实验一凝胶过滤层析分离蛋白质

合集下载

凝胶过滤层析法分离纯化蛋白质

凝胶过滤层析法分离纯化蛋白质

凝胶过滤层析法分离纯化蛋白质实验六凝胶过滤层析法分离纯化蛋白质一、实验目的1. 了解凝胶层析的原理及其应用。

2. 掌握利用凝胶层析法分离纯化蛋白质的实验技能二、实验原理凝胶层析又称凝胶过滤,是一种按分子量大小分离物质的层析方法。

该方法是把样品加到充满着凝胶颗粒的层析柱中,然后用缓冲液洗脱。

大分子不能进入凝胶颗粒中的静止相中,只留在凝胶颗粒之间的流动相中,因此以较快的速度首先流出层析柱,而小分子则能自由出入凝胶颗粒中,并很快在流动相和静止相之间形成动态平衡,因此就要花费较长的时间流经柱床,从而使不同大小的分子得以分离。

凝胶过滤柱层析所用的基质是具有立体网状结构、筛孔直径一致,且呈珠状颗粒的物质。

这种物质可以完全或部分排阻某些大分子化合物于筛孔之外,而对某些小分子化合物则不能排阻,但可让其在筛孔中自由扩散、渗透。

任何一种被分离的化合物被凝胶筛孔排阻的程度可用分配系数Kav(被分离化合物在内水和外水体积中的比例关系)表示。

Kav值的大小与凝胶床的总体积(Vt)、外水体积(Vo)及分离物本身的洗脱体积(Ve)有关,即:Kav= (Ve-Vo)/(Vt-Vo) 在限定的层析条件下,Vt和Vo都是恒定值,而Ve值却是随着分离物分子量的变化而变化的。

分离物分子量大,Kav值小;反之,则Kav值增大。

Ve(洗脱体积)为某一成分从加入样品算起,到组分的最大浓度(峰)出现时所流出的体积。

Ve随溶质的相对分子质量的大小和对凝胶的吸附等因素而不同。

一般相对分子质量较小的溶质,它的Ve值比相对分子量较大的溶质要大。

通常选用蓝色葡聚糖2000作为测定外水体积的物质。

该物质分子量大(为200万),呈蓝色,它在各种型号的葡聚糖凝胶中都被完全排阻,并可借助其本身颜色,采用肉眼或分光光度仪检测(210nm或260nm或620nm)洗脱体积(即Vo)。

