期末第25章概率初步复习PPT课件

合集下载

人教版九年级上册25概率初步复习课件

人教版九年级上册25概率初步复习课件
1
P(两枚正面向上)= 4 .
变式 向空中抛掷三枚质地均匀的硬币,三枚硬币全部 正面向上的概率呢?
枚举法Leabharlann 列表法树状图法 √
解:三枚硬币分别记为第1枚、第2枚、第3枚,可以画出如下
树状图:
第1枚


第2枚
正反
正反
第3枚
正反 正反
正反 正反
由树状图可以看出,所有可能出现的结果共有12种,这些结 果的可能性相等,三枚正面向上的有1种.
特别的, 必然事件如“通常加热到100℃时,水沸腾”概率为1; 不可能事件如“任意画一个三角形,其内角和是360°”概率为0.
问题5.如何求随机事件的概率呢?
(2)掷一枚硬币,正面向上; (3)篮球队员投篮一次,投中;
思考1.掷一枚硬币,正面向上的概率为多少? 思考2.运动员投篮一次,投中的概率约为多少?


正 (正,正) (反,正)
反 (正,反) (反,反)
由此表可以看出,同时抛掷两枚硬币,可能出现的结果有 4 个,并且它们出现的可能性相等,两枚正面向上的有1种.
1
P(两枚正面向上)= 4 .
方法三 解:两枚硬币分别记为第1枚、第2枚,可以画出如下树状图
第1枚


第2枚
正反
正反
由树状图可以看出,所有可能出现的结果共有4种,这些结果 的可能性相等,两枚正面向上的有1种.
例题精讲
例3.如图所示是四张质地相同的卡片.将卡片洗匀后,背面朝上放置在 桌面上.
小贝和小晶想用以上四张卡片做游戏,游戏规则见信息图.你认为 这个游戏公平吗?请用列表法或画树状图法说明理由.
2236
游戏规则 随机抽取一张卡片,记下数字 放回,洗匀后再抽一张.将抽取的 第一张、第二张卡片上的数字分别 作为十位数字和个位数字,若组成 的两位数不超过 32,则小贝胜, 反之小晶胜.

新人教版九年级数学上册课件《第二十五章概率初步》复习课件部编版PPT

新人教版九年级数学上册课件《第二十五章概率初步》复习课件部编版PPT

元就有一次按下面规则转动转盘获奖机会,且两超市奖额等同.
规则是: ①A超市把转盘甲等分成4个扇形区域、B超市把转盘
乙等分成3个扇形区域,并标上了数字(如图所示); ②顾客
第一回转动转盘要转两次,第一次与第二次分别停止后指针所
指数字之和为奇数时就获奖(若指针停在等分线上,那么重转
一次,直到指针指向某一份为止).
解:(1)画出树状图来说明三位评委给出A选手的所有可能结果:

通过
待定

通过
待定
通过
待定
丙 通过 待定 通过 待定 通过 待定 通过 待定
(2)由上图可知三位评委给出A选手的所有可能的结果共有8种. 对于选手A, “只有甲、乙两位评委给出相同结果”有2种,即 “通过-通过-待定” “待定-待定-通过”,所以对于选手A,
前提条件 求法
等可能性事件 发生的可能性 的大小
直接列举法
列表法
画树状图法
( 特别要注意是否放回)
课后训练
1.下列说法错误的是( B ) A.必然发生的事件发生的概率为1 B.不确定事件发生的概率为0 C.随机事件发生的概率大于0且小于1 D.不可能发生的事件发生的概率为0
2.某地区林业局要考察一种树苗移植பைடு நூலகம்成活率,对该地区这种
少万棵?
0.8
解:18÷0.9﹣5=15;
答:该地区需移植这种树苗约15万棵.0
2 4 6 8 10 移植数量/千棵
3.有四根小木棒长度分别是2,3,4,5,若从中任意抽出三
根木棒组成三角形. (1)下列说法错误的是 ② (填序号).
1
①第一个抽出的木棒是4的可能性是 4 ; ②第二个抽出的木棒是3的可能性是 1 ;

