§1.8 复系数与实系数多项式的因式分解

合集下载

高等代数教学大纲(12学分)

高等代数教学大纲(12学分)

高等代数教学大纲(Higher Algebra)前言教学大纲是一门课程的指导性文件.教学大纲的科学化、规范化,对建设良好的教学秩序,提高教学质量,搞好教学管理等方面都有很重要的意义.为此,我们根据学校有关文件,编写了《高等代数》这门课程的教学大纲.《高等代数》这门课程是数学系各专业的必修专业基础课程之一,可为后继课程的学习打下必要的基础.它是数学系各专业硕士研究生入学考试的必考课程.它除培养学生掌握必要的基础知识之外,同时着重训练学生掌握数学结构的观念、公理化的方法、纯形式化的思维,从而在知识结构、综合素质、创新能力等方面对学生加以全面培养和整体提高.本课程的基本内容有: 包括:多项式,行列式,线性方程组, 矩阵,二次型,线性空间, 线λ矩阵,欧几里得内积空间,双线性函数和辛空间.重点是下列几章:多项式,行性变换, -列式,线性方程组, 矩阵,二次型,线性空间, 线性变换,欧几里得内积空间.通过本课程的学习,学生能正确理解矩阵、行列式、线性空间、线性变换、欧几里得空间等有关概念, 能理解并掌握线性方程组理论和多项式的理论,并能熟练地应用它们,为后续课程的学习打下坚实的基础.本课程作为基础课,对其它课程依赖不大,当然,如果在学完《空间解析几何》之后开设效果会更好.本课程作为基础课,应在大学低年级学生中开设,建议对本科一年级学生开设.本课程为一学年课程.教材: 《高等代数学》(第三版)北京大学数学系几何与代数教研室前代数小组, 高等教育出版社,2003年。

