,解析函数的积分值只与端点有关而与路径无关,可定义一个以终点z 为自变量的单值函数:()()zz F z f d ξξ=∫定理:设f (z )是单通区域D 内的解析函数, 是D的内点,则 是D 内的解析函数,且 F’(z )=f (z )F (z )是f (z )的原函数:F’(z )=f (z )定理证明略。
0z ξξd f z F zz ∫=0)()(由于()F z 是()f z 的一个原函数,所以()F z C +构成原函数族,则有:()()zz f d F z C ξξ=+∫上式中令 ,则有 从而0()()()zz f d F z F z ξξ=−∫——形式上与牛顿——莱布尼兹公式相似0z z =0)(0=+c z F )(0z F c −=⇒。
数学物理方法第二章
证 设光滑曲 C由线参数方程给出
zz(t)x(t)i y(t), t
正方向为参数增加的方向,
参数 及 对应A 于 及起 终 B , 点 点
数学物理方法第二章
6
并 z ( t) 且 0 , t,
如f(果 z) u (x ,y) iv(x ,y)在 D 内处 , 处 那u 么 (x,y)和 v(x,y)在 D内均为连 , 续函
n
n
f(k)zk [u(k,k)xkv(k,k)yk]
k1
k1
n
i[v(k,k)xku(k,k)yk]
k1
C f(z)dz CudxvdyiCvdxudy
数学物理方法第二章
9
公式 C f(z)dz CudxvdyiCvdxudy
在形式上可以看成是
f(z)uiv与 dzdxidy相乘后求 : 积
f(z)dzf ( z ) d z f ( z ) d z f ( z ) d z .
C
C 1
C 2
C n
在今后讨论的积分中, 总假定被积函数是连续的, 曲线 C 是按段光滑的.
数学物理方法第二章
12
性质:
设L是简单逐段光滑曲线,f,g在L上连续,则
(1)f(z)dz f(z)d;z反转积分路径,积分反号
z2
z2
f(z)dzudxvdyivdxudy
z1
z1
z1
因此可得到复变函数的积分与路径无关的充要条件
数学物理方法第二章
24
单连通区域柯西定理:
如果函数f (z)在闭单连通域B 上解析,则沿B上任一分段光滑 闭曲线l(也可以是B的边界), 有
f (z)dz 0
第2章 复变函数的积分
(1 t 2)
1 i
86 6i z dz [t i (3t 2)] (1 3i )dt 3 1
2 2
2
9
3.沿折线 (1)从 1+i 到 2+i 线段的方程 x=t ; y=1 ; 1 t 2 则
z t i, dz dt
2i
例:计算 1 i
2 4i
z 2 dz
2
1.沿抛物线 y x
2.沿连接点 1 i 到2 4i 的直线段 3. 沿 1 i 到 2 i 然后再到 2 4i 的折线
2 解:1.抛物线参数方程为 x t , y t ,其中1 t 2
则 z=x+iy=t+it2, dz d (t it 2 ) (1 i 2t ) dt
为 ,
24
则有
这表明:当
时,
的极限为f(z),即
定理得证。
25
由于 F ( z ) 是 f ( z ) 的一个原函数, 所以 F ( z ) C 构成原函数族, 则有:
上式中令 从而
z
z0
f ( )d F ( z ) C
,则有
z
z0
f ( )d F ( z ) F ( z0 )
f(z)在 a 点解析 f(z)在 a 点连续 所以 M=max|f(z)-f(a)| →0,从而
ε→0 时:
32
解析函数f(z)在其解析区域内任一点的值可由沿边界线 的积分确定.
讨论:1. 不一定取边界,取由 L 连续变形得到的 包围 a 的任意闭曲线,积分都相等。 2. a 点在 内任意变动,柯西公式也成立。
02_复变函数的积分
B B
l1
D
l2 D
C C
f ( z)dz f ( z)dz f ( z)dz 0
l l1 l2
l
总结:单连通和复连通区域的柯西定理说的是: (1) 闭单连通区域中的解析函数沿境界线或区域内任一闭合 曲线的积分为零;
1 xdx i 1dy i 0 0 2
1 1
l2 0 l1
x
I 2 xdz xdx i xdy
l2 l2 l2
1 xdx i 0 dy 0 0 2
1 1
y 1+i l2 0 l1 x
课堂练习:计算积分
I1 zdz ,
l
I 2 zdz
是任取的, f ( z ) 1 常把记作z 2πi
f ( ) l z d
例:
z i 1
z 2
e dz 2πieiz z i 2πei z i z z 5 z z dz z i dz 2πi 5 z (5 z )( z i )
f ( z )dz 0
l
u v v u ; x y x y
(2) 复通区域情形
一般来说,在区域内,只要有一个简单的闭合曲线其内有 不属于该区域的点,这样的区域便是复通区域。 或者形象地说,把奇点(即函数不可导、不连续或者根本 无定义的点)挖掉而形成的某种带“孔”的区域,即所谓的复 通区域。
f ( z )dz 0
l
证明:
f ( z )dz udx v dy i v dx udy l l l Q P l Pdx Qdy S x y dxdy
复变函数的积分
f (z)eimzdz f (Rei )eimR(cos isin ) R ei id
CR
0
f (Rei ) e Rd mRsin max f (Rei ) R e d mRsin
0
0
数学物理方法
e d mRsin 0
e d e d 2 mR sin 0
mR sin
阶连续偏导数,则曲线积分 L Pdx Qdy 与路径无关的
充要条件是
Q P ( x, y) D
x y
l zdz l xdx ydy il ydx xdy
数学物理方法
3 用极坐标计算
例4 计算 l z dz, 其中 l 为: 圆周 z 2.
