清华大学自主招生数学试题解析

合集下载

清华大学自主招生数学试题解析

清华大学自主招生数学试题解析

清华大学自主招生数学试题解析一、引言近年来,自主招生考试逐渐成为高等教育选拔的重要方式之一。

作为中国顶尖的学府之一,清华大学在自主招生中具有极高的影响力和标准制定地位。

数学作为基础学科,是清华大学自主招生考试的重要科目。

本文将对清华大学自主招生数学试题进行解析,探讨其考察内容、特点及应对策略。

二、考察内容1、基础知识:清华大学自主招生数学试题中,基础知识考察占据较大比例。

包括但不限于高中数学中的函数、数列、三角函数、概率与统计等。

2、知识运用:除了基础知识外,试题还注重考察考生对数学知识的运用能力。

例如,通过实际应用题或几何题的形式,要求考生运用数学知识解决实际问题。

3、思维能力:清华大学自主招生数学试题注重考察考生的思维能力,包括逻辑推理、归纳分类、化归等能力。

这类题目通常需要考生灵活运用数学知识,通过猜想、归纳、推理等方式寻找解题思路。

4、创新精神:自主招生数学试题还注重考察考生的创新精神和实践能力。

这类题目通常以开放式问题的形式出现,要求考生从不同角度思考问题,寻找独特的解题方法。

三、特点分析1、覆盖面广:清华大学自主招生数学试题涉及的知识面较广,要求考生具备扎实的数学基础和广泛的知识储备。

2、难度适中:试题难度适中,既考察了考生的基础知识,又对其思维能力、创新能力进行了充分挑战。

3、突出重点:试题突出对重点知识的考察,如函数与方程、数列与不等式、平面几何等,要求考生对重点知识有深入理解和掌握。

4、强调应用:试题强调对数学知识的应用能力,通过设置实际应用题等方式,引导考生数学在实际生活中的应用价值。

四、应对策略1、巩固基础知识:针对清华大学自主招生数学试题中基础知识的考察,考生应注重巩固高中阶段的基础知识,尤其是函数、数列、三角函数等重点内容。

2、提高运用能力:在掌握基础知识的前提下,考生应注重提高对数学知识的运用能力。

通过练习实际应用题、几何题等类型,提高解决实际问题的能力。

3、培养思维能力:考生应在平时的学习中注重培养逻辑推理、归纳分类、化归等思维能力。

高校自主招生数学真卷分析——清华大学(华约)

高校自主招生数学真卷分析——清华大学(华约)

江西省南昌市2015-2016学年度第一学期期末试卷(江西师大附中使用)高三理科数学分析一、整体解读试卷紧扣教材和考试说明,从考生熟悉的基础知识入手,多角度、多层次地考查了学生的数学理性思维能力及对数学本质的理解能力,立足基础,先易后难,难易适中,强调应用,不偏不怪,达到了“考基础、考能力、考素质”的目标。

试卷所涉及的知识内容都在考试大纲的范围内,几乎覆盖了高中所学知识的全部重要内容,体现了“重点知识重点考查”的原则。

1.回归教材,注重基础试卷遵循了考查基础知识为主体的原则,尤其是考试说明中的大部分知识点均有涉及,其中应用题与抗战胜利70周年为背景,把爱国主义教育渗透到试题当中,使学生感受到了数学的育才价值,所有这些题目的设计都回归教材和中学教学实际,操作性强。

2.适当设置题目难度与区分度选择题第12题和填空题第16题以及解答题的第21题,都是综合性问题,难度较大,学生不仅要有较强的分析问题和解决问题的能力,以及扎实深厚的数学基本功,而且还要掌握必须的数学思想与方法,否则在有限的时间内,很难完成。

3.布局合理,考查全面,着重数学方法和数学思想的考察在选择题,填空题,解答题和三选一问题中,试卷均对高中数学中的重点内容进行了反复考查。

包括函数,三角函数,数列、立体几何、概率统计、解析几何、导数等几大版块问题。

这些问题都是以知识为载体,立意于能力,让数学思想方法和数学思维方式贯穿于整个试题的解答过程之中。

二、亮点试题分析1.【试卷原题】11.已知,,A B C 是单位圆上互不相同的三点,且满足AB AC →→=,则AB AC →→⋅的最小值为( )A .14-B .12-C .34-D .1-【考查方向】本题主要考查了平面向量的线性运算及向量的数量积等知识,是向量与三角的典型综合题。

解法较多,属于较难题,得分率较低。

【易错点】1.不能正确用OA ,OB ,OC 表示其它向量。

2.找不出OB 与OA 的夹角和OB 与OC 的夹角的倍数关系。

2018年清华大学自主招生试题数学Word版含解析

2018年清华大学自主招生试题数学Word版含解析

一、选择题1.设复数z=cos 23π+isin 23π,则2111-1z z +-=( ) (A)0 (B)1 (C)12 (D)322.设数列{}n a 为等差数列,p,q,k,l 为正整数,则“p+q>k+l ”是“p q k l a a a a +>+”的( )条件(A)充分不必要 (B)必要不充分 (C)充要 (D)既不充分也不必要 3.设A 、B 是抛物线y=2x 上两点,O 是坐标原点,若OA ⊥OB,则( )(A)|OA|·|OB|≥2 (B)|OA|+|OB|≥22(C)直线AB 过抛物线y=2x 的焦点 (D)O 到直线AB 的距离小于等于14.设函数()f x 的定义域为(-1,1),且满足:①()f x >0,x ∈(-1,0);②()f x +()f y =()1x yf xy++,x 、y ∈(-1,1),则()f x 为 (A)奇函数 (B)偶函数 (C)减函数 (D)有界函数5.如图,已知直线y=kx+m 与曲线y=f (x)相切于两点,则F(x)=f (x)−kx 有( )(A)2个极大值点 (B)3个极大值点 (C)2个极小值点 (D)3个极小值点 6.△ABC 的三边分别为a 、b 、c .若c=2,∠C=3π,且sinC+sin(B −A)−2sin2A=0,则有( ) (A)b=2a (B)△ABC 的周长为3 (C)△ABC 的面积为33(D)△ABC 的外接圆半径为337.设函数2()(3)xf x x e =-,则( )(A)()f x 有极小值,但无最小值 (B) ()f x 有极大值,但无最大值 (C)若方程()f x =b 恰有一个实根,则b>36e(D)若方程()f x =b 恰有三个不同实根,则0<b<36e 8.已知A={(x,y)∣222x y r +=},B={(x,y)∣222()()x a y b r -+-=,已知A∩B={(11,x y ),(22,x y )},则( )(A)0<22a b +<22r (B)1212()(y )0a x x b y -+-= (C)12x x +=a ,12y y +=b (D)22a b +=1122ax by +9.已知非负实数x,y,z 满足22244x y z +++2z=3,则5x+4y+3z 的最小值为( ) (A)1 (B)2 (C)3 (D)410.设数列{n a }的前n 项和为n S ,若对任意正整数n ,总存在正整数m ,使得n S =m a ,则( )(A ){n a }可能为等差数列 (B ){n a }可能为等比数列(C ){n a }的任意一项均可写成{n a }的两项之差(D)对任意正整数n ,总存在正整数m ,使得n a =m S11.运动会上,有6名选手参加100米比赛,观众甲猜测:4道或5道的选手得第一名;观众乙猜测:3道的选手不可能得第一名;观众丙猜测:1,2,6道选手中的一位获得第一名;观众丁猜测:4,5,6道的选手都不可能获得第一名.比赛后发现没有并列名次,且甲、乙、丙、丁中只有1人猜对比赛结果,此人是( ) (A)甲 (B)乙 (C)丙 (D)丁12.长方体ABCD −1111A B C D 中,AB=2,AD=A 1A =1,则A 到平面1A BD 的距离为( )(A)13 (B)23(C)2 (D)313.设不等式组||||22(1)x y y k x +≤⎧⎨+≤+⎩所表示的区域为D ,其面积为S ,则( )(A)若S=4,则k 的值唯一 (B)若S=12,则k 的值有2个(C)若D 为三角形,则0<k ≤23(D)若D 为五边形,则k>4 14.△ABC 的三边长是2,3,4,其外心为O ,则OA AB OB BC OC CA ⋅+⋅+⋅=( ) (A)0 (B)−15 (C)−212(D)−29215.设随机事件A 与B 互相独立,且P(B)=0.5,P(A −B)=0.2,则( )(A)P(A)=0.4 (B)P(B −A)=0.3 (C)P(AB)=0.2 (D)P(A+B)=0.916.过△ABC 的重心作直线将△ABC 分成两部分,则这两部分的面积之比的( ) (A)最小值为34 (B)最小值为45 (C)最大值为43 (D 最大值为5417.从正15边形的顶点中选出3个构成钝角三角形,则不同的选法有( )(A)105种 (B)225种 (C)315种 (D)420种18.已知存在实数r ,使得圆周222x y r +=上恰好有n 个整点,则n 可以等于( ) (A)4 (B)6 (C)8 (D)12 19.设复数z 满足2|z|≤|z −1|,则( ) (A)|z|的最大值为1 (B)|z|的最小值为13 (C)z 的虚部的最大值为23(D)z 的实部的最大值为1320.设m,n 是大于零的实数,a =(mcosα,msinα),b =(ncosβ,nsinβ),其中α,β∈[0,2π)α,β∈[0,2π).定义向量12a =(2α2α),12b =(2β2β),记θ=α−β,则( )(A)12a ·12a =a (B)1122a b ⋅=2θ(C)112222||44a b mn θ-≥(D)112222||44a b mn θ+≥21.设数列{n a }满足:1a =6,13n n n a a n++=,则( ) (A)∀n ∈N ∗,n a <3(1)n + (B)∀n ∈N ∗,n a ≠2015 (C)∃n ∈N ∗,n a 为完全平方数 (D)∃n ∈N ∗, n a 为完全立方数 22.在极坐标系中,下列方程表示的图形是椭圆的有( ) (A )ρ=1cos sin θθ+ (B )ρ=12sin θ+ (C )ρ=12cos θ- (D )ρ=112sin θ+23.设函数2sin ()1xf x x x π=-+,则( )(A )()f x ≤43(B)|()f x |≤5|x| (C)曲线y=()f x 存在对称轴 (D)曲线y=()f x 存在对称中心24.△ABC 的三边分别为a ,b,c ,若△ABC 为锐角三角形,则( ) (A)sinA>cosB (B)tanA>cotB (C)222a b c +> (D)333a b c +>25.设函数()f x 的定义域是(−1,1),若(0)f =(0)f '=1,则存在实数δ∈(0,1),使得( ) (A)()f x >0,x ∈(−δ,δ) (B)()f x 在(−δ,δ)上单调递增 (C)()f x >1,x ∈(0,δ) (D)()f x >1,x ∈(−δ,0)26.在直角坐标系中,已知A(−1,0),B(1,0).若对于y 轴上的任意n 个不同的点k P (k=1,2,…,n),总存在两个不同的点i P ,j P ,使得|sin ∠A i P B −sin ∠A j P B|≤13,则n 的最小值为( )(A)3 (B)4 (C)5 (D)627.设非负实数x,y 满足2x+y=1,则)(A)最小值为45 (B)最小值为25(C)最大值为1 (D)最大值为1328.对于50个黑球和49个白球的任意排列(从左到右排成一行),则( )(A)存在一个黑球,它右侧的白球和黑球一样多 (B)存在一个白球,它右侧的白球和黑球一样多(C)存在一个黑球,它右侧的白球比黑球少一个 (D)存在一个白球,它右侧的白球比黑球少一个29.从1,2,3,4,5中挑出三个不同数字组成五位数,其中有两个数字各用两次,例如12231,则能得到的不同的五位数有( ) (A)300个 (B)450个 (C)900个 (D)1800个30.设曲线L 的方程为42242(22)(2)y x y x x +++-=0,则( ) (A)L 是轴对称图形 (B)L 是中心对称图形 (C)L ⊂{(x,y)∣22x y +≤1} (D)L ⊂{(x,y)∣−12≤y ≤12} ##Answer## 1.【解析】2111-1z z +-=211-zz z zz z +-=11-z z z z +-=22cos sin 1332221-cos sin 2sin 333i i i πππππ-+--=212sin 2sincos333i πππ-⋅-22cos()sin()33sin )22i i ππππ-+-+ =cos 0sin 02sin [cos()sin()]366i i πππ+-+-77)sin()]66i ππ-+-1sin )662i i ππ+=1,选B2.【简解】 ()p q k l a a a a +-+=[(p+q)-(k+l)]d ,与公差d 的符号有关,选D3.【解析】设A(211,x x ),B(222,x x ),OA OB ⋅=1212(1)x x x x +=0⇒211x x =-答案(A),||||OA OB ⋅=2,正确;答案(B),|OA|+|OB|≥22,正确;答案(C),直线AB 的斜率为222121x x x x --=21x x +=111x x - 方程为y-21x =(111x x -)(x-1x ),焦点(0,14)不满足方程,错误;答案(D),原点到直线AB :(111x x -)x-y+1=0的距离1,正确。

