五年级下册数学课件-思维拓展训练:牛吃草问题(二)全国通用(共19张PPT)

合集下载

【奥数】牛吃草问题PPT课件

【奥数】牛吃草问题PPT课件

答:需要12台同样的抽水机6天抽干。
.
14
规律总结
这是一道变相的“牛吃草”问题。抽 水机相当于牛,水相当于草。最一问给出 了时间,求抽水机台数(相当于“牛数”)。 找到题中的“牛”与“草”,问题就迎刃而 解了。
.
15
牛吃草问 题总结
(1)求草每天的生长量
第一步
第三步 (3)求给定时间内草总量 或(3)求牛每天净吃草量
漏进水为2,所以实际上船中每小时减少 的水量为(17-2)=15
(4)30÷15=2(小时)
答:17人2小时可以淘完水。
当给出人数求时间时, 从总人数里可减去每小 时进水量。这样工作总 量就相当于不变了,再 除以人数即可求出时间。
.
9
练习1
举一反三
1.一个牧场长满青草,牛在吃草而草又在不断生长,已知牛
=总草量
问题的核心就是求出原有的草。
.
5
答案揭秘
摘录条件: 10头 20天 原有草+20天生长草 15头 10天 原有草+10天生长草 ?头 5天 原有草+5天生长草 设每头牛每天吃草量为1, 按四个步骤解答。
解:(1)每天的生长量 (10×20- 15×10)÷(20-10)=5 (2)求原有草量 15×10-5×10=100 (3)求5 天内草总量 100+5×5=125 (4)求多少头牛5 天吃完草
(2)求原有草量
第二步
第四步 (4)求多少头牛 或(4)多少天吃完草
.
16
.
17
(4)求21头牛多少 天吃完草:72÷6=12(天)
.
11
规律总结
当给出牛头数(人数)求时间时,从 牛(人)总数里可减去单位时间增加量。 这样工作总量就相当于不变了,再除以牛 (人)数即可求出时间。

趣味数学牛吃草问题(经典课件)

趣味数学牛吃草问题(经典课件)
趣味数学牛吃草问题(经典 课件)
目录
• 牛吃草问题简介 • 牛吃草问题的基本类型 • 牛吃草问题的解题方法 • 牛吃草问题的实际应用 • 牛吃草问题的扩展思考 • 牛吃草问题的趣味挑战
01 牛吃草问题简介
牛吃草问题的起源
牛吃草问题起源于古代数学问题 ,最早记录在《张丘建算经》中

它最初是为了解决放牧牛群与草 场资源之间的矛盾而提出的。
在牛吃草问题中,微积分法可以用来分析草的生长速度和牛的吃草速度之间的关系,以及随着时间的变化,草的剩余量会如 何变化。通过微积分的方法,可以更精确地描述问题的动态变化过程,从而找到解决问题的最佳方案。这种方法需要较高的 数学水平,但可以解决较为复杂和精确的问题。
04 牛吃草问题的实 际应用
生态平衡问题
最短时间吃完草场问题
总结词
求牛吃完整个草场所需的最短时间
详细描述
在牛吃草的过程中,草场上的草会不 断生长。我们需要计算在草场上的草 被吃完所需的最短时间。这需要考虑 牛每天吃的草的量和草场每天生长的 草的量。
最少草料吃完草场问题
总结词
求用最少的草料让牛吃完整个草场
详细描述
在牛吃草的过程中,我们希望用最少的草料让牛吃完整个草场。这需要考虑每天牛吃的 草的量和草场每天生长的草的量,以及牛的消化能力。
05 牛吃草问题的扩 展思考
多种动物共享草场问题
多种动物共享草场问题是在牛吃草问 题的基础上进行扩展,考虑多个动物 同时吃草的情况。
解决此类问题需要考虑不同动物吃草 的速度和数量,以及草场上的总草量 。
假设草场上的草量一定,多个动物同 时吃草会导致草场上的草量迅速减少 。
草场边界移动问题
草场边界移动问题是指草场的边界在不断变化的情况。 当草场边界移动时,草场上的草量也会随之变化。