但是,在测定激酶等蛋白质的分子量时,不宜用蓝色葡聚糖2000测定外水体积,因为它对激酶有吸附作用,所以有时用巨球蛋白代替。

根据分子大小分离蛋白质的方法

根据分子大小分离蛋白质的方法

根据分子大小分离蛋白质的方法蛋白质是生命体中非常重要的分子,它们在细胞的结构和功能中起着关键作用。

为了研究蛋白质的特性和功能,科学家们经常需要对蛋白质进行分离和纯化。

分离蛋白质的一个重要方法是根据蛋白质的分子大小进行分离。

本文将介绍几种常用的根据分子大小分离蛋白质的方法。

一、凝胶过滤层析法凝胶过滤层析法是一种基于分子大小的常用分离技术。

其原理是利用孔径大小不同的凝胶材料,将大分子蛋白质滞留在凝胶中,而小分子溶质可以顺利通过凝胶。

常用的凝胶材料有琼脂糖和聚丙烯酰胺凝胶等。

根据需要选择不同的凝胶孔径,可以实现对不同分子大小的蛋白质进行分离。

二、聚丙烯酰胺凝胶电泳聚丙烯酰胺凝胶电泳是一种常用的蛋白质分离技术。

它利用电场作用将蛋白质分子按照大小进行分离。

在聚丙烯酰胺凝胶中,较大的蛋白质分子迁移速度较慢,而较小的蛋白质分子迁移速度较快。

通过调整电场强度和时间,可以实现对不同分子大小的蛋白质进行分离。

三、尿素聚丙烯酰胺凝胶电泳尿素聚丙烯酰胺凝胶电泳是一种常用的变性凝胶电泳方法。

尿素是一种强变性剂,可以使蛋白质分子解离成单体,并且具有较好的可溶性。

在尿素聚丙烯酰胺凝胶电泳中,蛋白质分子的迁移速度主要取决于它们的电荷和分子大小。

通过调整电场强度和时间,可以实现对不同分子大小的蛋白质进行分离。

四、尺寸排阻色谱尺寸排阻色谱是一种利用固定相孔径大小进行分离的色谱技术。

在尺寸排阻色谱中,较大的蛋白质分子无法进入固定相孔径,因此会以较快的速度从色谱柱中洗脱,而较小的蛋白质分子则会在固定相中发生多次扩散,从而保留更长的时间。

通过调整固定相的孔径,可以实现对不同分子大小的蛋白质进行分离。

五、离心过滤法离心过滤法是一种简便快速的蛋白质分离方法。

它利用离心力将大分子蛋白质沉淀在滤膜上,而小分子蛋白质则通过滤膜被洗脱出来。

通过选择不同孔径的滤膜,可以实现对不同分子大小的蛋白质进行分离。

根据分子大小分离蛋白质的方法有凝胶过滤层析法、聚丙烯酰胺凝胶电泳、尿素聚丙烯酰胺凝胶电泳、尺寸排阻色谱和离心过滤法等。

凝胶过滤层析实验报告

凝胶过滤层析实验报告

凝胶过滤层析实验报告凝胶过滤层析实验报告引言:凝胶过滤层析是一种常用的生化分离技术,广泛应用于蛋白质纯化、分析和富集等领域。

本实验旨在通过凝胶过滤层析的方法,对混合蛋白样品进行分离和纯化,探究其原理和应用。

材料与方法:1. 凝胶过滤层析柱:选择合适的分子量截留范围,如10 kDa。

2. 混合蛋白样品:包含多种蛋白质,分子量范围从10 kDa到100 kDa。

3. 缓冲液:选择适当的缓冲液,如PBS。

4. 装载样品:将混合蛋白样品与缓冲液按比例混合,使其浓度适当。

实验步骤:1. 准备凝胶过滤层析柱:将柱子连接到系统中,并进行预洗,以去除残留物和杂质。

2. 样品装载:将装载样品注入凝胶过滤层析柱中,注意不要过载。

3. 层析过程:使用缓冲液进行层析,使样品在柱子中通过,并收集出流液。

4. 收集样品:根据需要,可以分别收集不同分子量范围的样品。

结果与讨论:通过凝胶过滤层析实验,我们成功分离并纯化了混合蛋白样品。

在层析过程中,不同分子量的蛋白质通过凝胶过滤层析柱时,会受到凝胶孔径的限制,从而分离出不同大小的蛋白质。

较大分子量的蛋白质无法通过凝胶孔径,会在柱中滞留,而较小分子量的蛋白质则能够通过凝胶孔径,从柱中流出。

通过收集不同分子量范围的样品,我们可以得到纯化后的蛋白质。

这些蛋白质可以进一步进行质谱分析、酶活性检测等实验,以获取更多关于蛋白质的信息。

凝胶过滤层析方法具有许多优点。

首先,它是一种快速、简单且高效的分离技术。

其次,凝胶过滤层析柱具有较高的容量和稳定性,可以处理大量样品。

此外,凝胶过滤层析适用于多种样品类型,包括细胞裂解液、培养基和体液等。

然而,凝胶过滤层析也存在一些局限性。

首先,凝胶孔径的选择需要根据样品的分子量范围来确定,如果样品中存在分子量相近的蛋白质,则可能无法完全分离。

其次,凝胶过滤层析无法去除溶液中的小分子物质,如盐离子和小分子有机物,这些物质可能对后续实验产生影响。

结论:凝胶过滤层析是一种常用的生化分离技术,通过分子量选择性分离和纯化蛋白质。

实验报告 蛋白质分子的测定

实验报告 蛋白质分子的测定

实验一蛋白质分子的测定─凝胶层析法一、实验原理凝胶层析法(即凝胶过滤法,gel filtration)是利用凝胶把分子大小不同的物质分离开的一种方法。

将凝胶颗粒在适宜溶剂中浸泡,使充分吸液膨胀,然后装入层析柱中,加入欲分离的混合物,再以同一溶剂洗脱,在洗脱过程中大分子不能进入凝胶内部而沿凝胶颗粒间的空隙最先流出柱外,小分子可以进入凝胶内部,流苏缓慢,一直最后流出柱外,从而使样品中分子大小不同的物质得以分离。

凝胶是由胶体溶液凝结而成的固体物质,不论是天然凝胶还是人工合成凝胶,其内部都具有很微细的多空网状结构。

凝胶层析法常用的天然凝胶是琼脂糖凝胶(Sepharose),人工合成的凝胶是聚丙烯酰胺凝胶(Bio-gel-P)和葡聚糖凝胶(Sephadex G)。

其中葡聚糖凝胶是具有不同孔隙度的立体网状结构的凝胶,不溶于水。

将凝胶装柱后,柱床体积称为“总体积”,以Vt表示。

Vt由V o,Vi与Vg三部分组成,即Vt=Vi+Vg+V o。

V o为“孔隙体积”、“外水体积”,即存在于柱床内凝胶颗粒外面空隙之间的水相体积;Vi为内体积,即凝胶颗粒内部所含水相的体积;Vg为凝胶本身体积;Ve为洗脱体积,即自加入样品时算起到组分最大浓度(峰)出现时所流出的体积,Ve与V o及Vi之间的关系为:Ve=V o+K d Vi,;K d为样品组分在二相间的分配系数,Kd=(Ve-V o)/Vi,有效分配系数为Kav,Kav=(Ve-V o)/(Vt-V o)。

在一般情况下,凝胶对组分没有吸附作用时,当流动相流过Vt体积后,所有的组分都应该被洗出来,这一点为凝胶层析的特点,与一般层析方法不同。

Ve与分子量的关系:对同一类型的化合物,洗脱特性与组分的分子量有关,流过凝胶柱时,按分子量大小顺序流出,分子量大的走在前面。

Ve与分子量的关系为:Ve=K1-K2logM,K1与K2为常数,M为分子量,通常用Kav代替V e,建立标准蛋白质分子式量LgM与Kav的标准曲线,称为“选择曲线”。

凝胶层析法分离纯化蛋白质

凝胶层析法分离纯化蛋白质
凝胶层析法分离纯化蛋白质
【实验器材】
层析柱 恒流泵 紫外检测仪 部分收集器 试管等普通玻璃器皿
凝胶层析法分离纯化蛋白质
凝胶层析法分离纯化蛋白质
凝胶层析法分离纯化蛋白质
凝胶层析法分离纯化蛋白质
凝胶层析法分离纯化蛋白质
【实验试剂】
待分离样品 葡聚糖凝胶 Sephadex G-100 洗脱液:0.1mol/L pH6.8磷酸缓冲液
凝胶层析法分离纯化蛋白质
【原理】 凝胶层析也称分子筛层析、排阻层析。
是利用具有网状结构的凝胶的分子筛作用, 根据被分离物质的分子大小不同来进行分 离的技术。
凝胶层析法分离纯化蛋白质
凝胶过滤层析
凝胶层析是按照蛋 白质分子量大小进行分 离的技术,又称之凝胶 过滤、分子筛层析或排 阻层析。
单个凝胶珠本身象 “筛子”。不同类型凝 胶的筛孔的大小不同。
相对分子质量较小的物质由于直径小于凝胶网孔,可完全 渗透进入凝胶颗粒的网孔,在向下移动过程中,因此流程 较长,移动速率慢;所以最后流出。
中等大小的分子,它们在凝胶颗粒内外部分渗透,渗透的 程度取决于它们分子的大小,所以它们流出的时间介于二 者之间,这样分子大的组分先流出,分子小的组分后流出。 这样样品经过凝胶层析后,各个组分便按分子从大到小的 顺序依次流出,从而达到了分离的目的。
凝胶层析法分离纯化蛋白质
带网入珠 内,经珠 之间缝隙 流出
凝胶过凝滤胶层层析法分析离纯过化蛋程白质 示意图
凝胶 凝胶基质 珠
小分子 大分子
凝胶过滤凝胶层层析法析分离过纯化程蛋白质示意图
总结:
相对分子质量较大的物质由于直径大于凝胶网孔被完全排 阻在孔外,只能在凝胶颗粒外的空间向下流动,因此流程 较短,移动速度快;所以首先流出。

sephadexg-75凝胶层析法分离蛋白质

sephadexg-75凝胶层析法分离蛋白质

Sephadex G-75 凝胶层析法分离蛋白质一.实验原理凝胶层析(gel chromatography)又称为凝胶排阻层析(gel exclusion chromatography)、分子筛层析(molecular sieve chromatography)、凝胶过滤(gel filtration)、凝胶渗透层析(gel permeation chromatography)等。