参考书:《线性代数》吴赣昌主编,中国人民大学出版社,2006年《高等代数学》姚慕生编, 复旦大学出版社,1999《高等代数新方法》王品超主编,山东教育出版社,1989年《高等代数学》(第二版)张贤科主编,清华大学出版社,2002年《Linear Algebra》S.K.Jain, A.D.Gunawardena,机械工业出版社,2003年建议学时分配课程内容第一章多项式[教学目的与要求]通过本章学习,实现如下目的:(1)理解整除、最大公因式、互素、多项式的不可约性、重因式、本原多项式等概念;(2)熟练掌握整除的性质;(3)熟练掌握最大公因式的求法;(4)熟练掌握有无重因式的判别方法;(5)熟练掌握整系数多项式的有理根的求法;(6)熟练掌握整系数多项式在有理数域上不可约的艾森斯坦判别法;(7)掌握复系数多项式因式分解定理、实系数多项式因式分解定理、有理系数多项式的因式分解定理的应用;(8)掌握韦达定理和多元多项式的基本性质.[教学重点]整除的性质、最大公因式的求法、有无重因式的判别方法、整系数多项式的有理根的求法、整系数多项式不可约的艾森斯坦判别法;复系数多项式因式分解定理、实系数多项式因式分解定理、有理系数多项式的因式分解定理的应用.[教学难点]整系数多项式的有理根的求法、整系数多项式不可约的艾森斯坦判别法.[教学内容]§1.1. 数域数域的定义和例子§1.2. 一元多项式一、一元多项式的定义二、一元多项式的运算和运算律§1.3. 整除的概念一、带余除法二、整除的定义和几个常用的性质§1.4. 最大公因式一、最大公因式的定义和求法二、互素§1.5. 因式分解定理一、不可约多项式的定义和简单性质二、因式分解唯一性定理§1.6. 重因式重因式的定义和性质§1.7. 多项式函数一、余数定理二、多项式的根或零点§1.8. 复系数与实系数多项式的因式分解一、复系数多项式的因式分解定理 二、实系数多项式的因式分解定理§1.9. 有理系数多项式一、本原多项式的定义和高斯引理 二、整系数多项式的有理根的求法 三、爱森斯坦判别法§1.10. 多元多项式多元多项式的定义及其次数§1.11. 对称多项式一、初等对称多项式二、对称多项式基本定理思考题1. 证明:多项式)(x f 整除任意多项式的充要条件是)(x f 是零次多项式.2. 设b a ,为两个不相等的常数.证明:多项式)(x f 被))((b x a x --除所得的余式为ba b bf a af x b a b f a f --+--)()()()(3. 证明:1|1--n d x x 当且仅当n d |.4. 设k 为正整数.证明:)(|x f x k 当且仅当)(|x f x .5. 已知242)(234---+=x x x x x f ,22)(234---+=x x x x x g ,求)(),(x v x u 使))(),(()()()()(x g x f x g x v x f x u =+. 6. 证明:如果)(|)(x f x d ,)(|)(x g x d ,且)()()()()(x g x v x f x u x d +=,则)(x d 是)(x f 与)(x g 的最大公因式.7. 证明:如果1))(),((=x g x f ,1))(),((=x h x f ,则1))()(),((=x h x g x f . 8. 证明:如果1))(),((=x g x f ,则1))(),((=mmx g x f . 9. 若1))(),((21=x f x f ,则对任意的)(x g ,))(),(())(),(())(),()((2121x g x f x g x f x g x f x f =.10.判断下列多项式在有理数域上是否有重因式,若有,则求出重因式,并确定重数(1)1)(24++=x x x f(2)277251815)(2346+-++-=x x x x x x f11.设)(x p 是)(x f '的k 重因式,能否说)(x p 是)(x f 的1+k 重因式,为什么?12.设n 为正整数,证明:如果)(|)(x g x f nn ,则)(|)(x g x f .13.设)(x p 为数域P 上的不可约多项式,)(x f 与)(x g 为数域P 上的多项式.证明:如果)()(|)(x g x f x p +,且)()(|)(x g x f x p ,则)(|)(x f x p ,且)(|)(x g x p .14.设)(x f 为数域P 上的n 次多项式,证明:如果)(|)(x f x f ',则nb x a x f )()(-=,其中P b a ∈,.15.求多项式92)(24++=x x x f 与944)(234-+-=x x x x g 的公共根.16.求多项式61510)(25-+-=x x x x f 的所有根,并确定重数.第二章 行列式[教学目的与要求] 通过本章学习,实现如下目的: (1) 理解行列式的概念;(2) 能熟练应用行列式的性质和展开定理计算行列式; (3) 会用Cramer 法则求解线性方程组. [教学重点]行列式的计算、Cramer 法则. [教学难点] 行列式的定义 [教学内容]§2.1. 引言二阶、三阶行列式与线性方程组的解§2.2. 排列一、排列及排列逆序数的定义 二、奇偶排列§2.3. n 阶行列式 n 阶行列式的定义§2.4. n 阶行列式的性质 n 阶行列式的性质及其推论§2.5. 行列式的计算n 阶行列式的计算§2.6. 行列式按一行一列展开一、n 阶行列式按一行一列展开定理 二、范德蒙(Vandermonde )行列式§2.7. 克拉默(Cramer )法则 克拉默(Cramer )法则§2.8. 拉普拉斯(Laplace )定理 行列式的乘法规则一、拉普拉斯(Laplace )定理 二、行列式的乘法规则思考题1. 求下列排列的逆序数:(1))2(24)12(13n n -; (2)21)1( -n n . 2. 写出四阶行列式中含有因子4123a a 的项,并指出应带的符号. 