3勾股定理的应用教学设计
人教版八年级数学下册《勾股定理的应用——立体图形中的最短距离》教学设计
“勾股定理的应用——立体图形中的最短距离”教学设计三、研学问题活动一:如图有一个圆柱,底面周长为18,高为12.有一只蚂蚁在它下面的A点,它想吃上底面上与A点相对的B点处的食物,教师提问A点和B点在一个曲面上最短路径还能直接连接AB两点吗?引导学生思考后回让学生通过动手操作找到最短路径,培养学生的动手能力和空间想象能力。
蚂蚁爬行的最短路径是多少?变式训练如图,若上述问题中点B在点A的正上方,蚂蚁沿圆柱侧面爬行的最短路程是多少?答。
教师启发学生利用长方形纸卷出圆柱体,引导学生观察,找出A点到B点的最短路径。
学生画出圆柱的侧面展开图与蚂蚁爬行路径,并写出完整的解题过程。
(请一位同学到黑板完成解答,其他学生点评)通过此问题进一步加深学生对两点沿“曲面”的最短路程的解决方法掌握。
1四、学以致用如图,有一个圆柱,底面周长是10厘米,高为14厘米.在距离下底面1厘米的A点有一只蚂蚁,它想吃到距离上底面1厘米且与A点相对的B点处的食物,则沿圆柱侧面爬行的最短路程是多少?教师利用多媒体展示问题。
学生动手操作,独立思考后画出侧面展开图并确定最短路径。
教师请学生代表发表想法,并与上题进行比较,得出结论:蚂蚁在侧面爬行半圈与一圈,点A与点B的位置关系。
教师利用多检查学生对前面知识的理解和掌握情况,让学生学以致用。
五、知识迁移活动二:如图,是一个长为10cm,宽为6cm,高为8cm的长方体牛奶盒,现在A处有一只蚂蚁,想沿着长方体的外表面到达B处吃食物,求蚂蚁爬行的最短距离是多少. 媒体展示问题,学生组内讨论,画图并计算。
教师利用手机拍照展示小组研究成果,请小组代表讲解解题思路。
教师利用多媒体验证学生成果的对错情况。
教师利用多媒体出示问题,在前面知识的基础上,把两点迁移到长方体上,进一步研究折面中的两点的最短距离,同时让学生利用长方体动手找出最短路径,解决问题,培养学生的动手能力,空间想象能力和小组合作探究能力,通过对问题的解决体会分类讨论、转发现规律:如图,若长方体的长,宽,高分别为a,b和c,且a>b>c,则沿长方体表面从A 到Cˊ所走的最短路程是六、强化训练如图,一个长方体盒子,其中AB=9,BC=6,BB′=5,在线通过长方体教具启发学生找出蚂蚁至少要经过几个面,学生分组利用自制长方体探究从A点到B点的不同走法,请小组代表说出不同走法。
勾股定理教案范本 勾股定理教案教学方法优秀7篇
勾股定理教案范本勾股定理教案教学方法优秀7篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、合同协议、规章制度、条据文书、策划方案、心得体会、演讲致辞、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, contract agreements, rules and regulations, doctrinal documents, planning plans, insights, speeches, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!勾股定理教案范本勾股定理教案教学方法优秀7篇作为一位优秀的人·民教师,常常需要准备教学设计,借助教学设计可以促进我们快速成长,使教学工作更加科学化。
初中数学北师大八年级上册(2023年修订) 勾股定理《勾股定理的应用》最短路径问题教学设计
四川大学附属中学新城分校教学设计授课题目勾股定理的应用—最短路径授课类型专题课授课教师授课科目数学课时第四课时授课时间教学目标1. 巩固勾股定理的表达公式;2. 掌握立体图形中最短路径的解答技巧和基本思想方法;3.建立直角三角形,利用勾股定理计算最短路径的长度。
教学重点1.立体图形的平面展开与直角三角形勾股定理的结合;2.空间想象能力与文字解读能力的培养。
教学难点如何将现实生活与数学模型结合起来,建立平面直角三角形勾股定理解决最短路径的现实问题教学方法自主探究→小组合作→问题导学→分享教学教学过程教师活动学生活动设计思路学习准备:1、在直角三角形中,若两直角边的长分别为5cm,12cm ,则斜边上的高为______;2、已知直角三角形的两边长为3、4,则另一条边长的平方是________ ;知识点一:立方体中的最短路径问题例1:如图,长方体盒子长AB=2,宽BC=3,高DC=4,一只蚂蚁在盒子表面由A处向D处爬行,所走最短路程的平方是多少?【经验习得】一般将立方体沿着棱展开,最短路径便转变为了平面图形,再利用直角三角形勾股定理,计算出所求边的长度。
【即学即练】如图,长方体盒子长AB=2,宽BC=3,高DC=4,这些条件不变,这只蚂蚁在盒子表面由A处向CD中点M处爬行,所走最短路程学生活动:复习旧知,自主完成老师活动:订正答案学生活动:独自完成例题1.教师引导学生在活动中思考总结,是否只有一种方案可行,渗透分类讨论思想并做对比。