牛吃草问题PPT课件

牛吃草问题PPT课件

01
C(t) = C + g * t
牛吃草的速度与数量和时间的关系
02
v*n*t
牛吃草后草场剩余的草量
03
C(t) - v * n * t
模型解析与求解方法
如果v * n > g,即牛吃草的速度 大于草的生长速度,那么草场将 无法满足牛的吃草需求,草场的 草量将逐渐减少。
如果v * n < g,即牛吃草的速度 小于草的生长速度,那么草场将 能够满足牛的吃草需求,并且剩 余的草量将逐渐增加。
05
拓展延伸与实际应用
牛吃草问题在其他领域的拓展
经济学领域
类似于“牛吃草”的资源分配问题,在经济学中经常涉及到如何合理分配有限资源的问题 。通过引入经济学中的供需关系、边际分析等概念,可以帮助学生理解资源分配的原理和 方法。
生态学领域
在生态系统中,资源的有限性和生物之间的竞争关系与“牛吃草”问题相似。通过引入生 态学中的竞争排斥原理、生态平衡等概念,可以引导学生思考如何在生态系统中实现资源 的可持续利用。
案例三:多牛多草场的复杂情况分析
要点一
4. 根据三片草地的总面积和总生 长量,求出总的原有草量
(3+2+1)-(24+30+48)b。
要点二
5. 根据总的原有草量和每天每头 牛的吃草量,求出需要的…
(3+2+1)-(24+30+48)b/a。
04
解题思路与技巧总结
解题思路梳理
理解问题背景
首先,需要明确问题的背景,即牛吃 草的场景,以及草的生长速度、牛吃 草的速度等关键信息。
案例一:基础牛吃草问题
问题描述
一片均匀生长的草地,可以供10头牛吃20天,或者供15头牛吃10天。问:如果 这片草地可以供25头牛吃,那么可以吃多少天?

牛吃草问题公开课ppt课件

牛吃草问题公开课ppt课件
草地上的草分布不均匀,不同区域的草量不同,需要考虑牛在不同 区域的吃草效率。
多块草地上的牛吃草问题
多块草地上的草量和分布各不相同,需要合理安排牛群在不同草地 上的吃草顺序和时间。
考虑天气因素的牛吃草问题
1 2
晴天和雨天对草地生长的影响 晴天草地生长快,雨天草地生长慢,需要考虑不 同天气条件下草地的生长速度。
学习方法建议
深入理解基本概念和原理
建议学生反复阅读教材和相关资料,加深对牛吃草问题基 本概念和原理的理解,为后续学习打下坚实基础。
多做练习题,提高解题能力 鼓励学生多做各种类型的牛吃草问题练习题,通过不断练 习,熟练掌握解题技巧和方法,提高解题速度和准确性。
善于总结和归纳 建议学生在学习过程中及时总结和归纳所学知识点和解题 方法,形成自己的知识体系和解题思路,以便更好地应对 考试和实际问题。
介绍了牛吃草问题的定义、特点以及解决该问题的基本思路和方法。
02
不同类型的牛吃草问题及其解法
详细讲解了匀速吃草、变速吃草、多块草地等多种类型的牛吃草问题,
以及相应的解题技巧和策略。
03
方程法在牛吃草问题中的应用
通过实例演示了如何运用方程法解决复杂的牛吃草问题,包括如何设立
未知数、建立方程、求解方程等步骤。
该问题被抽象为数学模型,成为数 学领域中的经典问题,用于探讨资 源消耗与再生的关系。
现实意义与应用场景
01
02
03
牧场管理
在畜牧业中,牛吃草问题 直接关系到牧场的经济效 益和可持续发展。
资源分配
问题涉及到资源的合理分 配和利用,对于环境保护 和可持续发展具有重要意 义。
生态系统建模
牛吃草问题可以作为生态 系统建模的基础,用于研 究生态系统的稳定性和可 持续性。

5牛吃草问题ppt课件(2024)

5牛吃草问题ppt课件(2024)

2024/1/29
22
06
总结与展望
2024/1/29
23
问题解决思路回顾
01
02
03
04
引入问题
通过具体实例引入5牛吃草问 题,明确问题的背景和研究意
义。
分析问题
对问题进行深入分析,识别问 题的关键要素和变量,建立数
学模型。
解决问题
运用数学方法和计算工具对模 型进行求解,得出问题的解决
方案。
验证问题
每头牛的食量和吃草速度
牛的数量和初始位置
2024/1/29
16
数值计算方法介绍
有限差分法
将连续的时间和空间离散化,通过差分方程近似求解。
2024/1/29
有限元法
将求解域划分为有限个互不重叠的单元,在每个单元内选择合适的节点作为求解函数的插 值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的 线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。
探索更高效的求解算法
针对牛吃草问题的求解算法可 以进一步优化和改进,以提高 求解效率和准确性。
拓展应用领域
牛吃草问题不仅仅局限于牧场 管理领域,未来可以将其拓展 应用到更多相关领域,如生态 保护、农业规划等。
加强跨学科合作研究
牛吃草问题涉及到数学、生态 学、农业等多个学科领域,未 来可以加强跨学科合作研究, 以更全面地揭示问题的本质和 规律。