3.用行列式的定义计算下列行列式:(1)00001002001000nn -; (2)000000053524342353433323125242322211312a a a a a a a a a a a a a a a a . 4.用行列式的性质及行列式的展开定理计算下列行列式:(1)xa a a a x a a a a x a a a a xn nn321212121; (2)na a a +++11111111121,其中021≠n a a a(3)12125431432321-n n n; (4)221222212121211nn n n n na x a a a a a a a x a a a a a a a x +++其中021≠n x x x .(5)x a a a a a x x x n n n +-----122110000010001;(6)nnn n n nn n nna a a a a a a a a a a a21222212222121111---5. 已知4阶行列式D 中的第1行上的元素分别为4,0,2,1-,其余子式分别为1,5,2,1--;第3行上元素的余子式分别为x ,7,1,6-;求行列式D 的值,及x 的值.6.设4阶行列式1234302186427531中第4行元素的余子式分别为44434241,,,M M M M ,代数余子式分别为44434241,,,A A A A ,求44434241432A A A A +++,44434241432M M M M +++.7. 设4阶行列式2211765144334321中第4行元素的代数余子式分别为44434241,,,A A A A ,求4241A A +与4443A A +.8. 设行列式nn0010301002112531-中第1行元素的代数余子式分别为n A A A 11211,,, ,求n A A A 11211+++ .第三章 线性方程组[教学目的与要求] 通过本章学习,实现如下目的:(1) 掌握向量的线性表示、线性相关性的判别法; (2) 掌握极大无关组的求法; (3) 掌握矩阵秩的求法;(4) 掌握线性方程组解情况的判定方法; (5) 掌握齐次线性方程组的基础解系的求法; (6) 掌握非齐次线性方程组解结构定理[教学重点] 向量的线性表示、线性相关性、极大无关组、向量组的秩、矩阵的秩、齐次线性方程组的基础解系.[教学难点] 极大无关组、矩阵的秩.[教学内容]§3.1. 消元法消元法§3.2. n 维向量空间n 维向量及其运算§3.3. 线性相关性一、线性表示二、向量组的线性相关性 三、向量组的极大无关组、秩§3.4. 矩阵的秩矩阵的行秩、列秩、秩§3.5. 线性方程组有解判定定理线性方程组有解判定定理§3.6. 线性方程组解的结构一、齐次线性方程组的解结构 二、非齐次线性方程组的解结构§3.7. 二元高次方程组二元高次方程组可作为选学内容.思考题1.设)1,1,1(1λα+=,)1,1,1(2λα+=,)1,1,1(3λα+=,),,0(2λλβ=.问当λ为何值时(1)β不能由321,,ααα线性表出?(2)β可由321,,ααα线性表出,并且表示法唯一?(3)β可由321,,ααα线性表出,并且表示法不唯一? 2.设)1,2,(1a =α,)0,,2(2a =α,)1,1,1(3-=α,问a 为何值时321,,ααα线性相关?3. 求下列向量组的一个极大无关组,并将其余向量表为该极大无关组的线性组合.(1))5,2,1(1-=α,)1,2,3(2-=α,)17,10,3(3-=α;(2))4,0,1,1(1-=α,)6,5,1,2(2=α,)0,2,1,1(3--=α,)14,7,0,3(4=α. 4.已知21,ββ是非齐次线性方程组b Ax =的两个解,21,αα是其导出组0=Ax 的基础解系,21,k k 是任意常数,则b Ax =的通解是( ).(A)2)(2121211ββααα-+++k k ; (B)2)(2121211ββααα++-+k k ;(C)2)(2121211ββββα-+-+k k ; (D)2)(2121211ββββα++-+k k .5.设A 为秩为3的45⨯矩阵,321,,ααα是非齐次线性方程组b Ax =的三个不同的解,若)0,0,0,2(2321=++ααα,)8,6,4,2(321=+αα,求方程组b Ax =的通解. 6.设b Ax =为4元线性方程组,其系数矩阵A 的秩为3,又321,,ααα是b Ax =的三个解,且)0,2,0,2(1=α,)0,2,2,0(32=+αα,求方程组b Ax =的通解.7.已知β是非齐次线性方程组b Ax =的解,s ααα,,,21 是其导出组0=Ax 的基础解系,证明s αβαβαββ+++,,,,21 是b Ax =解向量组的极大无关组.8.线性方程组⎪⎪⎩⎪⎪⎨⎧=+--=+--=+++=+++243214312143214321121053153363132k x x x x x x k x x x x x x x x x x ,当21,k k 取何值时,无解?有唯一解?有无穷多解?在方程组有无穷多解时,用导出组的基础解系表示其全部解.第四章 矩阵[教学目的与要求] 通过本章学习,实现如下目的:(1) 能熟练地进行矩阵的各种运算(加、减、数乘、乘、转置、求逆等); (2) 能熟练掌握矩阵的初等变换,理解初等变换和初等矩阵的关系; (3) 能掌握各种求逆矩阵的方法; (4) 会应用分块乘法的初等变换. [教学重点]矩阵的各种运算(加、减、数乘、乘、转置、求逆等);矩阵的初等变换; 初等变换求逆法;分块乘法的初等变换.[教学难点] 分块乘法的初等变换 [教学内容]§2.1. 矩阵的概念的一些背景矩阵的概念§2.2. 矩阵的运算一、矩阵的加法、减法 二、矩阵的乘法三、数与矩阵的乘法 四、矩阵的转置§2.3. 矩阵乘积的行列式与秩一、矩阵乘积的行列式 二、矩阵乘积的秩§2.4. 