对比后,师生归纳其中规律。
设计意图:复习勾股定理中分类讨论的题型,巩固分类讨论思想的重要性设计意图:学生动手动笔,利用尺规画出路径可能存在的情况,并结合勾股定理去探索最短路径问题通过即学即练引导是。
知识点二:圆柱体中的最短路径问题例2:如图,透明的圆柱形容器(容器厚度忽略不计)的高为12cm,底面周长为10cm,在容器内壁离容器底部3cm的点B处有一饭粒,此时一只蚂蚁正好在容器外壁,且离容器上沿3cm的点A处,则蚂蚁吃到饭粒需爬行的最短路径是多少?【整理提炼】圆柱体的侧面展开图为长方形,长方形的长一般等于底面圆的周长(或周长的一半),长方形的宽等于圆柱体的高。
八年级数学下册《勾股定理的应用》教学设计一等奖3篇
1、八年级数学下册《勾股定理的应用》教学设计一等奖在教学工作者实际的教学活动中,时常需要准备好教学设计,教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。
那么优秀的教学设计是什么样的呢?以下是小编整理的八年级数学下册《勾股定理的应用》教学设计范文,仅供参考,希望能够帮助到大家。
一、教学任务分析勾股定理是平面几何有关度量的最基本定理,它从边的角度进一步刻画了直角三角形的特点。
学习勾股定理极其逆定理是进一步认识和理解直角三角形的需要,也是后续有关几何度量运算和代数学习的必然基础。
《数学课程标准》对勾股定理教学内容的要求是:1、在研究图形性质和运动等过程中,进一步发展空间观念;2、在多种形式的数学活动中,发展合情推理能力;3、经历从不同角度分析问题和解决问题的方法的过程,体验解决问题方法的多样性;4、探索勾股定理及其逆定理,并能运用它们解决一些简单的实际问题。
本节《勾股定理的应用》是北师大版八年级数学上册第一章《勾股定理》第3节、具体内容是运用勾股定理及其逆定理解决简单的实际问题、在这些具体问题的解决过程中,需要经历几何图形的抽象过程,需要借助观察、操作等实践活动,这些都有助于发展学生的分析问题、解决问题能力和应用意识;有些探究活动具有一定的难度,需要学生相互间的合作交流,有助于发展学生合作交流的能力、本节课的教学目标是:1、能正确运用勾股定理及其逆定理解决简单的实际问题。
2、经历实际问题抽象成数学问题的过程,学会选择适当的数学模型解决实际问题,提高学生分析问题、解决问题的能力并体会数学建模的思想、教学重点和难点:应用勾股定理及其逆定理解决实际问题是重点。
把实际问题化归成数学模型是难点。
二、教学设想根据新课标提出的“要从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释和运用的同时,在思维能力情感态度和价值观等方面得到进步和发展”的理念,我想尽量给学生创设丰富的实际问题情境,使教学活动充满趣味性和吸引力,让他们在自主探究,合作交流中分析问题,建立数学模型,利用勾股定理及其逆定理解决问题。
勾股定理的应用教学设计5篇
勾股定理的应用教学设计5篇第一篇:《勾股定理的应用》教学设计《勾股定理的应用》教学设计——解决立体图形外表上最短路线的问题__县第_中学李政法一、内容及内容解析1、内容勾股定理的应用——解决立体图形外表上最短路线的问题。
2、内容解析本节课是勾股定理在立体图形中的一个拓展,在初中阶段,勾股定理在求两点间的距离时,沟通了几何图形和数量关系,发挥了重要的作用,在中考中有席之地。
启发学生对空间的认知,为将来学习空间几何奠定根底。
二、教学目标1、能把立体图形依据需要局部展开成平面图形,再建立直角三角形,利用两点间线段最短勾股定理求最短路径径问题。
2、学会观看图形,勇于探究图形间的关系,培养学生的空间观念;在将实际问题抽象成几何图形过程中,提高分析问题、解决问题的能力及渗透数学建模的思想。
3、通过有趣的问题提高学习数学的兴趣;在解决实际问题的过程中,培养学生的合作交流能力,体验数学学习的有用性,增强自信心,呈现成功感。
三、教学重难点【重点】:探究、发觉立体图形展开成平面图形,利用两点间线段最短勾股定理求最短路径径问题。
【难点】:查找长方体中最短路线。
四、教学方法本课采纳学生自主探究归纳教学法。
教学中,学生充分运用多媒体资源及大量的实物教具和学具,通过观看、思考、操作,归纳。
五、教学过程【复习回忆】右图是湿地公园长方形草坪一角,有人避开拐角在草坪内走出了一条小路,问这么走的理论依据是什么?若两步为1m,他们仅仅少走了几步?目的:1、复习两点之间线段最短及勾股定理,为新课做预备;2、激起学生爱护环境意识和对核心价值观“文明、友善”的践行。
思考:如图,立体图形中从点A到点B处,怎样找到最短路线呢?目的:引出课题。
【台阶中的最值问题】三级台阶示意图如图,每级台阶的长、宽、高分别为5dm、3dm和1dm,请你想一想,一只蚂蚁从点A动身,沿着台阶面爬行到点B,爬行的最短路线是多少?老师活动:假如A、B两点在同一个平面上,直接连接两点即可求出最短路。
苏科版数学八年级上册《3.3 勾股定理的简单应用》教学设计2