2024/1/29
6
02
数学模型建立
2024/1/29
7
假设与定义
假设每头牛每天吃草 的量是一定的,设为 x单位。
定义n为需要的天数 ,即牛吃完草地上的 草所需的时间。

《牛吃草问题》课件图文

《牛吃草问题》课件图文

精确计时和测量,减小误差。
数据收集与处理
数据处理
通过对收集到的数据进行分析和处理,可以得出以下结论
牛吃草的速度与时间的关系
通过比较不同时间段的草量减少情况,可以观察到牛吃草速度的变化 。
牛吃草总量与时间的关系
通过累计不同时间段的草量减少量,可以得到牛在一定时间内总共吃 了多少草。
通过实验数据验证相关数学模型的正确性
实验原理
牛吃草问题是一个经典的数学问题,涉及到速度、时间和数量的关系。通过实验 ,可以直观地展示这些关系,帮助学生更好地理解和应用相关知识。
实验步骤及操作要点
实验步骤
1. 准备实验材料:一定数量的草、计时器、测量工具(如天平、尺子) 等。
2. 将草均匀铺设在实验场地上,并记录初始草量。
实验步骤及操作要点
相关研究概述
草地生态学
畜牧业经济学
研究草地的结构、功能、动态和调控机制 ,为牛吃草问题提供生态学基础。
研究畜牧业生产、经营、管理和市场等方 面的经济问题,为牛吃草问题提供经济学 分析框架。
草地管理学
数学建模与优化
研究草地的规划、设计、建设和管理等方 面的理论和实践,为牛吃草问题提供管理 策略和技术支持。
THANKS
感谢观看
位草量)。
建立数学模型
根据假设,我们可以建立以下数学模型
Ct = C0 + g * t - v * t
其中,Ct表示经过时间t后草场的草量,C0表示初始时刻草场的草量,g表示草的生长速度 ,v表示牛吃草的速度,t表示时间。
模型求解与分析
当Ct = 0时,表示草被吃光, 此时可以求出牛吃光整个草场 所需的时间t。
其他领域应用前景展望
生态环境保护

《牛吃草问题》课件讲解 PPT

《牛吃草问题》课件讲解 PPT

变式训练3:某车站在检票前若干分钟就开始 排队,每分钟来得旅客人数一样多。从开始检 票到等候检票得队伍消失,同时开4个检票口 需30分钟,同时开5个检票口需20分钟。如果 同时打开7个检票口,那么需多少分钟?
分析与解:等候检票得旅客人数在变化,“旅客” 相当于“草”,“检票口”相当于“牛”,可以 用牛吃草问题得解法求解。
《牛吃草问题》课件讲解
导入:“一堆草可供10头牛吃3天,这堆草可供 6头牛吃几天?”这道题太简单了,同学们一 下就可求出:3×10÷6=5(天)。如果我们把 “一堆草”换成“一片正在生长得草地”,问 题就不那么简单了,因为草每天都在生长,草得 数量在不断变化。这类工作总量不固定(均匀 变化)得问题就就是牛吃草问题,牛吃草问题就 是牛顿问题得俗称。
英国大数学家牛顿曾编过这样一道数 学题:牧场上一片青草,每天牧草都匀速 生长。这片牧草可供10头牛吃20天,或 者可供15头牛吃10天。问:可供25头牛
吃几天?
设1头牛一天吃得草为1份。那么,10头牛20天吃200份, 草被吃完;15头牛10天吃150份,草也被吃完。前者得 总草量就是200份,后者得总草量就是150份,前者就是 原有得草加 20天新长出得草,后者就是原有得草加10 天新长出得草。
分析:上楼得速度可以分为两部分:一部分就是 男、女孩自己得速度,另一部分就是自动扶梯 得速度。
男孩5分钟走了20×5= 100(级),
女孩6分钟走了15×6=90(级),
女孩比男孩少走了100-90=10(级),多用了6 -5=1(分),说明电梯1分钟走10级。所以扶梯 共有(20+10)×5=15 Nhomakorabea(级)。
200-150=50(份),20—10=10(天),
说明牧场10天长草50份,1天长草5份。也就就是说,5 头牛专吃新长出来得草刚好吃完,5头牛以外得牛吃得 草就就是牧场上原有得草。由此得出,牧场上原有草

