石灰软化法和石灰纯碱软化法的原理及适用情况

合集下载

石灰软化实验

石灰软化实验

石灰软化处理循环水排污水实验1、实验原理1.1石灰软化法为避免投加生石灰(CaO)产生的灰尘污染,通常先将生石灰制成消石灰Ca(OH)2(即熟石灰)使用,其反应如下CaO+H2O====Ca(OH)2消石灰投入高硬水中,会产生下列反应Ca(OH)2+CO2====CaCO3+和H2OCa(OH)2 +Ca(HCO3) 2====2CaCO3+2H2O2Ca(OH) 2+Mg(HCO3) 2====2CaCO3 +2H2O+Mg(OH) 2形成的CaCO3和Mg(OH)2都是难溶化合物,可从水中沉淀析出。

但水中的永硬和负硬却不能用石灰处理的方法除去,因为镁的永硬与负硬和消石灰会产生下列反应MgSO4+Ca(OH)2====Mg(OH) 2+CaSO4MgCl2+Ca(OH) 2====Mg(OH) 2+CaCl2NaHCO3+Ca(OH) 2====CaCO3+NaOH+H2O由反应式可看出,镁的永硬全部转化为等量的溶解度很大的钙的永硬,而负硬则转化为等量的氢氧化钠、碱度,所以水中的碱度没有除去。

石灰加入量可按下式估算[CaO]=28/ 1{[CO2]+ 2[Mg(HCO3)2]+ [Ca(HCO3)2]+Z}式中[C aO]——需投加的工业石灰量,mg/L;[CO2]——原水中CO2的浓度(1/2CO2计),mmol/L;[Ca(HCO3) 2]——原水中Ca(HCO3) 2的浓度[1/2Ca(HCO3) 2计],mmol/L;[Mg(HCO3) 2]——原水中Mg(HCO3) 2的浓度[1/2 Mg(HCO3) 2计]mmol/L;1——工业石灰纯度,%;28——1/2CaO的摩尔质量,g/mol;Z——石灰过剩量(1/2CaO计),mmol/L(一般为0.2—0.4mmol/L)。

1.2石灰-纯碱软化法石灰软化法只适用于暂硬高、永硬低的水质处理。

对硬度高碱度低即永硬高的水,可采用石灰-纯碱软化法,即加石灰的同时再投加适量的纯碱(NaCO3又称苏打)。

灰软化处理循环水排污水实验(修订版本以本版本为准)

灰软化处理循环水排污水实验(修订版本以本版本为准)

石灰软化处理循环水排污水实验1、实验原理1.1石灰软化法为避免投加生石灰(CaO)产生的灰尘污染,通常先将生石灰制成消石灰Ca(OH)2(即熟石灰)使用,其反应如下CaO+H2O====Ca(OH)2消石灰投入高硬水中,会产生下列反应Ca(OH)2+CO2====CaCO3+和H2OCa(OH)2 +Ca(HCO3) 2====2CaCO3+2H2O2Ca(OH) 2+Mg(HCO3) 2====2CaCO3 +2H2O+Mg(OH) 2形成的CaCO3和Mg(OH)2都是难溶化合物,可从水中沉淀析出。

但水中的永硬和负硬却不能用石灰处理的方法除去,因为镁的永硬与负硬和消石灰会产生下列反应MgSO4+Ca(OH)2 ====Mg(OH) 2+CaSO4MgCl2+Ca(OH) 2====Mg(OH) 2+CaCl2NaHCO3+Ca(OH) 2====CaCO3+NaOH+H2O由反应式可看出,镁的永硬全部转化为等量的溶解度很大的钙的永硬,而负硬则转化为等量的氢氧化钠、碱度,所以水中的碱度没有除去。

石灰加入量可按下式估算[CaO]=28{[CO2]+ 2[Mg(HCO3)2]+ [Ca(HCO3)2]+Z}/ 1式中 [CaO]——需投加的工业石灰量,mg/L;[CO2]——原水中CO2的浓度(1/2CO2计),mmol/L;[Ca(HCO3) 2]——原水中Ca(HCO3) 2的浓度[1/2Ca(HCO3) 2计]mmol/L;[Mg(HCO3) 2]——原水中Mg(HCO3) 2的浓度[1/2 Mg(HCO3) 2计]mmol/L;1——工业石灰纯度,%;28——1/2CaO的摩尔质量,g/mol;Z——石灰过剩量(1/2CaO计),mmol/L(一般为0.2—0.4mmol/L)。