人教版九年级上册数学同步教学课件-第25章-概率初步复习课件

人教版九年级上册数学同步教学课件-第25章-概率初步复习课件

练习2 在一个不透明的口袋中装有5个完全相同的小球,把它
们分别标号1,2,3,4,5,从中随机摸出一个小球,其标号
小于4的概率是( C )
A. 1 B. 2
5
5
C. 3 5
D. 4 5
数学课堂教学课件设计
3 用列表法或画树状图法求概率
专题复习
例3 在中央电视台的某次选秀节目中,甲、乙、丙三位评委对 选手的综合表现,分别给出“待定”或“通过”的结论. (1)写出三位评委给出A选手的所有可能的结果; (2)对于选手A,只有甲、乙两位评委给出相同结果的概率是多 少?
6
表示随着抛骰子次数的增加,“朝上的点数是1”这一事件发 生的频率稳定在 1 附近
6
数学课堂教学课件设计
专题复习
【解析】 概率是指发生的可能性大小,选项A是指明天下雨的可 能性是80%;选项B,要有前提条件,大量重复试验,平均每抛 两次就有一次正面朝上;选项C,概率是针对大量重复试验,大 量重试验反映的规律并非在每次试验中都发生;选项D,正确.
数学课堂教学课件设计
专题复习
2 概率
例2 下列说法正确的是( D ) A. “明天下雨的概率是80%”表示明天有80%的时间都在下雨 B. “抛一枚硬币正面朝上的概率是0.5”表示每抛两次就有一次 正面朝上 C. “彩票中奖的概率是1%”表示买100张彩票肯定会中奖 D. “抛一枚质地均匀的正方体骰子,朝上的点是1的概率为 1 ”
【解析】选项A,必然事件;选项B,不可能事件;选项C,必 然事件;选项D,随机事件,故选D.
数学课堂教学课件设计
专题复习
练习1 :下列事件中是必然事件的是(D ) A.从一个装有蓝、白两色球的缸里摸出一个球,摸出的球 是白球 B.小丹的自行车轮胎被钉子扎坏 C.小红期末考试数学成绩一定得满分 D.将油滴入水中,油会浮在水面上

数学九年级上册第二十五章《概率初步》小结与复习(共27张PPT)

数学九年级上册第二十五章《概率初步》小结与复习(共27张PPT)

B)
A.布袋中有2个红球和5个其他颜色的球
B.如果摸球次数很多,那么平均每摸7次,就有2次
摸中红球
C.摸7次,就有2次摸中红球
D.摸7次,就有5次摸不中红球
2.下列事件中是必然事件的是( D ) A.从一个装有蓝、白两色球的缸里摸出一个球,摸 出的球是白球 B.小丹的自行车轮胎被钉子扎坏 C.小红期末考试数学成绩一定得满分 D.将油滴入水中,油会浮在水面上
第二十五章 概率初步
小结与复习
复习目标
1.梳理本章的知识要点,回顾与复习本章知识. 2.巩固并能熟练运用列举法、列表法和树状图法求 概率.(重、难点) 3.能应用频率估计概率解决生活中的实际问题.
要点梳理
一、事件的分类及其概念
事件
不可能事件:必然不会发生的事件
随机事件:在一定条件下可能发生也可能不发生 的事件
考点二 概率的计算 例2 (1)一个口袋中装有3个红球,2个绿球,1 个黄球,每个球除颜色外其他都相同,搅匀后
1
随机地从中摸出一个球是绿球的概率是___3___.
(2)三张分别画有平行四边形、等边三角形、圆的 卡片,它们的背面都相同,现将它们背面朝上,
从中任取一张,卡片上所画图形恰好是中心对称 2
(2) 如果只考虑中奖因素,你将会选择去哪个超市购 物?说明理由.
(2) 选甲超市.理由如下: ∵P(甲)>P(乙), ∴选甲超市.
成活 数
47
235 369 662 1335 3203 6335 8073 12628
成活 频率
0.94
0.87 0.923 0.883 0.89 0.915 0.905 0.897 0.902
由此可以估计该种幼树移植成活的概率约为( C ) (结果保留小数点后两位)