《牛吃草问题》ppt课件

《牛吃草问题》ppt课件

数学模型的建立
假设与定义
设牛每天吃掉的草量为x,草地原有的草量为y,草地每天增 长的草量为z。
方程的解
通过解这个方程,我们可以得到牛吃完这片草地所需的时间t 。
变量与参数的解释
变量
在这个问题中,变量包括牛每天 吃掉的草量x、草地原有的草量y 、草地每天增长的草量z以及时
间t。
参数
参数是问题中给定的常数或已知 量,如牛每天吃掉的草量和草地
维护农业生态系统的稳定性和可持续性具有重要意义。
生态领域的应用
物种多样性保护
通过研究牛吃草问题,可以了解不同物种之间的竞争和共生关系, 为保护物种多样性提供科学依据。
生态系统恢复
在生态系统受到破坏的情况下,通过调整牛吃草的方式和强度,可 以促进生态系统的恢复和重建。
生物入侵防控
某些外来植物可能会通过竞争或化感作用抑制本地植物的生长,通过 研究牛吃草问题,可以探索生物入侵的防控策略。
经济学领域
在经济学中,牛吃草问题涉及到边 际效益和边际成本的概念,对于理 解市场供需关系和资源配置有重要 意义。
问题研究的意义和价值
01
02
03
数学建模能力
通过研究和解决牛吃草问 题,可以提高学生的数学 建模能力和解决问题的能 力。
跨学科应用
牛吃草问题不仅局限于数 学领域,还可以应用于物 理、化学、生物等多个学 科领域。
经济领域的应用
畜牧业经济
牛吃草问题直接关系到畜牧业的经济效益和可持续发展,通过优化放牧管理和饲料配方,可以提高畜牧业的生产效率 和经济效益。
草业经济
草业作为一个新兴产业,其发展与牛吃草问题密切相关。通过研究牛吃草问题,可以推动草业的技术创新和管理升级 ,提高草业的经济效益和生态效益。

趣味数学牛吃草问题(经典课件)(2024)

趣味数学牛吃草问题(经典课件)(2024)

2024/1/28
假设草地每天生长的 草量也是固定的,设 为y单位。
8
数学模型构建
01
02
03
04
根据假设条件,可以构建如下 数学模型
每天草地的总草量是原有的草 量加上每天生长的草量,即z
+ y。
牛群每天吃的总草量是牛的数 量乘以每头牛每天吃的草量,
即n * x。
当牛群吃的总草量等于草地的 总草量时,即n * x = z + y,
牧场管理实践
牛吃草问题也源于牧场管理的实 践,涉及到如何合理安排牛的饲 料和放牧时间,以优化牧场资源 的利用。
4
问题描述与现实意义
问题描述
假设有一片草地,每天草都在匀速生长。这片草地可供一定数量的牛吃多少天 ,或者多少头牛可以吃多少天。
现实意义
牛吃草问题实际上是一个资源分配与消耗的问题,可以应用于许多领域,如经 济学、生态学、农业等。通过解决这类问题,我们可以更好地理解资源的可持 续利用和生态平衡的重要性。
12
Байду номын сангаас
动态演示过程
演示牛吃草的过程中,草量的实 时变化,以及不同时间段内草量
的增减情况。
通过动态演示,展示牛吃草的速 度与草量减少速度之间的关系,
帮助学生理解这一抽象概念。
在动态演示中,可以加入声音、 色彩等多媒体元素,增加学生的
感官体验,提高学习兴趣。
2024/1/28
13
直观感受数学之美
通过图形化表示和动态演示, 让学生直观感受到数学中抽象 概念的具体表现,领略数学之 美。
解释和分析。
20
学生自我评价报告
01
02
03
知识掌握情况

五年级下册数学精品课件-专题培优:(第十四讲)牛吃草问题二 全国通用 (9页PPT)

五年级下册数学精品课件-专题培优:(第十四讲)牛吃草问题二 全国通用 (9页PPT)

例(6)两只蜗牛由于耐不住阳光的照射,从井顶逃向井底。 白天往下爬,两只蜗牛白天爬行的速度是不相同的,一只 每天爬20分米,另一只爬15分米。黑夜里往下滑,两只蜗 牛滑行的速度是相同的。结果一只蜗牛恰好用了5个昼夜 到达了井底,另外一只蜗牛恰好用了6个昼夜到达井底。 求井深?
where there is a will, there is a way !
牛吃草问题(二)
1、牛吃草问题 牛吃草问题最先在牛顿的《普通算术》中出现, 所以人们又习惯上称之为牛顿的牛吃草问题。
2、牛顿牧场 牛顿牧场是理想牧场,在这个牧场上的草匀速生 长!
3、牛吃草问题三部曲 (1)先算出草长的速度。 (2)再算出原有草量。 (3)最后计算结果。
例(1)牧场上有一块草地,草每天生长的速度相同。这片 草地可供24头牛吃6天,或20头牛吃10天。那么可供19头 牛吃多少天?

