信号与系统(陈生潭)习题答案1-4章部分

合集下载

信号与系统课后习题答案—第1章

信号与系统课后习题答案—第1章

第1章 习题答案1-1 题1-1图所示信号中,哪些是连续信号?哪些是离散信号?哪些是周期信号?哪些是非周期信号?哪些是有始信号?解: ① 连续信号:图(a)、(c)、(d ); ② 离散信号:图(b ); ③ 周期信号:图(d); ④ 非周期信号:图(a )、(b )、(c); ⑤有始信号:图(a )、(b)、(c ).1-2 已知某系统的输入f (t )与输出y(t )的关系为y(t)=|f(t)|,试判定该系统是否为线性时不变系统。

解: 设T 为此系统的运算子,由已知条件可知: y (t)=T [f (t)]=|f (t)|,以下分别判定此系统的线性和时不变性。

① 线性 1)可加性不失一般性,设f (t )=f 1(t )+f 2(t ),则y 1(t)=T[f 1(t )]=|f 1(t)|,y 2(t )=T [f 2(t)]=|f 2(t )|,y (t )=T [f (t )]=T[f 1(t )+f 2(t )]=|f 1(t )+f 2(t )|,而|f 1(t)|+|f 2(t)|≠|f 1(t )+f 2(t )|即在f 1(t)→y 1(t)、f 2(t)→y 2(t )前提下,不存在f 1(t )+f 2(t )→y 1(t)+y 2(t ),因此系统不具备可加性。

由此,即足以判定此系统为一非线性系统,而不需在判定系统是否具备齐次性特性。

2)齐次性由已知条件,y(t )=T[f(t)]=|f (t )|,则T [af(t)]=|af(t )|≠a|f(t )|=ay (t ) (其中a 为任一常数)即在f(t )→y(t )前提下,不存在af (t )→ay(t ),此系统不具备齐次性,由此亦可判定此系统为一非线性系统。

② 时不变特性由已知条件y(t )=T [f(t)]=|f (t)|,则y(t-t 0)=T [f (t —t 0)]=|f (t-t 0)|, 即由f (t)→y(t ),可推出f (t —t 0)→y(t —t 0),因此,此系统具备时不变特性。

信号和系统课后习题答案解析

信号和系统课后习题答案解析

完美WORD 格式专业整理 知识分享第一章习题参考解答1.1 绘出下列函数波形草图。

(1) ||3)(t et x -=(2) ()⎪⎪⎨⎧<≥=02021)(n n n x n n(3) )(2sin )(t t t x επ=(4) )(4sin )(n n n x επ=(5) )]4()([4cos )(--=-t t t et x tεεπ(6) )]4()1([3)(---=n n n x nεε(7) t t t t x 2cos)]2()([)(πδδ--=(8) )]1()3([)(--+=n n n n x δδ完美WORD 格式专业整理 知识分享(9) )2()1(2)()(-+--=t t t t x εεε(10) )5(5)]5()([)(-+--=n n n n n x εεε(11) )]1()1([)(--+=t t dtdt x εε (12) )()5()(n n n x --+-=εε(13) ⎰∞--=td t x ττδ)1()((14) )()(n n n x --=ε1.2 确定下列信号的能量和功率,并指出是能量信号还是功率信号,或两者均不是。

(1) ||3)(t et x -=解 能量有限信号。

信号能量为:()⎰⎰⎰⎰∞-∞-∞∞--∞∞-+===02022||2993)(dt edt edt e dt t xE ttt ∞<=⋅-⋅+⋅⋅=∞-∞-9)21(92190202tte e(2) ()⎪⎩⎪⎨⎧<≥=02021)(n n n x n n解 能量有限信号。

信号能量为:()∞<=+=+==∑∑∑∑∑∞=--∞=∞=--∞=∞-∞=35)41(4])21[(2)(0102122n n n nn n n n n n xE(3) t t x π2sin )(=完美WORD 格式专业整理 知识分享 解 功率有限信号。

周期信号在(∞-∞,)区间上的平均功率等于在一个周期内的平均功率,t π2sin 的周期为1。

(仅供参考)信号与系统第四章习题答案

(仅供参考)信号与系统第四章习题答案

e −sT
=
−sT
2 − 4e 2
+ 2e −sT
Ts 2
(f) x(t) = sin πt[ε (t)− ε (t − π )]
sin π tε (t ) ↔
π s2 + π 2
L[sin
πtε (t
−π
)]
=
L e jπt
− 2
e− jπt j
ε (t
−π
)
∫ ∫ =
1 2j
∞ π
e
jπt e−st dt
4.3 图 4.2 所示的每一个零极点图,确定满足下述情况的收敛域。
(1) f (t) 的傅里叶变换存在
(2) f (t )e 2t 的傅里叶变换存在
(3) f (t) = 0, t > 0
(4) f (t) = 0, t < 5
【知识点窍】主要考察拉普拉斯变换的零极点分布特性。 【逻辑推理】首先由零极点写出拉普拉斯变换式,再利用反变换求取其原信号,即可求取其收
= cosϕ eω0tj + e−ω0tj − sin ϕ eω0tj − e−ω0tj
2
2j
=
cos 2
ϕ

sin 2
ϕ j
e
ω0 t j
+
cosϕ 2
+
sin ϕ 2j
e −ω 0tj
F(s) =
L
cosϕ 2

sin ϕ 2j
eω0tj
+
cos 2
ϕ
+
sin ϕ 2j
e
−ω0
t
j
ε
(t
)
∫ ∫ =

信号与系统PPT电子书陈生谭版课后习题答案

信号与系统PPT电子书陈生谭版课后习题答案
x2(0-)=1 时,y2(t)=4e-t-2e-3t,t≥0 则 x1(0-)=5,x2(0-)=3 时,系统的零输入响应: yx(t)=y(t)=5y1(t)+3y2(t)=22e-t 十 9e-3t,t≥0
1.22 在题 1.21 的基础上,若还已知 f(t)=ε(t),x1(0-)=0,x2(0-)=0 时,有 y(t)=2+e-t+2e-3t,t≥0 试求当 f(t)=3ε(t),x1(0-)=2,x2(0-)=5 时的系统响应 y(t)。 解: 记,f(t)=ε(t),x1(0-)=0,x2(0-)=0 时,系统响应 yf(t)=y(t)=2+e-t+2e-3t,t≥0 则当 f(t)=3ε(t),x1(0-)=2,x2(0-)=5 时的系统全响应 y(t)为: y(t)=3yf(t)+2y1(t)+5y2(t)
解:
(1)
is
(t)
=
i(t
)
+
ic
(t )
+
iR
(t )
=
i (t )
+
Cuc′
(t )
+
1 2
u (t )
----⑴
而 uC (t) = u(t)
对回路①,有:
⎧− ⎩⎨iL
3i(t) (t) =
+ is
LiL′ (t) + u(t) (t) − i(t)
=
0

u(t)
=
3i(t
)