清华大学自主招生试题 数学 Word版含解析

清华大学自主招生试题 数学 Word版含解析

一、选择题1.设复数z=cos 23π+isin 23π,则2111-1z z +-=( ) (A)0 (B)1 (C)12 (D)322.设数列{}n a 为等差数列,p,q,k,l 为正整数,则“p+q>k+l ”是“p q k l a a a a +>+”的( )条件(A)充分不必要 (B)必要不充分 (C)充要 (D)既不充分也不必要 3.设A 、B 是抛物线y=2x 上两点,O 是坐标原点,若OA ⊥OB,则( )(A)|OA|·|OB|≥2 (B)|OA|+|OB|≥22(C)直线AB 过抛物线y=2x 的焦点 (D)O 到直线AB 的距离小于等于14.设函数()f x 的定义域为(-1,1),且满足:①()f x >0,x ∈(-1,0);②()f x +()f y =()1x yf xy++,x 、y ∈(-1,1),则()f x 为 (A)奇函数 (B)偶函数 (C)减函数 (D)有界函数5.如图,已知直线y=kx+m 与曲线y=f (x)相切于两点,则F(x)=f (x)−kx 有( )(A)2个极大值点 (B)3个极大值点 (C)2个极小值点 (D)3个极小值点 6.△ABC 的三边分别为a 、b 、c .若c=2,∠C=3π,且sinC+sin(B −A)−2sin2A=0,则有( ) (A)b=2a (B)△ABC 的周长为3 (C)△ABC 的面积为33(D)△ABC 的外接圆半径为337.设函数2()(3)xf x x e =-,则( )(A)()f x 有极小值,但无最小值 (B) ()f x 有极大值,但无最大值 (C)若方程()f x =b 恰有一个实根,则b>36e(D)若方程()f x =b 恰有三个不同实根,则0<b<36e 8.已知A={(x,y)∣222x y r +=},B={(x,y)∣222()()x a y b r -+-=,已知A∩B={(11,x y ),(22,x y )},则( )(A)0<22a b +<22r (B)1212()(y )0a x x b y -+-= (C)12x x +=a ,12y y +=b (D)22a b +=1122ax by +9.已知非负实数x,y,z 满足22244x y z +++2z=3,则5x+4y+3z 的最小值为( ) (A)1 (B)2 (C)3 (D)410.设数列{n a }的前n 项和为n S ,若对任意正整数n ,总存在正整数m ,使得n S =m a ,则( )(A ){n a }可能为等差数列 (B ){n a }可能为等比数列(C ){n a }的任意一项均可写成{n a }的两项之差(D)对任意正整数n ,总存在正整数m ,使得n a =m S11.运动会上,有6名选手参加100米比赛,观众甲猜测:4道或5道的选手得第一名;观众乙猜测:3道的选手不可能得第一名;观众丙猜测:1,2,6道选手中的一位获得第一名;观众丁猜测:4,5,6道的选手都不可能获得第一名.比赛后发现没有并列名次,且甲、乙、丙、丁中只有1人猜对比赛结果,此人是( ) (A)甲 (B)乙 (C)丙 (D)丁12.长方体ABCD −1111A B C D 中,AB=2,AD=A 1A =1,则A 到平面1A BD 的距离为( )(A)13 (B)23(C)22 (D)6313.设不等式组||||22(1)x y y k x +≤⎧⎨+≤+⎩所表示的区域为D ,其面积为S ,则( )(A)若S=4,则k 的值唯一 (B)若S=12,则k 的值有2个(C)若D 为三角形,则0<k ≤23(D)若D 为五边形,则k>4 14.△ABC 的三边长是2,3,4,其外心为O ,则OA AB OB BC OC CA ⋅+⋅+⋅=( ) (A)0 (B)−15 (C)−212(D)−29215.设随机事件A 与B 互相独立,且P(B)=0.5,P(A −B)=0.2,则( )(A)P(A)=0.4 (B)P(B −A)=0.3 (C)P(AB)=0.2 (D)P(A+B)=0.916.过△ABC 的重心作直线将△ABC 分成两部分,则这两部分的面积之比的( ) (A)最小值为34 (B)最小值为45 (C)最大值为43 (D 最大值为5417.从正15边形的顶点中选出3个构成钝角三角形,则不同的选法有( )(A)105种 (B)225种 (C)315种 (D)420种18.已知存在实数r ,使得圆周222x y r +=上恰好有n 个整点,则n 可以等于( ) (A)4 (B)6 (C)8 (D)12 19.设复数z 满足2|z|≤|z −1|,则( ) (A)|z|的最大值为1 (B)|z|的最小值为13 (C)z 的虚部的最大值为23(D)z 的实部的最大值为1320.设m,n 是大于零的实数,a =(mcosα,msinα),b =(ncosβ,nsinβ),其中α,β∈[0,2π)α,β∈[0,2π).定义向量12a =(2m α2m α),12b =(2n β2n β),记θ=α−β,则( )(A)12a ·12a =a (B)1122a b ⋅=2mn θ(C)112222||44a b mn θ-≥(D)112222||44a b mn θ+≥21.设数列{n a }满足:1a =6,13n n n a a n++=,则( ) (A)∀n ∈N ∗,n a <3(1)n + (B)∀n ∈N ∗,n a ≠2015 (C)∃n ∈N ∗,n a 为完全平方数 (D)∃n ∈N ∗, n a 为完全立方数 22.在极坐标系中,下列方程表示的图形是椭圆的有( ) (A )ρ=1cos sin θθ+ (B )ρ=12sin θ+ (C )ρ=12cos θ- (D )ρ=112sin θ+23.设函数2sin ()1xf x x x π=-+,则( )(A )()f x ≤43(B)|()f x |≤5|x| (C)曲线y=()f x 存在对称轴 (D)曲线y=()f x 存在对称中心24.△ABC 的三边分别为a ,b,c ,若△ABC 为锐角三角形,则( ) (A)sinA>cosB (B)tanA>cotB (C)222a b c +> (D)333a b c +>25.设函数()f x 的定义域是(−1,1),若(0)f =(0)f '=1,则存在实数δ∈(0,1),使得( ) (A)()f x >0,x ∈(−δ,δ) (B)()f x 在(−δ,δ)上单调递增 (C)()f x >1,x ∈(0,δ) (D)()f x >1,x ∈(−δ,0)26.在直角坐标系中,已知A(−1,0),B(1,0).若对于y 轴上的任意n 个不同的点k P (k=1,2,…,n),总存在两个不同的点i P ,j P ,使得|sin ∠A i P B −sin ∠A j P B|≤13,则n 的最小值为( )(A)3 (B)4 (C)5 (D)627.设非负实数x,y 满足2x+y=1,则22x y + )(A)最小值为45 (B)最小值为25(C)最大值为1 (D)最大值为12328.对于50个黑球和49个白球的任意排列(从左到右排成一行),则( )(A)存在一个黑球,它右侧的白球和黑球一样多 (B)存在一个白球,它右侧的白球和黑球一样多(C)存在一个黑球,它右侧的白球比黑球少一个 (D)存在一个白球,它右侧的白球比黑球少一个29.从1,2,3,4,5中挑出三个不同数字组成五位数,其中有两个数字各用两次,例如12231,则能得到的不同的五位数有( ) (A)300个 (B)450个 (C)900个 (D)1800个30.设曲线L 的方程为42242(22)(2)y x y x x +++-=0,则( ) (A)L 是轴对称图形 (B)L 是中心对称图形 (C)L ⊂{(x,y)∣22x y +≤1} (D)L ⊂{(x,y)∣−12≤y ≤12} ##Answer## 1.【解析】2111-1z z +-=211-zz z zz z +-=11-z z z z +-=22cos sin 1332221-cos sin 2sin 333i i i πππππ-+--=212sin 2sincos333i πππ-⋅-22cos()sin()333(cossin )22i i ππππ-+-+ =cos 0sin 02sin [cos()sin()]366i i πππ+-+-77)sin()]663i ππ-+- 31sin )6623i i ππ+=1,选B2.【简解】 ()p q k l a a a a +-+=[(p+q)-(k+l)]d ,与公差d 的符号有关,选D3.【解析】设A(211,x x ),B(222,x x ),OA OB ⋅=1212(1)x x x x +=0⇒211x x =-答案(A),||||OA OB ⋅2211221111(1)(1)x x x x ++2121111x x +++11122||||x x +⋅=2,正确;答案(B),|OA|+|OB|≥2||||OA OB ⋅22,正确;答案(C),直线AB 的斜率为222121x x x x --=21x x +=111x x - 方程为y-21x =(111x x -)(x-1x ),焦点(0,14)不满足方程,错误;答案(D),原点到直线AB :(111x x -)x-y+1=0的距离2111()1x x -+1,正确。

清华大学领军计划暨自主招生数学2018+解析

清华大学领军计划暨自主招生数学2018+解析

2018清华大学领军计划暨自主招生测试数学与逻辑1.,,p q r 均为素数,且pqrp q r为整数,则()A.,,p q r 中一定有一个是2B.,,p q r 中一定有一个是3C.,,p q r 中一定有两个数相等D.pqrp q r也为素数【答案】DA 项:举反例:3,5,7p q r ,此时7pqrp q r ;B 项:举反例:2,5,7p q r ,此时5pqrp q r;C 项:由A 、B 知C 项不对;D 项:由题意p q r 为pqr 的因子,而pqr 的因子只有1,,,,,,,p q r pq pr qr pqr ,结合大小关系,可知///p q r pq pr qr pqr ,不妨设p q r ,若p q r pqr ,则3pqr p q r r ,从而3pq ,这是不可能的,故只能//p q r pq pr qr 这意味着//pqrp q r p q r,均为素数,则D 正确。