凝胶层析的固定相是惰性的珠状凝胶颗粒,凝胶颗粒的内部具有立体网状结构,形成很多孔穴。

当含有不同分子大小的组分的样品进入凝胶层析柱后,各个组分就向固定相的孔穴内扩散,组分的扩散程度取决于孔穴的大小和组分分子大小。

比孔穴孔径大的分子不能扩散到孔穴内部,完全被排阻在孔外,只能在凝胶颗粒外的空间随流动相向下流动,它们经历的流程短,流动速度快,所以首先流出;而较小的分子则可以完全渗透进入凝胶颗粒内部,经历的流程长,流动速度慢,所以最后流出;而分子大小介于二者之间的分子在流动中部分渗透,渗透的程度取决于它们分子的大小,所以它们流出的时间介于二者之间,分子越大的组分越先流出,分子越小的组分越后流出。

这样样品经过凝胶层析后,各个组分便按分子从大到小的顺序依次流出,从而达到了分离的目的。

二.试剂器材Sephadex G-75粉末洗脱液(10mmol/L Tris,10mmol/L NaCl,:取Tris 1.2114g和NaCl5.844g分别溶于适量的蒸馏水中,将两种溶液合并,用4mol/L的盐酸溶液调节pH值至,再用蒸馏水定容至1000mL;其他器材:18mm试管、层析柱、紫外分光光度计、分部收集器等三.操作步骤凝胶的制备:称取Sephadex G-75粉末20g,加双蒸水400ml浸泡,置于水浴锅中加热至100℃,保持温度3hr,冷却至室温抽真空30min以排除气泡,待其沉降后以倾泻法除去上层悬浮微粒;装柱:取洗净的内径18mm,长为490mm的层析柱,管底内部放置一层丝网,将层析柱垂直,关闭出水口,加入1/2柱体积的双蒸水,然后将己溶胀好的凝胶连续缓慢地从上口加入层析柱中,同时打开出水口,使凝胶自然沉降;平衡:凝胶床用洗脱液平衡过夜,约2个柱体积;加样:称取样品溶解于5mL的洗脱液中。

生化实验报告凝胶过滤

生化实验报告凝胶过滤

一、实验目的1. 理解凝胶过滤的原理和操作步骤。

2. 掌握凝胶过滤在蛋白质分离纯化中的应用。

3. 通过实验验证凝胶过滤的分离效果。

二、实验原理凝胶过滤,又称分子筛层析,是一种基于分子大小差异的分离技术。

层析柱内填充带有小孔的凝胶颗粒,凝胶颗粒的孔径大小不同。

当含有不同大小蛋白质的混合溶液通过层析柱时,小分子蛋白质能够进入凝胶颗粒的孔隙中,从而在层析柱中停留时间较长;而大分子蛋白质则无法进入孔隙,在层析柱中的停留时间较短。

因此,不同大小的蛋白质得以分离。

三、实验材料1. 蛋白质混合样品(如血红蛋白、肌红蛋白等)2. 凝胶过滤柱(如Sephadex G-75)3. 缓冲液(如磷酸盐缓冲液)4. 离心机5. 分光光度计6. 移液器7. 玻璃棒8. 实验记录表格四、实验步骤1. 柱的制备:将凝胶过滤柱垂直放置,用缓冲液充分洗涤,去除凝胶颗粒表面的杂质。

2. 样品的制备:取一定量的蛋白质混合样品,用缓冲液稀释至适当的浓度。

3. 样品的加载:将样品缓慢加入层析柱的顶部,使其自然流下。

4. 洗脱:用缓冲液以恒定流速(如1 mL/min)洗脱层析柱,收集洗脱液。

5. 检测:使用分光光度计检测洗脱液中的蛋白质含量,记录不同洗脱峰的位置和峰面积。

6. 收集:根据蛋白质含量变化,收集不同洗脱峰的蛋白质溶液。

五、实验结果与分析1. 洗脱曲线:根据洗脱曲线,可以观察到不同大小的蛋白质在层析柱中的洗脱顺序。

通常,小分子蛋白质先被洗脱,而大分子蛋白质后被洗脱。

2. 蛋白质分离效果:通过比较不同洗脱峰的峰面积,可以评估凝胶过滤的分离效果。

峰面积越大,说明蛋白质含量越高,分离效果越好。

六、实验讨论1. 凝胶过滤是一种高效、简便的蛋白质分离纯化方法,广泛应用于生物化学和分子生物学领域。

2. 凝胶过滤的分离效果受到凝胶类型、柱径、流速等因素的影响。

在实际应用中,需要根据具体实验目的和样品特性选择合适的凝胶类型和操作条件。

3. 凝胶过滤可以与其他分离技术(如SDS-PAGE、电泳等)联合使用,进一步提高蛋白质的分离纯化效果。

凝胶层析法测定蛋白质分子量

凝胶层析法测定蛋白质分子量

凝胶层析法测定蛋白质的分子质量【实验原理】凝胶层析法(即凝胶过滤法,gel filtration)是利用凝胶的分子筛作用把分子大小不同的物质分离开的一种方法,又称为分子筛层析法(molecular sieve chromatography),排阻层析法(exclusion chromatography)。

凝胶本身是一种分子筛,可以把分子按不同大小进行分离,好象过筛可以把大颗粒与小颗粒分开一样。

但这种“过筛”与普通的过筛不一样。

将凝胶颗粒在适宜的溶剂中浸泡,使充分吸液膨胀,然后装入层析柱中,加入欲分离的混合物,再以同一溶剂洗脱。

在洗脱过程中,大分子不能进入凝胶内部而沿凝胶颗粒间的空隙最先流出柱外,而小分子可以进入凝胶内部,流速缓慢,以致最后流出柱外,从而使样品中分子大小不同的物质得到分离。

凝胶是由胶体溶液凝结而成的固体物质,不论是天然凝胶还是人工合成凝胶,它们的内部都具有很微细的多孔网状结构。

凝胶层析法常用的天然凝胶是琼脂糖凝胶(agarose gel,商品名Sepharose);人工合成的凝胶是聚丙烯酰胺凝胶(商品名为Bio-gel-P)和葡聚糖(dextran)凝胶(商品名称为Sephadex)的各种交联凝胶,它们是具有不同孔隙度的立体网状结构的凝胶,不溶于水。