苏科版数学八年级上册《3.3 勾股定理的简单应用》教学设计2一. 教材分析《苏科版数学八年级上册》第三单元《勾股定理的简单应用》是学生在学习了勾股定理之后的一个应用部分。
这部分内容主要让学生通过实际问题,运用勾股定理解决生活中的问题,培养学生的数学应用能力。
教材通过丰富的例题和练习题,让学生在解决实际问题的过程中,加深对勾股定理的理解和记忆。
二. 学情分析八年级的学生已经学习了勾股定理,对勾股定理的基本概念和运用有一定的了解。
但是,对于一些生活中的实际问题,如何运用勾股定理来解决,可能还存在一定的困难。
因此,在教学过程中,需要引导学生将理论知识与实际问题相结合,提高学生的数学应用能力。
三. 教学目标1.知识与技能:让学生掌握勾股定理的基本概念,能够运用勾股定理解决实际问题。
2.过程与方法:通过解决实际问题,培养学生运用数学知识解决问题的能力。
3.情感态度与价值观:让学生体验数学在生活中的应用,提高学生学习数学的兴趣。
四. 教学重难点1.重点:让学生能够运用勾股定理解决实际问题。
2.难点:如何引导学生将实际问题与勾股定理相结合,提高学生的数学应用能力。
五. 教学方法采用问题驱动的教学方法,通过引导学生解决实际问题,让学生在解决问题的过程中,运用勾股定理,提高学生的数学应用能力。
同时,采用小组合作的学习方式,让学生在讨论和交流中,共同解决问题,培养学生的合作意识。
六. 教学准备1.准备相关的实际问题,用于课堂上引导学生解决。
2.准备PPT,用于展示问题和引导学生思考。
七. 教学过程1.导入(5分钟)通过一个实际问题,引发学生的思考,引出本节课的主题。
例题:一块直角三角形的木板,两条直角边的长度分别是3分米和4分米,那么这块木板的最大面积是多少?2.呈现(10分钟)呈现PPT,展示问题,引导学生思考如何解决这个问题。
3.操练(10分钟)学生独立思考,尝试解决PPT上的问题。
教师巡回指导,解答学生的疑问。
勾股定理教学设计(优秀3篇)
勾股定理教学设计(优秀3篇)《勾股定理》教学设计篇一教学目标具体要求:1.知识与技能目标:会用勾股定理及直角三角形的判定条件解决实际问题。
2.过程与方法目标:经历勾股定理的应用过程,熟练掌握其应用方法,明确应用的条件。
3.情感态度与价值观目标:通过自主学习的发展体验获取数学知识的感受;通过有关勾股定理的历史讲解,对学生进行德育教育。
重点:勾股定理的应用难点:勾股定理的应用教案设计一、知识点讲解知识点1:(已知两边求第三边)1.在直角三角形中,若两直角边的长分别为1cm,2cm,则斜边长为_____________。
2.已知直角三角形的两边长为3、4,则另一条边长是______________。
3.三角形ABC中,AB=10,AC=一qi,BC边上的高线AD=8,求BC的长?知识点2:利用方程求线段长1、如图,公路上A,B两点相距25km,C,D为两村庄,DA⊥AB于A,CB⊥AB于B,已知DA=壹五km,CB=10km,现在要在公路AB上建一车站E,(1)使得C,D两村到E站的距离相等,E站建在离A站多少km处?(2)DE与CE的位置关系(3)使得C,D两村到E站的距离最短,E站建在离A站多少km处?利用方程解决翻折问题2、如图,用一张长方形纸片ABCD进行折纸,已知该纸片宽AB为8cm,长BC为10cm.当折叠时,顶点D落在BC边上的点F处(折痕为AE).想一想,此时EC有多长?3、在矩形纸片ABCD中,AD=4cm,AB=10cm,按图所示方式折叠,使点B与点D重合,折痕为EF,求DE的长。
4.如图,将一个边长分别为4、8的矩形形纸片ABCD折叠,使C点与A点重合,则EF 的长是多少?5、折叠矩形ABCD的一边AD,折痕为AE,且使点D落在BC边上的点F处,已知AB=8cm,BC=10cm,以B点为原点,BC为x轴,BA为y轴建立平面直角坐标系。
求点F和点E坐标。
6、边长为8和4的矩形OABC的两边分别在直角坐标系的x轴和y轴上,若沿对角线AC折叠后,点B落在第四象限B1处,设B1C交x轴于点D,求(1)三角形ADC的面积,(2)点B1的坐标,(3)AB1所在的直线解析式。
华东师大版八年级数学上册14.2勾股定理的应用教学设计
-通过动态演示或实物模型,引导学生发现直角三角形三边之间的关系,从而引出勾股定理。
-结合图形,详细讲解勾股定理的公式及其推导过程,让学生深刻理解定理的内涵。
-通过例题,展示勾股定理在实际问题中的应用,如计算斜边长度、确定直角三角形的形状等。
3.课堂练习:
-设计不同难度的练习题,让学生独立完成,巩固勾股定理的知识。
2.实践应用题:设计一道与实际生活相关的勾股定理应用题,要求同学们运用所学知识解决问题。例如,假设学校旗杆的高度不易直接测量,但我们可以测得旗杆底端到地面的水平距离以及旗杆顶端到视线的垂直距离,请计算旗杆的大致高度。
3.创新思维题:请同学们思考并尝试证明勾股定理的逆定理,即在一个三角形中,如果一边的平方等于另外两边平方和,那么这个三角形是直角三角形。鼓励同学们运用多种方法进行证明,如几何法、代数法等。