2.,,,,a b c d e 均为素数,且平均数为13,则()A.中位数最大为17B.中位数最大为19C.中位数最小为5D.中位数最小为7【答案】B平均数为13的五个数之和为65,设中位数的最大值为x ,则有365x ,从而知x 最大为19,又3,5,19,19,19满足要求,故最大值为19;对于最小值,可构造出3,3,3,3,53使得中位数为3,而易证中位数为2不成立,因此最小值为3。

3.整数,,x y z 满足5x y z ,问这样的 ,,x y z 有几组()A.100 B.101C.102D.103【答案】C解法一:若,,x y z 中有两个零,共2326C 组解;若,,x y z 中只有一个零,共11234248C C 组解;若,,x y z 均非零,共234248C 组解。

综上,所求解的组数=6+48+48=102组。

解法二:若||0x :此时x 只能取0,而012345,,,,,543210y y y y y y z z z z z z ,共20组;若||1x :此时x 可取1 ,而01234,,,,43210y y y y y z z z z z,共21632 组;若||2x :此时x 可取2 ,而0123,,,3210y y y y z z z z ,共21224 组;若||3x :此时x 可取3 ,而012,,210y y y z z z ,共2816 组;若||4x :此时x 可取4 ,而01,10y y z z ,共248 组;若||5x :此时x 可取5 ,而y ,z 只能都等于0,共2组.综上,所求总组数2032241682102 。

2019年清华大学自主招生暨领军计划数学试题(解析版)

2019年清华大学自主招生暨领军计划数学试题(解析版)

清华大学自主招生暨领军计划数学试题(解析版)1.已知函数x e a x x f )()(2+=有最小值,则函数a x x x g ++=2)(2的零点个数为( )A .0B .1C .2D .取决于a 的值 【答案】C【解析】注意)()(/x g e x f x =,答案C .2. 已知ABC ∆的三个内角C B A ,,所对的边为c b a ,,.下列条件中,能使得ABC ∆的形状唯一确定的有( )A .Z c b a ∈==,2,1B .B bC a C c A a A sin sin 2sin sin ,1500=+= C .060,0sin cos )cos(cos sin cos ==++C C B C B C B AD .060,1,3===A b a【答案】AD .3.已知函数x x g x x f ln )(,1)(2=-=,下列说法中正确的有( ) A .)(),(x g x f 在点)0,1(处有公切线B .存在)(x f 的某条切线与)(x g 的某条切线平行C .)(),(x g x f 有且只有一个交点D .)(),(x g x f 有且只有两个交点【答案】BD【解析】注意到1-=x y 为函数)(x g 在)0,1(处的切线,如图,因此答案BD .4.过抛物线x y 42=的焦点F 作直线交抛物线于B A ,两点,M 为线段AB 的中点.下列说法中正确的有( )A .以线段AB 为直径的圆与直线23-=x 一定相离B .||AB 的最小值为4C .||AB 的最小值为2D .以线段BM 为直径的圆与y 轴一定相切 【答案】AB【解析】对于选项A ,点M 到准线1-=x 的距离为||21|)||(|21AB BF AF =+,于是以线段AB 为直径的圆与直线1-=x 一定相切,进而与直线23-=x 一定相离;对于选项B ,C ,设)4,4(2a a A ,则)1,41(2a a B -,于是2414||22++=a a AB ,最小值为4.也可将||AB 转化为AB 中点到准线的距离的2倍去得到最小值;对于选项D ,显然BD 中点的横坐标与||21BM 不一定相等,因此命题错误.5.已知21,F F 是椭圆)0(1:2222>>=+b a b y a x C 的左、右焦点,P 是椭圆C 上一点.下列说法中正确的有( )A .b a 2=时,满足02190=∠PF F 的点P 有两个B .b a 2>时,满足02190=∠PF F 的点P 有四个C .21F PF ∆的周长小于a 4D .21F PF ∆的面积小于等于22a【答案】ABCD .【解析】对于选项A ,B ,椭圆中使得21PF F ∠最大的点P 位于短轴的两个端点;对于选项C ,21PF F ∆的周长为a c a 422<+;选项D ,21PF F ∆的面积为22212121212||||21sin ||||21a PF PF PF F PF PF =⎪⎭⎫ ⎝⎛+≤∠⋅.6.甲、乙、丙、丁四个人参加比赛,有两花获奖.比赛结果揭晓之前,四个人作了如下猜测:甲:两名获奖者在乙、丙、丁中; 乙:我没有获奖,丙获奖了; 丙:甲、丁中有且只有一个获奖; 丁:乙说得对.已知四个人中有且只有两个人的猜测是正确的,那么两个获奖者是( ) A .甲B .乙C .丙D .丁【答案】BD【解析】乙和丁同时正确或者同时错误,分类即可,答案:BD .7.已知AB 为圆O 的一条弦(非直径),AB OC ⊥于C ,P 为圆O 上任意一点,直线PA 与直线OC 相交于点M ,直线PB 与直线OC 相交于点N .以下说法正确的有( ) A .P B M O ,,,四点共圆 B .N B M A ,,,四点共圆 C .N P O A ,,,四点共圆D .以上三个说法均不对【答案】AC【解析】对于选项A ,OPM OAM OBM ∠=∠=∠即得;对于选项B ,若命题成立,则MN 为直径,必然有MAN ∠为直角,不符合题意;对于选项C ,MAN MOP MBN ∠=∠=∠即得.答案:AC .8.C B A C B A cos cos cos sin sin sin ++>++是ABC ∆为锐角三角形的( ) A .充分非必要条件 B .必要非充分条件 C .充分必要条件D .既不充分也不必要条件【答案】B【解析】必要性:由于1cos sin )2sin(sin sin sin >+=-+>+B B B B C B π, 类似地,有1sin sin ,1sin sin >+>+A B A C ,于是C B A C B A cos cos cos sin sin sin ++>++.不充分性:当4,2ππ===C B A 时,不等式成立,但ABC ∆不是锐角三角形.9.已知z y x ,,为正整数,且z y x ≤≤,那么方程21111=++z y x 的解的组数为( )A .8B .10C .11D .12【答案】B【解析】由于x z y x 311121≤++=,故63≤≤x .若3=x ,则36)6)(6(=--z y ,可得)12,12(),15,10(),18,9(),24,8(),42,7(),(=z y ; 若4=x ,则16)4)(4(=--z y ,可得)8,8(),12,6(),20,5(),(=z y ;若5=x ,则6,5,320,211103=≤≤+=y y y z y ,进而解得)10,5,5(),,(=z y x ;若6=x ,则9)3)(3(=--z y ,可得))6,6(),(=z y . 答案:B . 10.集合},,,{21n a a a A =,任取Aa a A a a A a a n k j i i k k j j i ∈+∈+∈+≤<<≤,,,1这三个式子中至少有一个成立,则n 的最大值为( ) A .6B .7C .8D .9【答案】B11.已知000121,61,1===γβα,则下列各式中成立的有( )A .3tan tan tan tan tan tan =++αγγββαB .3tan tan tan tan tan tan -=++αγγββαC . 3tan tan tan tan tan tan =++γβαγβα D . 3tan tan tan tan tan tan -=++γβαγβα【答案】BD【解析】令γβαtan ,tan ,tan ===z y x ,则3111=+-=+-=+-zx zx yz y z xy x y ,所以)1(3),1(3),1(3zx z x yz y z xy z y +=-+=-+=-,以上三式相加,即有3-=++zx yz xy .类似地,有)11(311),11(311),11(311+=-+=-+=-zx x z yz z y xy y x ,以上三式相加,即有3111-=++=++xyz zy x zx yz xy .答案BD .12.已知实数c b a ,,满足1=++c b a ,则141414+++++c b a 的最大值也最小值乘积属于区间( )A .)12,11(B .)13,12(C .)14,13(D .)15,14(【答案】B【解析】设函数14)(+=x x f ,则其导函数142)(/+=x x f ,作出)(x f 的图象,函数)(x f 的图象在31=x 处的切线321)31(7212+-=x y ,以及函数)(x f 的图象过点)0,41(-和)7,23(的割线7174+=x y ,如图,于是可得321)31(7212147174+-≤+≤+x x x ,左侧等号当41-=x 或23=x 时取得; 右侧等号当31=x 时取得.因此原式的最大值为21,当31===c b a 时取得;最小值为7,当23,41=-==c b a 时取得,从而原式的最大值与最小值的乘积为)169,144(37∈.答案B .13.已知1,1,,,222=++=++∈z y x z y x R z y x ,则下列结论正确的有( ) A .xyz 的最大值为0B .xyz 的最大值为274-C .z 的最大值为32D .z 的最小值为31-【答案】ABD14.数列}{n a 满足)(6,2,1*1221N n a a a a a n n n ∈-===++,对任意正整数n ,以下说法中正确的有( ) A .nn n a a a 221++-为定值 B .)9(mod 1≡n a 或)9(mod 2≡n aC .741-+n n a a 为完全平方数 D .781-+n n a a 为完全平方数【答案】ACD 【解析】因为2112221122213226)6(++++++++++++-=--=-n n n n n n n n n n n a a a a a a a a a a a nn n n n n n a a a a a a a 22121122)6(++++++-=+-=,选项A 正确;由于113=a ,故76)6(2121121221-=+-=--=-++++++n n n n n n n n n n n a a a a a a a a a a a ,又对任意正整数恒成立,所以211211)(78,)(74n n n n n n n n a a a a a a a a +=--=-++++,故选项C 、D 正确.计算前几个数可判断选项B 错误. 说明:若数列}{n a 满足nn n a pa a -=++12,则nn n a a a 221++-为定值.15.若复数z 满足11=+z z ,则z 可以取到的值有( )A .21B .21-C .215-D . 215+【答案】CD【解析】因为11||1||=+≤-z z z z ,故215||215+≤≤-z ,等号分别当i z 215+=和i z 215-=时取得.答案CD .16. 从正2016边形的顶点中任取若干个,顺次相连构成多边形,若正多边形的个数为( )A .6552B .4536C .3528D .2016 【答案】C【解析】从2016的约数中去掉1,2,其余的约数均可作为正多边形的边数.设从2016个顶点中选出k 个构成正多边形,这样的正多边形有k 2016个,因此所求的正多边形的个数就是2016的所有约数之和减去2016和1008.考虑到732201625⨯⨯=,因此所求正多边形的个数为352810082016)71)(931)(32168421(=--++++++++.答案C .17.已知椭圆)0(12222>>=+b a b y a x 与直线x y l x y l 21:,21:21-==,过椭圆上一点P 作21,l l 的平行线,分别交21,l l 于N M ,两点.若||MN 为定值,则=b a( )A .2B .3C .2D .5【答案】C【解析】设点),(00y x P ,可得)2141,21(),2141,21(00000000y x y x N y x y x M +--++,故意2020441||y x MN +=为定值,所以2,1641422===b ab a ,答案:C .说明:(1)若将两条直线的方程改为kx y ±=,则k b a 1=;(2)两条相交直线上各取一点N M ,,使得||MN 为定值,则线段MN 中点Q 的轨迹为圆或椭圆.18. 关于y x ,的不定方程yx 21652=+的正整数解的组数为( )A .0B .1C .2D .3【答案】B19.因为实数的乘法满足交换律与结合律,所以若干个实数相乘的时候,可以有不同的次序.例如,三个实数c b a ,,相乘的时候,可以有 ),(),(,)(,)(ca b ab c c ba c ab 等等不同的次序.记n 个实数相乘时不同的次序有nI 种,则( )A .22=IB .123=IC .964=ID .1205=I【答案】B【解析】根据卡特兰数的定义,可得1121221)!1(!1------=⋅==n n n n n n n n C n n C n A C I .答案:AB .关于卡特兰数的相关知识见《卡特兰数——计数映射方法的伟大胜利》.20.甲乙丙丁4个人进行网球淘汰赛,规定首先甲乙一组、丙丁一组进行比赛,两组的胜者争夺冠军.4个人相互比赛的胜率如表所示:表中的每个数字表示其所在的选手击败其所在列的选手的概率,例如甲击败乙的概率是0.3,乙击败丁的概率是0.4.那么甲刻冠军的概率是 . 【答案】0.165【解析】根据概率的乘法公式 ,所示概率为165.0)8.05.03.05.0(3.0=⨯+⨯. 21.在正三棱锥ABC P -中,ABC ∆的边长为1.设点P 到平面ABC 的距离为x ,异面直线CP AB ,的距离为y .则=∞→y x lim .【答案】23【解析】当∞→x 时,CP 趋于与平面ABC 垂直,所求极限为ABC ∆中AB 边上的高,为23.22.如图,正方体1111D C B A ABCD -的棱长为1,中心为A A E A BC BF O 1141,21,==,则四面体OEBF 的体积为 .【答案】196【解析】如图,EBF G EBF O OEBF V V V --==21961161212111=⋅==--B BCC E GBF E V V .23.=+-⎰-dx x x n n )sin 1()(22012ππ .【答案】0【解析】根据题意,有)sin 1()sin 1()(21222012=+=+-⎰⎰---dx x x dx x x n n n n ππππ.24.实数y x ,满足223224)(y x y x =+,则22y x +的最大值为 .【答案】1【解析】根据题意,有22222322)(4)(y x y x y x +≤=+,于是122≤+y x ,等号当2122==y x 时取得,因此所求最大值为1.25.z y x ,,均为非负实数,满足427)23()1()21(222=+++++z t x ,则z y x ++的最大值与最小值分别为 . 【答案】2322-【解析】由柯西不等式可知,当且仅当)0,21,1(),,(=z y x 时,z y x ++取到最大值23.根据题意,有41332222=+++++z y x z y x ,于是,)(3)(4132y z y x z y x +++++≤解得2322-≥++z y x .于是z y x ++的最小值当)2322,0,0(),(-=yz x 时取得,为2322-. 26.若O 为ABC ∆内一点,满足2:3:4::=∆∆∆COA BOC AOB S S S ,设AC AB AO μλ+=,则=+μλ . 【答案】23【解析】根据奔驰定理,有329492=+=+μλ.27.已知复数32sin 32cos ππi z +=,则=+++2223z z z z .【答案】12i - 【解析】根据题意,有i z z z z z z 35sin 35cos 122223+=-=+=+++ππ28.已知z 为非零复数,z z 40,10的实部与虚部均为不小于1的正数,则在复平面中,z 所对应的向量OP 的端点P 运动所形成的图形的面积为 .【答案】2003003π+-【解析】设),(R y x yi x z ∈+=,由于2||4040z z z =,于是⎪⎪⎩⎪⎪⎨⎧≥+≥+≥≥,140,140,110,1102222y x y y x x y x 如图,弓形面积为1003100)6sin 6(20212-=-⋅⋅πππ,四边形ABCD 的面积为100310010)10310(212-=⋅-⋅. 于是所示求面积为30031003200)1003100()1003100(2-+=-+-ππ.29.若334tan =x ,则=+++x x x x x x x x x x x cos sin cos 2cos sin 2cos 4cos 2sin 4cos 8cos 4sin .【解析】根据题意,有x x x x x x x x x x x cos sin cos 2cos sin 2cos 4cos 2sin 4cos 8cos 4sin +++38tan tan )tan 2(tan )2tan 4(tan )4tan 8(tan ==+-+-+-=x x x x x x x x .30.将16个数:4个1,4个2,4个3,4个4填入一个44⨯的数表中,要求每行、每列都恰好有两个偶数,共有 种填法.【答案】44100031.设A 是集合}14,,3,2,1{ 的子集,从A 中任取3个元素,由小到大排列之后都不能构成等差数列,则A 中元素个数的最大值为 .【答案】8【解析】一方面,设},,,{21k a a a A =,其中141,*≤≤∈k N k .不妨假设k a a a <<< 21.若9≥k ,由题意,7,33513≥-≥-a a a a ,且1335a a a a -≠-,故715≥-a a .同理759≥-a a .又因为1559a a a a -≠-,所以1519≥-a a ,矛盾!故8≤k .另一方面,取}14,13,11,10,5,4,2,1{=A ,满足题意.综上所述,A 中元素个数的最大值为8.。