Lis′
(t)
− p 1+ p
−1
3p 0
−p
− p 0 1+ p +1/ p
− p f (t) i2 (t) = 3 p − p

信号与系统考题参考解答(完整版)

信号与系统考题参考解答(完整版)

《信号与系统》作业参考解答第一章(P16-17)1-3 设)(1t f 和)(2t f 是基本周期分别为1T 和2T 的周期信号。

证明)()()(21t f t f t f +=是周期为T 的周期信号的条件为T nT mT ==21 (m ,n 为正整数) 解:由题知)()(111t f mT t f =+ )()(222t f mT t f =+要使)()()()()(2121t f t f T t f T t f T t f +=+++=+则必须有21nT mT T == (m ,n 为正整数) 1-5 试判断下列信号是否是周期信号。

若是,确定其周期。

(1)t t t f πsin 62sin 3)(+= (2)2)sin ()(t a t f =(8)⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=2cos 28sin 4cos )(k k k k f πππ解:(1)因为t 2sin 的周期为π,而t πsin 的周期为2。

显然,使方程n m 2=π (m ,n 为正整数)成立的正整数m ,n 是不存在的,所以信号t t t f πsin 62sin 3)(+=是非周期信号。

(2)因为)2cos 1()sin ()(22t a t a t f -==所以信号2)sin ()(t a t f =是周期π=T 的周期信号。

(8)由于)4/cos(k π的周期为8)4//(21==ππN ,)8/sin(k π的周期为16)8//(22==ππN ,)2/cos(k π的周期为4)2//(23==ππN ,且有16412321=⨯=⨯=⨯N N N所以,该信号是周期16=N 的周期信号。

1-10 判断下列系统是否为线性时不变系统,为什么?其中)(t f 、][k f 为输入信号,)(t y 、][k y 为零状态响应。

(1))()()(t f t g t y = (2))()()(2t f t Kf t y += 解:(1)显然,该系统为线性系统。

信号与系统--完整版答案--纠错修改后版本

信号与系统--完整版答案--纠错修改后版本
3.6、求下列差分方程所描述的LTI离散系统的零输入相应、零状态响应和全响应。
1)
3)
5)
3.8、求下列差分方程所描述的离散系统的单位序列响应。
2)5)
3.9、求图所示各系统的单位序列响应。
(a)
(c)
3.10、求图所示系统的单位序列响应。
3.11、各序列的图形如图所示,求下列卷积和。
(1)(2)(3)(4)
4.34 某LTI系统的频率响应,若系统输入,求该系统的输出。
4.35 一理想低通滤波器的频率响应
4.36 一个LTI系统的频率响应
若输入,求该系统的输出。
4.39 如图4-35的系统,其输出是输入的平方,即(设为实函数)。该系统是线性的吗?
(1)如,求的频谱函数(或画出频谱图)。
(2)如,求的频谱函数(或画出频谱图)。
(1) (2) (3) (4) (5)
4.19 试用时域微积分性质,求图4-23示信号的频谱。
图4-23
4.20 若已知,试求下列函数的频谱:
(1)(3) (5)
(8)(9)
4下列方式求图4-25示信号的频谱函数 (1)利用xx和线性性质(门函数的频谱可利用已知结果)。
(1)
5-18 已知系统函数和初始状态如下,求系统的零输入响应。
(1),
(3),
5-22 如图5-5所示的复合系统,由4个子系统连接组成,若各子系统的系统函数或冲激响应分别为,,,,求复合系统的冲激响应。
5-26 如图5-7所示系统,已知当时,系统的零状态响应,求系数a、b、c。
5-28 某LTI系统,在以下各种情况下起初始状态相同。已知当激励时,其全响应;当激励时,其全响应。
(7)(8)
1-7 已知序列的图形如图1-7所示,画出下列各序列的图形。

信号与系统(第三版)陈生潭第一章课后答案

信号与系统(第三版)陈生潭第一章课后答案

信号与系统 电子教案
1.3 阶跃信号与冲激信号
n
f ( n)
©西安电子科技大学电路与系统教研中心
k
第1-16页

信号与系统 电子教案
1.3 阶跃信号与冲激信号
1.3 阶跃信号与冲激信号
一 序列函数定义
1.阶跃信号
(t )
A (t t 0 )
1
ε (t)
∆→0
0 t
2
1 o t
A
0
t0
t
0 (t ) t 1
广义函数:为避开变量点上没有确定函数值的情况, 广义函数采用它与另一个函数相互作用(如相乘后积 分)后的效果来定义:
第1-20页

©西安电子科技大学电路与系统教研中心
信号与系统 电子教案
1.3 阶跃信号与冲激信号



g (t )(t )dt Ng[(t )]
可理解为:在试验函数集{(t)}中,对每一函数 (t),按一定规则Ng,分配一个函数值Ng[(t)]. 注意: (t)是普通函数,满足连续、有任意阶导数。 且(t)及各阶导数在|t|时要比|t|的任意次幂更 快的趋于零;
f (t) 1 o 1 t
反转 t → - t
1 -1
f (- t )
o
t
第1-9页

©西安电子科技大学电路与系统教研中心
信号与系统 电子教案
1.2 信号的运算
2.平移
将 f (t) → f (t – t0) , f (k) → f (t – k0)称为对信号f (· )的 平移或移位。若t0 (或k0) >0,则将f (· )右移;否则左移。 如: f (t- 1)

信号与系统课后习题答案

信号与系统课后习题答案

习 题 一 第一章习题解答基本练习题1-1 解 (a) 基频 =0f GCD (15,6)=3 Hz 。

因此,公共周期3110==f T s 。

(b) )30cos 10(cos 5.0)20cos()10cos()(t t t t t f ππππ+==基频 =0f GCD (5, 15)=5 Hz 。