2.学生在解决实际问题时,可能难以将勾股定理与问题情境有效结合。教师应通过丰富的实例,引导学生学会运用勾股定理分析问题、解决问题。
3.学生的几何直观能力和逻辑思维能力发展不平衡,部分学生可能在学习过程中感到困难。教师应关注学生的个体差异,提供不同难度的学习任务,使每个学生都能在原有基础上得到提高。
4.学生在合作学习过程中,可能存在交流不畅、分工不明确等问题。教师应引导学生学会倾听、表达和协作,提高学生的团队协作能力。
-针对学生的错误,及时进行讲解和指导,帮助学生克服难点。
4.小组合作:
-将学生分成小组,针对实际问题进行讨论和合作,培养学生的团队协作能力和解决问题的能力。
-引导学生运用勾股定理解决实际问题,如设计建筑物的高度、测量河流宽度等。
5.课堂小结:
-通过提问、总结等方式,帮助学生梳理本节课的知识点,形成知识结构。
勾股定理的应用教学设计教案
《勾股定理的应用》教学设计
华师大版八年级(上)
江阴长泾中学费瑞芳
教学目标:1、知识与方法目标:通过对一些典型题目的思考、练习,能正确、熟练的进行勾股定理有关计算,深入对勾股定理的理解。
并能运用勾股定理解决简单的实际问题。
2、过程与方法目标:通过对一些题目的探讨,以达到掌握知识的目的。
培养学生分析问题和解决问题的能力。
3、情感与态度目标:感受数学在生活中的应用,感受数学定理的美。
教学重点:勾股定理的应用
教学内容:华师大版八年级(上)第14章第2节勾股定理的应用(1)
教学难点:勾股定理的灵活应用。
转化的思想。
教学方法:观察、比较、合作、交流、探索
教学过程:
教学反思
在数学教学过程中,知识的传授不应是教师单纯的讲解与学生简单的模仿,而应通过数学活动,让学生经历知识的探索过程,从而使学生更好地理解知识,发展应用数学的能力。
介于这个原因,我在本节课中设计的问题,都较吸引学生,让学生经历观察、分析、合作、交流、应用等一系列活动,这样,既注意课内知识的吸收和体验探索的艰辛,也领略到成功的愉悦,从而较好的体现了新课程的基本理念。
同时,关注学生的心理需求,拓展学生的学习空间,教师在语言上力求多激励学生,多引导学生,使学生在课堂活动中感悟学习知识的重要性,展示一个平等、互动的民主课堂。
勾股定理教案范本 勾股定理教案教学方法优秀6篇
勾股定理教案范本勾股定理教案教学方法优秀6篇初中数学《勾股定理》教学设计篇一一、学生知识状况分析本节将利用勾股定理及其逆定理解决一些具体的实际问题,其中需要学生了解空间图形、对一些空间图形进行展开、折叠等活动。
学生在学习七年级上第一章时对生活中的立体图形已经有了一定的认识,并从事过相应的实践活动,因而学生已经具备解决本课问题所需的知识基础和活动经验基础。
二、教学任务分析本节是义务教育课程标准北师大版实验教科书八年级(上)第一章《勾股定理》第3节。
具体内容是运用勾股定理及其逆定理解决简单的实际问题。
当然,在这些具体问题的解决过程中,需要经历几何图形的抽象过程,需要借助观察、操作等实践活动,这些都有助于发展学生的分析问题、解决问题能力和应用意识;一些探究活动具体一定的难度,需要学生相互间的合作交流,有助于发展学生合作交流的能力。
三、本节课的教学目标是:1.通过观察图形,探索图形间的关系,发展学生的空间观念。
2.在将实际问题抽象成数学问题的过程中,提高分析问题、解决问题的能力及渗透数学建模的思想。
3.在利用勾股定理解决实际问题的过程中,体验数学学习的实用性。
利用数学中的建模思想构造直角三角形,利用勾股定理及逆定理,解决实际问题是本节课的`重点也是难点。
四、教法学法1.教学方法引导—探究—归纳本节课的教学对象是初二学生,他们的参与意识教强,思维活跃,为了实现本节课的教学目标,我力求以下三个方面对学生进行引导:(1)从创设问题情景入手,通过知识再现,孕育教学过程;(2)从学生活动出发,顺势教学过程;(3)利用探索研究手段,通过思维深入,领悟教学过程。
2.课前准备教具:教材、电脑、多媒体课件。
学具:用矩形纸片做成的圆柱、剪刀、教材、笔记本、课堂练习本、文具五、教学过程分析本节课设计了七个环节。
第一环节:情境引入;第二环节:合作探究;第三环节:做一做;第四环节:小试牛刀;第五环节:举一反三;第六环节:交流小结;第七环节:布置作业。
八年级数学上册《勾股定理的应用》教案、教学设计
八年级的学生已经具备了一定的数学基础,掌握了基本的几何知识和代数运算。在此基础上,他们对勾股定理的学习将更加深入,对数学问题的分析和解决能力也将得到提升。然而,由于学生的认知水平和思维能力存在差异,部分学生可能在理解勾股定理的本质和灵活运用方面存在困难。因此,在教学过程中,教师应关注以下几点:
-详细讲解勾股定理的推导过程。
2.教学方法:
-采用直观演示法,让学生对勾股定理有更深刻的理解;
-结合实际例子,解释勾股定理在生活中的应用;
-通过讲解和推导,使学生掌握勾股定理的原理。
(三)学生小组讨论
1.教学活动设计:
-将学生分成若干小组,每组讨论以下问题:
a.勾股定理的推导方法有哪些?