清华大学2019年自主招生数学试题(含详细解析)

清华大学2019年自主招生数学试题(含详细解析)

1清华大学自主招生数学试题2019.061.一个四面体棱长分别为6,6,6,6,6,9,求外接球的半径.2.求值:1221(1sin )x x dx --⎰.3.已知P 为单位圆上一动点,(0,2)A ,(0,1)B -,求2||||AP BP ⨯的最大值.4.AB 为圆O 的直径,CO AB ⊥,M 为AC 中点,CH MB ⊥,则下列选项正确的是()A.2AM OH =B.2AH OH =C.△BOH ∽△BMAD.忘记5.{1,2,3,,15}A =⋅⋅⋅,{1,2,3,4,5}B =,f 是A 到B 的映射,若满足()()f x f y =,则称有序对(,)x y 为“好对”,求“好对”的个数最小值.6.若对c ∀∈R ,,a b ∃,使得()()()f a f b f c a b -=-成立,则称函数()f x 满足性质T ,下列函数不满足性质T 的是()A.32()33f x x x x =-+ B.21()1f x x =+ C.1()x f x e += D.()sin(21)f x x =+7.已知||||1a b == ,12a b ⋅= ,()()0c a c b --= ,若||1d c -= ,求||d 的最大值.8.椭圆22162x y +=,过(2,0)F 的直线交椭圆于A 、B 两点,点C 在直线3x =上,若△ABC 为正三角形,求△ABC 的面积.9.圆224x y +=上一点00(,)x y 处的切线交抛物线28y x =于A 、B 两点,且满足90AOB ∠=︒,其中O 为坐标原点,求0x .10.设a 为44444444各位数字和,b 是a 的各位数字之和,c 为b 的各位数字之和,求c 的值.11.实数x 、y 满足22(2)1x y +-≤的最大值和最小值.初高中数学学习资料的店。