因此,公共周期5110==f T s 。

(c) 由于两个分量的频率1ω=10π rad/s 、1ω=20 rad/s 的比值是无理数,因此无法找出公共周期。

所以是非周期的。

(d) 两个分量是同频率的,基频 =0f 1/π Hz 。

因此,公共周期π==01f T s 。

1-2 解 (a) 波形如图1-2(a)所示。

显然是功率信号。

t d t f TP T TT ⎰-∞→=2)(21lim16163611lim 22110=⎥⎦⎤⎢⎣⎡++=⎰⎰⎰∞→t d t d t d T T T W(b) 波形如图1.2(b)所示。

显然是能量信号。

3716112=⨯+⨯=E J (c) 能量信号 1.0101)(lim101025=-===⎰⎰∞∞---∞→T t ttT e dt edt eE J(d) 功率信号,显然有 1=P W1-3 解 周期T=7 ,一个周期的能量为 5624316=⨯+⨯=E J 信号的功率为 8756===T E P W 1-5 解 (a) )(4)2()23(2t tt δδ=+; (b) )5.2(5.0)5.2(5.0)25(5.733-=-=----t e t e t et tδδδ(c) )2(23)2()3sin()2()32sin(πδπδπππδπ+-=++-=++t t t t 题解图1-2(a) 21题解图1-2(b) 21(d) )3()3()(1)2(-=----t e t t et δδε。

1-6 解 (a) 5)3()94()3()4(2-=+-=+-⎰⎰∞∞-∞∞-dt t dt t t δδ(b) 0)4()4(632=+-⎰-dt t t δ(c) 2)]2(2)4(10[)]42(2)4()[6(63632=+++-=+++-⎰⎰--dt t t dt t t t δδδδ(d)3)3(3)(3sin )(1010=⋅=⎰⎰∞-∞-dt t Sa t dt ttt δδ。

信号与系统课后习题参考答案

信号与系统课后习题参考答案

1试分别指出以下波形是属于哪种信号?题图1-11-2试写出题1-1图中信号的函数表达式。

1-3已知信号)(1t x 与)(2t x 波形如题图1-3中所示,试作出下列各信号的波形图,并加以标注。

题图1-3⑴)2(1-t x ⑵)1(1t x -⑶)22(1+t x⑷)3(2+t x ⑸)22(2-t x ⑹)21(2t x - ⑺)(1t x )(2t x -⑻)1(1t x -)1(2-t x ⑼)22(1t x -)4(2+t x 1-4已知信号)(1n x 与)(2n x 波形如题图1-4中所示,试作出下列各信号的波形图,并加以标注。

题图1-4⑴)12(1+n x ⑵)4(1n x -⑶)2(1n x ⑷)2(2n x -⑸)2(2+n x ⑹)1()2(22--++n x n x⑺)2(1+n x )21(2n x -⑻)1(1n x -)4(2+n x ⑼)1(1-n x )3(2-n x1-5已知信号)25(t x -的波形如题图1-5所示,试作出信号)(t x 的波形图,并加以标注。

题图1-51-6试画出下列信号的波形图:⑴)8sin()sin()(t t t x ΩΩ=⑵)8sin()]sin(211[)(t t t x ΩΩ+= ⑶)8sin()]sin(1[)(t t t x ΩΩ+=⑷)2sin(1)(t tt x = 1-7试画出下列信号的波形图:⑴)(1)(t u e t x t -+=⑵)]2()1([10cos )(---=-t u t u t e t x t π⑶)()2()(t u e t x t --=⑷)()()1(t u e t x t --=⑸)9()(2-=t u t x ⑹)4()(2-=t t x δ1-8试求出以下复变函数的模与幅角,并画出模与幅角的波形图。

⑴)1(1)(2Ω-Ω=Ωj e j X ⑵)(1)(Ω-Ω-Ω=Ωj j e e j X ⑶Ω-Ω---=Ωj j e e j X 11)(4⑷21)(+Ω=Ωj j X 1-9已知信号)]()([sin )(π--=t u t u t t x ,求出下列信号,并画出它们的波形图。

信号与系统课后习题答案汇总

信号与系统课后习题答案汇总

第一章习题参考解答1.1 绘出下列函数波形草图。

(1) ||3)(t et x -=(2) ()⎪⎪⎨⎧<≥=02021)(n n n x n n (3) )(2sin )(t t tx επ= (5) )]4()([4cos )(--=-t t t et x tεεπ(7) t t t t x 2cos)]2()([)(πδδ--=(9) )2()1(2)()(-+--=t t t t x εεε)5- (11) )]1()1([)(--+=t t dtdt x εε (12) )()5()(n n n x --+-=εε (13) ⎰∞--=td t x ττδ)1()((14) )()(n n n x --=ε1.2 确定下列信号的能量和功率,并指出是能量信号还是功率信号,或两者均不是。