3 、所有过度加热的混合料均废弃。 拌和后 的混合 料均匀 一致, 无花白 、无粗 细料离 析或结 团现象 。

4 、材料的规格或配合比发生改变时 ,根据 室内试 验资料 进行试 拌。

5 、已经离析或结团、块或在运料车 辆卸料 时滞留 于车上 的混合 料,以 及低于 规定铺 筑温度 或被雨 淋湿的 混合料 均废弃 。运至 铺筑现 场的混 合料, 应及时 压实。
有志者事竟成! 送给各位小朋友!

1、本工程进度安排各分项工程施工均 留有余 地,既 考虑到 若出现 意外情 况时, 不致于 贻误工 期,同 时又考 虑到工 程需赶 工时, 又有条 件加快 施工进 度。

2、加强施工管理,抓好施工中统筹、 协调与 控制, 特别是 施工准 备工作 将作为 重点及 早准备 ,提前 安排, 一旦中 标在最 短时间 内组织 实施, 并迅速 完成, 为第一 阶段施 工有秩 序、有 计划地 进行提 供技术 和物资 基础, 同时做 好砂、 石材料 储备。

趣味数学牛吃草问题经典PPT幻灯片.ppt

趣味数学牛吃草问题经典PPT幻灯片.ppt
3
3、牛吃草问题三部曲
(1)先算新生草量 (2)再算原有草量 (3)最后计算问题
4
有一片牧场,已知有 27头牛,6天把草吃尽; 23头牛,9天把草吃尽。 如果有牛21头,几天能把草吃尽?
牧但草 原总来量草不坪知上道有,的 它草随的着数时量间是的永增远长不而变增的长
5
有一片牧场,已知有27头牛,6 天把草吃尽;23头牛,9天把草 吃尽。如果有牛21头,几天能把 草吃尽?
假设每分钟每个检票口进的人数为1份
4×30= 原有等待的人数+30分钟新增的人数 5×20= 原有等待的人数+20分钟新增的人数
每分钟新增的人数= (4×30-5×20)÷(30-20) = 2(份)
原有等待的人数= 4×30-30×2=60(份) 专门安排2个检票口检新增加的人
60÷(7-2)=12(分钟)
15头牛——20天 33头牛——12天 8头牛+64只羊——几天?
64只羊=16头牛,相当于求24 头牛吃几天的问题
28
例6 由于天气逐渐冷起来,牧场上的草不仅不长大,反 而以固定速度在减少。已知某块草地上的草可供20头牛 吃5天,或可供15头牛吃6天。照此计算,可供多少头牛
吃10天?解:假设1头牛1天吃的草的数量是1份 20×5=100份……原草量-5天的减少量 15×6=90份……原草量-6天的减少量
50 ÷ 5 = 10 天
39
40
每分钟的进水量: (100-90)÷(20-15)=2
原水量: 100-20×2=60 或90-15×2=60
24
60份 + 2份
2台 60份水需要几台抽水机6天抽完?
60÷6=10(台) 共需要10+2=12(台)

小学数学《牛吃草问题》ppt

小学数学《牛吃草问题》ppt

由于牛在吃草的过程中,草是不断生长 的,所以解决消长问题的重点是要想办 法从变化中找到不变量。牧场上原有的 草是不变的,新长的草虽然在变化,但 由于是匀速生长,所以每天新长出的草 量应该是不变的。正是由于这个不变量, 才能够导出上面的四个基本公式。
牛吃草问题经常给出不同头数的牛吃同一 片次的草,这块地既有原有的草,又有每 天新长出的草。由于吃草的牛头数不同, 求若干头牛吃的这片地的草可以吃多少天。
解决牛吃草问题的相关公式
(1)草的生长速度=(相应的牛头数×吃的 较多天数-相应的牛头数×吃的较少天数) ÷(吃的较多天数-吃的较少天数)
(2)原有草量=牛头数×吃的天数-草的生 长速度×吃的天数
(3)吃的天数=原有草量÷(牛头数- 草的生长速度)
(4)牛头数=原有草量÷吃的天数+草 的生长速度
牧场上有一片草,每天匀速生 长。这片草可供10头牛吃20天, 可供15头牛吃10天。照这样 计算,这片草可供25头牛吃多 少天?
学一学
• 有一池水,池底有泉水不断涌入。 用10台抽水机20小时可以把水抽 干;用15台同样的抽水机,10小 时可以把水抽干。用25台这样的抽 水机,多少小时可以把水抽干?
做一做
• 有一口井,井底匀速涌出泉水,如 果用6台抽水机抽水,20天可把井 水抽干;若用8台抽水机来抽,需要 10天把水抽干;那么现在要用五天 时间把水抽干,需要多少台同样的抽 水机?
小结
牛吃草问题所涉及的量有三个:牛的头数、 牧场面积、天数(时间),所用的方法一般 而言是比较法,为了比较方便,要使两种情 况的草场面积一致。研究牛吃草问题的出发 点一般是从牧场中草的生长量着手,因此要 关心的量有两个:该牧场原有的草量和每天 新生长的草量。尤其要注意的是在描述牛吃 草的数量时所用的单位,采用千克、平方米 等反而不方便,一般用“单位1”。