清华大学自主招生试题含答案

清华大学自主招生试题含答案

、选择题2( )(A)充分不必要(B)必要不充分(C)充要(D)3.设A、B是抛物线y=x2上两点,0是坐标原点,若OAL 0B,则()(A)|OA| •|OB| > 2 (B)|OA|+|OB| (C)直线AB过抛物线y=x2的焦点(D)O至煩线AB的距离小于等于X yf (x) >0,x € (-1,0);② f (X) + f (y) = f ( ) , X、y €1 xy(-1,1),则f (x)为(A)奇函数(B)偶函数(C)减函数(D)有界函数5. 如图,已知直线y=kx+m与曲线y=f(x)相切于两点,则F(x)= f (x) - kx有(/ C=—,且sinC+sin(B - A) -2sin2A=0,则有(3(A)b=2 a (B) △ ABC的周长为2+2-. 3 (C) △ ABC的面积为一空(D) △ ABC的外接圆半径为37.设函数f(x) (x23)e x,则( )(A) f (x)有极小值,但无最小值(B) f (x)有极大值,但无最大值(C)若方程f (x) =b恰有一个实根,则b>-6| (D)若方程f (x) =b恰有三个不同实根,则0<b<£e e1.设复数z=cos -3+isin (A)0 (B)1 (C) 2 冲13 ,则仁(D)3211 z22.设数列{aj为等差数列, p,q,k, l为正整数,则p+q>k+l ”是“ a p aqa k a l ”的()条件既不充分也不必要4.设函数f(x)的定义域为(-1,1),且满足:①个极小值点(D)3个极小值点8.已知 A={(x,y) 1 x 22 2y r },B={(x,y)1 (x2 2 2a) (y b) r ,已知 A n B={(x 1,yJ ,( X 2,y 2)},则()(A)0< a 2 b 2 <2r 2(B)aXX 2) b(y1 y 2) 0(C)X 1 X 2 = a , y 1y 2=b (D)2a b 2 = 2ax 1 2by 19.已知非负实数x,y,z满足4x 24y 22z +2z=3, 则5x+4y+3z 的最小值为()(A)1 (B)2 (C)3 (D)410.设数列{ a n }的前n 项和为S n ,若对任意正整数n ,总存在正整数 m,使得S n =a m ,则( )(A ){ a n }可能为等差数列(B ){ a n }可能为等比数列(c ){a n }的任意一项均可写成{a n }的两项之差(D)对任意正整数n ,总存在正整数 m 使得a n = S m 11.运动会上,有6名选手参加100米比赛,观众甲猜测:4道或5道的选手得第一名;观众乙猜测: 3道的选手不可能得第一名;观众丙猜测:1,2,6道选手中的一位获得第一名;观众丁猜测:4,5,6道的选手都不可能获得第一名•比赛后发现没有并列名次,且甲、乙、丙、丁中只有 1人猜对比赛结果,此人是( )(A)甲(B)乙(C)丙(D) 丁1(A)若S=4,则k 的值唯一(B) 若S=^,贝U k 的值有2个22(C)若D 为三角形,则0<k <(D)若D 为五边形,则312.长方体 ABCDAEGD 中,AB=2, AD=A A 1=1,贝U A 到平面 A BD 的距离为((A) - (B)3(D)13.设不等式组|x| |y| 2 y 2 k(x 1)所表示的区域为 D,其面积为S,U(k>414. △ ABC 勺三边长是 2,3,4,其外心为 0,则 uuu uuu OA AB uuu uuu uuur uuu OB BC 0C CA =((A)0 (B)-15 (C) -21(D)229 215. 设随机事件 A 与B 互相独立,且 P(B)=0.5(A)P(A)=0.4 (B)P(B -A)=0.3 (C)P(AB)=0.2 (D)P(A+B)=0.916. 过厶ABC 的重心作直线将厶 3(A)最小值为一(B)最小值为417. 从正15边形的顶点中选出,P(A- B)=0.2,则(ABC 分成两部分,则这两部分的面积之比的(4 4(C)最大值为一533个构成钝角三角形,5(D 最大值为一4则不同的选法有((A)105 种(B)225 种(C)315 种(D)420 种18. 已知存在实数r,使得圆周x2y2 r2上恰好有n个整点,则n可以等于(22.在极坐标系中,下列方程表示的图形是椭圆的有(4 2 1 V2(A)最小值为一(B)最小值为一 (C)最大值为1 (D)最大值为--------------------5 5 3(A)4 (B)6 (C)8 (D)1219. 设复数z 满足2|z| w |z-1|,则(1(A)|z|的最大值为1 (B)|z| 的最小值为—(C)z321的虚部的最大值为2(D)z 的实部的最大值为13320.设 m,n 是大于零的实数, a =(mcos a ,msin a ),b =(ncos 3 ,nsin 3 ),其中 a , B€ [0,2 n ) a , B€r 1, _[0,2 n ) •定义向量 a 2 =( 、、. m cos — ,、. m sin 一 ), b 2=(、. n 2cos — 2 ,、齐 sin —),记 9 = a - 3,贝U2r [ r 1 r r 1 r 1 ___ (A) a 2 • a 2 = a (B) a 2 b 2=、.mn cos — (C) 2r] r] … |a 2 b 2|4、一 mn sin 2 —4r 1 r] 2 _ 2 (D) |a 2 b 2 |24, mncos 2 —421.设数列{ a n }满足:a 1=6, an 1,则((A) ? n € N?, a n <(n 1)3 (B) ? n € N?, a n 丰 2015 (C) ? n € N?, a n 为完全平方数(D)? n € N?, a n 为完全立方数1 (A )p=cos sin23. 设函数 f(x)s in x,则( x x 14(A ) f(x) w (B)| f (x) | w 5|x| (C)曲线 y= f (x)存在对称轴324. △ ABC 的三边分别为a ,b,c ,若△ ABC 为锐角三角形,则((B )p=—1(C ) 2 sin1p= —2 cos(D )(D) 1 1 2si n曲线y= f (x)存在对称中心(A)si nA>cosB (B)ta nA>cotB (C) a 2 b 2 c 2 (D) a 3 b 3 c 325.设函数f (x)的定义域是(-1,1), 若f(0) = f (0) =1,则存在实数 s€ (0,1),使得()(A) f (x) >0, x € (- S , S) (B)f (x)在(-S , S )上单调递增 (C) f (x) >1, x € (0, S) (D)f (x)>1 , x € (- S ,0)26.在直角坐标系中,已知A(-1,0),B(1,0) •若对于y 轴上的任意n 个不同的点 P k (k=1,2,…,n),总存在两个不同的点R ,P j ,1使得 |sin / A P j B-sin / A P j B| w —,贝V n 的最小值为( 3(A)3 (B)4(C)5 (D)627.设非负实数x,y 满足2x+y=1,则 x+ x 2 y 2 的()128.对于50个黑球和49个白球的任意排列(从左到右排成一行),则((A)存在一个黑球,它右侧的白球和黑球一样多(B)存在一个白球,它右侧的白球和黑球一样多(C)存在一个黑球,它右侧的白球比黑球少一个 (D)存在一个白球,它右侧的白球比黑球少一个 29.从1,2,3,4,5 中挑出三个不同数字组成五位数, 同的五位数有( (A)300 个(B)450其中有两个数字各用两次,例如 12231,则能得到的不 30.设曲线L 的方程为 (A)L 是轴对称图形 (C)L ? {(x,y) I ##A nswer##1.【解析】 丄1-z) 个(C)900 y 4 (2x 2(B)L 个(D)1800 个 2 4 2 2)y (x 2x ) =0,则(是中心对称图形 1 (D)L ? {(x,y)zz 1 zz_______ 1 - 2. 21-cos i sin332 cos 3..2 i sin ___ 3 2 2i sin32sin 2 i 2sin cos —3 3 3 cos0 isinO 2sin — [cos( —) i sin(-)i sin(3、、3(cos —2-洽 2os(cos( i sin ) 27) i sin(67)]丄(cos — isi n —.3 6 6△ )=1,选 B22.【简解】 a p (a k Q )=[(p+q)-(k+l)]d ,与公差 d 的符号有关,选 3.【解析】设A( 2X 1,X 1 ),B( 2 uuu uuu X 2,X 2 ), OA OB =X 1X 2(1 X 1X 2) =0 X 2 X1 答案(A), |0A| l OBI ^x^(1 好)4(1 —1^) = j1 X2 1 2 X 11 > /2 2|X 1 | 丄=2,正确; |X 1 | 答案(B),|OA|+|OB| > 2..|OA 「|OB| > 2 .2,正确;答案(C),直线 AB 的斜率为 2 22^=X 2 x 2 x 1X1程为 y- xj =( x 1 1)(x-x 1),焦点(0, 1)不满足方程,错误;答案(D),原点到直线AB :(4X11)x-y+ 仁X 1的距离d=w 1,正确。

清华大学自主招生考试数学试题研究

清华大学自主招生考试数学试题研究

B.有 2析:设直线 l1 , l2 , l3 分别与直线 y kx m 平行且与 函数 y f ( x) 相切,则三条直线 y kx m , l1 , l2 , l3 和函数 y f ( x) 的切点设为
A( x A , f ( x A )), B ( xB , f ( xB )), C ( xC , f ( xC )), D( xD , f ( xD )), E ( xE , f ( xE ))
2
3.2 试题考点分布统计 2006 年-2016 年自主招生数学试题主要考点分布统计表 2006 三角函数 复数 函数与方程 概率与统计 数列、不等式 向量 平面几何 立体几何 解析几何 排列与组合 数论与推理 1 1 0 1 0 0 0 1 1 0 1 2007 0 0 1 1 1 0 0 0 1 0 0 2008 1 0 1 1 1 0 0 1 1 0 2 2009 0 2 1 2 1 0 0 1 2 7 2 2010 2 1 1 1 1 1 1 3 2 1 0 2011 2 1 2 1 2 1 2 2 2 1 0 2012 2 1 1 1 1 1 1 1 2 2 1 2013 1 0 1 1 1 0 0 0 1 2 1 2014 1 0 1 1 1 0 0 0 1 0 1 2015 3 2 5 1 6 2 1 1 4 2 3 合计 13 8 14 11 15 5 5 10 17 14 11
1 1 , cos x cos y ,求 sin( x y ), cos( x y ) 的值. 2 5
分析: 解决数学问题就是要建立已知与未知之间的联系, 本题的已知条件与问题之间很容易 发现下面的这个关系:
x y x y x , 2 2 y x y x y . 2 2

清华自主招生试题

清华自主招生试题

清华自主招生试题一、数学题1. 某校有3000名学生,其中男生占总人数的60%,女生占总人数的40%。

男女生中,有20%的人精通数学。

问:该校男女生中,精通数学的人数分别是多少?解析:根据题意得知男生占总人数的60%,女生占总人数的40%。

所以男生总数为3000 * 60% = 1800,女生总数为3000 * 40% = 1200。

由于精通数学的人占男女生总数的20%,所以男生中精通数学的人数为1800 * 20% = 360,女生中精通数学的人数为1200 * 20% = 240。

答案:男生中精通数学的人数为360人,女生中精通数学的人数为240人。

2. 已知正方形ABCD的边长为2,点E是AD的中点,F是BC的中点。

连接AE、BF,交于点G。

问:三角形AEG的面积为多少?解析:根据题意,AE的长度为1,EG的长度为√2(正方形相邻两边长的一半),所以三角形AEG的面积为1/2 * 1 * √2 = √2/2。