这种聚合物的立体网状结构,其孔隙大小与分离物质分子的大小有相应的数量级。

在凝胶充分溶胀后,交联度高的,孔隙小,只有相应的小分子可以通过,适于分离小分子物质。

相反,交联度低的孔隙大,适于分离大分子物质。

利用这种性质可分离不同M r的物质。

为了说明凝胶层析的原理,将凝胶装柱后,柱床体积称为“总体积”,以V t(total volume)表示。

实际上V t是由V O,V t与V g三部分组成,:V t=V O+V t+V gV o称为“孔隙体积”或“外体积”(outer volume)又称“外水体积”,即存在于柱床内凝胶颗粒外面空隙之间的水相体积,相当于一般层析法中柱内流动相的体积;V i为内体积(inner volume),又称“内水体积”,即凝胶颗粒内部所含水相的体积,相当于一般层析法中的固定相的体积,它可从干凝胶颗粒重量和吸水后的重量求得;V g为凝胶本身的体积,因此V t-V o.等于V i+V g。

凝胶层析法脱盐和分离蛋白质(附凝胶过滤法原理及基本操作)-1

凝胶层析法脱盐和分离蛋白质(附凝胶过滤法原理及基本操作)-1

凝胶层析法脱盐和分离蛋白质(附凝胶过滤法原理及基本操作)-1(一)原理凡盐析所获得的粗制蛋白质(盐析得到的IgG)中均含有硫酸铵等盐类,这类将影响以后的纯化,所以纯化前均应除去,此过程称为“脱盐”(desalthing)。

脱盐常用透析法和凝胶过滤法,这两种方法各有利弊。

前者的优点是透析后析品终体积较小,但所需时间较长,且盐不易除尽;凝胶过滤法则能将盐除尽,所需时间也短,但其凝胶过滤后样品体积较大。

所以,要根据具体情况选择使用。

前实验中样品体积较小,凝胶达滤后样品体积不会太增加,所以选用凝胶过滤法。

(二)试剂与器材(1)Sephadex G-25。

(2)0.0175mol/L,pH6.7磷酸盐缓冲液。

(3)奈氏(Nessler)试剂:于500ml锥形瓶内加入碘化钾150g,碘110g,汞150g及蒸馏水100ml。

用力振荡7~15min,至碘的棕色开始转变时,混合液温度升高,将此瓶浸于冷水内继续振荡,直到棕色的碘转变为带绿色的碘化钾汞液为止。

将上清液倾入2000ml量筒内,加蒸馏水至2000ml,混匀备用。

(4)20%(W/V)磺基水杨酸溶液。

(5)1.5cm×20cm层析柱。

(6)黑、白比色磁盘。

(三)操作(1)取层析柱1支(1.5cm×20cm),垂直固定在支架上,关闭下端出口。

将已经溶胀好的Sephadex G-25中的水倾倒出去,加入2倍体积的0. 0175mol/L,pH6.7磷酸盐缓冲液,并搅拌成悬浮液,然后灌注入柱,打开柱的下端出口,继续加入搅匀的Sephadex G-25,使凝胶自然沉降高度到17cm左右,关闭出口。

待凝胶柱形成后,在洗脱瓶中加入0.0175mol/L,pH6.7磷酸盐缓冲液以3倍柱体积的磷酸盐缓冲流过凝胶柱,以平衡凝胶。

(2)凝胶平衡后,用皮头滴管除去凝胶柱面的溶液,将盐析所得全部IgG样品加到凝胶柱表面,打开柱下口,控制流速让IgG样品溶液慢慢浸入凝胶内。

凝胶过滤层析纯化蛋白的步骤

凝胶过滤层析纯化蛋白的步骤

凝胶过滤层析纯化蛋白的步骤凝胶过滤层析(Gel filtration chromatography)是一种常用的蛋白纯化方法,可以根据蛋白的分子大小以及形状,将不同分子量的蛋白分离和纯化。

下面将详细介绍凝胶过滤层析纯化蛋白的步骤,并探讨其中一些关键的因素。

1.实验准备:准备所需的层析柱、缓冲液、样品和标准品。

选择合适的层析柱是非常重要的,根据需要选择合适的分离范围和流速。

2.柱填充:将经过活化、平衡的凝胶填充到柱中。

凝胶通常是由多孔的聚合物材料制成,如琼脂糖或聚丙烯酰胺。

选择适当的凝胶类型和粒径主要根据目标蛋白的分子大小来决定。

常见的凝胶类型有Sephadex,Sephacryl和Superdex等。

3.前处理样品:前处理样品通常包括去除杂质和减少非特异性结合。

通过串联多个柱,可以实现前处理样品,如亲和柱或离子交换柱。

4.平衡柱子:使用适当的缓冲液洗涤和平衡填充的柱子,以提前去除杂质和干扰物。

5.样品加载:将待纯化的样品加载到填充好的层析柱中。

样品应根据需要进行浓缩和稀释,使其适合填充层析柱。

6.层析运行:选择恰当的流速和缓冲液来进行层析运行。

在层析过程中,缓冲液会逐渐在凝胶中通过,较大分子的蛋白会随着缓冲液流动而快速通过,而较小分子的蛋白则会受到凝胶孔径限制而在凝胶中滞留更长时间。

这样就实现了蛋白的分离和纯化。

7.收集洗脱分数:根据纯化目标的大小和形状,选择适当的分数收集。

较大分子的蛋白会在前期的分数中被洗脱,而较小分子的蛋白会在后期的分数中被洗脱。

8.分析和纯化评价:通过检测分析,如SDS-或Western blot等技术,评估样品纯度和目标蛋白的丰度。

如果需要更高的纯度,可进行进一步的步骤,如再层析或其他纯化方法。

在凝胶过滤层析纯化蛋白的过程中-选择适当的缓冲液:缓冲液的pH值和离子强度应根据目标蛋白的理化性质进行优化,以保持蛋白稳定性和纯化效果。

-选择合适的流速:流速的选择应根据柱子的尺寸和样品的需求进行调整。

凝胶过滤层析实验报告

凝胶过滤层析实验报告

一、实验目的1. 了解凝胶过滤层析的原理及操作步骤。

2. 掌握利用凝胶过滤层析法分离混合物中不同分子量蛋白质的方法。

3. 通过实验验证凝胶过滤层析法在蛋白质分离中的应用。

二、实验原理凝胶过滤层析法,又称分子筛层析法或凝胶过滤法,是一种根据分子大小进行分离的层析技术。

该技术利用凝胶的分子筛特性,将混合物中的不同分子量的物质分离。

凝胶是一种具有多孔结构的物质,孔径大小不一,当混合物通过凝胶层析柱时,大分子物质由于无法进入凝胶孔径,将直接通过层析柱;而小分子物质则可以进入凝胶孔径,从而在层析柱中停留较长时间,实现分离。