人教版九年级数学上册第二十五章概率初步全章课件(共12份)

人教版九年级数学上册第二十五章概率初步全章课件(共12份)


早上,我迟到了。于是就急忙去学校上学,可是在
楼梯上遇到了班主任,她批评了我一顿。我想我真不走
运,她经常在办公室的啊,今天我真倒霉。我明天不能 再迟到了,不然明天早上我将在楼梯上遇到班主任。 中午放学回家,我看了一场篮球赛,我想长大后我 会比姚明还高,我将长到100米高。看完比赛后,我又回
到学校上学。
活动2:摸球游戏 (1)小明从盒中任意摸出一球,一定能摸到红球吗?
(2)小麦从盒中摸出的球一定是白球吗? (3)小米从盒中摸出的球一定是红球吗?
(4)三人每次都能摸到红球吗?
可能发生, 也 可能不发生
必然不会发生
必然发生
试分析:“从如下一堆牌中任意抽一张牌,可以事先 知道抽到红牌的发生情况”吗?
白 球 3
【结论】由于两种球的数量不等,所以“摸出黑
球”和“摸出白球”的可能性的大小是不一样的,
且“摸出黑球”的可能性大于“摸出白球”的可
能性.
想一想: 能否通过改变袋子中某种颜色的球的数量,使“摸 出黑球”和“摸出白球”的可能性大小相同?
答:可以.例如:白球个数不变,拿出两个黑球或黑
球个数不变,加入2个白球.
2.如果袋子中有4个黑球和x个白球,从袋子中随机摸 出一个,“摸出白球”与“摸出黑球”的可能性相 同,则x= 4 .
3.已知地球表面陆地面积与海洋面积的比约为3:7,
如果宇宙中飞来一块陨石落在地球上,“落在海洋
里”发生的可能性( A )“落在陆地上”的可能
性.
A.大于 C.小于 B.等于 D.三种情况都有可能
后,袋中有不少于8个绿球,即绿球的数量 最多,这样摸到绿球的可能性最大.
当堂练习
1.下列事件是必然事件,不可能事件还是随机事件?

人教版数学九年级上册第25章:概率初步复习课件

人教版数学九年级上册第25章:概率初步复习课件

-40%=60%,所以口袋中白色球的个数=10×60%=6,即布袋中白色球
的个数很可能是6.故选C.
章末复习
专题五 利用概率判断游戏的公平性
【要点指点】通过计算概率判断游戏是否公平是概率知识的一 个 重要应用, 解决游戏是否公平的问题, 应先计算游戏参与者获 胜的概率, 若概率相等, 则游戏公平;若概率不相等, 则游戏不公 平.
章末复习
例5 色盲是伴X染色体隐性先天遗传病, 患者中男性远多于女 生, 从 男性体检信息库中随机抽取体检表, 统计结果如下表:
根据表中数据, 估计在男性中, 男性患色盲的概率为___0_.0_7__ (结 果保留小数点后两位).
章末复习
分析 视察表格发现, 随着抽取的体检表的增多, 在男性中, 男性患色 盲的频率逐渐稳定在0.07附近, 所以估计在男性中, 男生患色盲的概 率为 0.07.
章末复习
例3 一个不透明的袋子中装有4个黑球, 2个白球, 这些球除颜色 不同 外其他都相同, 从袋子中随机摸出1个球, 摸到黑球的概率 是( D ).
章末复习
相关题3 如果从包括小军在内的 10名大学生中任选1名作 为 “保护母亲河”的志愿 者, 那么小军被选中的概 率是( C ).
解析 共有 10 种等可能的结果,小军被选中的结果有 1 种,故 P(小军 被选中)=110.
章末复习
解 (1)获奖的学生中男生3名, 女生4名, 男生、女生共7名, 故参加颁奖 大会的学生是男生的概率为 . (2)从获得美术奖、音乐奖的学生中各选取1名参加颁奖大会, 用列表法 列出所有可能的结果如下:
章末复习
∵共有12种等可能的结果, 其中是1名男生、1名女生的结果有6种, ∴从获得美术奖、音乐奖的学生中各选取1名参加颁奖大会, 刚好是 1名男生、1名女生的概率为