答案:三角形AEG的面积为√2/2。

二、物理题1. 一辆汽车在匀速行驶时,刹车后停下需要的时间是20秒。

若汽车的质量为1000kg,刹车时产生的加速度为5m/s²,求:汽车刹车时作用在车体上的力大小为多少?解析:根据牛顿第二定律,力的大小等于质量乘以产生的加速度。

所以汽车刹车时作用在车体上的力大小为1000kg * 5m/s² = 5000N(牛顿)。

答案:汽车刹车时作用在车体上的力大小为5000N。

2. 物体A和物体B质量相同,在水平面上相互作用力F = 20N。

已知物体A的重力为30N,物体B的摩擦力为8N。

问:物体A和物体B 的加速度分别是多少?解析:根据牛顿第二定律,力的大小等于质量乘以产生的加速度。

所以物体A的加速度为(20N - 8N)/30kg = 12/30 = 0.4m/s²,物体B的加速度同样为0.4m/s²。

答案:物体A和物体B的加速度分别是0.4m/s²。

2016清华大学自主招生暨领军计划数学试题(精校word版,带解析)-历年自主招生考试数学试题大全

2016清华大学自主招生暨领军计划数学试题(精校word版,带解析)-历年自主招生考试数学试题大全

2016年清华大学自主招生暨领军计划试题1.已知函数x e a x x f )()(2+=有最小值,则函数a x x x g ++=2)(2的零点个数为( ) A .0 B .1 C .2 D .取决于a 的值 【答案】C【解析】注意)()(/x g e x f x=,答案C .2. 已知ABC ∆的三个内角C B A ,,所对的边为c b a ,,.下列条件中,能使得ABC ∆的形状唯一确定的有( )A .Z c b a ∈==,2,1B .B bC a C c A a A sin sin 2sin sin ,1500=+=C .060,0sin cos )cos(cos sin cos ==++C C B C B C B A D .060,1,3===A b a【答案】AD .3.已知函数x x g x x f ln )(,1)(2=-=,下列说法中正确的有( ) A .)(),(x g x f 在点)0,1(处有公切线B .存在)(x f 的某条切线与)(x g 的某条切线平行C .)(),(x g x f 有且只有一个交点D .)(),(x g x f 有且只有两个交点【答案】BD【解析】注意到1-=x y 为函数)(x g 在)0,1(处的切线,如图,因此答案BD .4.过抛物线x y 42=的焦点F 作直线交抛物线于B A ,两点,M 为线段AB 的中点.下列说法中正确的有( )A .以线段AB 为直径的圆与直线23-=x 一定相离 B .||AB 的最小值为4 C .||AB 的最小值为2D .以线段BM 为直径的圆与y 轴一定相切 【答案】AB【解析】对于选项A ,点M 到准线1-=x 的距离为||21|)||(|21AB BF AF =+,于是以线段AB 为直径的圆与直线1-=x 一定相切,进而与直线23-=x 一定相离;对于选项B ,C ,设)4,4(2a a A ,则)1,41(2a a B -,于是2414||22++=aa AB ,最小值为4.也可将||AB 转化为AB 中点到准线的距离的2倍去得到最小值;对于选项D ,显然BD 中点的横坐标与||21BM 不一定相等,因此命题错误.5.已知21,F F 是椭圆)0(1:2222>>=+b a by a x C 的左、右焦点,P 是椭圆C 上一点.下列说法中正确的有( ) A .b a 2=时,满足02190=∠PF F 的点P 有两个 B .b a 2>时,满足02190=∠PF F 的点P 有四个C .21F PF ∆的周长小于a 4D .21F PF ∆的面积小于等于22a【答案】ABCD .【解析】对于选项A ,B ,椭圆中使得21PF F ∠最大的点P 位于短轴的两个端点;对于选项C ,21PF F ∆的周长为ac a 422<+;选项D ,21PF F ∆的面积为22212121212||||21sin ||||21a PF PF PF F PF PF =⎪⎭⎫ ⎝⎛+≤∠⋅. 6.甲、乙、丙、丁四个人参加比赛,有两花获奖.比赛结果揭晓之前,四个人作了如下猜测: 甲:两名获奖者在乙、丙、丁中; 乙:我没有获奖,丙获奖了; 丙:甲、丁中有且只有一个获奖; 丁:乙说得对.已知四个人中有且只有两个人的猜测是正确的,那么两个获奖者是( ) A .甲B .乙C .丙D .丁【答案】BD【解析】乙和丁同时正确或者同时错误,分类即可,答案:BD .7.已知AB 为圆O 的一条弦(非直径),AB OC ⊥于C ,P 为圆O 上任意一点,直线PA 与直线OC 相交于点M ,直线PB 与直线OC 相交于点N .以下说法正确的有( ) A .P B M O ,,,四点共圆 B .N B M A ,,,四点共圆 C .N P O A ,,,四点共圆D .以上三个说法均不对【答案】AC【解析】对于选项A ,OPM OAM OBM ∠=∠=∠即得;对于选项B ,若命题成立,则MN 为直径,必然有MAN ∠为直角,不符合题意;对于选项C ,MAN MOP MBN ∠=∠=∠即得.答案:AC . 8.C B A C B A cos cos cos sin sin sin ++>++是ABC ∆为锐角三角形的( ) A .充分非必要条件 B .必要非充分条件 C .充分必要条件D .既不充分也不必要条件【答案】B【解析】必要性:由于1cos sin )2sin(sin sin sin >+=-+>+B B B B C B π,类似地,有1sin sin ,1sin sin >+>+A B A C ,于是C B A C B A cos cos cos sin sin sin ++>++. 不充分性:当4,2ππ===C B A 时,不等式成立,但ABC ∆不是锐角三角形.9.已知z y x ,,为正整数,且z y x ≤≤,那么方程21111=++z y x 的解的组数为( ) A .8B .10C .11D .12【答案】B 【解析】由于xz y x 311121≤++=,故63≤≤x . 若3=x ,则36)6)(6(=--z y ,可得)12,12(),15,10(),18,9(),24,8(),42,7(),(=z y ; 若4=x ,则16)4)(4(=--z y ,可得)8,8(),12,6(),20,5(),(=z y ; 若5=x ,则6,5,320,211103=≤≤+=y y y z y ,进而解得)10,5,5(),,(=z y x ; 若6=x ,则9)3)(3(=--z y ,可得))6,6(),(=z y . 答案:B .10.集合},,,{21n a a a A =,任取A a a A a a A a a n k j i i k k j j i ∈+∈+∈+≤<<≤,,,1这三个式子中至少有一个成立,则n 的最大值为( ) A .6B .7C .8D .9【答案】B11.已知000121,61,1===γβα,则下列各式中成立的有( ) A .3tan tan tan tan tan tan =++αγγββαB .3tan tan tan tan tan tan -=++αγγββαC .3tan tan tan tan tan tan =++γβαγβαD .3tan tan tan tan tan tan -=++γβαγβα【答案】BD 【解析】令γβαtan ,tan ,tan ===z y x ,则3111=+-=+-=+-zxzx yz y z xy x y ,所以)1(3),1(3),1(3zx z x yz y z xy z y +=-+=-+=-,以上三式相加,即有3-=++zx yz xy .类似地,有)11(311),11(311),11(311+=-+=-+=-zxx z yz z y xy y x ,以上三式相加,即有3111-=++=++xyzzy x zx yz xy .答案BD . 12.已知实数c b a ,,满足1=++c b a ,则141414+++++c b a 的最大值也最小值乘积属于区间( )A .)12,11(B .)13,12(C .)14,13(D .)15,14(【答案】B【解析】设函数14)(+=x x f ,则其导函数142)(/+=x x f ,作出)(x f 的图象,函数)(x f 的图象在31=x 处的切线321)31(7212+-=x y ,以及函数)(x f 的图象过点)0,41(-和)7,23(的割线7174+=x y ,如图,于是可得321)31(7212147174+-≤+≤+x x x ,左侧等号当41-=x 或23=x 时取得; 右侧等号当31=x 时取得.因此原式的最大值为21,当31===c b a 时取得;最小值为7,当23,41=-==c b a 时取得,从而原式的最大值与最小值的乘积为)169,144(37∈.答案B .13.已知1,1,,,222=++=++∈z y x z y x R z y x ,则下列结论正确的有( ) A .xyz 的最大值为0 B .xyz 的最大值为274- C .z 的最大值为32D .z 的最小值为31-【答案】ABD14.数列}{n a 满足)(6,2,1*1221N n a a a a a n n n ∈-===++,对任意正整数n ,以下说法中正确的有( )A .n n n a a a 221++-为定值 B .)9(mod 1≡n a 或)9(mod 2≡n aC .741-+n n a a 为完全平方数D .781-+n n a a 为完全平方数 【答案】ACD 【解析】因为2112221122213226)6(++++++++++++-=--=-n n n n n n n n n n n a a a a a a a a a a a nn n n n n n a a a a a a a 22121122)6(++++++-=+-=,选项A 正确;由于113=a ,故76)6(2121121221-=+-=--=-++++++n n n n n n n n n n n a a a a a a a a a a a ,又对任意正整数恒成立,所以211211)(78,)(74n n n n n n n n a a a a a a a a +=--=-++++,故选项C 、D 正确.计算前几个数可判断选项B 错误.说明:若数列}{n a 满足n n n a pa a -=++12,则n n n a a a 221++-为定值.15.若复数z 满足11=+zz ,则z 可以取到的值有( ) A .21B .21-C .215-D .215+ 【答案】CD 【解析】因为11||1||=+≤-zz z z ,故215||215+≤≤-z ,等号分别当i z 215+=和i z 215-=时取得.答案CD .16. 从正2016边形的顶点中任取若干个,顺次相连构成多边形,若正多边形的个数为( ) A .6552 B .4536 C .3528 D .2016 【答案】C【解析】从2016的约数中去掉1,2,其余的约数均可作为正多边形的边数.设从2016个顶点中选出k 个构成正多边形,这样的正多边形有k2016个,因此所求的正多边形的个数就是2016的所有约数之和减去2016和1008.考虑到732201625⨯⨯=,因此所求正多边形的个数为352810082016)71)(931)(32168421(=--++++++++.答案C .17.已知椭圆)0(12222>>=+b a b y a x 与直线x y l x y l 21:,21:21-==,过椭圆上一点P 作21,l l 的平行线,分别交21,l l 于N M ,两点.若||MN 为定值,则=ba( ) A .2B .3C .2D .5【答案】C【解析】设点),(00y x P ,可得)2141,21(),2141,21(00000000y x y x N y x y x M +--++,故意2020441||y x MN +=为定值,所以2,1641422===b a b a ,答案:C .说明:(1)若将两条直线的方程改为kx y ±=,则kb a 1=;(2)两条相交直线上各取一点N M ,,使得||MN 为定值,则线段MN 中点Q 的轨迹为圆或椭圆.18. 关于y x ,的不定方程y x 21652=+的正整数解的组数为( ) A .0B .1C .2D .3【答案】B19.因为实数的乘法满足交换律与结合律,所以若干个实数相乘的时候,可以有不同的次序.例如,三个实数c b a ,,相乘的时候,可以有 ),(),(,)(,)(ca b ab c c ba c ab 等等不同的次序.记n 个实数相乘时不同的次序有n I 种,则( )A .22=IB .123=IC .964=ID .1205=I 【答案】B【解析】根据卡特兰数的定义,可得1121221)!1(!1------=⋅==n n n n nn n n C n n C nA C I .答案:AB . 关于卡特兰数的相关知识见《卡特兰数——计数映射方法的伟大胜利》.20.甲乙丙丁4个人进行网球淘汰赛,规定首先甲乙一组、丙丁一组进行比赛,两组的胜者争夺冠军.4个人相互比赛的胜率如表所示:表中的每个数字表示其所在的选手击败其所在列的选手的概率,例如甲击败乙的概率是0.3,乙击败丁的概率是0.4.那么甲刻冠军的概率是 . 【答案】0.165【解析】根据概率的乘法公式 ,所示概率为165.0)8.05.03.05.0(3.0=⨯+⨯.21.在正三棱锥ABC P -中,ABC ∆的边长为1.设点P 到平面ABC 的距离为x ,异面直线CP AB ,的距离为y .则=∞→y x lim .【答案】23 【解析】当∞→x 时,CP 趋于与平面ABC 垂直,所求极限为ABC ∆中AB 边上的高,为23. 22.如图,正方体1111D C B A ABCD -的棱长为1,中心为A A E A BC BF O 1141,21,==,则四面体OEBF 的体积为 .【答案】196【解析】如图,EBF G EBF O OEBF V V V --==21961161212111=⋅==--B BCC E GBF E V V .23.=+-⎰-dx x x n n )sin 1()(22012ππ .【答案】0【解析】根据题意,有0)sin 1()sin 1()(21222012=+=+-⎰⎰---dx x x dx x x n n n n ππππ.24.实数y x ,满足223224)(y x y x =+,则22y x +的最大值为 . 【答案】1【解析】根据题意,有22222322)(4)(y x y x y x +≤=+,于是122≤+y x ,等号当2122==y x 时取得,因此所求最大值为1.25.z y x ,,均为非负实数,满足427)23()1()21(222=+++++z t x ,则z y x ++的最大值与最小值分别为 . 【答案】2322- 【解析】由柯西不等式可知,当且仅当)0,21,1(),,(=z y x 时,z y x ++取到最大值23.根据题意,有41332222=+++++z y x z y x ,于是,)(3)(4132y z y x z y x +++++≤解得2322-≥++z y x .于是z y x ++的最小值当)2322,0,0(),(-=yz x 时取得,为2322-. 26.若O 为ABC ∆内一点,满足2:3:4::=∆∆∆COA BOC AOB S S S ,设AC AB AO μλ+=,则=+μλ .【答案】23【解析】根据奔驰定理,有329492=+=+μλ. 27.已知复数32sin32cos ππi z +=,则=+++2223z z z z . 【答案】1322i - 【解析】根据题意,有i i z z z z z z 232135sin 35cos 122223-=+=-=+=+++ππ. 28.已知z 为非零复数,zz 40,10的实部与虚部均为不小于1的正数,则在复平面中,z 所对应的向量OP 的端点P 运动所形成的图形的面积为 . 【答案】20010033003π+-【解析】设),(R y x yi x z ∈+=,由于2||4040z z z =,于是⎪⎪⎩⎪⎪⎨⎧≥+≥+≥≥,140,140,110,1102222y x y y x x y x 如图,弓形面积为1003100)6sin 6(20212-=-⋅⋅πππ,四边形ABCD 的面积为100310010)10310(212-=⋅-⋅. 于是所示求面积为30031003200)1003100()1003100(2-+=-+-ππ. 29.若334tan =x ,则=+++xx x x x x x x x x x cos sin cos 2cos sin 2cos 4cos 2sin 4cos 8cos 4sin . 【答案】3【解析】根据题意,有xx x x x x x x x x x cos sin cos 2cos sin 2cos 4cos 2sin 4cos 8cos 4sin +++ 38tan tan )tan 2(tan )2tan 4(tan )4tan 8(tan ==+-+-+-=x x x x x x x x .30.将16个数:4个1,4个2,4个3,4个4填入一个44⨯的数表中,要求每行、每列都恰好有两个偶数,共有 种填法.【答案】44100031.设A 是集合}14,,3,2,1{ 的子集,从A 中任取3个元素,由小到大排列之后都不能构成等差数列,则A 中元素个数的最大值为 .【答案】8【解析】一方面,设},,,{21k a a a A =,其中141,*≤≤∈k N k .不妨假设k a a a <<< 21.若9≥k ,由题意,7,33513≥-≥-a a a a ,且1335a a a a -≠-,故715≥-a a .同理759≥-a a .又因为1559a a a a -≠-,所以1519≥-a a ,矛盾!故8≤k .另一方面,取}14,13,11,10,5,4,2,1{ A ,满足题意. 综上所述,A 中元素个数的最大值为8.。