1.2石灰-纯碱软化法石灰软化法只适用于暂硬高、永硬低的水质处理。

对硬度高碱度低即永硬高的水,可采用石灰-纯碱软化法,即加石灰的同时再投加适量的纯碱(NaCO3又称苏打)。

水处理中水软化方法综述

水处理中水软化方法综述

水处理中水软化方法综述1.2.1石灰-纯碱软化法水的药剂软化法是根据容度积原理,根据需要向水中投加适当药剂,使之与钙、镁离子反应生成CaCO3和Mg (OH)2不溶性沉淀物。

药剂软化法包括石灰纯碱软化法,石灰软化法,苛性钠软化法等,其中用石灰软化最为常用。

药剂软化法中最常用的药剂是石灰,它的技术成熟,来源广泛,而且价格低廉。

石灰经消化后,生成石灰乳投加到原水中,在较高pH值条件下与重碳酸盐发生反应,生成Mg(OH)2和CaCO3等沉淀物,在下沉过程中钙镁二价离子形成的沉淀物起到混凝剂的作用,进而使各种沉淀物在反应池中絮凝,在滤池和沉淀池中去除。

适量的投加助凝剂,可增加混凝效果。

加入石灰后,出厂水的pH值会比较高,在出厂水中利用酸进行中和,调节水的pH值符合饮用水水质标准。

许多地区的水源里,不但硬度超标,而且铁、锰和溶解性总固体也往往超标,石灰药剂法和强化混凝也能去除一定的铁、锰和溶解性总固体。

石灰软化法适用于原水非碳酸盐硬度较低、碳酸盐硬度较高的情况。

石灰纯碱软化法已在水源水质硬度大的循环冷却水补充水的预处理广泛应用。

石灰纯碱软化法在除硬的同时也可以有效地减少总溶解固体,并且适合于原水中非碳酸盐硬度较高时的水处理。

虽然石灰纯碱软化法经济成本也很低,除硬率也高,但是这种方法也有很多缺点,由于所用剂量很高,不可避免对会产生大量的淤泥,而且还需要大面积的厂房来准备和储存这些原料;由于原料吸收了空气中的CO2,至使硬度的去除率很不稳定;因受湿度的影响需要重复加药等。

当原水水质变化时,虽然苛性钠软化法在准确控制碱度方面要优于石灰纯碱软化法,但是也会增加水中总溶解固体和Na+。

相比之下,苛性钠软化法比石灰纯碱软化法所产生的淤泥少;在自然条件下,苛性钠(NaOH)储存过程中要稳定且不容易变质,这使得操作过程稳定.而且清洁。

总体来看,常规药剂软化法出水水质不好,运行管理繁琐,产生大量的废弃物,处理性差,且对环境造成很大的污染。

石灰软化法除硬度

石灰软化法除硬度

石灰软化法使用石灰软化硬水的方法称为石灰软化法,又称石灰纯碱软化法,在硬水中加入消石灰,使水中的镁生成氢氧化镁沉淀,这样,加入碳酸钠使水中的钙生成碳酸钙而沉淀,硬水即变为软水,利用这种方法可使水中钙浓度降低到10~35ppm。

其化学反应式如下:CaSO4+Na2CO3→CaCO3↓+Na2SO4CaCl2+Na2CO3→CaCO3↓+2NaClMgSO4+Na2CO3→MgCO3+Na2CO3MgCO3+Ca(OH)2→CaCO3↓+Mg(OH)2↓采用石灰软化法处理高硬度含氟地下水,考察了药剂投量、反应时间对处理效果的影响。

结果表明,在CaO和Na2CO3的投量分别为187和106mg/L并反应25min的条件下,再投加10mg/L的聚合氯化铝铁和0.25mg/L的PAM可将出水浊度降至1NUT以下;若要将出水总硬度分别降至400、300、200mg /L,在略高于理论投药量的条件下,需控制搅拌反应时间分别为25、35、50min;水中氟化物可通过与软化过程中生成的Mg(OH)2形成共沉淀而得到有效去除,但由于出水pH值过高,需进行调节。

华东地区某市因地表水污染严重,计划适度开采高储量的地下水作为饮用水水源(开采量约为5.0×10 m /d)。

取样分析结果表明,该市地下水清澈透明,但水中硬度和氟化物含量不达标,为保证居民饮水安全,需对该地下水进行软化及除氟处理。

降低水中硬度的常用方法有离子交换法、电渗析法及药剂软化法等。

其中离子交换法和电渗析法均存在造价高、运行费用高等缺点;石灰是药剂软化法中最常用的药剂,其价格较低,但如果用量不当,则会造成出水水质稳定性欠佳,给实际操作管理带来麻烦,因此有必要进行试验确定药剂用量。