(1) ||3)(t et x -=解 能量有限信号。

信号能量为:(2) ()⎪⎩⎪⎨⎧<≥=02021)(n n n x n n解 能量有限信号。

信号能量为:(3) t t x π2sin )(=解 功率有限信号。

周期信号在(∞-∞,)区间上的平均功率等于在一个周期内的平均功率,t π2sin 的周期为1。

(4) n n x 4sin)(π=解 功率有限信号。

n 4sin π是周期序列,周期为8。

(5) )(2sin )(t t t x επ=解 功率有限信号。

由题(3)知,在),(∞-∞区间上t π2sin 的功率为1/2,因此)(2sin t t επ在),(∞-∞区间上的功率为1/4。

如果考察)(2sin t t επ在),0(∞区间上的功率,其功率为1/2。

(6) )(4sin)(n n n x επ=解 功率有限信号。

由题(4)知,在),(∞-∞区间上n 4sin π的功率为1/2,因此)(4sinn n επ在),(∞-∞区间上的功率为1/4。

如果考察)(4sinn n επ在),0(∞区间上的功率,其功率为1/2。

2023年大学_信号与系统第二版(陈生潭著)课后答案下载

2023年大学_信号与系统第二版(陈生潭著)课后答案下载

2023年信号与系统第二版(陈生潭著)课后答案下载2023年信号与系统第二版(陈生潭著)课后答案下载第1章信号与系统的基本概念1.0 信号与系统1.1 信号的描述和分类1.1.1 信号的描述1.1.2 信号的分类1.2 信号的基本特性1.3 信号的基本运算1.3.1 相加和相乘1.3.2 翻转、平移和展缩1.3.3 信号的导数和积分1.3.4 信号的差分和迭分1.4 阶跃信号和冲激信号1.4.1 连续时间阶跃信号1.4.2 连续时间冲激信号1.4.3 广义函数和艿函数性质1.4.4 阶跃序列和脉冲序列1.5 系统的描述1.5.1 系统模型1.5.2 系统的输入输出描述1.5.3 系统的状态空间描述1.5.4 系统的框图表示1.6 系统的特性和分类1.6.1 线性特性1.6.2 时不变特性1.6.3 因果性1.6.4 稳定性1.6.5 系统的分类1.7 信号与系统的分析方法习题一第2章连续信号与系统的`时域分析 2.0 引言2.1 连续时间基本信号2.1.1 奇异信号2.1.2 正弦信号2.1.3 指数信号2.2 卷积积分2.2.1 卷积的定义2.2.2 卷积的图解机理2.2.3 卷积性质2.2.4 常用信号的卷积公式2.3 系统的微分算子方程2.3.1 微分算子和积分算子2.3.2 LTI系统的微分算子方程2.3.3 电路系统算子方程的建立2.4 连续系统的零输入响应2.4.1 系统初始条件2.4.2 零输入响应算子方程2.4.3 简单系统的零输入响应2.4.4 一般系统的零输入响应2.5 连续系统的零状态响应2.5.1 连续信号的艿(£)分解2.5.2 基本信号d(£)激励下的零状态响应 2.5.3 一般信号厂(£)激励下的零状态响应2.5.4 零状态响应的另一个计算公式2.6 系统微分方程的经典解法2.6.1 齐次解和特解2.6.2 响应的完全解习题二第3章连续信号与系统的频域分析3.0 引言3.1 信号的正交分解3.1.1 矢量的正交分解3.1.2 信号的正交分解3.2 周期信号的连续时间傅里叶级数3.2.1 三角形式的傅里叶级数3.2.2 指数形式的傅里叶级数3.3 周期信号的频谱3.3.1 周期信号的频谱3.3.2周期信号频谱的特点3.3.3周期信号的功率3.4 非周期信号的连续时IⅫ傅里叶变换 3.4.1 傅里叶变换3.4.2 非周期信号的频谱函数3.4.3 典型信号的傅里叶变换3.5 傅里叶变换的性质3.6 周期信号的傅里叶变换3.7 连续信号的抽样定理3.7.1 信号的时域抽样定理3.7.2 周期脉冲抽样……第4章连续信号与系统的S域分析第5章离散信号与系统的时域分析第6章离散信号与系统的频域分析第7章离散信号与系统的Z域分析第8章系统的状态空间分析第9章随机信号通过线性系统分析第10章 MATLAB在信号与系统分析中的应用附录各章习题参考答案信号与系统第二版(陈生潭著):内容提要本书可作为高等学校电子信息工程、通信工程、计算机科学与技术、测控技术与仪器、光信息科学与技术、电气工程及自动化等专业“信号与系统”课程的教材,也可供相关专业科技工作人员参考。

信号与系统(第三版)西安电子科技大学出版社陈生潭第1-5章-第3章

信号与系统(第三版)西安电子科技大学出版社陈生潭第1-5章-第3章


Fn

t 0 T
t0
fT (t ) g (t )dt g i (t ) dt
2
* i

t 0 T

t 0 T
t0
fT (t )e
jnt
n

t0

t 0 T
t0
1 t 0 T jnt fT (t )e dt 2 jnt T t0 e dt
dt
fT (t )
a0 A0 直流分量 cos t , sin t 基波分量 2 2 cos nt , sin nt n次谐波分量
该周期函数可以视为由直流、基波和无穷多谐波分量组成。 3。an , An为n的偶函数,bn , n为n的奇函数。
an a n , An A n ; bn b n , n n .
1 2 E 1 jnt Fn E e dt e jnt T 2 T jn t


2 2
2E e ( Tn
j n 2
e 2j
j n 2
)
2 E sin( n ) E sin( n ) E n 2 2 n Sa( ) T n T T 2 2
i 1
N t2 E 这种近似所产生的平方误差为: e t f (t ) ci g i (t ) dt 1 i 1 2
t (t1 , t 2 ) 若 gi (t )g j * (t )dt 0 ii jj i, j 1,2,3 N ki
g (t ) g1 (t ), g 2 (t ),..., g N (t ),

c1V 1 V cos 1, c1
V cos 1 V1

信号与系统课后答案

信号与系统课后答案

信号与系统课后答案第1章1-1题1-1图示信号中,哪些是连续信号?哪些是离散信号?哪些是周期信号?哪些是非周期信号?哪些是有始信号?(c) (d)题1-1图解(a)、(c)、(d)为连续信号;(b)为离散信号;(d)为周期信号;其余为非周期信号;(a)、(b)、(c)为有始(因果)信号。

1-2给定题1-2图示信号f ( t ),试画出下列信号的波形。

[提示:f ( 2t )表示将f ( t )波形压缩,f (2t)表示将f ( t )波形展宽。

](a) 2f (t - 2 ) (b) f ( 2t )(c)f (2t )(d)f (-t +1 ) 题1-2图解以上各函数的波形如图p1-2所示。

图p1-21-3如图1-3图示,R 、L 、C 元件可以看成以电流为输入,电压为响应的简单线性系统S R 、S L 、S C ,试写出各系统响应电压与激励电流函数关系的表达式。

题1-3图解各系统响应与输入的关系可分别表示为)()(t i R t u R R ⋅= tt i Lt u L L d )(d )(= ⎰∞-=tC C i C t u ττd )(1)(S RS L S C1-4如题1-4图示系统由加法器、积分器和放大量为-a 的放大器三个子系统组成,系统属于何种联接形式?试写出该系统的微分方程。