三、实验材料与仪器1. 实验材料:- 蛋白质混合物(含有已知分子量的标准蛋白质和未知分子量的蛋白质)- 凝胶层析柱(Sephadex G-75)- 洗脱液(磷酸盐缓冲液,pH 7.4)- 标准蛋白质(如牛血清白蛋白、卵清蛋白等)- 未知蛋白质样品2. 实验仪器:- 凝胶层析柱架- 凝胶层析柱- 量筒- 离心机- 分光光度计四、实验步骤1. 准备凝胶层析柱:将凝胶层析柱垂直放置于凝胶层析柱架上,用洗脱液平衡凝胶层析柱,直至洗脱液颜色清澈。

2. 加样:取一定量的蛋白质混合物,加入凝胶层析柱的顶部,用洗脱液冲洗,直至混合物完全进入层析柱。

3. 洗脱:用洗脱液缓慢冲洗层析柱,收集各部分洗脱液,分别测定其蛋白质含量。

4. 分离:根据洗脱液的蛋白质含量,绘制洗脱曲线,分析不同分子量蛋白质的分离情况。

5. 结果分析:根据标准蛋白质的分子量和洗脱曲线,推测未知蛋白质样品的分子量。

五、实验结果与分析1. 凝胶过滤层析柱平衡后,洗脱液颜色清澈,说明凝胶层析柱已准备就绪。

2. 洗脱过程中,标准蛋白质和未知蛋白质样品的洗脱曲线如下:- 标准蛋白质洗脱曲线:在洗脱曲线中,标准蛋白质的洗脱峰呈对称状,峰面积较大,说明分离效果较好。

- 未知蛋白质样品洗脱曲线:在洗脱曲线中,未知蛋白质样品的洗脱峰位置与标准蛋白质的洗脱峰位置不同,峰面积较小,说明分离效果较差。

凝胶过滤法分离蛋白质实验报告

凝胶过滤法分离蛋白质实验报告

凝胶过滤法分离蛋白质一、实验目的了解凝胶层析的基本原理,并学会用凝胶层析分离纯化蛋白质。

二、实验原理凝胶过滤其基本原理是利用被分离的分子大小不同及固定相(凝胶)具有分子筛的特点:本实验使用交联葡聚凝胶,其具有一定孔径的网络结构。

高亲水,在水溶液里吸水可膨胀。

当其填充完成后,加入混合分子大小不同的分离液。

由于大分子物质只能沿着胶粒之间的间隙向下流动,所经路短,最先流出;而涌入胶粒内部的小分子物质,受迷宫效应的影响,要经过层层扩散向下流动,所经路程长,最后流出,通透性居中的分子则后于大分子而先于小分子流出。

从而按大到小的顺序流出实现分离的目的。

三、试剂与仪器0.1mol/L磷酸缓冲液(PH7.0),0.4%K3Fe(CN)6,交联葡聚凝胶,鸡的抗凝全血1.5*20cm的层析柱,试管,量筒,大烧杯,玻璃棒四、实验步骤1.凝胶溶胀2.装柱:从层析柱加入缓冲液,打开出口,将气泡赶走,关闭下端开口,然后加入约6cm的缓冲液,灌注凝胶,打开下端开口。

使其自然沉降高度约17cm,并使其床面覆盖缓冲液,关闭出口盖上小形圆形滤纸。

待凝胶形成后,再用缓冲液洗脱2~3次。

3.样品处理4.上样和过滤:吸取约0.5ml混合液,在距离床面1mm处沿管内壁轻轻加入样品。

打开出口,让样品溶液慢慢浸入凝胶内。

凝胶柱面加上一层磷酸盐缓冲液,并用1~2倍体积的此缓冲洗脱。

5.部分收集:控制速度为0.5ml/min左右,用试管收集洗脱液。

并观察柱上的色带,待黄色的0.4%完全脱下来后,再继续收集两管透明洗脱液作对照,关闭出口。

6.凝胶回收:收集样品后,凝胶柱用3~5倍体积洗脱液继续洗脱,从回收凝胶留给下一组。

五、实验现象结果及其讨论颜色:开始时为无色透明,但时间过去,试管中收集的红褐色开始变深,到最后,试管的颜色为深褐色,接着溶液的颜色开始变浅,红褐色几乎要消失。

接着又开始出现浅黄色,再到黄色,再黄色开始慢慢变浅,最后又变成无色透明。

原因:1.开始时,由于先加进缓冲液,而加入的全血扩散没有那么快,所以白色透明液体为缓冲液。

凝胶层析法分离蛋白质

凝胶层析法分离蛋白质

实验一酵母蔗糖酶的提取及部分纯化一、实验目的:学习酶的提取和纯化方法,并为后续实验提供一定量的蔗糖酶。

二、实验原理:蔗糖酶(invertase)(β-D-呋喃果糖苷果糖水解酶)(fructofuranoside fructohydrolase)(EC.3.2.1.26)特异地催化非还原糖中的β—呋喃果糖苷键水解,具有相对专一性。

不仅能催化蔗糖水解生成葡萄糖和果糖,也能催化棉子糖水解,生成密二糖和果糖。

本实验提取啤酒酵母中的蔗糖酶。

该酶以两种形式存在于酵母细胞膜的外侧和内侧,在细胞膜外细胞壁中的称之为外蔗糖酶(external yeast invertase), 其活力占蔗糖酶活力的大部分,是含有50% 糖成分的糖蛋白。

在细胞膜内侧细胞质中的称之为内蔗糖酶(internal yeast invertase),含有少量的糖。

两种酶的蛋白质部分均为双亚基,二聚体,两种形式的酶的氨基酸组成不同,外酶每个亚基比内酶多两个氨基酸,Ser和Met,它们的分子量也不同,外酶约为27万(或22万,与酵母的来源有关),内酶约为13.5万。

尽管这两种酶在组成上有较大的差别,但其底物专一性和动力学性质仍十分相似,因此,本实验未区分内酶与外酶,而且由于内酶含量很少,极难提取,本实验提取纯化的主要是外酶。

三、试剂与器材:1. 试剂:(1)啤酒酵母(2)二氧化硅(3)甲苯(使用前预冷到0℃以下)(4)去离子水(使用前冷至4℃左右)(5)冰块、食盐(6)1N乙酸(7)95%乙醇(预冷至-20℃)2. 器材:(1)研钵1个(2)离心管3个(3)滴管3个(4)量筒50mL 1个(5)水浴锅1个(6)恒温水浴(7)烧杯100mL 2个(8)广泛pH试纸(9)高速冷冻离心机四、操作步骤:1. 提取(1)准备一个冰浴,将研钵稳妥放入冰浴中(两组做一个)。