去除氟离子的常用方法有电化学法(电凝聚、电渗析)、·49·第23卷第13期中国给水排水www.watergasheat.corn 混凝沉淀法和离子交换法等。

制作软化水原理

制作软化水原理

制作软化水原理
1. 离子交换法:这是一种利用离子交换树脂去除水中钙、镁离子的方法。

离子交换树脂上的钠离子可以与硬水中的钙、镁离子进行交换,从而使硬水得到软化。

当树脂中的钠离子耗尽时,需要使用氯化钠溶液进行再生。

2. 膜分离法:这是一种利用半透膜去除水中钙、镁离子的方法。

半透膜可以选择性地让水分子通过,而阻止钙、镁离子通过,从而实现硬水的软化。

这种方法通常需要使用高压泵将水通过膜进行过滤。

3. 石灰软化法:这是一种利用石灰和苏打软化水的方法。

在硬水中加入石灰和苏打,可以使水中的钙、镁离子与石灰和苏打反应,形成不溶性的沉淀物,从而降低水的硬度。

4. 电磁软化法:这是一种利用电磁场去除水中钙、镁离子的方法。

在电磁场的作用下,水中的钙、镁离子会发生极化,形成絮状沉淀,从而实现硬水的软化。

需要注意的是,软化水的原理不同,其适用范围和效果也不同。

在选择软化水方法时,需要根据实际情况进行选择。

同时,软化水过程中可能会产生一定的废水和废渣,需要进行妥善处理。

水的软化方法

水的软化方法

水的软化几种方法通常对硬度高、碱度高的水采用石灰软化法;对硬度高、碱度低的水采用石灰-纯碱软化法;而对硬度低、碱度高的负硬水则采用石灰-石膏处理法。

1. 石灰软化法为避免投加生石灰(CaO)产生的灰尘污染,通常先将生石灰制成消石灰Ca(OH)2(即熟石灰)使用,其反应如下CaO+H2O====Ca(OH)2消石灰投入高硬水中,会产生下列反应Ca(OH)2+CO2====CaCO3+H2OCa(OH) 2+Ca(HCO3) 2====2CaCO3+2H2O2Ca(OH) 2+Mg(HCO3) 2====2CaCO3+Mg(OH) 2+2H2O形成的CaCO3和Mg(OH)2都是难溶化合物,可从水中沉淀析出。

但水中的永硬和负硬却不能用石灰处理的方法除去,因为镁的永硬与负硬和消石灰会产生下列反应MgSO4+Ca(OH) 2====Mg(OH) 2+CaSO4MgCl2+Ca(OH) 2====Mg(OH) 2+CaCl2NaHCO3+Ca(OH) 2====CaCO3+NaOH+H2O由反应式可看出,镁的永硬全部转化为等量的溶解度很大的钙的永硬,而负硬则转化为等量的氢氧化钠、碱度,所以水中的碱度没有除去。

石灰加入量可按下式估算[CaO]=28/Z1{[CO2]+[Ca(HCO3) 2]+2[Mg(HCO3)2+B]}式中[CaO]——需投加的工业石灰量,mg/L;[CO2]——原水中CO2的浓度(1/2CO2计),mmol/L;[Ca(HCO3) 2]——原水中Ca(HCO3) 2的浓度[1/2Ca(HCO3) 2计],mmol/L[Mg(HCO3) 2]——原水中Mg(HCO3) 2的浓度[1/2 Mg(HCO3) 2计]mmol/L;Z1——工业石灰纯度,%;28——1/2CaO的摩尔质量,g/mol;B——石灰过剩量(1/2CaO计),mmol/L(一般为0.2—0.4mmol/L)。

2.石灰-纯碱软化法石灰软化法只适用于暂硬高、永硬低的水质处理。

脱盐技术

脱盐技术

高含盐水脱盐技术现状1.石灰/石灰-纯碱软化法石灰软化作为应用最广泛应用的单元技术之一,能有效降低水中结垢成份与悬浮物浓度,并且可使部分水处理剂经软化工艺后再回流系统中继续循环使用,石灰乳与水中的碳酸盐硬度成分反应,生成难溶的CaCO3或Mg(OH)2后沉淀析出。

单纯的石灰软化法只能去除碳酸盐硬度,而石灰-纯碱软化法能有效去除水中结垢的主要成分如钙、镁、磷酸盐和二氧化硅等,并将水中的悬浮物、腐蚀产物和微生物粘泥等在沉淀和过滤过程中去除,且产生泥渣易脱水,可作为非毒性废弃物掩埋处置。