矩阵的逆一、矩阵可逆的定义 二、伴随矩阵求逆法§2.5. 矩阵的分块一、分块矩阵的概念 二、分块矩阵的运算三、几种分块矩阵的逆矩阵§2.6. 初等矩阵一、初等矩阵及其性质 二、初等变换求逆法§2.7. 分块乘法的初等变换及应用举例一、分块乘法的初等变换二、分块乘法的初等变换应用举例思考题1. 举例说明下列命题是错误的:(1) 若02=A ,则0=A ;(2) 若A A =2,则0=A 或E A =;(3) 若E A =2,则E A =或E A -=; (4) 若AY AX =,且0≠A ,则Y X =. 2. 证明(1)2222)(B AB A B A +±=±成立当且仅当BA AB =; (2)22))((B A B A B A -=-+成立当且仅当BA AB =. 3.已知n n ij a A ⨯=)(为n 阶方阵,写出:(1)2A 的k 行l 列元素; (2)TAA 的k 行l 列元素; (3)A A T的k 行l 列元素. 4. 已知)3,2,1(=α,)31,21,1(=β.设矩阵βαT A =,求n A . 5. 证明:对任意的n m ⨯矩阵A ,T AA 和A A T都是对称矩阵.6. 设A 是n 阶方阵,且E AA T=,1||=A ,求||n E A -.7.已知A 为三阶方阵,且21||=A ,求|2)3(|*1A A --.8.已知⎪⎪⎪⎭⎫ ⎝⎛--=100021201A ,求1*])[(-T A .9.(1)已知⎪⎪⎪⎭⎫ ⎝⎛=300130113A ,矩阵B 满足B A AB 2+=,求B ;(2)已知⎪⎪⎪⎭⎫ ⎝⎛=101020101A ,矩阵B 满足B A E AB +=+2,求B ;(3)已知)1,2,1(-=diag A ,矩阵B 满足E BA BA A 82*-=,求B . 10.已知⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛987654321100010101100001010A ,求A .11.(1)证明)()()(B r A r B A r +≤+;(2)若n 阶矩阵B A ,满足0=AB ,证明n B r A r ≤+)()(;(3)若n 阶矩阵A 满足A A =2,证明n E A r A r =-+)()(;(4)若n 阶矩阵A 满足E A =2,证明n E A r E A r =-++)()(. 12.(1)B A ,为两个n 阶方阵,证明||||B A B A AB BA -⋅+=; (2)B A ,分别为m n ⨯和n m ⨯矩阵,证明||||BA E AB E E AB E m n nm -=-=.第五章 二次型[教学目的与要求] 通过本章学习,实现如下目的:(1)掌握用非退化线性替换把二次型化成标准形和规范形的方法; (2)会判断二次型的正定性.[教学重点] 二次型化标准形和规范形的方法;惯性定理;二次型的正定性. [教学难点] 惯性定理 [教学内容]§5.1. 二次型及其矩阵表示一、二次型及其矩阵表示 二、矩阵的合同§5.2. 标准形化二次型为标准形的配方法§5.3. 唯一性一、复二次型的规范形二、实二次型的规范形、惯性定理§5.4. 正定二次型一、正定二次型的概念和判定方法二、半正定二次型简介思考题1.写出下列二次型AX X '的矩阵,其中 (1)⎪⎪⎪⎭⎫⎝⎛---=205213111A ; (2)⎪⎪⎪⎪⎪⎭⎫⎝⎛=nn n n n n a a a a a a a a a A 212222111211 2. 设二次型32212221442x x x x x x f --+=,分别作下列可逆线性变换,求新二次型的矩阵,(1)Y X ⎪⎪⎪⎭⎫⎝⎛--=100210211; (2)Y X ⎪⎪⎪⎪⎪⎭⎫⎝⎛--=2101101121.3.分别用配方法和初等变换法化下列二次型为标准形,并写出所作的非退化线性替换(1)2332223121214322x x x x x x x x x f +++++=; (2)323121622x x x x x x f -+=.4. 分别在实数域和复数域上将3题中的两个二次型进一步化成规范型,并写出所作的非退化线性替换.5. 证明:秩等于r的对称矩阵可以表示成r个秩等于1的对称矩阵之和. 6. 证明:一个实二次型可以分解成两个实系数的一次齐次多项式的乘积的充分必要条件是,它的秩等于2和符号差等于0,或者秩等于1. 7. t 取什么值时,下列二次型是正定的:(1)3231212222214223x x x x x tx x x x f +-+++=; (2)32312123222161024x x x x x tx x x x f +++++=.8. 证明:如果A 正定,则1-A 和*A 也都正定.9.已知m 阶实对称矩阵A 正定,B 是n m ⨯矩阵,证明:AB B T正定的充要条件是n B r =)(.10. 已知A 为实矩阵,证明:)()(A r A A r ='.第六章 线性空间[教学目的与要求] 通过本章学习,实现如下目的:(1)能熟练地判断所给非空集合在指定的运算下能否构成线性空间; (2)会判断所给非空子集能否构成子空间; (3)会判断子空间之间的和是否为直和; (4)会判断两个线性空间的同构;(5)能熟练掌握线性空间基和维数的求法;(6)能熟练求向量在基下的坐标、基到基的过渡矩阵; (7)能熟练地求和空间的维数;(7)能熟练地应用维数公式求交空间的基与维数.[教学重点] 线性空间的定义、子空间的直和、维数公式、线性空间的同构. [教学难点] 线性空间的定义 [教学内容]§6.1. 集合 映射一、集合的概念和运算二、映射的概念、映射的乘法、逆映射§6.2. 线性空间的定义与简单性质一、线性空间的定义 二、线性空间的简单性质§6.3. 维数 基与坐标一、线性表示、线性相关和线性无关、向量组的等价 二、线性空间的基、维数,向量的坐标§6.4. 基变换与坐标变换一、基到基的过渡矩阵 二、坐标变换公式§6.5. 