人教版九年级上册第二十五章概率初步期末复习课件

人教版九年级上册第二十五章概率初步期末复习课件
D.30
专题二:概率计算
一般地,如果在一次试验中,有n种可能的结果,并且它们发 生的可能性都相等,事件A包含其中的m种结果,那么事件A发生 的概率P(A)= m .
n
1.周末期间小美和小梅到影城看电影,影城同时在五个放映室
(1室、2室、3室、4室、5室)播放五部不同的电影,他们各自在这
2.某校举办了学生“诗词大赛”.比赛项目为:A.唐诗;B.宋词;C. 论语;D.三字经.比赛形式分“单人组”和“双人组”. (1)小丽参加“单人组”,她从中随机抽取一个比赛项目,恰好抽中 “三字经”的概率是多少? (2)小红和小明组成一个小组参加“双人组”比赛,比赛规则:同一 小组的两名队员的比赛项目不能相同,且每人只能随机抽取一次, 则恰好小红抽中“唐诗”且小明抽中“宋词”的概率是多少?请用 画树状图或列表的方法进行说明.
1.一个不透明的袋子中装有红、白两种颜色的小球,这些球除颜色 外都相同,其中红球有1个,若从中随机摸出一个球,这个球是白 球的概率是 2 .
3
(1)求袋子中白球的个数; (2)随机摸出一个球后,放回并搅匀,再随机摸出一个球,求两 次都摸到相同颜色的小球的概率.
解:(1)设袋子中白球有x个,根据题意,得 x 2 .解得x=2. x 1 3
第二十五章概率
期末考试复习
专题一:概率
在一定条件下,有些事件必然会发生,这样的事件称为必 然事件;有些事件必然不会发生,这样的事件称为不可能事件; 必然事件和不可能事件统称为确定性事件.可能发生也可能不 发生的事件,称为随机事件.
若事件A必然发生,则P(A)=1;若事件A不可能发生,则P(A)=0; 若事件A是随机事件,则P(A)的取值范围是0<P(A)<1.
五个放映室任选一个,每个放映室被选中的可能性都相同,则小美

第25章 概率初步 人教版九年级数学上册章末总结复习课件(51张PPT)

第25章 概率初步 人教版九年级数学上册章末总结复习课件(51张PPT)

热考题型
01
题型一(事件分类)
1. 下列事件中,①打开电视,它正在播放广告;②太阳绕着地球转;③掷一枚
正方体骰子,点数“3”朝上;④13人中至少有2人的生日是同一个月.属于随
机事件的个数是 2

2. 一盒乒乓球中共有6只,其中2只次品,4只正品,正品和次品大小和形状完
全相同,每次任取3只,出现了下列事件,指出这些事件分别是什么事件.


等,事件A包含其中的m种结果,那么事件A发生的概率为:() = .
0
事件发生的可能性越来越小
1
概率的值
不可能事件
必然事件
事件发生的可能性越来越大
02
基础巩固(概率)
求简单随机事件
的概率的方法
03
基础巩固(用列举法求概率)
在一次试验中,如果可能出现的结果只有有限个,且各种结果出现的可能性
大小相等,那么我们可以通过列举试验结果的方法,求出随机事件发生的概率,
1)3只正品.
随机事件
2)至少有一只次品.
随机事件
3)3只次品.
不可能事件
4)至少有一只正品.
必然事件
01
题型一(事件分类)
3. 某班从三名男生(含小强)和五名女生中选四名学生参加学校举行的“中华
古诗文朗诵大赛”,规定女生选n名.
1)当n为何值时,男生小强参加是确定事件?
2)当n为何值时,男生小强参加是随机事件?
个固定数的附近摆动,显示出一定的稳定性.因此可以用随机事件发生的频率
来估计该事件发生的概率.
04
基础巩固(用频率估计概率)
区别
联系
频率
概率
试验值或使用时的统计值