另外,石灰价格低廉、来源广泛,运行成本低,可与絮凝过程同时进行,即可降低水的硬度,又可除浊。

因此,石灰-纯碱软化法已广泛用于工业纯水系统补充水的预处理。

2.膜分离近40年来,膜分离技术已迅速发展成为工业循环冷却水系统中旁流处理中最重要、最广泛采用的新型高效节能分离单元技术,电渗析(ED)、反渗透(RO)、微滤(MF)、超滤(UF)、纳滤(NF)和渗透汽化(PV)等膜技术相继发展,并成为集成处理技术系统中的关键技术。

主要膜分离技术简述如下:(1)反渗透膜技术反渗透膜技术是以渗透压差作为推动力的一类膜分离过程。

依据各种物料的不同渗透压,通过RO膜技术达到分离提取、纯化与浓缩的目的。

RO技术的最大优点是节能,其能耗仅为电渗析的1/2,蒸馏技术的1/40,而且能够达到深度除盐目的。

近年来,随着膜分离技术的快速发展,工程造价和运行成本持续降低,RO膜技术已逐渐取代传统的离子交换、电渗析除盐技术,成为工业水系统中首选除盐技术。

RO膜技术今后主要发展趋势是降低RO膜的操作压力,提高RO系统纯水产率和浓缩回收率,以及廉价高效预处理技术,增强膜组件抗污能力等。

尤其近年来,在电厂循环冷却水脱盐回用领域,集成膜工艺已成为主要发展方向,其中“UF+RO"双膜工艺已成为电厂深度除盐的主导技术。

(2)电渗析技术电渗析技术是以电位差作为推动力的一类膜分离过程。

石灰软化法

石灰软化法

石灰软化法使用石灰软化硬水的方法称为石灰软化法,又称石灰纯碱软化法,在硬水中加入消石灰,使水中的镁生成氢氧化镁沉淀,这样,加入碳酸钠使水中的钙生成碳酸钙而沉淀,硬水即变为软水,利用这种方法可使水中钙浓度降低到10~35ppm。

其化学反应式如下:CaSO4+Na2CO3→CaCO3↓+Na2SO4CaCl2+Na2CO3→CaCO3↓+2NaClMgSO4+Na2CO3→MgCO3+Na2CO3MgCO3+Ca(OH)2→CaCO3↓+Mg(OH)2↓采用石灰软化法处理高硬度含氟地下水,考察了药剂投量、反应时间对处理效果的影响。

结果表明,在CaO和Na2CO3的投量分别为187和106mg/L并反应25min的条件下,再投加10mg/L的聚合氯化铝铁和0.25mg/L的PAM可将出水浊度降至1NUT以下;若要将出水总硬度分别降至400、300、200mg/L,在略高于理论投药量的条件下,需控制搅拌反应时间分别为25、35、50min;水中氟化物可通过与软化过程中生成的Mg(OH)2形成共沉淀而得到有效去除,但由于出水pH值过高,需进行调节。

华东地区某市因地表水污染严重,计划适度开采高储量的地下水作为饮用水水源(开采量约为5.0×10 m /d)。

取样分析结果表明,该市地下水清澈透明,但水中硬度和氟化物含量不达标,为保证居民饮水安全,需对该地下水进行软化及除氟处理。

降低水中硬度的常用方法有离子交换法、电渗析法及药剂软化法等。

其中离子交换法和电渗析法均存在造价高、运行费用高等缺点;石灰是药剂软化法中最常用的药剂,其价格较低,但如果用量不当,则会造成出水水质稳定性欠佳,给实际操作管理带来麻烦,因此有必要进行试验确定药剂用量。

去除氟离子的常用方法有电化学法(电凝聚、电渗析)、·49·第23卷第13期中国给水排水www.watergasheat.corn 混凝沉淀法和离子交换法等。

石灰法软化水

石灰法软化水

软化水的方法将硬水软化,避免水垢的沉积有很多种方法,经常使用的方法有:1、离子交换法:采用特定的阳离子交换树脂,以钠离子将水中的钙镁离子置换出来,由于钠盐的溶解度很高,所以就避免了随温度的升高而造成水垢生成的情况。

这种方法是目前最常用的标准方式。

主要优点是:效果稳定准确,工艺成熟。

可以将硬度降至0。

采用这种方式的软化水设备一般也叫做"离子交换器"(由于采用的多为钠离子交换树脂,所以也多称为"钠离子交换器",即软化水设备,或者全自动软水器。

2、石灰法:向水中加入石灰,主要是用于处理大流量的高硬水,只能将硬度降到一定的范围。

3、加药法:向水中加入专用的阻垢剂,可以改变钙镁离子与碳酸根离子结合的特性,从而使水垢不能析出、沉积。

目前工业上可以使用的的阻垢剂很多。

这种方法的特点是:一次性投入较少,适应性广;但水量软大时运行成本偏高,由于加入了化学物质,所以水的应用受到很大限制,一般情况下不能应用于饮用、食品加工、工业生产等方面。