2021年北京海淀区清华大学自主招生数学试卷(语言类保送暨高水平艺术团)

2021年北京海淀区清华大学自主招生数学试卷(语言类保送暨高水平艺术团)

2021年北京海淀区清华大学自主招生数学试卷(语言类保送暨高水平艺术团)一、选择题(本大题共7小题,每小题5分,共35分)A.B.C.D.1.已知复数,设是的共轭复数,则等于( ).A.B.C.D.2.已知集合,,且,则实数等于( ).A.或B.C.或D.3.已知正整数数列满足,则等于( ).,A.B.C.D.4.已知椭圆 的两个焦点分别为,,为椭圆上一点,的平分线与轴交于点 ,作交于点,则等于( ).A.B.C.D.5.已知非负实数,满足,则的最大值为( ).A.B.C. D.6.已知函数在区间上恰有一个极大值点与一个极小值点,则正实数的取值范围是( ).A.B.C.D.7.在四面体中,,为的中点,,且,则四面体外接球的半径为( ).二、填空题(本大题共3小题,每小题5分,共15分)8.展开式中的常数项为 .9.已知是定义在上的偶函数,且,当时,有,则的解集为 .10.在平面直角坐标系中,设,,向量,其中,动点满足,则的最小值为 .三、解答题(本大题共4小题,共50分)(1)(2)11.已知是公差不等于的等差数列,且是,的等比中项,记数列前项和为,.求数列的通项公式.设数列满足,,且,求数列的前项和.(1)(2)12.在三棱台中,,, ,,且平面,设,,分别为棱,,的中点.证明:平面平面.求二面角的正弦值.13.(1)(2)已知抛物线的焦点为,准线与轴交于点,过点的直线与抛物线交于,两点,且.求抛物线的方程.设,是抛物线上的不同两点,且轴,直线与轴交于点,再在轴上截取线段,且点介于点与点之间,连接,过点作直线的平行线,证明:为抛物线的切线.(1)(2)14.已知函数在点处的切线与直线:垂直.设函数,求函数的单调区间.证明:.【答案】解析:∵,∴,∴,则.故选.解析:∵,∴,∴,∴,又∵,∴,而,∴必有解,∴,则,∴.故选.A 1.C 2.B3.依题意,有,则,假设,则,故,,则,矛盾,当时,则,矛盾,从而,故选.解析:设,,则,故是直角三角形,且,从而,故选.解析:由不等式,得,又,是非负实数,则,设,则,上式当,时取等号.故选.A 4.C 5.解析:由,得,依题意,有,解得.故选.解析:依题意,有,则,又,,则平面,如图,设四面体的外接球球心为点,球心在平面与平面上的射影分别为,两点,注意到,均为正三角形,则,,即四面体的外接球半径.故选.解析:仅需考虑展开式中项的系数与常数项.一方面,的常数项为.另一方面,的项的系数为.从而原式展开式中常数项为.解析:D 7.8.9.(1)(2)设.当时,有.即函数在上单调递增.当时,有,又注意到是偶函数.则原不等式的解集为.解析:依题意,得,则点在直线上运动,设线段的中点为,则点在以为圆心,为半径的圆周上运动,又点到直线的距离,则.故答案为:.解析:设数列的公差为(),则,,,又是,的等比中项,且,则.从而.当时,有,则当时,有10.(1).(2),.11.(1)(2),又注意到,上式也成立,从而,.解析:如图,连接,则四边形是矩形.又,则,从而,由平面,且平面,得,由,且为的中位线,得,又,则平面,注意到平面,则,又,则平面,从而平面平面.以为原点,为轴正方向,建立如图所示的空间直角坐标系,(1)证明见解析.(2).12.(1)则,,,,故,,,设是平面的法向量,则,取,,,即,设是平面的法向量,则,取,,, 即,设二面角的平面角为,则,故,从而二面角的正弦值为.解析:设直线的方程为,联立直线与抛物线的方程,得,设,,则,,(1).(2)证明见解析.13.(2)(1)故,注意到,,则,即抛物线的方程为.如图:yOx不妨设点在第一象限,点在第四象限,当时,有,则,即抛物线在点处的切线斜率为,注意到轴,则,设,由,,三点共线,得 ,则,设,由,得,故直线的斜率,从而为抛物线的切线.解析:.依题意,有,,解得,,(1),.(2)证明见解析.14.(2)则,,设,则,当时,有,单调递增,当,时,有,单调递减,故函数在处取到唯一极小值,则,故在区间,上单调递增.①首先证明:,设,则,注意到,这是熟知的,当时,有,单调递减,当时,有,单调递增,故函数在处取到唯一极小值,则,②然后证明:.设,则.当时,有,单调递增,当时,有,单调递减,故函数在处取到唯一极小值,则,结合①与②这两个不等式,得.从而原不等式成立.11。

北京市清华大学附中全国高校自主招生考试数学复习讲义:第一讲 不等式

北京市清华大学附中全国高校自主招生考试数学复习讲义:第一讲 不等式

数学自主招生讲义(讲义仅供参考,讲课过程中有补充内容,以实际讲课为准)第一讲 不等式一、知识扩展 1. 均值不等式.11121212122221nn n n n a a a na a a n a a a n a a a ++≥≥+++≥+++2. 柯西不等式设),2,1(,,n i R b a i i =∈,则()()()222212222122211n n n n b b b a a a b a b a b a ++++++≤+++当且仅当i b a b a b a nn ==== 2211时,等号成立. 推论(1)当121====n b b b 时,()()22122221n n a a a a a a n +++≥++可以推出.2122221na a a n a a a n n +++≥++ ()+∈R a a a n,,,21 (2)当nn a b a b a b 1,,1,12211===时, ()22222122221111n a a a a a a n n ≥⎪⎪⎭⎫ ⎝⎛++++++ (3)若+∈R b a i i , ),,2,1(n i =,则()()221212211n n n n a a a b b b b a b a b a +++≥+++⎪⎪⎭⎫⎝⎛+++3. 排序不等式:两组实数n n b b b a a a ≤≤≤≤≤≤ 2121,,则有n n jn n j j n n n b a b a b a b a b a b a b a b a b a +++≤+++≤++- 221122111121,递序和≤乱序和≤顺序和.4. 琴生不等式:若)(x f 是),(b a 上的凸函数,则.)()()(2121⎪⎭⎫⎝⎛+++≤⎪⎭⎫ ⎝⎛+++n x f x f x f n x x x f n n5. 含有立方的几个不等式:()+∈R c b a ,, (1);2233ab b a b a +≥+(2)abc c b a 3333≥++,);)((3222333ac bc ab c b a c b a abc c b a ---++++=-++(3);33333333c b a c b a abc c b a abc ++≤⎪⎭⎫ ⎝⎛++≤⇒++≤ (4)2)(31c b a ac bc ab ++≤++ (c b a ==时取等号)6. 常用不等式放缩法(1)nn n n n n n n n 111)1(11)1(11112--=-<<+=+- ()2≥n(2)11121111--=-+<<++=-+n n n n n n n n n()1≥n .二、例题解析<一>、不等式解析例1(2011年复旦大学千分考)设n 是一个正整数,则函数x nx x n 在1+轴正半轴上的最小值是( )A .n n 1-B .12++n nC .nn 1+ D .1+n n例2:(2009清华)已知0,0,0>>>z y x ,c b a ,,是z y x ,,的一个排列,求证:3≥++zc y b x a例4:(山东2008预赛)若0,0,0>>>z y x ,且1=xyz . 求证:21111111<+++++<zy x .例5:(34届俄罗斯竞赛)设c b a ,,是△ABC 三边长,且0>m 求征:mc cm b b m a a +>+++例6:(学生练,35届俄罗斯)设1,0121=≥≥≥≥∑=ni in ix x x x 且 求证:112≤∑=ni ix例7:(2010浙江大学)小于1的正数. n x x x x ,,,,321 )2(≥n且121=++n x x x . 求证:41113322311>-++-+-nn x x x x x x .例8:(2013复旦)设n a a a a ,,,,321 是各不相同的正自然数2≥a . 求证:21111321<⎪⎪⎭⎫ ⎝⎛++⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛an a a a a a a a .10.(2014北约)已知:123,,,n x x x x R ∈+且121.n x x x =求证:)())1221nn x x x +≥.11(2014华约)7. 已知:,.n N x n +∈≤求证:21.nx x n n e x n ⎛⎫--≤ ⎪⎝⎭<二>、不等式与方程例9:(2012北约)求1210272611=+-+++-+x x x x 的实根个数.例10:(2008同济)即方程组⎪⎩⎪⎨⎧=-+-=++39246849222z y x z y x。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