题1-4图解系统为反馈联接形式。

设加法器的输出为x ( t ),由于)()()()(t y a t f t x -+=且)()(,d )()(t y t x t t x t y '==⎰故有)()()(t ay t f t y -='即)()()(t f t ay t y =+'1-5已知某系统的输入f ( t )与输出y ( t )的关系为y ( t ) = | f ( t )|,试判定该系统是否为线性时不变系统?解设T 为系统的运算子,则可以表示为)()]([)(t f t f T t y ==不失一般性,设f ( t ) = f 1( t ) +f 2( t ),则)()()]([111t y t f t f T ==)()()]([222t y t f t f T ==故有)()()()]([21t y t f t f t f T =+=显然)()()()(2121t f t f t f t f +≠+即不满足可加性,故为非线性时不变系统。

信号与系统课后习题答案第4章 PPT

信号与系统课后习题答案第4章 PPT
(a) 记f(t)中第一周期信号为 相应的象函数为F1(s)。由于
4.8 已知因果信号f(t)的象函数为F(s),求下列F(s)的原函 数f(t)的初值f(0+)和终值f(∞)。
解 本题练习初值定理和终值定理的应用。
解 计算单边拉氏逆变换的常用方法有: ① 查表、公式法; ② 应用性质;③ 部分分式展开法;④ 反演积分法。
题图 4.4
解 画出S域零状态系统模型如题解图4.19所示。
题解图 4.19
故有单位冲激响应:
令式①中
再取拉氏逆变换,求得单位阶跃响应:
4.20 题图4.5所示RLC系统,us(t)=12 V, L=1 H,C=1 F, R1=3 Ω, R2=2 Ω,R3=1 Ω。t<0时电路已达稳态,t=0时开 关S闭合。求t≥0时电压u(t)的零输入响应、零状态响应和全 响应。
4.28 已知线性连续系统的系统函数H(s)的零、极点分布如
题图 4.10 所示。图中,“×”号表示极点,“ 。”号表示零
点。
(1) 若H(∞)=1,求图(a)对应系统的H(s);
(2) 若H(0)=
求图(b)对应系统的H(s);
(3) 求系统频率响应H(jω),粗略画出系统幅频特性和相频
特性曲线。
题图 4.12
其中
(3) 考虑到f(t)=ε(t-1), 即输入在t=1时刻激励系统,故有 且
代入式①、②整理得
所以,系统零输入响应和零状态响应为 全响应:
4.15 已知线性连续系统的系统函数和输入f(t),求系统的 全响应。
解 本题分别用时域方法计算零输入响应,S域方法计算 零状态响应,然后叠加求得全响应。
解 用直接形式信号流图、方框图模拟连续系统。

信号与系统课后习题参考答案

信号与系统课后习题参考答案
2-10电路如题图2-10中所示,试列出电路对应得输入输出时间方程。
题图2-10
2-11已知系统得微分方程与起始条件,试求系统得零输入响应。



2-12已知系统得差分方程与起始条件,试求系统得零输入响应。



2-13已知系统得微分方程,试求系统得单位冲激响应。



2-14已知系统得差分方程,试求系统得单位样值响应。
1-1试分别指出以下波形就是属于哪种信号?
题图1-1
1-2试写出题1-1图中信号得函数表达式。
1-3已知信号与波形如题图1-3中所示,试作出下列各信号得波形图,并加以标注。
题图1-3
⑴⑵⑶
⑷⑸⑹
⑺⑻⑼
1-4已知信号与波形如题图1-4中所示,试作出下列各信号得波形图,并加以标注。
题图1-4
⑴⑵⑶
⑷⑸⑹





2-2试计算下列各对信号得卷积与:。
⑴(对与两种情况)





2-3试计算下图中各对信号得卷积积分:,并作出结果得图形。
题图2-3
2-4试计算下图中各对信号得卷积与:,并作出结果得图形。
题图2-4
2-5已知,试求:
⑴⑵⑶
并作出她们得图形。
2-6系统如题图2-6所示,试求系统得单位冲激响应。已知其中各子系统得单位冲激响应分别为:
3-5设有一周期信号x(t),其复振幅为:
⑴x(t)就是实函数吗?⑵x(t)就是偶函数吗?⑶就是偶函数吗?
3-6设x(t)就是一基波频率为Ω得周期信号,其复振幅为,试用表示以下周期信号得复振幅。
⑴⑵