在民用领域中也很少应用。

4、电磁法:采用在水中加上一定的电场或磁场来改变离子的特性,从而改变碳酸钙(碳酸镁)沉积的速度及沉积时的物理特性来阻止硬水垢的形成。

其特点是:设备投资小,安装方便,运行费用低;但是效果不够稳定性,没有统一的衡量标准,而且由于主要功能仅是影响一定范围内的水垢的物理性能,所以处理后的水的使用时间、距离都有一定局限。

多用于商业(如中央空调等)循环冷却水的处理,不能应用于工业生产及锅炉补给水的处理(同时由于该种设备的机理并未得到真正的理论证实)。

5、膜分离法:纳滤膜(NF)及反渗透膜(RO)均可以拦截水中的钙镁离子,从而从根本上降低水的硬度。

这种方法的特点是,效果明显而稳定,处理后的水适用范围广;但是对进水压力有较高要求,设备投资、运行成本都较高。

一般较少用于专门的软化处理。

硬水软化一种方法化学

硬水软化一种方法化学

硬水软化一种方法化学硬水的软化有多种方法,其中化学方法是一种常用且有效的方法。

化学软水方法主要是通过添加一些化学试剂,使硬水中的形成水垢的离子与试剂中的反应产物结合,从而使水中的硬度降低。

1. 软水剂:软水剂是一种化学试剂,它能与硬水中的钙离子、镁离子结合,形成不溶于水的沉淀物,从而降低水的硬度。

常用的软水剂有:硫酸铵、硝酸铵、硫酸钠、磷酸盐等。

这些软水剂一般以粉末、颗粒或液体形式存在,可以直接加入硬水中进行反应。

2. 离子交换树脂水软化法:离子交换树脂是一种可以选择性吸附和释放离子的材料,通过该材料可以将硬水中的钙离子、镁离子吸附,并释放出等量的钠离子或氢离子,从而使硬度降低。

离子交换树脂广泛应用于家庭、工业中的水处理设备中。

3. 石灰软化法:石灰软化法是一种常见且经济的软水方法。

它是通过加入石灰(氢氧化钙)到硬水中,使硬水中的钙离子与石灰中的氢氧化钙反应生成不溶于水的碳酸钙沉淀物。

这样可以将水中的硬度降低,实现软水效果。

这种方法尤其适用于水中硬度主要由钙离子引起的情况。

4. 除碱软化法:硬水中的碱性物质,如氢氧化钠、氢氧化钾等,可以通过除碱软化法来降低水的硬度。

这种方法是通过加入酸类化学试剂,使碱性物质中的阳离子和试剂中的阴离子产生反应,从而降低水的碱度和硬度。

化学软水方法在软化硬水中起到了重要的作用。

它能够使硬水变得柔软,减少水垢的产生,保护水龙头、水管等设备,提高水的品质。

但是需要注意的是,在使用化学方法软化水的同时,需注意对剩余试剂的处理,避免对水质、环境造成污染。

此外,化学软水方法的适用范围也有一定限制。

某些水质较为复杂的硬水,如海水、含有高浓度的金属离子的水等,采用化学方法软化水可能不够有效,此时可以采用其他方法,如反渗透、电离交换等。

同时,在选择化学软水方法时需要考虑其成本、操作难度等因素,以便选择最适合的方法。

综上所述,化学方法是硬水软化的一种有效方法。

通过添加适当的化学试剂,可以与硬水中的离子发生反应,从而降低水的硬度。

石灰-碳酸钠软化技术浅谈

石灰-碳酸钠软化技术浅谈

石灰-碳酸钠软化技术浅谈张志军(青海云天化国际化肥有限公司氮肥产品部,青海湟中,810000)摘要:软化水作为水处理装置的源头,其软化效果为后系统能否正常运行或最终出水指标的控制发挥着重要作用。

石灰-碳酸钠软化法作为国内经济、普遍的软化处理工艺,其控制和软化效果与单纯的石灰软化法相比有较大的差异,本文从工艺、原理、指标等方面作了进一步分析。

关键词: 原理离子含量硬度溶度积成本1 概述青海云天化化肥公司原水软化装置于2016年建成投产,其主要工艺流程为:园区管网来水进入首先进入混凝剂投加池,加聚合硫酸铁,通过搅拌机搅拌,经快速混合后进入石灰投加池,然后进入絮凝池,絮凝池中投加碳酸钠和PAM,不断形成矾花。