• 1・2017年清华大学自主招生暨领军计划试题解析已知-•根绳子放在数轴的[0・斗」区阳丄二线密度二皿-护.求绳子的质屋- 解答加解答 件先冇cos 単十 i iin 4?5二(cos 警cos 夸一 sin 警sin 弩: 二 cos + isin再I ] i 归纳法,可得3 警+ Tn 警,1 E.世到 ttJ -' = 1,则 cw 1 — w -' TW " - C4J _':7W + ru _l —2 COS 〒 T tv ' + ⑴ 二 2cCrS 号.战/(tw )/(a/ )f( OJ ? )/(oi 1)/(w)/(w _1 )/(w 2 )/(«"*)(4?十 W 十 2)(^~2十 J 十 2)(^ 十 y + 2)(W _1 + 胪 + 2) (1 十洞十2^ + w -] + 1 + 2M + 2w a 十 2w l + 4)(1 十 4 2^ + OJ -2 + 1 + 2^ + 2^ + 2M _r + 4)(6 + Gcos^ + 4cos 警)(6 + g 警 + Seos 警)(6 + ficos y - 4tos yj(6 + 4cOH 弩- E 阮、(6 - 6孕y + isin ^,/(x) = x z 十龙+若则f (川)几』〉的值为+ i^cos ^sin 警 + sin 警cos 弩 5-75-l)(6 + ?5- 1、4• 1・《高校自主招生一数学》 贾广素工作室• 2 •=11.若 0「门 +flCOS (A :-l )= 0 有唯--解,则(A.厲的值唯• B. 口的值不唯一C 门的值不存在D.以上都不对解答选A.因为f (兀)=217 +acos (A :-l )关于x = l 对称,所以若f (x )^唯一零点,则零点只 能为1.将兀=1彳弋入,得到a = T,此时f (x ) =2|x_11 -cos (x-l ),^检验« = -1符合 题意"04已知皿1 *2 ,衍皿&€ {1、Z ,3,4:} ,口3皿4》为口I ■吐.心皿4中不同数字的种类哀如N (1J23) =3,N (122,1}二2,求所有的256个(血心gg )的排列所得 7V ("l 山2 ,如■心)的平均值为().解答选D-N 5\心、a 3心)为1的个数为4;N (心•如,為虫J 为2的个数为CS (CS+2Q ) = 84; N (尙0 心皿Q 为3的个数为二144*N (Q i *2 *麻3皿4 )为球的个数为A] — 24.117^从而 iijfR^^6(4xi + 84X2+114X3 + 24X1) = ^.在△/WC 中 *sinZ/l + sinz^/?sinz^C 的最大值为(解答选E市积化和差公式得sin^A + sin^Bsm^C=sin^A + y (cost^B - ZC) - cos(^B + 乙CM-sin^A - -^COB ^A + ~|~cos(Z 百—乙 C) 冬 sin^A - -^-cosZ^/4 + 令Y I s + (_ 4)- Z 卩)+ YA - 32175 64A- iB.1 +75D.无报大值4《高校自主招生一数学》贾广素工作室在= = + j时取等号*四人做一道选项为A.B,C.D的选择题•四牛同学的对话知厂赵:我选A.钱:我选B,GD当屮的-个一孙古我选C李古我选6四个人毎人只选了…个选项川1' R倂不相同'我中貝有一个人说谥•则说谎的人町能是诽1 解答孙或李.用列衣法•只中O代表选该选项.X代表没有选该选项一如赵说谎•则无人选A(见表1八弟盾一表1A B C D赵XX孙0O如钱说谎,则赵、钱均选A(见表2)-矛曲.表2A H C赵O践O如孙说谎.则可得如表3所示的情况:成7..O _______X• 3 *《高校自主招生一数学》贾广素工作室如李说谎.则川'得in* 4所示的悄况•成立.表4A B C D赵O钱X OO0X已知2・ lvC?C, I 2 + IV I = 1 H, I z2 + H'2 I 二4?则I ZW I (解答选注意到1 - | z + w | - - | (z w)21 = \ z2w2+ 2zw | , 从【对冇1 | z2 + | - 21 ziv | 与I $ 21 砂| 一]护+ \沪从而(最小值可以取测例如辽二捋7.⑷二上尹,最大值亦可以取到’例如辽二今+寺人⑷二-3 +丄)2 21往四面体PABC ABC为等边三角形,边长为乳“二乳珂?二4./V二乳贝W四而体P/W0的体积为().A. 3B. 2屈C. /1TD. /10解答选C件先PC2= PB Z+ BC\故PB±反\设P到底而的高足PH.则BC± UH ZABH =30°设PH = h.AH =a^H^b,CH = c”山余弦定理得+ A2= 32・护+护二学,+ h2 -5\07A.有最大值普B有最大值号C有最小值另 D.有最小值号* 5 *如图[所示,已知曲线+ / = l 以及直线i lt y =弄仏;y = _yx,曲线E 与八交于A,B 两点“与h 交于C-D 两点.在E 上任找一点P (不与A^.C-D 重合几直线AP.M 分 别与仏交于M,N两点,则(A,B. C, D. 解答选BC•设P 的坐标为(利小八则乎+冗二I •此吋PA 的方程为v 42ya - -7—匕-找)・Xo - V2円?的方程为+ ©)•分别与方程尸-专工联立,可得_ 72 y a + ~2X ^尤 M 二-; -------_号-列+屈09二 yri .对于函数=e i (jt-l)a (x-2),H 下选项正确的是( A.冇2个极大值 B冇2个扱小值 U 1是极大值点 解答BC, 求导数:/"(x) = e^ECx - l)2(x -2) -- I)C A -2) +=c T (x + /3)(x -^/3)(JT - 1).则f 〔C 右2个极小值门是极大值点.D. 1是极小值点(x - I}2]10在椭圆上存在2个不同的点Q,使得丨021,二丨OM I 丨(釈 在椭圆上存在4个不同的点Q,使得丨%]—|OM| |QV| 在椭圆上存在2亍不同的点0使得住椭圆上存在4个不同的点0使得△NfAsAQMO rfl 对称性,不奶设A RC D 的塑标分别为-罟- - 72图!0M\ \ 0N\ - 0M - ON -\OM\\ON\ = \ 0A\\可^\OQ\2= \o^\ \o^\’可选Wt A/.C2四点.若△MXIsAQTfO.则只能选耽刈•觸足A + 2y + 3z- 100的非负整数解的组数为(A 883B 884 C. 885).D 886Zy种数00—5C5110—484920-474830—4546h・・h・・33u1表5解的组数为51 + 49 + 4W + 46 + 45 + - + 4 + 3 + 1 + 0 =百甘 4.{(x t y,z) | x +2y + 3z^l,JC,y T z>0} ■求V的体积+这是-个玄角呗休•三条玄角边丘是1以寺.故休积为春一已知f(x)=c2x +e -ax.^ X^).均右只站孑厶求a的取值范围一解答rtl f (X) = c21 + c1- m符/CO) = 2,又f (JC ) =2c^J + c J- ◎该导歯数在[th +«■)上递増‘故贾求 f (0)=3-^>0,即a<3.州图2所小』为闘山II屈心• f E在岡.11运动JL满出/AM-艸+则-W)* 6 ** 7・的中点E 的轨迹为()-A.圆B.稱圆 U 双曲线的一支 D.线段解答选入 由E 为中点'得PE Z + QE& 二 BE 2 十 OE 2 BO-=厝.做动点到两疋点距离的平方和为足f (因此动点E 的轨迹为慎1 一15L_已知椭圜方程为为苴右准线上一点,过P 向椭圆作切蜒,切点分别为恻的左恆点対几则( 人解答选AU汁先汴.意到结论:在椭圆准线上作取一点•过该点作椭•圆的两条切线*那么两切点的连 线必过该准线村应的倩点(虚明略)-应用结论•可知/XF/W 的周氏九定值•且越AH 乖胃于横轴吋它的值忌小.此时JT] Xi 码,骷"百€ (1,2,3,4,5,6? T 且 JC],x z T x 3T x 4,嘉■站各不相同,则禰足心一5忌+ 10x a - 10氐+ 5x s -x a = 0的解的组数为參少?解答6.首先心-应是5的倍数点x 产1皿之或机=6t x fi = L 考虑方程-+ 10的—10盟」5心 一 5 或-5x-i + 10氏 一 W 鹤 + 5嘉二一 5* 即-x 2 - 2X 3 - 2x x + A :5 = I或—X2 + 2^3 — 2也 + Jts - — 1注意到肌-乱不足2的倍数•战由上面的方服有也-耳厂乳軌-心一 -1或若砧-应一 -1心-占二]・或者X 5 _ X? = -3、心-心=1或若也-也二】* -工4二-1故这个方程有M+3二6纽解.已知 A e { - KOJ ZV e (2,3,4,5,映射 f : A^B. li^ 足 x 十 f(x) +球J )为壷数.求f 的个数. 解答50.A. \AB\的扯小值为1 C. AFA13的周艮为定值B. \AB\的毘小值师 D. A MB 的面积为定值' 8 -注意到 X + /(JC ) +xf(x) = <x + l)(f(x) +1)-1. + 十 1)为偶数. 故若x 为偶数,则f (巧为奇数•即f(0)二3或和N - “的取值任意,由乘法原 理可得,答案为2x5a ^50.解答选匚一注总到公式fm 二故dH 错误.另一方血M ©/? *从而川门币二0-故F (丽}=- 最后•如 A 二 0•则 P(AB)>0.U 知实数厲』满足a 2+ a =3b 2 +2乩且 H 则C 解答a ACD若 a<b,则 / + a<h~ + b<2( b 2+ b)<3b~ + = 矛盾.另一方面■若3b 2 + 2b= a 2 + a^(2h)2 + 2b>3b 2 +2乩矛盾.最U 若 b^2a 侧 a 2a ~ 3b~ + 2b^3(2a¥ +4a^>a - + a * 矛盾. 故得选项为ACD1 + A :| 4 1 + A2 +I + X t0]7 ~卿( hA.显窍有】个乩小于1 B 虽务有2个在小于2 C. mHx {, --■, x 2 di?} ^2 (J17D. max { x } T , JC 2 AU \ ^2 016解答ABD.如有2个绪小于】・则上式左边大于占 + j ])•矛盾一 如有3个摘小于厶则匕式左边大于占+出+占■不质. 再注意到x t =^=-= ^01T = 2O16是一组解点匚不陇立. 如 max{jt! ,Xi»***tX aM7 }<2 Olfii 则―-—+ ―1— + ■■■ + -------- ! ----- > --------- 1 --- + -------- - ---- + ■■■ + ------ ! -----1 + 利 h1 + X 2O I 7 1 +2 0161 +2 0161 +2 016矛质.已知事件月—n<P<l?)<lt!WiJ(A . /n = i -re/?)C, H 丽=0B . p(^|A)= i-r(B)D. P(J\B)=QA. b<aB a<bC a<2b D. b<2a已知严■,总期均为大于o 的实数.a故答案选AB6 ' 8 -《高校自主招生一数学》 贾广素工作室入{和 + 几 + zd 是等比数列B.若存在 m .>1— y… - z m ,则 JCi = yi = Zi1 q 1U 若心二-才忌二才则= ( - 1)"亠尹D 以上均不正确解答选BC首先*当首项^i = ^i-zi= 0时・皿+几十為}不是等比数列.其次,若存在啣>l,s = % =昭,解方程组可得x…L -i = y^-i = z^-t =2x Mt 从而递推 可得Xi 二力=巧,一 1 弓 ’ 1出次*由Xi = 一忑心二亍得}■] + Zi - 2x2 + X] =2,则幷“*斗爲二3 •不,根据递推式用為=(-1)”十右.故答棗选BCA 3 n r., =0. 5 B. 3 H * r h =0,6 C. 3 M r fl = () 7 [>, 3 » < =0,8 解答选2假设不存在航’便得 仏=0 5.则山H =O^ioo =0. 85,必存亦「使得hVU •硏5.若k 是偶数•不妨设血二三⑴汀汕笆筈於3<*・不符令题意;若血是奇数"设氐二加T-l.f炭厂+,只能f 矛氐所以选项A 正确 4= 08同理可得选项D 正确. 如果此人第2、86次全部投中•排除B,C.一同学打球■记g 为投起次后的命中率,已知心—AsFL 版则一足有().。

相关文档
最新文档