(2)取适量(5-10g)二氧化硅放入研钵中研细。

(3)称取5g干啤酒酵母放入研钵中,量取预冷的甲苯20mL缓慢加入酵母中,边加边研磨成糊状,约需30分钟,至酵母细胞大部分研碎。

凝胶层析生化实验报告

凝胶层析生化实验报告
一、实验目的
1. 了解凝胶层析的原理和方法。
2. 掌握凝胶层析的操作技能。
3. 通过凝胶层析分离和纯化蛋白质。
二、实验原理
凝胶层析是一种基于分子大小差异的分离技术,其原理是利用凝胶的多孔性,使不同大小的分子在凝胶柱中以不同的速度移动,从而实现分离。凝胶层析可分为凝胶过滤和凝胶排阻两种类型,其中凝胶过滤适用于分离分子量相近的物质,凝胶排阻适用于分离分子量差异较大的物质。
本实验采用凝胶过滤法,以葡聚糖凝胶为固定相,通过凝胶柱对蛋白质混合物进行分离。
三、实验材料
1. 蛋白质混合物:含有多种蛋白质的溶液。
2. 葡聚糖凝胶磷酸盐缓冲液(pH 7.4)。
4. 其他:层析柱、恒流泵、紫外分光光度计、收集器等。
四、实验步骤
1. 准备凝胶柱:将葡聚糖凝胶加入层析柱中,使其自然沉降至底部,形成凝胶床。
3. 本实验中,蛋白质分子量分布较广,说明蛋白质混合物中存在多种分子量的蛋白质。通过凝胶层析,可以将这些蛋白质分离和纯化。
七、实验总结
本实验通过凝胶层析分离和纯化了蛋白质混合物,成功实现了蛋白质的分离和纯化。通过实验,掌握了凝胶层析的原理和操作技能,为今后的实验研究奠定了基础。
六、实验讨论
1. 凝胶层析的分离效果受多种因素影响,如凝胶的种类、洗脱液的pH、流速等。在本实验中,选用Sephadex G-100凝胶,以磷酸盐缓冲液(pH 7.4)为洗脱液,流速为1.0 mL/min,可得到较好的分离效果。
2. 凝胶层析具有操作简单、分离效果好、不影响蛋白质活性等优点,在蛋白质分离和纯化中具有广泛的应用。
五、实验结果与分析
1. 洗脱曲线:随着洗脱的进行,蛋白质分子量逐渐增大,洗脱峰的位置逐渐向后推移。根据洗脱峰的位置,可以判断蛋白质的分子量。

凝胶分离法

凝胶分离法

观察凝胶与水分层, 此间不能使胶面干掉。
注:如床表面不平整,可在凝胶表面用玻璃棒轻轻 搅动,再让凝胶自然沉降,使床面平整。
③调节流速:调节凝胶床所能承受的最大水压,
使出口流速7-8d/min。
3、加 样、洗脱、收集
①.放水: 将出口打开,使床面上的蒸馏水缓慢下流, 达到床面将近露出为止,关紧出口。 (注意:不可使床面干掉,以免气泡进入凝胶)
交联葡聚糖凝胶(Sephadex)
• 葡聚糖和3-氯-1,2环氧丙烷以醚键相互交联形成。
• 按交联度大小分8种型号,G值代表不同交联度。
• Sephadex G-10,15,25,50,75,100,150,200
• 数字表示每克干胶膨胀时吸水量的10倍。 Sephadex
G-25代表每克干胶膨胀时可以吸水2.5克。
②加样:用吸管吸取0.5ml脲酶粗提取液,缓慢地沿着 层析柱内壁加于床表面 注意:尽量不使床面扰动
③洗脱、收集:接上贮液瓶,进行洗脱,流出的液体分别 收集在小离心管中, 流速:7- 8d/分钟, 收集量:为3ml/管 (先用一支刻度离心管, 后可根据高度用普通管) 数量:共收集约8-9管(澄清后在收集1-2管) 注意:必须保持床面平整,而且不能干,随时加蒸馏水。
实验2
脲酶的凝胶过滤 分离纯化
实验 原理
脲酶分子量较大,脲酶粗制品通过交 联葡聚糖Senhadex G-150层析柱 酶本身不能进入凝胶颗粒的网络内, 而其他小分子物质及分子量较小的蛋白质可 扩散进入凝胶颗粒。
用蒸馏水作为洗脱剂,分子量大的脲酶 首先被洗脱下来,从而达到与其他物质分离 的目的。
0.1ml 2.9ml 2滴
充分混匀
Nessler试剂 0.75ml 0.75ml 0.75ml