最后进入沉淀池,矾花下沉,澄清水经斜管分离后送下一工序。

沉降的泥渣部分与进水混合,底部多余的泥渣外送公司渣场。

2 化学原理(1)、石灰一般用于去除水中的碳酸盐硬度(暂时硬度):熟石灰配置成石灰乳液后加入,与原水接触后,先与 CO2 反应,然后将水中的暂时硬度去除,反应原理如下:CO2 +Ca(OH)2 →CaCO3↓+ H2OCa(HCO3)2 + Ca(OH)2 →2CaCO3↓+ 2H2OMg(HCO3)2+ Ca(OH)2→MgCO3+CaCO3↓+ 2H2O MgCO3 + Ca(OH)2→Mg(OH)2↓+CaCO3↓(2)、去除水中永久硬度(非碳酸盐硬度): CaSO4 +Na2CO3→CaCO3↓+Na2SO4CaCl2 +Na2CO3 →CaCO3↓+2NaClMgSO4 +Na2CO3→MgCO3 +Na2SO4MgCl2 +Na2CO3 →MgCO3 +2NaCl在较高 pH值时,MgCO3很快水解:MgCO3 +H2O→Mg(OH)2↓+CO2↑碳酸钠也能去除部分暂时硬度:Ca(HCO3)2+ Na 2CO3→CaCO3↓+ 2NaHCO3 Mg(HCO3 )2 +Na2CO3 →MgCO3 +2NaHCO3MgCO3 +H2O→Mg(OH)2↓+CO2↑3 物理原理在泥渣悬浮层上方按装倾角60度的斜管组件,便原水中的悬浮物,固体物或经投加混凝剂后形成的絮体矾花,在斜管底侧表面积积聚成薄泥层,依靠重力作用滑回泥渣悬浮层,继而沉入集泥斗,上清液逐渐上升至集水管排出进入下游工序。