线性子空间一、线性子空间的定义二、线性子空间的维数和基§6.6. 子空间的交与和一、子空间的交 二、子空间的和§6.7. 子空间的直和一、两个子空间的直和 二、多个子空间的直和§6.8. 线性空间的同构一、线性空间同构的定义 二、同构映射的性质思考题1.检验下列集合对于所规定的运算是否构成给定数域上的线性空间:(1) 数域P 上的对角线元素的和为零的所有n 阶方阵所成的集合,对于矩阵的加法和数量乘法;(2) 设},|2{Q b a b a V ∈+=,Q 为有理数域,对于通常数的加法和乘法; (3) 设},|),{(R b a b a V ∈=,R 为实数域,定义加法和数乘如下:),(),(),(21212211b b a a b a b a +=+, ),(),(kb ka b a k = )(R k ∈.(4) 按照通常的数的运算,实数域R 是否构成实数域R 上的线性空间?是否构成复数域C 上的线性空间?(5) 按照通常的数的运算,复数域C 是否构成实数域R 上的线性空间?是否构成复数域C 上的线性空间? (6) +R 是全体正实数组成的集合,定义加法和数乘如下:ab b a =⊕, k a a k =⋅,这里+∈R b a ,,R k ∈.2.证明:在数域P 上的线性空间V 中,成立以下运算律:(1)βαβαk k k -=-)(;(2)αααl k l k -=-)(.这里P l k ∈,,V ∈βα,.3.实数域R 按照通常的乘法构成实数域R 上的线性空间.全体正实数集合+R 对1(6)题中定义的加法和数乘也构成实数域R 上的线性空间,能否据此说明+R 是线性空间R 的一个子空间?+R 是线性空间R 的子空间吗?4. 设)1,2,1(1-=α,)3,1,0(2-=α,)0,1,1(3-=α;)5,1,2(1=β,)1,3,2(2-=β,)2,3,1(3=β,(1) 证明:321,,ααα和321,,βββ都是3R 的基; (2) 求321,,ααα到321,,βββ的过渡矩阵; (3) 求向量)1,4,1(=α在两组基下的坐标.5. 在线性空间nR 中,判断下列哪些子集是子空间,(1)},|),0,,0,{(11R a a a a n n ∈ ;(2)}0|),,,{(121=∑=ni in aa a a ;(3)}1|),,,{(121=∑=ni in aa a a ;(4)},,2,1,|),,,{(21n i Z a a a a i n =∈.6. 举例说明线性空间的两个子空间的并一般不是子空间.两个子空间的并仍是子空间的充要条件是什么?7. 设线性空间V 含有非零向量,21,V V 是V 的任意两个真子空间,证明:V V V ≠⋃21. 8.在线性空间3][x P 中,求向量组21-=x α,x 22=α,x -=13α,24x =α 的一个极大无关组.9. 判断正误,并说明理由.(1)V 是n 维向量空间,V r ∈αα,,1 ,则r αα,,1 是子空间),,(1r L αα 的一组基;(2)n 个向量n αα,,1 是n 维向量空间V 的一组生成元,则n αα,,1 一定是V 的一组基;(3)向量空间V 的维数等于V 的任一生成组所含向量的个数; (4)任一向量空间都有基; (5)若向量空间V 的每一个向量都可以由n αα,,1 唯一的线性表示,则n αα,,1 是V 的一组基;(6)若s αα,,1 与t ββ,,1 的极大无关组分别是r i i αα,,1 与p j j ββ,,1 ,则),,(),,(11t s L L ββαα +的一组基为r i i αα,,1 p j j ββ,,1 .10. 下列向量组是否为3][x P 的基:(1)}22,,1,1{2322++++++x x x x x x x ; (2)},22,1,1{322x x x x x -+--. 11.求下列子空间的维数:(1)3))4,2,5(),2,4,1(),1,3,2((R L ⊆--; (2)][),1,1(22x P x x x x L ⊆---;(3)],[),,(32b a C e e e L x xx⊆,],[b a C 表示区间],[b a 上的全体连续函数空间.12.设⎪⎪⎪⎭⎫ ⎝⎛=000100010A ,求33⨯P 中所有与A 可交换的矩阵组成的子空间的维数和一组基.13.令},|{1A A P A A V n n ='∈=⨯,},|{2A A P A A V n n -='∈=⨯,证明21V V P n n ⊕=⨯. 14.设n αα,,1 是P 上n 维线性空间V 的一组基,A 是P 上的一个s n ⨯矩阵,令A n s ),,(),,(11ααββ =,证明:)(),,(dim 1A r L s =ββ . 15.证明:线性空间][x P 可以和它的真子空间同构.第七章 线性变换[教学目的与要求] 通过本章学习,实现如下目的: (1) 能熟练掌握线性变换的运算; (2) 能理解线性变换与矩阵的关系;(3) 能熟练地求线性变换的特征值与特征向量;(4) 理解哈密尔顿—凯莱(Hamilton-Caylay )定理; (5) 能熟练地将矩阵对角化;(6) 能熟练地求出线性变换的值域与核; (7) 了解若尔当标准形理论.[教学重点] 线性变换与矩阵的关系;线性变换的特征值与特征向量;线性变换的值域与核;矩阵对角化.[教学难点] 矩阵的对角化 [教学内容]§7.1. 线性变换的定义一、线性变换的定义 二、线性变换的简单性质§7.2. 线性变换的运算一、线性变换的乘法 二、线性变换的加法三、线性变换的数量乘法 四、线性变换的逆§7.3. 线性变换的矩阵一、线性变换的矩阵 二、矩阵的相似§7.4. 特征值与特征向量一、线性变换特征值与特征向量的概念 二、线性变换特征值与特征向量的求法 三、哈密顿-凯莱定理§7.5. 对角矩阵一、特征向量的性质二、线性变换的矩阵可以是对角矩阵的条件§7.6. 线性变换的值域与核一、线性变换的值域 二、线性变换的核§7.7. 