b.勾股定理在生活中的应用实例;
-教师进行点评,总结学生在课堂上的表现;
-鼓励学生提出问题,激发他们进一步探索勾股定理的兴趣。
五、作业布置
为了巩固本节课所学内容,培养学生的独立思考能力和解决问题的能力,特布置以下作业:
1.基础巩固题:
-根据课堂练习,完成课后习题第1-10题,要求学生独立完成,家长签字确认;
-通过勾股定理计算以下直角三角形的斜边长度:3,4,5;5,12,13;8,15,17等,并简要说明计算过程。
5.培养学生热爱科学、追求真理的价值观,树立正确的人生观和价值观。
在具体的教学过程中,教师应关注学生的个体差异,充分调动学生的积极性,引导他们主动参与课堂活动,提高教学效果。同时,注重课后辅导,帮助学生巩固所学知识,提高数学素养。总之,本章节教学设计旨在使学生在掌握勾股定理的基础上,提高数学应用能力,培养良好的情感态度和价值观。
3.精讲精练,巩固提高:
-对勾股定理进行详细讲解,强调关键点,帮助学生建立清晰的知识结构;
北师大版八年级数学上册《勾股定理的应用》示范课教学设计
第一章勾股定理3 勾股定理的应用一、教学目标1.会灵活运用勾股定理求解立体图形上两点之间路线最短的问题.体会勾股定理在代数问题和几何问题中的应用.2.能正确运用勾股定理及直角三角形的判别方法解决简单的实际问题.3.能够运用勾股定理解决实际生活中的问题,熟练运用勾股定理进行计算,增强数学知识的应用意识.4.在将实际问题抽象成数学问题的过程中,提高分析问题、解决问题的能力及渗透数学建模的思想.二、教学重难点重点:会用勾股定理求解立体图形上两点之间路线最短的问题.难点:能正确运用勾股定理及直角三角形的判别方法解决简单的实际问题.三、教学用具电脑、多媒体、课件、教学用具等四、教学过程设计【复习回顾】教师活动:教师引导学生回顾勾股定理,并通过简单的提问,回顾勾股定理逆定理以及勾股数的内容,接着通过小情境引入本节课要讲解的内容.勾股定理:如果直角三角形的两条直角边长分别为a,b,斜边长为c,那么a²+b²=c².如果三角形的三边长a、b、c满足a²+b²=c²,那么这个三角形是.预设答案:直角三角形.满足a²+b²=c²的三个正整数,称为.预设答案:勾股数.观察思考:小明要去野外郊游,走哪条路最近呢?为什么呢?教师活动:教师提出问题,观察学生如何思考,再让学生说明理由.关注学生能否都认真看题积极思考,能否立刻利用两点之间线段最短确定最短路径.答案:线路③.【问题探究】有一个圆柱,它的高等于12cm,底面上圆的周长等于18cm.在圆柱下底面的点A有一只蚂蚁,它想吃到上底面上与点A相对的点B处的食物,沿圆柱侧面蚂蚁怎么爬行的路程最短呢?做一做自己做一个圆柱,尝试从A点到B点沿圆柱侧面画出几条路线,你觉得哪条路线最短呢?教师活动:让学生说出自己规划的蚂蚁的路线,然后用课件展示.③A→B的路线长为:AA′+A′B ;③A→B的路线长为:AA′+曲线A′B;③A→B的路线长为:曲线AP +曲线PB;③A→B的路线长:曲线AB.将圆柱侧面剪开展成一个长方形,从点A到点B的最短路线是什么?你画对了吗?教师活动:对照圆柱上的线路,用课件展示侧面剪开图,让学生观察并说出哪条线路最近.教师活动:将圆柱的侧面展开,把曲线分别转化为对应线段,然后结合两点之间线段最短,得出结论:第(4)种方案路程最短.追问:蚂蚁从点A出发,想吃到点B上的食物,它沿圆柱侧面爬行的最短路程是多少?该如何计算呢?答案:在Rt③A′AB中,利用勾股定理,得AB²=AA′²+A′B².其中AA′是圆柱体的高,A′B是底面圆周长的一半(πr) .已知圆柱体高为12 cm,底面周长为18 cm,则AB=15cm.做一做如图,在棱长为10 cm的正方体的一个顶点A处有一只蚂蚁,现要向顶点B处爬行,已知蚂蚁爬行的速度是1 cm/s,且速度保持不变,问蚂蚁能否在20 s内从A爬到B?教师活动:先由学生独立完成,教师及时给予指导,在此活动中,教师应重点关注学生能否进一步理解蚂蚁最近线路该如何走.多媒体展示答题过程解:将正方体展开得到如下图形,由勾股定理得,22AB2.=10+20=50020×1=20(cm).③202<500.③蚂蚁不能在20 s内从A爬到B.【思考探究】教师活动:多媒体演示课件,引导学生观察并思考:李叔叔想要检测雕塑底座正面的边AD和边BC是否分别垂于底边AB,但他随身只带了卷尺.你能替他想办法完成任务吗?提示:连接BD,如果能算出AD2+AB2=BD2 ,就可以说明边AD和边BC分别垂于底边AB.提示:连接AC,如果能算出AB2+BC2=AC2 ,就可以说明边BC垂于底边AB.问题:李叔叔想要检测雕塑底座正面的边AD 和边BC是否分别垂直于底边AB,但他随身只带了卷尺.李叔叔量得边AD长是30 cm,边AB长是40 cm,边BD长是50 cm.边AD垂直于边AB 吗?教师活动:引导学生通过勾股定理证得BC垂直于AB得出结论.巡视同学做题过程,对于有困难的学生给予指导,然后用多媒体展示答题过程.解:连接BD③AD=30,AB=40,BD=50又③AD2+AB2=302+402=502=BD2③ΔABD为直角三角形,③A=90°③AD⊥AB同理可证得:BC⊥AB.问题:小明随身只有一个长度为20cm的刻度尺,他能有办法检验边AD是否垂直于边AB吗?解:在AD上取点M,使AM=9,在AB上取点N,使AN=12,92+122=152【典型例题】教师提出问题,学生先独立思考,解答.