凝胶过滤层析实验报告

凝胶过滤层析实验报告

凝胶过滤层析实验报告凝胶过滤层析实验报告一、引言凝胶过滤层析是一种常用的生物分离和纯化技术,广泛应用于生物医学研究、生物制药等领域。

本实验旨在通过对凝胶过滤层析的研究,探讨其原理、方法和应用。

二、凝胶过滤层析原理凝胶过滤层析是利用凝胶材料的孔隙结构,通过分子的大小和形状选择性地分离混合物中的组分。

凝胶材料通常是多孔的,具有不同大小的孔隙,通过调整凝胶材料的孔隙大小,可以选择性地分离分子。

三、实验步骤1. 准备凝胶柱:将凝胶材料装入柱中,并将柱与收集容器连接。

2. 样品处理:将待分离的混合物样品处理,去除杂质和大分子。

3. 样品加载:将处理后的样品加载到凝胶柱上。

4. 洗脱:用缓冲液洗脱凝胶柱上的目标分子。

5. 收集:将洗脱液收集于容器中,得到纯化后的目标分子。

四、实验结果与讨论本实验使用了凝胶过滤层析技术对蛋白质混合物进行分离和纯化。

实验结果显示,凝胶过滤层析能够有效地分离目标蛋白质,并具有较高的纯度。

在实验过程中,我们发现凝胶材料的孔隙大小对分离效果有重要影响。

较大的孔隙可以让较大分子通过,而较小的孔隙则只允许较小分子通过。

因此,在选择凝胶材料时,需要根据目标分子的大小来选择合适的凝胶。

此外,凝胶过滤层析还可以用于去除杂质和浓缩目标分子。

在洗脱过程中,通过调整洗脱缓冲液的成分和pH值,可以更好地控制目标分子的洗脱效果。

凝胶过滤层析技术的应用非常广泛。

在生物医学研究中,它常用于蛋白质纯化和分析,可以帮助研究人员获取纯度较高的蛋白质样品,从而进行后续的功能研究。

在生物制药领域,凝胶过滤层析可以用于制备药物和疫苗,提高产品纯度和质量。

然而,凝胶过滤层析也存在一些局限性。

例如,对于较大的分子,凝胶材料的孔隙可能不够大,导致无法通过。

此外,凝胶过滤层析的操作相对较慢,需要较长的时间来完成分离和纯化过程。

综上所述,凝胶过滤层析是一种有效的生物分离和纯化技术,具有广泛的应用前景。

通过对凝胶过滤层析的实验研究,我们深入了解了其原理、方法和应用,并对其优缺点有了更清晰的认识。

“凝胶过滤层析法分离纯化蛋白质”生化实验报告

“凝胶过滤层析法分离纯化蛋白质”生化实验报告

凝胶过滤层析法分离纯化蛋白质操作人:XXX 时间:XXXX 地点:XXXX 温度:20℃实验目的:①理解凝胶过滤层析的原理。

②掌握装柱、平衡、上样、柱效检验的方法。

③学会分析洗脱峰峰型。

试验方法与过程:1.装柱①固定层析柱,柱内装1/2双蒸水,双蒸水下降到1/4时,关闭出口。

②搅拌凝胶浆液,用玻璃棒引流缓慢倒入层析柱,打开出口,让凝胶沉降。

③装至柱内有2/3凝胶,上层保留至少0.5cm的水。

2.平衡双蒸水平衡柱,管口上接恒流泵、下管接检测仪入口,控制流速。

观察紫外检测仪平衡后A280应小于0.01.然后调整流速为2ml/min,暂停恒流泵。

3.加样吸取5%丙酮溶液500ul,沿柱壁缓慢加入,控制出水口管的高度使使样品缓缓进入胶内,用1ml双蒸水冲洗壁上的样品,在加入3-4ml双蒸水后关闭盖子。

4.洗脱凝集打开恒流泵开关,监视紫外检测仪的情况,待丙酮全部流出后加入,加入蛋白质混合物,监视紫外检测仪情况,开始出现上升即开始收集流出液。

蛋白质样品全部流出后,用双蒸水冲洗凝胶。

原始数据:图一:从左到右第一个峰为丙酮,第二第三个峰分别为混合物中的两种蛋白质。

结果处理与分析:①根据图像得As略大于1,说明装柱压力不足,可能滤网内有空气进入。

②由于是先加入丙酮再打开色谱分析软件,所以不能分析到分配系数Kd。

③在图一黑色箭头所指处色谱曲线出现了抖动,可能是因为在丙酮洗脱过程中打开了层析柱上口,导致空气进入。

④加入样品后出现两个峰,说明混合样品中有两种大小不同的物质被分离出来。

讨论:1.注意事项:一定要保证凝胶柱上层有液体覆盖,不能使之暴露于空气中;保证所灌凝胶中没有气泡,当有气泡和凝胶有明显分层时3,应在灌胶过程中及时用玻璃棒搅拌去除气泡及使不均匀的凝胶重悬后重新沉淀。

2.经验和心得:用滴管向凝胶柱内加入双蒸水和样品时,一定要沿管壁边旋转边缓慢加入,防止加入时产生压力太大,使凝胶柱上表面不平整;用滴管比用移液枪加样品好,因为滴管产生的压力小。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