不变子空间一、不变子空间二、不变子空间与线性变换矩阵的化简§7.8. 若尔当(Jordan )标准形介绍若尔当标准形介绍§7.9. 最小多项式最小多项式概念和性质思考题1.线性空间V 到V 的同构映射称为线性空间V 的自同构.线性空间V 的线性变换和它的自同构有什么异同?2.A 是线性空间V 的线性变换,s αα,,1 是V 中一组线性无关的向量,问)(,),(1s ααA A 是否仍线性无关?试举例说明. 3.设A 是n 维线性空间V 的线性变换,证明:(1)A 是线性空间V 的自同构当且仅当A 把线性无关的向量组变成线性无关的向量组;(2)A 把线性空间V 中某一组线性无关的向量变成一组线性相关的向量的充要条件是A 把V 中某个非零向量变成零向量,即}0{)0(1≠-A ;(3)A 是线性空间V 的自同构当且仅当}0{)0(1=-A .4.已知⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----=7931181332111511A ,定义4P 的变换为:ξξA =A ,4P∈ξ,证明A 为4P 的线性变换,并求A 的核和象空间以及它们的维数.5.为什么线性变换的问题可以转化为相应的矩阵的问题去研究?)(V L 与nn P ⨯有什么关系?求出线性空间)(V L 的维数.6.设⎪⎪⎭⎫ ⎝⎛=4321A ,求22⨯P 的如下线性变换A 在基⎪⎪⎭⎫ ⎝⎛=00011ε,⎪⎪⎭⎫⎝⎛=00102ε,⎪⎪⎭⎫ ⎝⎛=01003ε,⎪⎪⎭⎫⎝⎛=10004ε下的矩阵. (1)AX X =)(A ; (2)XA X =)(A .7.在3R 中,试求关于基)0,0,1(1=ε,)0,1,1(2=ε,)1,1,1(3=ε的矩阵为⎪⎪⎪⎭⎫ ⎝⎛---=221101211A 的线性变换.8.设三维线性空间线性变换A 在基321,,ααα下的矩阵为⎪⎪⎪⎭⎫⎝⎛---=6788152051115A ,求A 在基321,,βββ下的矩阵,其中321132αααβ++=,321243αααβ++=,321322αααβ++=.若3212αααξ-+=,求)(ξA 在基321,,βββ下的坐标.9.设三维线性空间线性变换A 在基321,,ααα下的矩阵为⎪⎪⎪⎭⎫⎝⎛=333231232221131211a a a a a a a a a A , 求(1)A 在基123,,ααα下的矩阵;(2)A 在基321,,αααk 下的矩阵;)0(≠k (3)A 在基3221,,αααα+下的矩阵.10.四维线性空间V 的线性变换A 在基4321,,,αααα下的矩阵为⎪⎪⎪⎪⎪⎭⎫⎝⎛----=3707011311013412A ,求:(1)A 的值域; (2)A 的核;(3)在A 的值域中选一组基,把它扩充成线性空间V 的基; (4)在A 的核中选一组基,把它扩充成线性空间V 的基.11.若矩阵A 与B 相似,证明:(1) 若A 与B 可逆,则1-A 与1-B 相似; (2) 对任意的常数k ,kA 与kB 相似;(3) 对任意的正整数m ,mA 与mB 相似;(4) 对于任意多项式)(x f ,)(A f 与)(B f 相似.12.若矩阵A 与B 相似,C 与D 相似,证明:⎪⎪⎭⎫⎝⎛C A 00与⎪⎪⎭⎫⎝⎛D B 00相似. 13.取定矩阵n n P A ⨯∈.对于任意的nn P X ⨯∈,定义变换A 为XA AX X -=)(A ,(1) 证明A 为线性空间nn P ⨯的线性变换;(2) 若⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=n A λλλ00000021,求线性变换A 在基},1|{n j i E ij ≤≤下的矩阵. 14.在线性空间3P 中,定义线性变换A 为),,(),,(312321x x x x x x =A .令}2,1,|)0,,{(21=∈=i P x x x S i ,则S 是3P 的一个子空间,试问S 是否为线性变换A 的不变子空间.15.V 为数域P 上的一个线性空间,A 为V 的一个线性变换,][)(x P x f ∈,如果S 为线性变换A 的不变子空间,则S 线性变换)(A f 的不变子空间.16.若S 为线性空间V 的线性变换A 和B 的不变子空间,则S 也是B A +和AB 的不变子空间.17.若21,S S 为线性空间V 的线性变换A 的不变子空间,则21S S ⋂,21S S +也是A 的不变子空间. 18.若S 为线性空间V 的线性变换A 的不变子空间,当线性变换A 可逆时,则S 也是1-A的不变子空间. 19.若A 是线性空间V 的线性变换,且满足A A=2,证明:(1)}|)({)0(1V ∈-=-ξξξA A; (2))Im()0(1A A ⊕=-V .20.n 阶矩阵A 和B 相似时,它们有相同的特征多项式.反过来对吗?即n 阶矩阵A 和B 有相同的特征多项式时,哪它们相似吗?试举例说明.21.A 是线性空间V 的线性变换,证明A 可逆的充分必要条件是A 的特征值都非零. 22.证明线性变换A 的一个特征向量不能同时属于两个不同的特征值.23.证明:对角形矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛n a a a 0021和⎪⎪⎪⎪⎪⎭⎫ ⎝⎛n b b b 0021 相似的充分必要条件是n b b b ,,,21 是n a a a ,,,21 的一个排列.24.设A 是复数域C 上的一个n 阶矩阵,n λλλ,,,21 是A 的全部特征值(按重数计算),证明:(1)如果][)(x C x f ∈是次数大于0的多项式,则)(,),(),(21n f f f λλλ 是)(A f 的全部特征值;(2)如果A 可逆,则n λλλ,,,21 全部不等于零; (3)如果A 可逆,则nλλλ1,,1,121 为1-A 的全部特征值.25.