然后再在小组内交流探讨,教师巡视,如遇到有困难的学生适当点拨,最终教师展示答题过程.典型例题【例1】如图是一个滑梯示意图,若将滑道AC水平放置,则刚好与AB一样长.已知滑梯的高度CE=3 m,CD=1 m,试求滑道AC的长.分析:根据题意可的AC=AB,可设AC为x m,从而AE是(x-1)m,而③AEC是直角三角形,由勾股定理可得AC的值.解:设滑道AC的长度为x m,则AB的长度为x m,AE的长度为(x-1)m.在Rt③AEC中,③AEC=90°,由勾股定理得AE2+CE2=AC2,即(x-1)2+32= x 2,解得x =5.故滑道AC的长度为5 m.【例2】在一次台风的袭击中,小明家房前的一棵大树在离地面6米处断裂,树的顶部落在离树根底部8米处.你能告诉小明这棵树折断之前有多高吗?教师根据题干分析题中提供的已知条件,并画出图形.解:根据题意可以构建一直角三角形模型,如图.在Rt③ABC中,AC=6米,BC=8米,由勾股定理得AB=10米.③这棵树在折断之前的高度是10+6=16(米).教师给出练习,随时观察学生完成情况并相应指导,最后给出答案,根据学生完成情况适当分析讲解.1.小华和小刚兄弟两个同时从家去同一所学校上学,速度都是每分钟走50米.小华从家到学校走直线用了10分钟,而小刚从家出发先去找小明再到学校(均走直线),小刚到小明家用了6分钟,小明家到学校用了8分钟,小刚上学走了个()A.锐角弯B.钝角弯C.直角弯D.不能确定教师画示意图:222⨯+⨯=⨯(650)(850)(1050)∴所以小刚上学走了个直角弯.答案:C2.如图是一张直角三角形的纸片,两直角边AC=6 cm,BC=8 cm,将△ABC折叠,使点B与点A重合,折痕为DE,则BE的长是.教师提示:因为DE是折痕,所以E为AB的中点,AE=BE=12AB,只要根据勾股定理求出Rt△ABC斜边AB的长,就可求出BE的长.答案:5 cm.3.如图,某探险队的A组由驻地O点出发,以12km/h的速度前进,同时,B组也由驻地O出发,以9km/h的速度向另一个方向前进,2h后同时停下来,这时A、B两组相距30km.此时,A,B两组行进的方向成直角吗?请说明理由.解:2小时后,A组行驶的路程为:12×2=24(km);B组行驶的路程为:9×2=18(km);又因为A,B两组相距30 km,且有242+182=302所以A,B两组行进的方向成直角.。
《3.3勾股定理的简单应用》教学设计-优质教案
课时9:3.3勾股定理的简单应用教学目标:1.能运用勾股定理及勾股定理的逆定理解决简单的实际问题;2.在运用勾股定理及其勾股定理的逆定理解决实际问题的过程中,感悟数学的“转化”思想,体会勾股定理的文化价值,增强应用意识;教材分析重点:运用勾股定理及勾股定理的逆定理解决简单的问题。
难点:将实际问题转化为直角三角形的数学模型。
课型方法新授课电教手段实物投影前置作业:问题1、如图,从电线杆离地面6 m处向地面拉一条长10 m的固定缆绳,这条缆绳在地面的固定点距离电线杆底部有 m.问题2、如图,学校有一块长方形花铺,有极少数人为了避开拐角走“捷径”,在花铺内走出了一条“路”。
他们仅仅少走了__________米,却踩伤了花草。
问题3、小明想知道学校旗杆的高度,他发现旗杆上的绳子垂到地面还多1米,当他把绳子的下端拉开5米后,发现下端刚好接触地面,则旗杆的高是__________米.教学过程:一、展示交流:二、合作探究:例1、<九章算术》中,有折竹问题:今有竹高一丈,末折抵地,去根三尺,问折高几何?题意是:有一根竹子,原高一丈【一丈=十尺】,中部有一处折断,竹梢触地面离竹根三尺。
问折断处离地面多高?A例2、如图,在△ABC中,AB=26,BC=20,BC边的中线AD=24,求AC.C三.质疑反馈:1、如图,起重机吊运物体,已知BC=6m,AC=10m,则AB的长为____________ m.2、如图,在高为5m,坡面长为13m的楼梯表面铺地毯,地毯的长度至少需要____________米。
3、计算四边形ABCD的面积。
4、一个三角形三边长的比为3:4:5,它的周长是60cm,求这个三角形的面积。
5、已知等腰三角形底边上的高为4,周长为16,求这个三角形面积。
6、如图,一圆柱高8cm,底面半径2cm,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程( 取3)是多少?7、如图,以Rt△ABC的三边为直径的3个半圆的面积之间有什么关系?请说明理由。
《勾股定理的应用---怎样走最近?》的教学设计
《勾股定理的应用 ---怎样走最近?》的教学设计一、提出问题由“大自然中, 沙漠蚂蚁擅长寻找最近路径回家”的视频提问:思考1: 如果觅食点和家分别为同一平面内的点A.B, 怎样的路径是最短路径?为什么?思考2: 如果觅食点和家为不在同一平面内的点A、B, 怎样的路径是最短路径?从而引出课题“勾股定理的应用---怎样走最近?”。
设计意图:从“大自然的沙漠蚂蚁”入手, 通过自然界中的现象, 让学生从数学的角度尝试去解决, 让学生产生强烈的问题意识, 激发学生学习的兴趣.二、探究新知探究1正方体的最短路线问题问题1.点A和点B分别是棱长为10cm的正方体盒子上相对的两点,一只蚂蚁在盒子表面由A处向B处爬行,所走最短路程的平方是多少?引问: 相对的点如何理解?思考1: 蚂蚁从点A爬行到点B可能有哪些路线?请在导学案上画出来。