《信号与系统》习题参考答案

《信号与系统》习题参考答案

《信号与系统》习题参考答案(1)2—1(1) 01()()()()(1)()ta at x t h t x u t d e d e u t aτττττ∞---∞*=⋅-==-⎰⎰ (2) 00()()(cos sin )()x t h t t d ωτωτδττ∞-∞*=+⋅-⎰0000(cos sin )()cos sin t t t d t t ωωδττωω∞-∞=+⋅-=+⎰(3) 当0t <时 ()()0x t h t *=当01t ≤<时 20()()(1)2tt x t h t d t ττ*=+=+⎰当12t ≤<时 13()()(1)2x t h t d ττ*=+=⎰ 当23t ≤<时 12213()()(1)22t x t h t d t t ττ-*=+=-++⎰ 当3t ≥时 ()()0x t h t *= (4) 当0t <时 ()()0x t h t *=当0t ≥时 01()()sin 2(1cos 2)2tx t h t d t ττ*==-⎰ (5) 22222(2)2(4)241()()(2)2t t t t t t t x t h t e d e d e ee ττττ-----*=-=-+⎰⎰ (6)()x t at b =+11212()()()()()(2)3363tt x t h t a b d a tb t a t a bττδ-*=+++*--=++⎰2—2(1) [][][][2](2)[2]x n h n nu n n n u n δ*=*-=--(2) 10[][](2)[](21)[]nin i x n h n u n u n +=*==-∑(3) 当0n ≥时 1111[][]2()()232i n in i x n h n --=-∞*==∑ 当0n <时 111[][]2()223n i n i n i x n h n --=-∞*==⋅∑ (4) 当0n <时 [][]0x n h n *=当0n ≥时 110[][]()[]n n nin ii x n h n u n βααββα++-=-*==-∑(5) 当07n ≤≤时 071[][](1)[1(1)]2in i n x n h n -=-*=-=--∑ 当70n -≤≤时 71[][](1)[(1)1]2ni n i x n h n -=-*=-=--∑ 2—3(1) 12()()[(1)(1)][(5)(5)]x t x t u t u t t t δδ*=+--*++- (6)(4)(4)(6)u t u t u t u t =++--+-- (2) 123()()()x t x t x t **{[(6)(4)][(4)(6)]}*[u t u t u t u t =+-++---11()()]22t t δδ++- ( 6.5)( 4.5)( 5.5)( 3.5)( 3.5)( 5.5)u t u t u t u t u t u t =+-+++-++--- ( 4.5)( 6.5)u t u t +---(3) 1311()()[(1)(1)][()()]22x t x t u t u t t t δδ*=+--*++- ( 1.5)(0.5)(0.5)( 1.5)u t u t u t u t =+--++-- 2—4 0(3)331()(3)1t k k t tk k y t eu t k e e e e∞-----=-∞=-∞=-=⋅=-∑∑311A e-=- 2—5(1) 当2t ≥时 ()()0x t h t *= 当20t -<<时 11()()2t x t h t d t τ+-*==+⎰当02t <<时 11()()2t x t h t d t τ-*==-⎰(2) 当01t <<时 1()()22(1)tx t h t d t τ*==-⎰ 当10t -<<时 01()()22(1)2t tx t h t d d t t t ττ+*=+=-++=+⎰⎰当21t -<<-时 11()()2t x t h t d t τ+-*==+⎰当 1t ≥ 或 2t <-时 ()()0x t h t *=此题也可利用性质,先对()x t 积分,对()h t 微分,'()()()y t x t dt h t =*⎰(3) 当0t <时 (1)1()()1t x t h t e dt +∞--*==⎰当0t ≥时 1(1)(1)11()()22t t t t t x t h t e dt e dt e ++∞-----+*=+=-⎰⎰(4) 当t π< 或 5t π>时 ()()0x t h t *= 当3t ππ<<时 0()()sin 1cos t x t h t d t πττ-*==+⎰当35t ππ<<时 23()()sin 1cos t x t h t d t ππττ-*==--⎰(5) 当01t <<时 2211()()222()22x t h t t t t *=-=--当12t <≤时 2231()()264[2()]22x t h t t t t *=-+-=---()()x t h t *是以2为周期的周期函数 2—7(1) 111[][1]()[]()[1]22nn h n Ah n u n A u n ---=--111()[()()][1]()22nn n A u n n δδ-=+--=12A =(2) 111[][][][1][][]h n h n Ah n h n h n n δ---*-*-=*11[][][1]2h n n n δδ-∴=-- (3) 11[][][]2[[][1]][]nx n h n h n u n u n h n --**=--* 2[]2[[][4]]2[[1][5]]nn x n u n u n u n u n -∴=------2—8(1) 0()3()y t y t =(2) 00()()(2)y t y t y t =-- (3) 0()(1)y t y t =- (4) 0()()y t y t =-(5) 0()()dy t y t dt=(6) 202()()d y t y t dt =2—9 12111[][]()[]()[1]222n n x n h n u n u n -*=-+--1()([][1])[]2nu n u n n δ=---=1221[][][][]([][])*[]y n x n h n h n x n h n h n =**=* []*([][])[][]n n n n n u n u n u n u n δαβαβ=+=+ 2—10(1) 341201[][]((0.5))[3]2(1())[3]2n nn n x n x n u n u n ++=*=+=-+∑ (2) 4123[][][]2(1(0.5))[3]([][1])n x n x n x n u n n n δδ+**=-+*-- 43312(1(0.5))[3]2(1(0.5))[2]()[3]2n n n u n u n u n +++=-+--+=+ (3) 23[][][3]([][1])[3][2][3]x n x n u n n n u n u n n δδδ*=+*--=+-+=+ 2—11(1) 12345[][]([][][])[]h n h n h n h n h n h n =*-*+ (2) 34[][][1]h n h n nu n *=- 234[][][](1)[][1][]h n h n h nn u n n u n u n -*=+--= 12345[][]([][][])[]h n h n h n h n h n h n =*-*+514()([][3])*[][]2nu n u n u n hn =--+ 4[]6[1]7[2][]4[3]5[]6[1]7[2]4[3]n n u n n n n n u n n δδδδδδδ=+-+-++-=+-+---(1)'()()(2)(2)()(2)tt y t e x d x t y t x t τττ---∞=--+-=-+-⎰(2)()(2)t h t eu t --=- (2)当1t ≤时 ()0y t =当14t <≤时 1(2)(1)2()1t t y t e d e ττ+----==-⎰当4t >时 1(2)(4)(1)2()t t t t y t e d e e ττ+-------==-⎰2—13(1)213()()()()(1)[()](1)[()](1)h t h t h t u t t t u t t u t δδδ**=*-*-=-*-=-- 1213()()()()()()(1)h t h t h t h t h t u t u t =+**=--(2)1(10)1(02)()3(23)0t t t y t t t +-<<⎧⎪<<⎪=⎨-<<⎪⎪⎩其余2—14(1)因果、稳定 (2)非因果、非稳定 (3)非因果、稳定 (4)非因果、稳定 (5)非因果、稳定 (6)因果、稳定 (7)因果、非稳定 2—15(1)因果、稳定 (2)非因果、稳定 (3)非因果、非稳定 (4)非因果、稳定 (5)因果、非稳定 (6)非因果、稳定 (7)因果、稳定 2—16(1)对 (2)对()h t dt ∞-∞=+∞⎰(3)错 例如单位冲激响应(1)t δ-是因果的,但LTI 系统的逆系统(1)t δ+不是因果的。

大学科目《信号与系统》各章节习题答案

大学科目《信号与系统》各章节习题答案

第一章 习 题1-1 画出下列各信号的波形:(1) f 1(t)=(2-e -t )U(t); (2) f 2(t)=e -t cos10πt×[U(t -1)-U(t-2)]。

答案(1))(1t f 的波形如图1.1(a )所示.(2) 因t π10cos 的周期s T 2.0102==ππ,故)(2t f 的波形如图题1.1(b)所示.1-2 已知各信号的波形如图题1-2所示,试写出它们各自的函数式。

答案)1()]1()([)(1-+--=t u t u t u t t f)]1()()[1()(2----=t u t u t t f)]3()2()[2()(3----=t u t u t t f1-3 写出图题1-3所示各信号的函数表达式。