设三维线性空间V 的线性变换A 在基321,,ααα下的矩阵为⎪⎪⎪⎭⎫ ⎝⎛----=533242111A , 求:(1)A 的特征值和特征向量;(2)是否存在V 的基321,,βββ使得线性变换A 在其下的矩阵为对角形.若这样的基321,,βββ存在,试写出由基321,,ααα到321,,βββ的过渡矩阵T .以及A 在321,,βββ下的矩阵;(3)计算AT T 1-.第八章 -λ矩阵[教学目的与要求] 通过本章学习,实现如下目的: (1)会求-λ矩阵的标准形 (2)会求-λ矩阵的行列式因子(3)会求矩阵A 的初等因子,并能写出A 若尔当标准形 (4)会求矩阵A 的有理标准形[教学重点] 矩阵A 的初等因子,矩阵的A 若尔当标准形 [教学难点] 矩阵相似的条件 [教学内容]§8.1. -λ矩阵一、-λ矩阵的秩 二、-λ矩阵的可逆§8.2. -λ矩阵在初等变换下的标准形一、-λ矩阵的初等变换 二、-λ矩阵的标准形§8.3. 不变因子一、-λ矩阵的行列式因子 二、-λ矩阵的不变因子§8.4. 相似矩阵的条件两个矩阵相似的充要条件§8.5. 初等因子一、初等因子的概念 二、初等因子的求法§8.6. 若尔当(Jordan )标准形理论推导一、若尔当矩阵的概念二、矩阵的若尔当标准形的求法§8.7. 矩阵的有理标准形一、有理形矩阵的概念 二、有理标准形的求法思考题1.求下列矩阵的初等因子、不变因子、行列式因子,并写出若当标准形.(1)⎪⎪⎪⎭⎫ ⎝⎛-----222333111, (2)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----0167121700140013, (3)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛10021*********1. 2. 已知nn P A ⨯∈,证明A 与A '相似.3. 设复矩阵⎪⎪⎪⎭⎫ ⎝⎛-=102002c b a A ,(1)求出A 的一切可能的若当标准形;(2)给出A 可对角化的条件.第九章 欧几里得空间[教学目的与要求] 通过本章学习,实现如下目的:(1) 掌握求标准正交基的施密特(Schmidt )正交化方法;(2) 会判断两个欧氏空间的同构; (3) 理解正交变换与正交矩阵的关系; (4) 会求欧氏空间子空间的正交补;(5) 能熟练地把实对称矩阵正交相似于对角矩阵; (6) 能掌握最小二乘法.[教学重点] 求标准正交基的施密特(Schmidt )正交化方法;欧氏空间的同构;正交变换;对乘变换;实对称矩阵正交相似于对角矩阵的方法.[教学难点] 最小二乘法[教学内容] §9.1. 定义与基本性质一、内积与欧氏空间的定义 二、向量的长度 三、向量的正交四、欧氏空间基的度量矩阵§9.2. 标准正交基一、标准正交基的概念 二、标准正交基的求法§9.3. 同构一、欧氏空间同构的概念 二、欧氏空间同构的充要条件§9.4. 正交变换一、正交变换的定义 二、正交变换的性质§9.5. 子空间一、欧氏空间中子空间的正交 二、欧氏空间子空间的正交补§9.6. 实对称矩阵的标准形一、对称变换二、实对称矩阵的特征值特征向量的性质 三、实对称矩阵的对角化四、二次型化标准形的正交变换法§9.7. 向量到子空间的距离 最小二乘法一、向量到子空间的距离 二、最小二乘法§9.8. 酉空间介绍一、酉空间的概念二、酉空间中的一些重要结论思考题1.下列线性空间对给定的二元函数),(βα是否构成欧氏空间(1)在线性空间nR 中,对任意向量),,(1n a a =α,),,(1n b b =β,定义二元函数∑==ni i i b a 1||),(βα(2)在线性空间nn R ⨯中,对任意向量nn RB A ⨯∈,,定义二元函数)(),(A B tr B A '=2. 在欧氏空间4R 中求出两个单位向量使它们同时与下面三个向量正交.)0,4,1,2(1-=α,)2,2,1,1(2--=α,)4,5,2,3(3=α3. 称||),(βαβα-=d 为向量α和β间的距离.证明:),(),(),(βγγαβαd d d +≤. 4.设α,β是欧氏空间中任意两个非零向量,证明:(1))0(>=k k βα的充分必要条件是α和β间的夹角为零; (2))0(<=k k βα的充分必要条件是α和β间的夹角为π. 5. 已知)0,1,2,0(1=α,)0,0,1,1(2-=α,)1,0,2,1(3-=α,)1,0,0,1(4=α是4R 的一个基,对这个基正交化,求出4R 的一个标准正交基.6. 在欧氏空间]1,1[-C 里,对基32,,,1x x x 正交化,求出]1,1[-C 的一个标准正交基. 7. 已知))0,2,0(),0,0,1((L W =是3R 的一个子空间,求⊥W . 8.设21,,W W W 为欧氏空间V 的子空间,则(1)W W =⊥⊥)(;(2)如果21W W ⊂,则⊥⊥⊂12W W ; (3)⊥⊥⊥⋂=+2121)(W W W W . 9.求正交矩阵T 使得AT T '成对角形.其中A 为(1)⎪⎪⎪⎭⎫ ⎝⎛--510810228211; (2)⎪⎪⎪⎭⎫ ⎝⎛----114441784817. 10.用正交的线性替换化下列二次型为标准形(1)322322214332x x x x x f +++=;(2)43324121242322212222x x x x x x x x x x x x f +--++++=; (3)434232413121222222x x x x x x x x x x x x f ++--+=.第十章 双线性函数与辛空间 *[教学目的与要求] 通过本章学习,实现如下目的:(1)理解线性函数的定义,熟悉线性函数的简单性质 (2)理解线性空间与其对偶空间的同构关系(3)理解双线性度量空间、正交空间、准欧氏空间、辛空间等概念 [教学重点] 对偶空间和对偶基、双线性函数、双线性度量空间、正交空间、准欧氏空间、辛空间等概念。