五年级下册奥数专题:牛吃草问题 (2)

五年级下册奥数专题:牛吃草问题 (2)

牛吃草问题知识要点一、定义英国大科学家牛顿在他所著的《普通算术》一书中曾提出一个有趣的数学问题(格尔为牧场面积单位):有三片牧场,场上的草长得一样密,并且长的速度一样快,它们的面积分别是三又三分之一格尔、10格尔和24格尔。

第一片牧场的草饲养12头牛可以吃4个星期,第二片牧场的草饲养21头牛可以吃9个星期,问在第三片牧场上放多少头牛可以吃18个星期?这个问题被人们称为牛顿问题,也就是我们平常说的牛吃草问题。

二、特点牛吃草问题其实就是消长问题,问题的主要特征是:同一个数量一方面增加,另一方面减少,朝两个方向同时变化。

如牛吃草问题中,草生长使草量匀速增加,牛吃草却使草量逐渐减少。

在“牛吃草”问题中,因为草每天都在生长,草的数量在不断变化,也就是说这类问题的工作总量是不固定的,一直在均匀变化。

数量关系分析:在牛吃草问题中,我们一般把一头牛一天的吃草量看作一个单位的草量,作为牧草的计量单位。

在这个问题中,主要研究牧场原有草量、每日新增草量(即牧草生长速度)、牛的饲养数量、饲养时间,这四个数量之间的关系。

一头牛一天吃一个单位的草量。

如果养牛头数等于或小于每日新增草量,则无需动用牧场原有草量,这个牧场就会像个聚宝盆一样,供这些牛永远吃下去,草永远吃不完;如果养牛头数大于每日新增草量,我们可以理解为,每日新增的草先喂养了同等数量的牛,而多出的牛则需要吃牧场原有的草,牧场中原有的草可以供这些多出的牛吃多少天,这个牧场草就可以供这些牛吃多少天。

(原有的草吃完了,新增草未生长,就理解为牧场的草吃完了。

)此类问题中的基本数量关系有:牛的头数×对应的吃的天数=总草量;牛的头数-每日新增草量数=多出牛的头数;每日新增草量=(较长时间总草量-同一牧场较短时间总草量)÷相差天数;原有草量=对应总草量-每日新增草量×天数;吃的天数=原有草量÷多出牛的头数;牛的头数=原有草量÷天数+每日新增草量数。

牛吃草问题(课堂PPT)

牛吃草问题(课堂PPT)

50份草可供多少头牛吃10天?
(150-10×10)÷10=5头
10
[自主训练] 由于天气逐渐寒冷,牧场上的牧草每天以均 匀的速度减少,经测算,牧场上的草可供30头牛吃8天, 可供25头牛吃9天,那么可供21头牛吃几天?
解:假设1头牛1天吃的草的数量是1份 30×8=240份……原草量-8天的减少量 25×9=225份……原草量-9天的减少量
解:假设1头牛1天吃的草的数量是1份
20×5=100份……原草量-5天的减少量
15×6=90份……原草量-6天的减少量
草每天的减少量: (100-90)÷(6-5)=10份
原草量: 100+5×10=150份 或90+6×10=150份
9
150份 - 10份
剩下1ห้องสมุดไป่ตู้0-100=50份
10天减少 10×10=100份
90÷(8-0.5)=12小时
16
例4 自动扶梯以均匀速度由下往上行驶着,两位性急的 孩子要从扶梯上楼。已知男孩每分钟走20级梯级,女孩每 分钟走15级梯级,结果男孩用了5分钟到达楼上,女孩用 了6分钟到达楼上。问:该扶梯共有多少级?
男孩: 20×5 = 自动扶梯的级数-5分钟减少的级数
女孩: 15×6 = 自动扶梯的级数-6分钟减少的级数
每分钟减少的级数= (20×5-15×6) ÷(6-5)=10(级) 自动扶梯的级数= 20×5+5×10=150(级)
17
[自主训练] 两个顽皮孩子逆着自动扶梯行驶的方向行走, 男孩每秒可走3级阶梯,女孩每秒可走2级阶梯,结果从扶 梯的一端到达另一端男孩走了100秒,女孩走了300秒。 问该扶梯共有多少级?
4
72份 + 15份