最新人教部编版九年级数学上册《第25章 概率初步【全章】》精品PPT优质课件

最新人教部编版九年级数学上册《第25章  概率初步【全章】》精品PPT优质课件

果,并且它们发生的可能性相等,事件A包括其中
的m种结果,那么事件A发生的概率P(A)=
m n
.
在P(A)=
m n
中,由m和n的含义,可知0≤m
≤n,进而有0≤
m n
≤1.
因此,0≤ P(A) ≤1 .
不可能事件 必然事件
0
不可能 事件
0≤ P(A) ≤1 . 事件发生的可 能性越来越小
事件发生的可 能性越来越大
2.从1、2、3、4、5中任取两个数字,得到的都 是偶数,这一事件是 随机 事件.
3.下列所描述的事件: ①某个数的绝对值小于0; ②守株待兔; ③某两个负数的积大于0; ④水中捞月. 其中属于不可能事件的有 ① ④ .
4.一个口袋中装有红、黄、蓝三个大小和形状都相 同的球,从中任取一球,得到红球与得到蓝球的可 能性 相同 .
在一定的条件下, 必然会发生的事件
在一定的条件下,必 然不会发生的事件
在一定的条件下,可能发 生也可能不发生的事件
必然 事件
不可能 事件
随机 事件
确定性事件 不确定性事件
【出题角度】认识事件
下列事件中,是随机事件的是(A ) A.他坚持锻炼身体,今后能成为飞行员 还有其他因素 不可能事件 B.在一个只装着白球和黑球的袋中摸球,摸出红球 必然事件 C.抛掷一块石头,石头终将落地 不可能事件 D.有一名运动员奔跑的速度是20m/s
的是( B )
A.瓮中捉鳖
B.守株待兔
C.旭日东升
D. 夕阳西下
已知地球表面陆地面积与海洋面积的比约为 3∶7.如果宇宙中飞来一块陨石落在地球上,“落 在海洋里”与“落在陆地上”哪个可能性更大?
“落在海洋里”的可能性更大.

第25章 概率初步 人教版数学九年级上册章末复习课件(34张PPT)

第25章 概率初步 人教版数学九年级上册章末复习课件(34张PPT)

列举法 列表法
概率求法 面积法 画树状图法
频率估计概率
知识梳理
1.事件的概念 (1)在一定条件下,可__能__发__生__也__可__能__不__发__生_ 的事件,叫做随机事件. (2)确定事件包括_必_然_事件和_不_可_能_事件.
知识梳理
2.概率的意义 (1)一般地,如果在一次试验中,有n种可能的结 果,并且它们发生的可能性都相等,事件A包m含其中 的m种结果,那么事件A发生的概率P(A)= n .
规则如下: ①在一个不透明的袋子中装一个红球(延安)、一个白球 (西安)、一个黄球(汉中)和一个黑球(安康),这四 个球除颜色不同外,其余完全相同; ②小英父亲先将袋中球摇匀,让小英从袋中随机摸出一球, 父亲记录下其颜色,并将这个球放回袋中摇匀,然后让小 英母亲从袋中随机摸出一球,父亲记录下它的颜色; ③若两人所摸出球的颜色相同,则去该球所表示的城市旅 游,否则,前面的记录作废,按规则②重新摸球,直到两 人所摸出球的颜色相同为止.
按照上面的规则,请你解答下列问题: (1)已知小英的理想旅游城市是西安,小英和母亲随机 各摸球一次,均摸出白球的概率是多少?
解:(1)画树状图得
延安
西安
共有16种等可能的结果,均摸出白球的只有
一种可能,其概率为 1
16
.
汉中 安康
(2)已知小英母亲的理想旅游城市是汉中,小英和母亲 随机各摸球一次,至少有一人摸出黄球的概率是多少? 解: (2)由树状图得
2.掷两枚质地均匀的骰子,下列事件中,属于 随机事件的为( B )
A. 点数的和为1 C. 点数的和大于12
B. 点数的和为6 D. 点数的和小于13
考点二:概率的意义
3.从-1,0,