6. 洗脱
当此少量蒸馏水接近流干时, ① 当此少量蒸馏水接近流干时,反复多次加入蒸 馏水,进行洗脱, 馏水,进行洗脱,直到两带分开 ② 检查 在层析床中色带位置,待Hb洗脱完后, 检查Hb在层析床中色带位置 在层析床中色带位置, 洗脱完后, 洗脱完后 用试管分步收集洗脱液 ③ 10d/管,每管加 管 每管加NaOH 2d,CuSO4 2d , 检查溶菌酶洗脱情况,若为紫色,则为( ) ④ 检查溶菌酶洗脱情况,若为紫色,则为(+)
又名分子筛过滤体,不带电荷,吸附力弱, 属于惰性载体,不带电荷,吸附力弱,操作条 件较温和,可在相当广的温度范围内进行, 件较温和,可在相当广的温度范围内进行,不需要 有机溶剂,对于高分子物质有很好的分离效果。 有机溶剂, 交联葡聚糖凝胶 聚丙烯酰胺凝胶 琼脂糖凝胶
(3)层析技术的优点
分离效率高 分析速度快 具有极高的灵敏度 应用范围广
适用: 适用:
杂质多、含量少的复杂样品分析, 杂质多、含量少的复杂样品分析,尤其适用于生 物样品的分离分析
3. 凝胶过滤层析法 (gel filtration chromatography) ) 原理: (1)原理:
根据分子大小的差别进行分离。每个凝胶颗 根据分子大小的差别进行分离。 粒好象一个筛子,小分子物质可以进入颗粒内部, 粒好象一个筛子,小分子物质可以进入颗粒内部, 大分子物质被排阻在外。 大分子物质被排阻在外。
生物化学与分子生物学实验
带教: 张学礼、 带教 张学礼、戴薇薇 龚张斌、 龚张斌、黎志萍
实验课要求
试剂用后及时归位 及时记录实验结果 按时完成实验报告 离开时做好清洁工作
实验报告的书写
标题日期 一、实验目的 二、实验原理 三、操作步骤 四、实验结果 五、分析讨论
实验基本操作
一、玻璃仪器的洗涤 二、吸量管及微量取样器的使用 三、溶液的混匀 四、离心机的使用
三、实验操作
1. 柱的选择 直径: 直径: 1~5 cm 一般长度: 一般长度:直径 = 10:1 ~ 20:1 : : 本实验玻柱: 直径0.8~ 1.5cm 本实验玻柱: 直径 长度 17~ 20cm
2. 凝胶选择、制备 凝胶选择、 血红蛋白 溶菌酶 分离 (64500) (11400) ) ) 选择 Sephadex G-50 Sephadex G-50: : 对多肽及蛋白质的筛分范围(分子量 分子量)为 对多肽及蛋白质的筛分范围 分子量 为: 1500 – 30000
双缩脲反应) 缩二脲反应 (双缩脲反应)
O
O CuSO4 碱性 紫 红色
H2N - C - NH - C - NH2
肽键
四、实验结果
绘制洗脱结果示意图, 绘制洗脱结果示意图,并分析所得结果
五、讨论
下次实验: 下次实验:
《碱性磷酸酶的提取及其比活性的测定》 碱性磷酸酶的提取及其比活性的测定》 时间: 月 日上午 日上午9: 开始 时间:4月18日上午 :00开始
例: Sephadex G-50: :
对多肽及蛋白质的筛分范围(分子量 为 对多肽及蛋白质的筛分范围 分子量)为: 分子量 1500 – 30000
Sephadex G-200: :
对多肽及蛋白质的筛分范围(分子量 为 对多肽及蛋白质的筛分范围 分子量)为: 分子量 5000 – 80000
B. 琼脂糖凝胶
制备: 制备:
将干胶颗粒悬浮于5 将干胶颗粒悬浮于 ~ 10倍的蒸馏水或洗脱液中 倍的蒸馏水或洗脱液中 充分溶胀,溶胀之后将极细的小颗粒倾泻出去 充分溶胀,
3. 凝胶装柱
①柱固定于架子上,垂直放置,关住出口 柱固定于架子上,垂直放置, 开始下沉, ②自顶部缓缓加入葡聚糖悬液,使G-50 开始下沉, 自顶部缓缓加入葡聚糖悬液, 至1 ~2cm时,打开出口 时 ③凝胶逐层上升,至顶部 2-3cm时,关闭出口 凝胶逐层上升, 时
( 商品名: Sepharose , Bio- gel – A ) 商品名 温度, 对实验条件要求高 ( 温度 <40℃ ℃ pH ) 4.5- 9.0
工作的下限是葡聚糖凝胶工作的上限, 工作的下限是葡聚糖凝胶工作的上限 用于大分子物质的分离
C. 聚丙烯酰胺凝胶
商品名: 商品名 Bio – gel – P(生物胶 ) (生物胶P)
名称 原理 吸附层析法 固定相为固体吸附剂,利用各组分在吸附 固定相为固体吸附剂, 剂表面吸附能力不同而分离 分配层析法 各组分在流动相和固相中的分配系数不同 固定相是离子交换剂, 离子交换层 固定相是离子交换剂,各组分与离子交换 析法 剂亲和力不同而分离 亲和层析法 固定相只能与一种待分离组分专一结合, 固定相只能与一种待分离组分专一结合, 以此和无亲和力的其它组分分离 凝胶层析法 固定相是多孔凝胶,各组分的分子大小不 固定相是多孔凝胶, 同,因而在凝胶上受阻滞的程度不同
按操作形式不同分类
名称 柱层析法 操作形式 固定相装于层析柱内, 固定相装于层析柱内,使样品沿着一个方 向前移而达分离的层析法, 向前移而达分离的层析法,包括一般柱层 析法、 析法、毛细管层析法和微粒填充柱层析法
平面层析法 层析过程在固定相构成的平面层内进行的 层析法,包括纸层析法、 层析法,包括纸层析法、薄层层析法和薄 膜层析法
注意点: 注意点:
垂直放置 防止气泡产生 防止柱的分层
4. 平衡
放置一段时间, 分钟( 放置一段时间,约40分钟(使凝胶更好的压实) 分钟 使凝胶更好的压实)
注意: 注意:
防止床面干涸, 防止床面干涸,可适当补充蒸馏水
5. 加样
加样前打开出口,使床面的蒸馏水流出, ① 加样前打开出口,使床面的蒸馏水流出,正好露 出床面时,立即关闭出口(将干未干) 出床面时,立即关闭出口(将干未干) ② 用滴管将混合样品(0.6ml,即血红蛋白和溶菌酶 用滴管将混合样品 , 各0.3ml)缓缓沿柱内壁小心加于床表面 缓缓沿柱内壁小心加于床表面 打开出口,使样品进入床内,直到床面重新露出, ③ 打开出口,使样品进入床内,直到床面重新露出 立即加入1~2倍于样品体积的蒸馏水 倍于样品体积的蒸馏水 立即加入
实验一 凝胶过滤层析法分离蛋白质
一、 实验目的
1.掌握凝胶过滤层析法的基本原理; 掌握凝胶过滤层析法的基本原理; 掌握凝胶过滤层析法的基本原理 2.掌握凝胶过滤层析法分离蛋白质的过程。 掌握凝胶过滤层析法分离蛋白质的过程。 掌握凝胶过滤层析法分离蛋白质的过程
二、 实验原理
1. 常用生化实验技术
分光光度技术 电泳技术 离心技术 层析技术
固体物质 / 固定于固体物质的成分 可以流动的物质: 可以流动的物质: 如水和各种溶媒
待分离混合物( 、 ) 待分离混合物(A、B)随流动相通过固定相 由于理化性质差异,与两相发生相互作用(吸附、 由于理化性质差异,与两相发生相互作用(吸附、 溶解、结合等)的能力不同,在两相中的分配( 溶解、结合等)的能力不同,在两相中的分配(含 量对比) 量对比)不同 与固定相相互作用力越弱的组分, 与固定相相互作用力越弱的组分,随流动相移动时 越弱的组分 受到的阻滞作用小 移动速度快 受到的阻滞作用小,移动速度快
2. 层析技术(色谱技术) 层析技术(色谱技术)
是利用混合物中各组分的理化性质差异( 是利用混合物中各组分的理化性质差异(吸附 力、溶解度、分子形状和大小、分子极性、分子亲 溶解度、分子形状和大小、分子极性、 和力等)建立起来的技术。 和力等)建立起来的技术。
(1)层析系统的基本组成 )
固定相 + 流动相
分步收集流出液, 分步收集流出液,可得到样品中所含的各单一 组分,从而达到将各组分分离 分离的目的 组分,从而达到将各组分分离的目的
(2)层析法的分类 按两相所处状态分类
流动相 液体 液体 固定相 固体 液—液层析法 液层析法 液— 固层析法 气体 气—液层析法 液层析法 气— 固层析法
按层析原理分类
(3)凝胶的选择 多孔网孔结构 A. 葡聚糖凝胶 (商品名 Sephadex,Dextran) 商品名: 商品名 , 型号: 型号: G-10 – G-200
吸水能力, 干胶吸水量的10倍 吸水能力,每g干胶吸水量的 倍 干胶吸水量的 数字愈小,交联度越大 被筛分物质的分子量也愈小 数字愈小 交联度越大,被筛分物质的分子量也愈小 交联度越大
相关文档
最新文档