石灰法的原理和应用实例

石灰法的原理和应用实例

石灰法的原理和应用实例一、石灰法的原理石灰法(Lime Method)是一种常见的水处理方法,用于去除水中的硬度和重金属离子。

其原理基于石灰(CaO或Ca(OH)2)与水中的碳酸钙(CaCO3)反应生成水溶性的钙盐,进而沉淀或被过滤除去。

1. 硬度和重金属硬度是指水中碳酸钙和硬质阳离子(如镁、钙、铁等)的含量。

硬度过高会导致水垢的形成,影响水的质量和设备的运行。

重金属离子是指具有较高密度和较高原子量的金属离子,如铅、汞、镉等。

这些离子对人体健康有害,也会引起环境问题。

2. 石灰法的作用石灰法通过加入适量的石灰,使水中的碳酸钙与石灰反应生成水溶性的钙盐,从而降低水的硬度和重金属离子的含量。

这些钙盐可通过沉淀或被过滤除去,从而改善水的质量。

二、石灰法的应用实例1.饮用水处理石灰法广泛应用于饮用水处理领域。

首先,石灰会与水中的碳酸钙反应生成钙盐,沉淀掉水中的硬度成分。

其次,石灰还会与水中的重金属离子反应,将它们转化为无毒或低毒的沉淀物。

这样,通过石灰法处理后的水质更加安全和健康,可以直接饮用。

2.工业废水处理石灰法也被广泛应用于工业废水处理中。

例如,在电镀工业中,废水中含有大量的重金属离子,如铜、镍、铬等。

通过添加适量的石灰,这些重金属离子可以与石灰反应生成不溶性的金属盐,然后通过沉淀或过滤除去。

经过石灰法处理后的废水,重金属离子的含量大大降低,达到排放标准。

3.污泥处理在水处理过程中,石灰法还可以用于污泥处理。

石灰与污泥中的有机物和低分子量的无机物反应生成稳定的化合物,从而减少污泥量、改善其稳定性和脱水性。

这样,处理后的污泥可以更方便地转运和处置。

4.矿山废水处理石灰法也被应用于矿山废水处理领域。

矿山废水中常含有大量的重金属离子和硬度成分。

通过添加石灰,可以将这些离子反应生成不溶性沉淀物,然后通过沉淀或过滤除去。

经过石灰法处理后的矿山废水可以达到环保排放要求,减少对环境的污染。

三、总结石灰法是一种常见的水处理方法,通过石灰与水中碳酸钙和重金属离子反应生成水溶性的钙盐,从而降低水的硬度和重金属离子的含量。

软化的几种方法

软化的几种方法

软化的几种方法:当硬度高、碱度也高的水直接作补充水进入循环冷却水系统后,会使循环水水质处理的难度增大,同时浓缩倍数的提高也受到限制。

另外高硬水也不宜直接作锅炉水的给水。

立式水管锅炉、立式火管锅炉及卧式内燃锅炉的给水总硬度要求在4.0mmol/L以下。

总硬度过高的水不能直接采用离子交换方法达到软化水的要求,经济效果也不好。

碱度过高的水,也不能直接作为锅炉的补给水。

所以上述这类水质均需在进入冷却水系统、锅炉和离子交换软化系统前,首先采用化学药剂方法进行预处理。

(一)软化方法通常对硬度高、碱度高的水采用石灰软化法;对硬度高、碱度低的水采用石灰-纯碱软化法;而对硬度低、碱度高的负硬水则采用石灰-石膏处理法。

1.石灰软化法为避免投加生石灰(CaO)产生的灰尘污染,通常先将生石灰制成消石灰Ca(OH)2(即熟石灰)使用,其反应如下CaO+H2O====Ca(OH)2消石灰投入高硬水中,会产生下列反应Ca(OH)2+CO2====CaCO3 +H2OCa(OH) 2+Ca(HCO3) 2====2CaCO3 +2H2O2Ca(OH) 2+Mg(HCO3) 2====2CaCO3 +Mg(OH) 2+2H2O形成的CaCO3和Mg(OH)2都是难溶化合物,可从水中沉淀析出。

但水中的永硬和负硬却不能用石灰处理的方法除去,因为镁的永硬与负硬和消石灰会产生下列反应MgSO4+Ca(OH) 2====Mg(OH) 2 +CaSO4MgCl2+Ca(OH) 2====Mg(OH) 2 +CaCl2NaHCO3+Ca(OH) 2====CaCO3 +NaOH+H2O由反应式可看出,镁的永硬全部转化为等量的溶解度很大的钙的永硬,而负硬则转化为等量的氢氧化钠、碱度,所以水中的碱度没有除去。

石灰加入量可按下式估算[CaO]=28/☪1{[CO2]+[Ca(HCO3) 2]+2[Mg(HCO3)2+ ]}式中 [CaO]——需投加的工业石灰量,mg/L;[CO2]——原水中CO2的浓度(1/2CO2计),mmol/L;[Ca(HCO3) 2]——原水中Ca(HCO3) 2的浓度[1/2Ca(HCO3) 2计],mmol/L[Mg(HCO3) 2]——原水中Mg(HCO3) 2的浓度[1/2 Mg(HCO3) 2计]mmol/L;☪1——工业石灰纯度,%;28——1/2CaO的摩尔质量,g/mol;——石灰过剩量(1/2CaO计),mmol/L(一般为0.2—0.4mmol/L)。

石灰软化法除硬度

石灰软化法除硬度

石灰软化法使用石灰软化硬水得方法称为石灰软化法,又称石灰纯碱软化法,在硬水中加入消石灰,使水中得镁生成氢氧化镁沉淀,这样,加入碳酸钠使水中得钙生成碳酸钙而沉淀,硬水即变为软水,利用这种方法可使水中钙浓度降低到10~35ppm。

其化学反应式如下:CaSO4+Na2CO3→CaCO3↓+Na2SO4CaCl2+Na2CO3→CaCO3↓+2NaClMgSO4+Na2CO3→MgCO3+Na2CO3MgCO3+Ca(OH)2→CaCO3↓+Mg(OH)2↓采用石灰软化法处理高硬度含氟地下水,考察了药剂投量、反应时间对处理效果得影响。

结果表明,在CaO 与Na2CO3得投量分别为187与106mg/L并反应25min得条件下,再投加10mg/L得聚合氯化铝铁与0.25mg /L得PAM可将出水浊度降至1NUT以下;若要将出水总硬度分别降至400、300、200mg/L,在略高于理论投药量得条件下,需控制搅拌反应时间分别为25、35、50min;水中氟化物可通过与软化过程中生成得Mg(OH)2形成共沉淀而得到有效去除,但由于出水pH值过高,需进行调节。

华东地区某市因地表水污染严重,计划适度开采高储量得地下水作为饮用水水源(开采量约为 5.0×10 m /d)。

取样分析结果表明,该市地下水清澈透明,但水中硬度与氟化物含量不达标,为保证居民饮水安全,需对该地下水进行软化及除氟处理。

降低水中硬度得常用方法有离子交换法、电渗析法及药剂软化法等。

其中离子交换法与电渗析法均存在造价高、运行费用高等缺点;石灰就是药剂软化法中最常用得药剂,其价格较低,但如果用量不当,则会造成出水水质稳定性欠佳,给实际操作管理带来麻烦,因此有必要进行试验确定药剂用量。