人教版九年级数学上册第25章概率初步_复习课件

人教版九年级数学上册第25章概率初步_复习课件

(3
123456
的点数
1
234567
2
345678
3
456789
4
5 6 7 8 9 10
5
6 7 8 9 10 11
6
7 8 9 10 11 12
(3)列表如下:
概率初步
小红投掷
的点数 小颖投掷
123456
的点数
1
234567
2
345678
3
456789
概率初步
能力提高
概率初步
1、你能说出几个与必然事件、随机事件、不可能 事件相联系的成语吗?
如:必然事件:种瓜得瓜,种豆得豆,黑白分明。 随机事件:海市蜃楼,守株待兔。
不可能事件:海枯石烂,画饼充饥,拔苗助长。
2、在一个不透明的口袋中装有除颜色外其余都 相同的1个红球,2个黄球,如果每一次先从袋中 摸出1个球后不再放回,第二次再从袋中摸出1个 球,那么两次都摸到黄球的概率是多少?
当试验的所有可能结果不是有限个, 或各种可能结果发生的可能性不相等时, 常常是通过统计频率来估计概率,即在同 样条件下,大量重复试验所得到的随机事 件发生的频率的稳定值来估计这个事件 发生的概率。
概率初步
概率初步
2、一副扑克除大王外共52张,在看不 见牌的情况下,随机抽一张,是黑桃 的概率是____
课本P171 1、2、3、4
概率初步
祝:同学们愉快!
概率初步
(2)小颖的说法是错误的.这是因为, “5点朝上”的频率最大并不能说明“5 点朝上”这一事件发生的频率最大.只 有当实验的次数足够大时,该事件发生 的频率稳定在事件发生的概率附近.
小红的判断是错误的,因为事件 发生具有随机性,故“6点朝上”的 次数不一定是100次.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A.“如果a,b是实数,那么a+b=b+a”是不确定事件 B.某种彩票的中奖概率为17 ,是指买7张彩票一定有一张中奖 C.为了了解一批炮弹的杀伤力,采用普查的调查方式比较合