五年级下册数学课件-思维拓展训练:5

五年级下册数学课件-思维拓展训练:5
2、牛吃草问题(二)
例1:有一只船有一个漏洞,水以均匀的速度进入船内,发现漏洞时已经进了一些水,如果用12个人排水,3小时可以排完;如果用5个人排水,要10小时才能排完。现在要想2小时排完,需要多少人?
解:假设1人1小时排1份水。
12×3=36份
……原水量+3小时的进水量
5×10=50份
……原水量+10小时的进水量
每小时的进水量:
(50-36)÷(10-3)=2份
原水量:
36-2×3
=30份
或 50-2×10
=30份
草以均匀的速度在生长
原有草
12头牛
3小时可以把草吃完
30份
2份
2人排水
( )人2小时可以排完
30份水需要几个人才能2小时排完?
答:需要17人。
30÷2=15(人)
15+2=17(人)
(60+14×12)÷12
=19(km/h)
答:慢车速度是每小时19千米。
( )×12
=原距离+骑车人12小时的路程
例6:有三块草地,面积分别是4公顷、8公顷和10公顷。草地上的草一样厚而且长得一样快。第一块草地可供24头牛吃6周,第二块草地可供36头牛吃12周。问:第三块草地可供50头牛吃几周?
432÷8=54份
…1公顷原草量+1公顷12周新长草量
1公顷草地每周的新长草量:
(54-36)÷(12-6)=3份
1公顷草地的原草量:
36-3×6=18份
10公顷草地的原草量:
18×10=180份
10公顷草地每周的新长草量:
3×10=30份
180÷(50-30)=9周
答:第三块草地可供50头牛吃9周。
72÷(16-12)=18(小时)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
从第一个观众到达开始,每分钟新增0.5份, 经过多久就是22.5份呢?
22.5÷0.5=45分钟 9时-45分钟=8时15分
答:第一个观众到达的时间是8时15分。
五年级下册数学课件-思维拓展训练: 5.2 牛吃草问题(二) 全国通用 (共19张PPT)
五年级下册数学课件-思维拓展训练: 5.2牛吃牛草吃问草题问(题二()二)全国全通国用通用(共(19共张19P张 PT)PPT)
五年级下册数学课件-思维拓展训练: 5.2 牛吃草问题(二) 全国通用 (共19张PPT)
解决“牛吃草问题”变形题的关键: 将变形题中的量与原型题中的量
一一对应。
草的生长(减少)速度 原有草 牛头数 时间
五年级下册数学课件-思维拓展训练: 5.2 牛吃草问题(二) 全国通用 (共19张PPT)
五年级下册数学课件-思维拓展训练: 5.2 牛吃草问题(二) 全国通用 (共19张PPT)
5×5=25份……原有人+5分钟新增人数
每分钟新增人数:
(27-25)÷(9-5)=0.5份
原有人:
27-0.5×9 =22.5份 或 25-0.5×5 =22.5份
五年级下册数学课件-思维拓展训练: 5.2 牛吃草问题(二) 全国通用 (共19张PPT)
五年级下册数学课件-思维拓展训练: 5.2 牛吃草问题(二) 全国通用 (共19张PPT)
3小时可以把草吃完
五年级下册数学课件-思维拓展训练: 5.2 牛吃草问题(二) 全国通用 (共19张PPT)
解:假设1人1小时排1份水。
12×3=36份……原水量+3小时的进水量 5×10=50份……原水量+10小时的进水量 每小时的进水量:
(50-36)÷(10-3)=2份 原水量:
36-2×3 =30份 或 50-2×10=30份
五年级下册数学课件-思维拓展训练: 5.2牛吃牛草吃问草题问(题二()二)全国全通国用通用(共(19共张19P张 PT)PPT)
例4:一水池有一根进水管,进水管不间断地进 水。由若干根相同的抽水管抽水,若用24根抽水管 抽水,6小时即可把池中的水抽完;若用21根抽水 管抽水,8小时即可把池中的水抽完。那么用16根 抽水管抽水,几小时即可把池中的水抽完?
有进水管,也有抽水管, 怎么区分谁是牛呢?
五年级下册数学课件-思维拓展训练: 5.2牛吃牛草吃问草题问(题二()二)全国全通国用通用(共(19共张19P张 PT)PPT)
进水管不间断地进水, 相当于草不停在生长。
五年级下册数学课件-思维拓展训练: 5.2牛吃牛草吃问草题问(题二()二)全国全通国用通用(共(19共张19P张 PT)PPT)
五年级下册数学课件-思维拓展训练: 5.2牛吃牛草吃问草题问(题二()二)全国全通国用通用(共(19共张19P张 PT)PPT)
20×4=80级……扶梯级数-4分钟减少级数 14×5=70级……扶梯级数-5分钟减少级数 每分钟减少的级数: (80-70)÷(5-4)=10级 扶梯的级数: 80+10×4 =120级 或 70+10×5 =120级 答:扶梯在两层楼之间看得到的级数共有120级。
21×8=168份……原水量+8小时进水量
五年级下册数学课件-思维拓展训练: 5.2 牛吃草问题(二) 全国通用 (共19张PPT)
原有草
草以均匀的速度在生长
例1:有一只船有一个漏洞,水以均匀的速度进入
船内,发现漏洞时已经进了一些水,如果用12个人排
水,3小时可以排完;如果用5个人排水,要10小时才
能排完。现在要想2小时排完,需要多少人? 12头牛
五年级下册数学课件-思维拓展训练: 5.2牛吃牛草吃问草题问(题二()二)全国全通国用通用(共(19共张19P张 PT)PPT)
五年级下册数学课件-思维拓展训练: 5.2牛吃牛草吃问草题问(题二()二)全国全通国用通用(共(19共张19P张 PT)PPT)
例3:自动扶梯以均匀速度由下往上行驶,小 明和小红要从扶梯上楼,已知小明每分钟走20级梯 级,小红每分钟走14级梯级,结果小明4分钟到达 楼上,小红用5分钟到达楼上,求扶梯在两层楼之 间看得到的级数共有多少?
例3:自动扶梯以均匀速度由下往上行驶,小 明和小红要从扶梯上楼,已知小明每分钟走20级梯 级,小红每分钟走14级梯级,结果小明4分钟到达 楼上,小红用5分钟到达楼上,求扶梯在两层楼之 间看得到的级数共有多少?
牛每分钟吃20份草
小明
小红