思考2: 怎样才能找到最短路径?如何判断?预设: 1.测量, 2.计算, 如何计算?追问1:这是立体图形, 如何转化为平面图形?预设: 展开图追问2: 可能的最短路径涉及几个面?是否需要完整的展开图?预设: 2个面即可追问3:可能的展开图共有几种情况?能否优化?预设:6种, 可优化为3种师生共同归纳总结方法。
设计意图: 体会转化的思想, 采用局部展开或整体展开的方法, 从三种不同的图形变换中得到答案, 并在直角三角形中利用勾股定理得到答案。
探究2长方体的最短路线问题问题2.如图, 有一个长方体, 它的长、宽、高分别为7cm、 3cm 、 4cm 。
在顶点A处有一只小蚂蚁, 它想吃到点B处的火腿肠粒。
已知蚂蚁沿长方体表面爬行的速度是1cm/s, 且速度保持不变, 那么蚂蚁能否在10秒内获取食物?思考1: 决定蚂蚁能否在10秒内获取食物的关键是什么?思考2: 怎样才能找到最短路径?有几种不同的展开方式得到可能的最短路径?确定3条路线, 完成学案, 计算得出最短路径。
最短。
因为130>116>98, 所以AB1因为102 >98, 所以蚂蚁能在10秒内获取食物.设计意图:类比正方体上的路径最短问题的研究方法, 展开找到最优方案。
北师大版数学八年级上册第一章勾股定理第3节勾股定理的应用优秀教学案例
(三)学生小组讨论
1.教师给出具体的合作任务,如共同探究勾股定理的证明方法,分享解题心得等。
2.学生分组进行讨论,相互交流,共同解决问题。
3.教师巡回指导,关注学生的个体差异,给予有针对性的帮助。
(四)总结归纳
1.教师引导学生对所学内容进行总结,如勾股定理的定义、证明方法及其应用等。
北师大版数学八年级上册第一章勾股定理第3节勾股定理的应用优秀教学案例
一、案例背景
北师大版数学八年级上册第一章勾股定理第3节勾股定理的应用,旨在让学生通过探究、实践,掌握勾股定理在实际问题中的应用。本节内容与日常生活紧密相连,旨在培养学生运用数学知识解决实际问题的能力。
本节课的内容包括:理解勾股定理的应用场景,如直角三角形、矩形、正方形等;学会运用勾股定理解决实际问题,如计算直角三角形的斜边长度、判断一个四边形是否为矩形等;培养学生的合作交流能力,通过小组讨论、分享解题方法,提高学生对勾股定理应用的掌握程度。
三、教学策略
(一)情景创设
1.生活情境:以实际生活中的实例引入,如测量房屋面积、计算登机桥的长度等,让学生感受到勾股定理的实际应用。
2.媒体素材:运用多媒体课件、视频等素材,展示勾股定理的历史背景、发现过程,让学生深入了解勾股定理的来历。
3.问题情境:设计一些具有启发性的问题,如“为什么勾股定理适用于所有直角三角形?”“如何判断一个四边形是否为矩形?”等,激发学生的思考兴趣。
4.教师在小组合作过程中进行巡视指导,关注学生的个体差异,给予有针对性的帮助。
(四)反思与评价
1.引导学生对自己的学习过程进行反思,如“在学习勾股定理的过程中,你遇到了哪些困难?是如何克服的?”“你在解决问题时采用了哪些方法?效果如何?”等。
勾股定理优秀教学设计模板(通用5篇)
勾股定理优秀教学设计模板(通⽤5篇)勾股定理优秀教学设计模板(通⽤5篇) 在教学⼯作者实际的教学活动中,时常需要⽤到教学设计,教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学⽅案的设想和计划。
那么⼤家知道规范的教学设计是怎么写的吗?以下是⼩编为⼤家收集的勾股定理优秀教学设计模板(通⽤5篇),希望能够帮助到⼤家。
勾股定理优秀教学设计1 ⼀、教案背景概述: 教材分析:勾股定理是直⾓三⾓形的重要性质,它把三⾓形有⼀个直⾓的"形"的特点,转化为三边之间的"数"的关系,它是数形结合的典范。
它可以解决许多直⾓三⾓形中的计算问题,它是直⾓三⾓形特有的性质,是初中数学教学内容重点之⼀。
本节课的重点是发现勾股定理,难点是说明勾股定理的正确性。
学⽣分析: 1、考虑到三⾓尺学⽣天天在⽤,较为熟悉,但真正能仔细研究过三⾓尺的同学并不多,通过这样的情景设计,能⾮常简单地将学⽣的注意⼒引向本节课的本质。
2、以与勾股定理有关的⼈⽂历史知识为背景展开对直⾓三⾓形三边关系的讨论,能激发学⽣的学习兴趣。
设计理念:本教案以学⽣⼿中舞动的三⾓尺为知识背景展开,以勾股定理在古今中外的发展史为主线贯穿课堂始终,让学⽣对勾股定理的发展过程有所了解,让他们感受勾股定理的丰富⽂化内涵,体验勾股定理的探索和运⽤过程,激发学⽣学习数学的兴趣,特别是通过向学⽣介绍我国古代在勾股定理研究和运⽤⽅⾯的成就,激发学⽣热爱祖国,热爱祖国悠久⽂化的思想感情,培养他们的民族⾃豪感和探究创新的精神。
教学⽬标: 1、经历⽤⾯积割、补法探索勾股定理的过程,培养学⽣主动探究意识,发展合理推理能⼒,体现数形结合思想。
2、经历⽤多种割、补图形的⽅法验证勾股定理的过程,发展⽤数学的眼光观察现实世界和有条理地思考能⼒以及语⾔表达能⼒等,感受勾股定理的⽂化价值。
3、培养学⽣学习数学的兴趣和爱国热情。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章勾股定理
教学目标:
1. 通过观察图形,探索图形间的关系,发展学生的空间观念.