答案2002121)2(21121)2(21)(1≤≤≤≤-⎪⎩⎪⎨⎧+-=+-+=+=t t t t t t t f)2()1()()(2--+=t u t u t u t f)]2()2([2sin )(3--+-=t u t u t t f π)3(2)2(4)1(3)1(2)2()(4-+---++-+=t u t u t u t u t u t f1-4 画出下列各信号的波形:(1) f 1(t)=U(t 2-1); (2) f 2(t)=(t-1)U(t 2-1);(3) f 3(t)=U(t 2-5t+6); (4)f 4(t)=U(sinπt)。

答案(1) )1()1()(1--+-=t u t u t f ,其波形如图题1.4(a)所示.(2))1()1()1()1()]1()1()[1()(2---+--=--+--=t u t t u t t u t u t t f 其波形如图题1.4(b)所示.(3))3()2()(3-++-=t u t u t f ,其波形如图1.4(c)所示.(4) )(sin )(4t u t f π=的波形如图题1.4(d)所示.1-5 判断下列各信号是否为周期信号,若是周期信号,求其周期T 。

信号与系统第1至8章习题参考解答

信号与系统第1至8章习题参考解答

《信号与系统》第1~8章习题参考解答第一章 (2)第二章 (13)第三章 (22)第四章 (35)第五章 (48)第六章(无) (56)第七章 (57)第八章 (65)第一章1-4 对于例1-1所示信号,由f (t )求f (−3t − 2),但改变运算顺序,先求f (3t )或先求f (−t ),讨论所得结果是否与原例之结果一致。

解:(1). 例1-1的方法: f (t )→ f (t − 2)→ f (3t − 2)→ f (−3t − 2) (2). 方法二:f (t )→ f (3t )→ 2[3()]3f t − →f (−3t − 2) (3). 方法三:f (t )→f (−t ) →[(2)]f t −+ →f (−3t − 2)方法三:1-5 已知()f t ,为求0()f t at −应按下列哪种运算求得正确结果(式中0t ,a 都为正值)?(1)()f at −左移0t (2)()f at 右移0t (3)()f at 左移0t a (4)()f at −右移0ta解:(4)()f at −右移t a:故(4)运算可以得到正确结果。

注:1-4、1-5 题考察信号时域运算:1-4 题说明采用不同的运算次序可以得到一致的结果; 1-5 题提醒所有的运算是针对自变量t 进行的。

如果先进行尺度变换或者反转变换,再进行移位变换,一定要注意移位量和移位的方向。

1-9 粗略绘出下列各函数式的波形图: (1)()(2)()t f t e u t −=− (2)2()(36)()t t f t e e u t −−=+ (3)3()(55)()t t f t e e u t −−=−(4)()cos(10)[(1)(2)]t f t e t u t u t π−=−−− 解:(1)()(2)()tf t e u t −=−(2)2()(36)()ttf t e eu t −−=+(3)3()(55)()ttf t e eu t −−=−(4)()cos(10)[(1)(2)]tf t e t u t u t π−=−−−1-12 绘出下列各时间函数的波形图,注意它们的区别:(1)[()(1)]−−;t u t u t(2)(1)�;t u t−(3)[()(1)](1)−−+−;t u t u t u t(4)(1)(1)−−;t u t(5)(1)[()(1)]−−−−;t u t u t(6)[(2)(3)]−−−;t u t u t(7)(2)[(2)(3)]t u t u t−−−−。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章,第二章,第三章,第四章,第一章:1.找两个表示信号的例子,并指出信号表示的信息(消息)。

1.1(1),1.1(5),1.1(9);1.2(4),1.2(6) ;1.3(a);1()(1)0.5*() 2.5*(1)(3)f t t t t t εεεε=++--+- 1.4(6), (1)6()j t f t e π-=, 周期信号,周期为22T ππ==1.5(10);1.6(4);1.11(3),[]0000()()()()1j t j t j t j t j t e t t t dte t dt e t t dt e eeωωωωωδδδδ∞--∞∞∞---∞-∞----=--=-=-⎰⎰⎰ 1.11(7)2221(1)()(1)()21/22(1)()2()2t t t dt t t t dt t t t dt t dtδδδδ∞∞-∞-∞∞∞-∞-∞++=++=++==⎰⎰⎰⎰1.11(8)()()221()212()2()2()tttxx x dx x x x dxx dx t δδδε-∞-∞-∞++=++==⎰⎰⎰1.17(a) 解:设左边加法器的输出为'()x t ,则积分器的输出为()x t 。

根据两个加法器的输入输出关系,可以得到''()()3()()()2()x t f t x t y t x t x t =-=+因此"'''"''''''''()()3()()()2()()3()2(()3())()2()3(()2())()2()3()()3()()2()x t f x x t y t x t x t f x x t f t x t f x f t x t x t f x f t y t y t y t f t f t =-=+=-+-=+-+=+-∴+=+ 1.17(b)"'"'()()3()2()()3()2()()y t f t y t y t y t y t y t f t =--⇒++=1.17(c) 解:设左边加法器的输出为()x k ,则()()(1)x k f k ax k =-- (1) ()()(1)y k x k bx k =+- (2)由 式(1)和(2)(1)(1)(2)(1)(1)(2)x k f k ax k y k x k bx k -=----=-+-因此[][]()()(1)(1)(2)()(1)(1)(2)()(1)(1)y k f k ax k b f k ax k f k bf k a x k bx k f k bf k ay k =--+---=+---+-=+--- 即()(1)()(1)y k ay k f k bf k +-=+-1.17(d)()4[()2(1)3(2)]5[(1)2(2)3(3)]6[(1)2(3)3(4)]4()5(1)6(1)2[4(1)5(2)6(3)]3[4(2)5(3)6(4)]4()5(1)6(2)2(1)3(2)y k f k x k x k f k x k x k f k x k x k f k f k f k x k x k x k x k x k x k f k f k f k y k y k =+-----+---+-+---=--+-+---+-----+-=--+-+---所以,输入输出方程是()2(1)3(2)4()5(1)6(2)y k y k y k f k f k f k --+-=--+- 1.18 是否为线性系统(1)否; 零输入响应20()x t 为非线性响应,零输入响应和零状态响应也不是和的关系。

(2)否;零状态响应2()f t 为非线性响应。

(3)否;(4)是;1.19 解:(1) 线性、时不变、因果、稳定;(2) 非线性(零输入响应12(0)(0)x x 为非线性响应)、时不变、因果、不稳定(响应中0()tf d ττ⎰,例如信号()()f t t ε=时,随时间增长变为无穷大。