去除氟离子得常用方法有电化学法(电凝聚、电渗析)、· 49·第23卷第13期中国给水排水.corn 混凝沉淀法与离子交换法等。

]。

目前,国内外对去除水中氟离子得研究多集中在去除废水中高浓度氟离子方面,而对水中低含量氟离子去除得报道却较少。

石灰软化法和石灰纯碱软化法的原理及适用情况

石灰软化法和石灰纯碱软化法的原理及适用情况

石灰软化法和石灰纯碱软化法的原理及适用情况
1.石灰软化法
-石灰石与水中的钙离子反应,生成溶解度较低的钙碳酸盐(CaCO3)沉淀物。

-同时,石灰石中的氢氧根离子与水中的镁离子(Mg2+)反应,生成镁碳酸盐(MgCO3)沉淀物。

-石灰软化法主要针对碳酸盐硬度,而对非碳酸盐硬度如硫酸钙(CaSO4)等效果较差。

-水中主要硬度成分为碳酸盐硬度,包括碳酸钙和碳酸镁。

-水中灰分较低,没有影响处理效果的杂质。

-水中无需除去其他成分或污染物。

2.石灰纯碱软化法
石灰纯碱软化法是一种改进的软化方法,它在石灰软化法的基础上加入了纯碱(氢氧化钠或氢氧化钾)。

这样,不仅可以去除水中的碳酸盐硬度,还可以去除水中的非碳酸盐硬度。

石灰纯碱软化法的原理如下:
-石灰纯碱软化法首先通过石灰软化的机理去除水中的碳酸盐硬度。

-然后,纯碱中的氢氧根离子与水中的硬度成分如硫酸钙、硫酸镁等反应生成相应的沉淀物。

-石灰纯碱软化法可以去除碳酸盐硬度和非碳酸盐硬度,具有更全面的软化效果。

石灰纯碱软化法的适用情况如下:
-水中同时含有碳酸盐硬度和非碳酸盐硬度。

-水中含有硫酸钙、硫酸镁等非碳酸盐硬度成分。

-水中有其他需要去除的污染物或成分,如铁、锰等。

总结起来,石灰软化法适用于水中主要的碳酸盐硬度,石灰纯碱软化法适用于碳酸盐硬度和非碳酸盐硬度。

选择合适的软化方法要根据水质的具体情况,包括硬度成分、杂质、其他需要去除的成分等因素进行综合考虑。

脱盐技术

脱盐技术

高含盐水脱盐技术现状1.石灰/石灰-纯碱软化法石灰软化作为应用最广泛应用的单元技术之一,能有效降低水中结垢成份与悬浮物浓度,并且可使部分水处理剂经软化工艺后再回流系统中继续循环使用,石灰乳与水中的碳酸盐硬度成分反应,生成难溶的CaCO3或Mg(OH)2后沉淀析出。

单纯的石灰软化法只能去除碳酸盐硬度,而石灰-纯碱软化法能有效去除水中结垢的主要成分如钙、镁、磷酸盐和二氧化硅等,并将水中的悬浮物、腐蚀产物和微生物粘泥等在沉淀和过滤过程中去除,且产生泥渣易脱水,可作为非毒性废弃物掩埋处置。

另外,石灰价格低廉、来源广泛,运行成本低,可与絮凝过程同时进行,即可降低水的硬度,又可除浊。

因此,石灰-纯碱软化法已广泛用于工业纯水系统补充水的预处理。

2.膜分离近40年来,膜分离技术已迅速发展成为工业循环冷却水系统中旁流处理中最重要、最广泛采用的新型高效节能分离单元技术,电渗析(ED)、反渗透(RO)、微滤(MF)、超滤(UF)、纳滤(NF)和渗透汽化(PV)等膜技术相继发展,并成为集成处理技术系统中的关键技术。

主要膜分离技术简述如下:(1)反渗透膜技术反渗透膜技术是以渗透压差作为推动力的一类膜分离过程。

依据各种物料的不同渗透压,通过RO膜技术达到分离提取、纯化与浓缩的目的。

RO技术的最大优点是节能,其能耗仅为电渗析的1/2,蒸馏技术的1/40,而且能够达到深度除盐目的。

近年来,随着膜分离技术的快速发展,工程造价和运行成本持续降低,RO膜技术已逐渐取代传统的离子交换、电渗析除盐技术,成为工业水系统中首选除盐技术。

RO膜技术今后主要发展趋势是降低RO膜的操作压力,提高RO系统纯水产率和浓缩回收率,以及廉价高效预处理技术,增强膜组件抗污能力等。

尤其近年来,在电厂循环冷却水脱盐回用领域,集成膜工艺已成为主要发展方向,其中“UF+RO"双膜工艺已成为电厂深度除盐的主导技术。

(2)电渗析技术电渗析技术是以电位差作为推动力的一类膜分离过程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档