解 积分路径的参数方程为
z 2ei (0 2π), dz 2iei d
2
y
y1
2
1
y2 sin
e d e d ( ) 2 mR sin 0
0 mR sin( )
O
2
2
e d e d 2 e d 2 e d 2 mR sin
2 mR sin
2 mR sin
2mR
2
0
0
0
0
2mR 2
2
e 2mR
0
(1 emR )
L f (z)dz 0
数学物理方法
推论2
若f (z)在单连通区域D内解析,则l f (z)dz与路径无关
l
l1
A
D
B
l2
f (z)dz f (z)dz f (z)dz f (z)dz f (z)dz 0
l
lAB
lBA
l1 AB
l2 AB
f (z)dz f (z)dz
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
证明: 1 dz 1 f (α )dz (1)已知f (α ) = f (α ) ⋅ ∫l z − α = 2πi ∫l z − α 2πi 1 f ( z )dz 1 f ( z ) − f (α ) 与f (α ) = 比较,只需证明 ∫l z − α ∫l z − α dz = 0即可. 2πi 2πi f ( z ) − f (α ) (2)因为z = α为 的奇点,因此,以α为圆心,取任意小 z −α f ( z ) − f (α ) ε为半径做小圆Cε , 这样在l及Cε 所围复通区域上 单值解析。 z −α f ( z ) − f (α ) 1 f ( z ) − f (α ) 1 根据柯西定理, ∫ dz = ∫Cε z − α dz l 2πi z −α 2πi 对于Cε 上的z有:z − α = εe iϕ , dz = iεeiϕ dϕ 于是, 有: 1 f ( z ) − f (α ) 1 2π f ( z ) − f (α ) iϕ 1 iεe dϕ = iϕ ∫l z − α dz = 2πi ∫0 εe 2πi 2π
wuxia@
∫
2π
0
[ f ( z ) − f (α )]dϕ
(3)现在需要对上式右端做估计 因为f ( z )连续,一定可以找到∆ > 0,当 | z − α |≤ ∆时, | f ( z ) − f (α ) |≤ ε ′ 因而有: 1 2π 1 2π 1 ∫0 [ f ( z ) − f (α )]dϕ ≤ 2π ∫0 | f ( z ) − f (α ) |⋅ | dϕ |< 2π 2π =ε 1 f ( z ) − f (α ) 1 f ( z) ∴ dz = 0, f (α ) = ∫l z − α ∫l z − α dz 2πi 2πi
∫ + ∫ +∫
l AB
l1
+∫ + ⋯ = 0
BA
其中沿同一割线两边缘的积分值抵消,于是
∫ +∫
l l
l1
+⋯ = 0
n li
l
即: f ( z )dz = ∑ ∫ f ( z )dz ∫
i =1
B A l1
wuxia@
沿内外境界线逆时针方向积分相等。
总结:
1、闭单通区域上的解析函数沿境界线积分为 零; 2、闭复通区域上的解析函数沿所有内外境界 线正方向积分和为零; 3、闭复通区域上的解析函数沿境界线逆时针 方向积分等于沿所有内境界线逆时针积分之 和。 对于某个闭单通或闭复通于区上为解析的函数, 只有起、终点固定不变,当积分路径连续变 形(不跳过“孔”),路积分值不变。
l l
复变函数的路积分可以归结为两个实变函数 的线积分,分别是路积分的实部和虚部。
wuxia@
复变函数积分的性质:
1. 2. 3.