);(3) 非线性(输出响应sin[()]f t 为非线性响应)、时不变、因果、稳定;(4) 线性、时变(响应(2)f t 和初始时间有关系)、非因果(响应(1)f t +,0t =时刻的响应和之后的时刻1t =有关系)、稳定;(5) 非线性(响应()(2)f k f k -为非线性响应)、时不变、因果、稳定;(6) 线性、时变(响应11(0)2kx ⎛⎫⎪⎝⎭为和初始时刻有关系的响应)、非因果(响应(1)(2)k f k -+,0k =时刻的响应和之后的时刻2k =有关系)、不稳定(响应中(1)(2)k f k -+,例如信号()()f k k ε=时,随k 增长变为无穷大。

);1.21 解:零输入线性,包括零输入齐次性和零输入可加性。

因为激励()0f t =,故系统零状态响应()0f y t =。

对于零输入响应,已知3121(0)1,(0)0()23,0t t x x x y t e e t ----==→=+≥ 3122(0)0,(0)1()42,0t t x x x y t e e t ----==→=-≥根据零输入线性,可得12123(0)5,(0)3()5()3()229,0x x x ttx x y t y t y t e e t ----==→=+=+≥响应;3()()229,0t t x y t y t e e t --==+≥1.23 解: 设初始状态12(0)1,(0)2x x --==时,系统的零输入响应为1()x y t ;输入()()f t t ε=时,系统的零状态响应为 1()f y t ,则有11231231()()65()3()87t tx f t t x f y t y t e e y t y t e e----⎧+=-⎪⎨+=-⎪⎩ 联立,解方程组得12312354t tx t tf y e e y e e ----⎧=-⎪⎨=-⎪⎩ 根据系统的线性特性,求得(1) 23154,0t t x x y y e e t --==-≥ (2)输入为()2()f t t ε=时的零状态响应12322(),0t t f f y y e e t --==-≥# 离散信号()f n :# (3)()()(3)t t t t εεεε-=-- #)()()()(02t d d e d e tt tεττδττδττδτ===⎰⎰⎰∞-∞-∞--1.4(6), (1)6()j t f t e π-=, 周期信号,周期为22T ππ==# 系统结构框图如图所示,该系统的单位冲激响应h(t) 满足的方程式为dh t dth t t ()()()+=δ)()()()()()()()();()()()()()()()()()()()()()()()('''''t t h dtt dh t t h t h t t x t h t y t x t y t y t y t x t s t x t s t y t s t y t s t x t s δδδ=+=+===+-=-===-=代入第二章: 2.3(3)()434()()()(1)()(1)f t f t f t t t t δδδ*=*+++-444(1)()(1)(2)(1)(1)(2)f t f t f t t t t t εεεε=+++-=+++---- 2.3(4) 45()()((1)(1))((1)(4))f t f t t t t t εεεε*=+--*---235()|()|()|()|t t t t t t t t t t t t t t t t εεεε→→-→-→-=--+()(2)(2)(3)(3)(5)(5)t t t t t t t t εεεε=------+--2.4(4)122200()()()()()()11()22ttf t f t t t t t d d t t εετετετττττε∞-∞*=*=-===⎰⎰2.4(8)122()()(1)(2)(2)(1)(1)t f t f t t e t e t d e t d ττεεετεττεττ∞-∞-∞*=-*-=---=--⎰⎰当 12t -< 即 3t <时 1112()()t t f t f t e d e ττ---∞*==⎰当 12t -≥ 即 3t ≥时 2212()()f t f t e d e ττ-∞*==⎰故 21(3)(1)(2)(3)tt e t t e t e t εε-⎧≥-*-=⎨<⎩2.4(9) 2312()()(1)(3)tt f t f t et e t εε--*=-*+22(1)93(3)(1)(3)t t e e t e e t εε----+=-*+72(1)3(3)723137232724362331((1)(3))(()())|()()|()(2)()(2)t t t t t t t t t t t t t t e e t e t e e t e t e e e t e e e t e e t εεεεεεε---+--→-+--→+-----+-+=-*+=*=-=-+=-+2.612013111()()53()123323t or t t t f t f t t t t t <->⎧⎪+-≤<⎪⎪*=⎨--≤<⎪⎪-≤≤⎪⎩ 2.7(1)112222[(2)(1)]2[(2)(1)]23t t t d d εετετετττττ∞-∞--*+--=+--===-⎰⎰2.7(2)11()()()()1ttnnn n t t t d d t t n εετεττττε+-∞*===+⎰⎰ [()0]ε-∞= 2.7(3)''()()()()[()()]tt et t t e t t t εδεεδε--**=** [()0]ε-∞='()[()()]()[()()]()()()t t tte t t t e t t t e t t e t εδεεδδεδε----=**=**=*=2.7(4)由于 ()0t t t ε=-∞=2"2'2'22()()()()()[()()]()()()()()()()t t ttte t t t t e t t t t t e t t t e t t t e t εδεεδεδεδεεδδε-----**=**+=**=**=2.8123()()[(2)2(1)](1)(2)(1)2(1)(1)()2()(3)(3)2()t t t t f t f t t t t t t t t t t t t t t t t εεεεεεεεεεε→+→*=-++-*+=-+*++-*+=-+=-+++(1)(13)2f -=--+=-;(0)(03)03f =-++=-(1)(13)2112f =-++⋅⋅=-2.9 由图可知 1()(2)(3)f t t t εε=---,(1)2()(1)t f t e t ε-+=+因此(1)(1)12213112(1)(2)(1)(1)()()()(2)(1)(3)(1)[()()][()()](1)()(1)()(1)(1)(1)(2)01112(t t t t t t t t t t t t t t t t t t f t f t f t t e t t e t t e t t e t e t e t e t e t t e t e e εεεεεεεεεεεε-+-+----→-+→-+→-→---------=*=-*+--*+=*-*=---=-----<=-≤<1)2t ⎧⎪⎨⎪-≥⎩# ()()()()t f t t f t δδ**=# ())()(2121t t t f t t t t f --=-*-δ # 已知函数()f t ,则函数0()f t at -可以把函数()f at -右移0t a得到。

相关文档
最新文档