2. 在将实际问题抽象成数学问题的过程中,
提高分析问题、解决问题的能力及渗
透数学建模的思想.
3. 在利用勾股定理解决实际问题的过程中,体验数学学习的实用性.
重难点:利用数学中的建模思想构造直角三角形,利用勾股定理及逆定理,解决实
际问题.
第一环节:情境引入
内容:
情景:多媒体展示:
如图:在一个圆柱石凳上,若小明在吃东西时留下了一点食物
在B处,恰好一只在A处的蚂蚁捕捉到这一信息,于是它想从A处爬向B处,你
们想一想,蚂蚁怎么走最近?
第二环节:合作探究
内容:
学生分为4人活动小组,合作探究蚂蚁爬行的最短路线,充分讨论后,汇总各小组的方
案,在全班范围内讨论每种方案的路线计算方法,通过具体计算,总结出最短路线•让学生发
现:沿圆柱体母线剪开后展开得到矩形,研究“蚂蚁怎么走最近”就是研究两点连线最短问题,
引导学生体会利用数学解决实际问题的方法.
学生汇总了四种方案:
学生很容易算出:情形(1)中A-B的路线长为:AA- d,
情形(2)中A- B的路线长为:AA —
3.勾股定理的应用王彦奇
B
I
(1) (2) (3) (4)
2
所以情形(1的路线比情形(2)要短.
学生在情形(3)和(4)的比较中出现困难,但还是有学生提出用剪刀沿母线
AA 剪开圆柱得到矩形,情形(3)A -B 是折线,而情形(4)是线段,故根据两点
之间线段最短可判断(4)较短,最后通过计算比较(1)和(4)即可.
如图:
(1) 中A — B 的路线长为:AA-d .
(2) 中A — B 的路线长为:AA'・A'B >AB .
(4)中A — B 的路线长为:AB .
得出结论:利用展开图中两点之间,线段最短解 决问题.在这个环节中,可让学生沿母线剪开圆柱体, 具体观察.接下来后提问:怎样计算 AB ?
在Rt △ AA' B 中,利用勾股定理可得
AB 2 =AA 2 A'B 2,若已知圆柱体高为 12cm ,底面半径为 3cm ,n 取3,则
AB 2 =122 (3 3)2 , AB = 15
第三环节:做一做
内容:
李叔叔想要检测雕塑底座正面的 AD 边和BC 边是否分别垂 直于底边
AB ,但他随身只带了卷尺,
(1) 你能替他想办法完成任务吗?
(2) 李叔叔量得 AD 长是30厘米,AB 长是40厘米,BD 长 是
50厘米,AD 边垂直于AB 边吗?为什么?
(3)小明随身只有一个长度为20厘米的刻度尺,他能有办法检验 AD 边是否垂 直于AB 边吗? BC 边与AB 边呢?
解答:(2) 7 AD 2 AB^302 40 ^2500
BD 2 =2500
2 丄
2
2
.AD AB =BD
(3)中A — B 的路线长为:AO+OB>AB .
4 - d —►
i L
••• AD和AB垂直.
第四环节:小试牛刀
内容:
1. 甲、乙两位探险者到沙漠进行探险,某日早晨8 00甲先出发,他以6 km/h
的速度向正东行走,1时后乙出发,他以5 km/h 的速度向正北行走•上午10: 00, 甲、乙两人相距多远?
解答:如图:已知A 是甲、乙的出发点,10:00甲到达B 点,乙到达C 点.则:
AB=2X 6=12 (km ) AC=1 x 5=5 (km )
在 Rt A ABC 中:
••• BC=13 (km ). 即甲乙两人相距13 km .
2.如图,台阶A 处的蚂蚁要爬到B 处搬运食物,它怎么走最近?并求出最近
3.有一个高为1.5 m 半径是1m 的圆柱形油桶,在靠近边的地方有一小孔,
从孔中插入一铁棒,已知铁棒在油桶外的部分为
0.5 m,问这根铁棒有多长?
解答:设伸入油桶中的长度为x m . 2 2 + 2
则最长时:
x =1.5 2
. x =2.5.
二最长是 2.5+0.5=3 (m ). 最短时:x =1.5 .
最短是 1.5+0.5=2 (nr). 答:这根铁棒的长应在2〜3m 之间. 第五环节:举一反三
内容:
BC 2 二AC 2 AB 2 =52 122 =169 =132. 距离.
解答:.AB 2 =152 202 =625 =252.
TA
东
1.如图,在棱长为10cm的正方体的一个顶点A处有一只蚂蚁,现要向顶点B
处爬行,已知蚂蚁爬行的速度是1 cm/s,且速度保持不变,问蚂蚁能否在20 s内
从A爬到B?
解:如图,在Rt△ ABC中: AB2二AC2• BC2 =102• 202=500.
••• 500> 202 .
•••不能在20s内从A爬到B.
第六环节:交流小结
师生相互交流总结:
1. 解决实际问题的方法是建立数学模型求解.
2. 在寻求最短路径时,往往把空间问题平面化,利用勾股定理及其逆定理解决实际问题. 第七环节:布置作业
1.课本习题1. 4第1,2,3题.。