∫ af ( z )dz =a ∫ f ( z )dz ∫ [ f ( z ) ± f ( z )]dz =∫ f ( z )dz ± ∫ f ∫ f ( z )dz = − ∫ f ( z )dz
2、1 复变函数的积分
设在复数平面的某分段光滑曲线l上定义了连 续函数f(z),在l上取一系列分点z0(即起点 A), z1 , z2,…, zn(即终点B),把l分成n个 小段,在每个小段[zk-1,zk] [z ]上任取一点ξk,作 Zn(B) 和, n Zk Zk-1 f (ξk )( zk − zk −1 ) ∑
l n →∞ k =1 l
n
k
)( z k − z k −1 )
∵ z k = xk + iyk , f ( z ) = u ( x, y ) + iv( x, y ) ∴ ∫ f ( z )dz = ∫ [u ( x, y ) + iv ( x, y )](dx + idy ) = ∫ u ( x, y )dx − v( x, y )dy + i ∫ v( x, y )dx + u ( x, y )dy
l l l 1 2 l 1 l l −l l1 l2
2
( z )dz
4. 若l = l1 + l2 + ⋯ + ln , 则
∫ f ( z )dz =∫
l
f ( z )dz + ∫ f ( z )dz + ⋯ + ∫ f ( z )dz
ln
1、常数因子可以移到积分号外; 2、和积分等于积分和; 3、反转路径,积分反号; 4、全路径上的积分等于各段积分之和 wuxia@
2 1
y +i 2 0
2 1
0
x
0
i = 1+ 2 另:参数积分法: t t i 设参数t, x = t , y = , z = t + i , dz = (1 + )dt 2 2 2 2 t i i I = ∫ (1 + )dt = 1 + 0 2 2 2
wuxia@
2、2 柯西Cauchy定理
wuxia@
0 l不包围a 1 1 例: I = ∫l z − a dz = 1 l包围a 2πi 解: 1 (1) l不包围a, 在l所围区域内解析, z−a I = 0(单通区域柯西定理) (2) l包围a,以a为圆心,R为半径作小圆C, 1 则 在复通区域内解析。 z−a 1 1 1 1 I= ∫l z − a dz = 2πi ∫C z − a dz 2πi ∵ C上z − a = Re iϕ , dz = i Re iϕ dϕ 1 2π 1 ∴I = i Re iϕ dϕ = 1 2πi ∫0 Re iϕ
n l C 0 n inϕ iϕ 2π
= iR
n +1
∫
2π
0
ei ( n +1)ϕ dϕ
n +1
当n ≠ -1时,I = iR
1 i ( n +1)ϕ 2π e =0 0 i ( n + 1)
l a lε
当n = -1时,I = i ∫ dϕ = 2πi
0
2π
wuxia@
意义: ( z − α ) n +1 f ( z ) = ( z − α )n , F ( z ) = n +1 当n ≠ -1时,F ( z )为单值函数,绕α一周,F ( z ) 的改变量为零; 当n = -1时, − α ) −1的原函数为ln(z - α ), 多值函数。 (z 逆时针绕α一周, z − α )的改变量为2πi. ln(
解析函数
若函数f(z)在z0点及其邻域上处处可导,则 f(z)在z0点解析。 若f(z)在区域B上每点都解析,则f(z)是区域 B上的解析函数。 解析与可导的关系
在一点 在区域
解析函数的实部与虚部的关系
wuxia@
第二章 复变函数的积分
柯西定理 柯西公式
wuxia@
上次课复习
柯西-黎曼方程(条件),C-R条件, 是复变函数可导的必要条件
∂u ∂v ∂x = ∂y ∂v = − ∂u ∂x ∂y
函数f(z)可导的充分必要条件:
f(z)的偏导数 ∂u , ∂u , ∂v , ∂v 存在且连续,并满足C-R条件。
∂x ∂y ∂x ∂y
wuxia@
(一)单连通区域情形 单通区域:在其中做任何简单的闭合围线, 围线内的点都是属于该区域内的点。也可以 认为是一根闭合曲线围成的区域。
单连区域柯西定理: 如果函数f(z)在闭单通区域B上解析,则沿B上的任 一分段光滑闭合曲线l,有
∫ f ( z )dz = 0
l
wuxia@
证明 :
∫ f ( z )dz = ∫ u( x, y )dx − v( x, y )dy + i ∫ v( x, y )dx + u( x, y )dy
l l l
∂u ∂u ∂v ∂v 由于f ( z )在B解析,因而 , , , 在B上连续。 ∂x ∂y ∂x ∂y ∂Q ∂P 根据格林公式,Pdx + Qdy = ∫ ( − )dxdy ∫l S ∂x ∂y ∂u ∂v ∂v ∂u 另有C - R条件: = , = ∂x ∂y ∂x ∂y ∴ ∫ f ( z )dz = 0
例1 : 计算积分 I1 = ∫ Re zdz , I 2 = ∫ Re zdz.
l1 l2
解: f ( z ) = Re z = x, 即u ( x, y ) = x, v( x, y ) = 0 x I1 = ∫ xdx + i ∫ 1dy = 0 0 2
1 1 1 1 2 1
y
1 + iy 0 = + i 2 0
wuxia@
C a
R
2、3 不定积分
根据柯西定理,若函数f(z)在单通区域B上解 析,则沿B上任一路径l的积分 ∫ f ( z )dz 的值只 l 跟起点和终点有关,而与路径无关。因此, 当起点和终点固定时,这个不定积分就定义 z 了一个单值函数,记作
F ( z ) = ∫ f (ξ )dξ
k =1
ξk
l
wuxia@
Z0(A)
当n→∞且每小段都无限缩短时,如果这个 和的极限存在,且其值与各个ξk的选取无 关,则这个和为函数f(z)沿曲线l从A到B的 路积分,记作
∫ f ( z )dz
l
wuxia@
即
∫ f ( z )dz = lim ∑ l1 x
1 I 2 = i ∫ 0dy + ∫ xdx = 0 l1 0 0 2 可见,虽然被积函数相同,起点、终点相同, 由于积分路径不同,结果不同。复变函数的积 分值不仅与起终点有关,且与路径有关。
wuxia@
I 例2: = ∫ Im zdz , l为连接0和2 + i的直线。
l