D.“某班50位同学中恰有2位同学生日是同一天”是随机事

2021
8
2.(2013·舟山中考)下列说法正确的是( C ) A.要了解一批灯泡的使用寿命,应采用普查的方式 B.若一个游戏的中奖率是1%,则做100次这样的游戏一定 会中奖 C.甲、乙两组数据的样本容量与平均数分别相同,若方差 s甲2=0.1,s乙2=0.2,则甲组数据比乙组数据稳定 D.“掷一枚硬币,正面朝上”是必然事件
为不可能事件时,P(A)= 0 .
3.求随机事件概率的三种方法 (1) 直接列举 法;(2) 列表 法;
(3) 树形图 法.
频数、频率、概率☞
(1)一般地,在大量重复试验中,如果事件 A发生的
频率 会稳定在某个常数发生的频率是:在 n次试
验中 ,事件A发生的频数m与 n 的比。
果(纸牌用A,B,C,D表示).
(2)求摸出的两张纸牌同为红2021色的概率.
15
【解答】 (1)树状图法:
列表法:
ABCD
A
AB AC A
D
B BA
BC BD
C CA CB
CD
D D DB DC
A
(2)一共有12种情况,符合条件的有2种,即
P
2
1.
12 6
2021
16
【训练3】(2013·青岛中考)小明和小刚玩摸纸牌游戏, 如图,两组相同的纸牌,每组两张,纸面数字分别是2和 3,将两组牌背面朝上,洗匀后从每组牌中各摸出一张, 称为一次游戏.当两张牌牌面数字之和为奇数,小明得2 分,否则小刚得1分,这个游戏对双方公平吗?请说明理 由.
第25章概率初步 复习
一.本章知识结构框图
本章的主要内容是随机事件的定义,概率的 定义,计算简单事件概率(古典概率类型)的方法, 主要是列举法(包括列表法和画树形图法),利用 频率估计概率(试验概率)。中心内容是体会随机 观念和概率思想。
2021
2
┃知识梳理┃
1.事件
在一定条件下,可能发生也可能不发生 的事件,
(2)求一个事件的概率的基本方法是:进行大量 的重复试验,用这个事件发生的频率近似地 作
为它的概率
(3)对于某些随机事件也可以不通过重复试验,
而只通过一次试验中可能出现的结果的分析
来计算概率。例如:掷两枚硬币,求两枚硬
币正面向上的概率。
2021
12
1.(2013·梧州中考)小李是9人队伍中的一员,他们随机排
2021
9
m 3、在什么条件下适用P(A)= n 得到事件的概率?
一般地,如果在一次试验中,有n种可能的 结果,并 且它们发生的可能性都相等,事件A包含其中m种结果, 那么事件A发 生的概率为:
P(A )A 包 含 基 的 本 基 事 本 件 事 的 件 总 的 数 个 数 m n
4、如何用列举法求概率? 当事件要经过一步完成时列举出所有可能 情
况,当事件要经过两步完成时用列表法,当事件 要经过三步以上完成时用树形图法。
2021
10
2.概率的意义
一般地,如果在一次试验中,有n种可能的结果,
并且它们发生的可能性都相等,事件A包含其中的m
种结果,那么事件A发生的概率P(A)=
m n
.
[注意] 事件A发生的概率的取值范围 0 ≤P(A)≤ 1 ,当A为必然事件时,P(A)= 1 ;当A
成一列队伍,从1开始按顺序报数,小李报到偶数的概率
4
是( 9
.)
2021
13
2.在一场足球比赛前,甲教练预言说:“根据我掌握的情况, 这场比赛我们队有60%的机会获胜”意思最接近的是( A)
A.这场比赛他这个队应该会赢 B.若两个队打100场比赛,他这个队会赢60场 C.若这两个队打10场比赛,这个队一定会赢6场比赛. D.若这两个队打100场比赛,他这个队可能会赢60场左右. 3.(2007 北京)一个袋中装有6个黑球3个白球,这些球除颜色 外,大小、形状、质地完全相同,在看不到球的情况下,随机 的从这个袋子中摸出一个球,摸到白球的概率是( B)
A.必然事件
B.不确定事件
C.不可能事件
D.随机事件
(3)下列事件为必然事件的是( D )
A.小王参加本次数学考试,得满分
B.某射击运动员射靶一次,正中靶心
C.打开电视机,CCTV 第一套节目正在播放新闻
D.口袋中装有 2 个红球和 1 个白球,从中摸出 2 个球,其中
必有红球
2021
6
(热身反馈)
1、(2012 山东 )下列事件中,是必然事件的是 C ()
A.购买一张彩票中奖一百万
B.打开电视机,任选一个频道,正在播新闻
C.在地球上,上抛出去的篮球会下落
D.掷两枚质地均匀的骰子,点数之和一定大于6
2、(011福建三明)“明年十月七日会下雨”

事件。
2021
7
主题1 事件类型的辨别
1.(2013·攀枝花中考)下列叙述正确的是( D)
叫做随机事件. 确定事件包括 必然 事件和 不可能
事件.
[注意] 随机事件发生的可能性是有大小的,不同的 随机事件发生的可能性的大小有可能不同.
2.概率的意义
二、回顾与思考
1、确定事件
(1)在一定条件下必然要发生的事件,叫做 必然事件 (2)在一定条件下不可能发生的事件,叫做不可能事件
2、随机事件
2021
17
【解答】列表得:
小刚牌面

2
3
小明牌面
2
2+2=偶
2+3=奇
3
3+2=奇
A .1 B.1 C .1 D .2 932 3
2021
14
【主题训练2】(2013·黄冈中考)如图,有四张背面相同的 纸牌A,B,C,D,其正面分别是红桃,方块,黑桃,梅花,其中红 桃、方块为红色,黑桃、梅花为黑色,小明将这4张纸牌背 面朝上洗匀后,摸出一张,将剩余3张洗匀后再摸出一张.
(1)用树状图(或列表法)表示两次摸牌所有可能出现的结
在一定条件下可能发生也可能不发生的事件,叫做随机 事件。
2021
4
例: (1)下列事件是必然事件的是( C ) A.随意掷两个均匀的骰子,朝上面的点数之和为 6 B.抛一枚硬币,正面朝上 C.3个人分成两组,一定有2个人分在一组 D.打开电视,正在播放动画片
(2).“a 是实数, |a| >0”这一事件是D( )
相关文档
最新文档