梯级

人梯同向
扶梯速度相当于“草均匀减少”
实际人走的级数=扶梯级数-减少级数
五年级下册数学课件-思维拓展训练: 5.2 牛吃草问题(二) 全国通用 (共19张PPT)
30份
2份
( )人2小时可以排完
2人排水
30份水需要几个人才能2小时排完?
30÷2=15 (人)
15+2=17(人)
答:需要17人。
五年级下册数学课件-思维拓展训练: 5.2 牛吃草问题(二) 全国通用 (共19张水管,进水管不间断地进
水。由若干根相同的抽水管抽水,若用24根抽水管
抽水,6小时即可把池中的水抽完;若用21根抽水
管抽水,8小时即可把池中的水抽完。那么用16根 24
抽水管抽水,几小时即可把池中的水抽完?
头 牛
解:设1根抽水管1小时抽出1份水。
24×6=144份……原水量+6小时进水量
草以一样的 速度在生长
原有草
3头牛 例2:画展9点开门,但早有人来排队入场,从 第一个观众来到时起,若每分钟来的观众一样多,
如果开3个入场口,9点9分就不再有人排队;如果
开5个入场口。9点5分就没有人排队。求第一个观
众到达的时间。
9分钟就没
解:假设1个入场口1分钟进的人数为1份。 有人排队了
3×9=27份……原有人+9分钟新增人数
五年级下册数学课件-思维拓展训练: 5.2 牛吃草问题(二) 全国通用 (共19张PPT)
2、牛吃草问题(二)
五年级下册数学课件-思维拓展训练: 5.2 牛吃草问题(二) 全国通用 (共19张PPT)
五年级下册数学课件-思维拓展训练: 5.2 牛吃草问题(二) 全国通用 (共19张PPT) 五年级下册数学课件-思维拓展训练: 5.2 牛吃草问题(二) 全国通用 (共19张PPT)
相关文档
最新文档