实系数多项式因式分解定理

实系数多项式因式分解定理

实系数多项式因式分解定理实系数多项式因式分解定理是高中数学中的基础知识点之一,也是数学学习的重要环节。

它是指给定一个实系数多项式,可以通过分解成若干个单项式之积的形式来表示。

本文将通过分步骤阐述,来简单介绍实系数多项式因式分解定理。

一、根据多项式的次数选择合适的方法在进行实系数多项式因式分解时,首先需要确定多项式的次数。

如果是1次多项式,则可以直接进行一次式的分解;如果是2次多项式,则考虑二次方程求根的方法来分解;如果是3次或3次以上的多项式,则可应用求有理根和非有理根的方法来进行分解。

二、确定多项式的所有根求出多项式的所有根是进行因式分解的前提。

对于n次多项式,根据代数学基本定理可知,其最多有n个根。

可以利用有理根定理、因式定理、综合除法等方法,求出多项式的所有根。

三、利用多项式各个根的特点进行分解将多项式的根全部求出后,就需要利用这些根的特点,进行分解。

比如一次多项式可以表示为(x-a),二次多项式可以分解为(x-a)(x-b),三次多项式则可分解为(x-a)(x-b)(x-c)等等。

对于没有有理根的多项式,可以进行辗转相除法,将这个多项式化为一个低一次多项式与一个高一次的多项式之积的形式,再进行分解。

四、检验分解是否正确分解完多项式后,需要检查分解是否正确。

可以通过将每个单项式展开相加,来比较与原多项式的系数是否一致。

如果展开后得到的式子,与原多项式相同,则说明该分解是正确的。

综上所述,通过利用以上的步骤,我们就可以较为简便地进行实系数多项式因式分解了。

多项式的因式分解是数学学习的重要环节,对于熟练掌握多项式的因式分解方法的人来说,不仅可以简化计算,而且可以在考试中快速地得出正确答案。

因此,我们要认真学习多项式的因式分解这一知识点,提高自己的数学水平。

高等代数

高等代数
因式分解定理
说明
的标准分解式, ① 若已知两个多项式 f ( x ), g ( x ) 的标准分解式, 则可直接写出
( f ( x ), g( x ) ) .
f ( x ), g ( x ) 的标准
( f ( x ), g( x ) ) 就是那些同时在
分解式中出现的不可约多项式方幂的乘积, 分解式中出现的不可约多项式方幂的乘积,所带 方幂指数等于它在 f ( x ), g ( x ) 中所带的方幂指数 中较小的一个. 中较小的一个.
(
)(
x2 + 2
)
(在有理数域上) 在有理数域上)
= x 2 = x 2
(
)(
x+ 2
)(
x2 + 2
)
(在实数域上) 在实数域上)
(
) ( x + 2 ) ( x 2i ) ( x +
在复数域上) 2i (在复数域上)
)
§1.5 因式分解定理
一,不可约多项式
定义: 定义: 设 p( x ) ∈ P[ x ] ,且 ( p ( x ) ) ≥ 1 ,若 p( x )
f ( x ) = p1 ( x ) p2 ( x ) ps ( x )
= q1 ( x )q2 ( x ) qt ( x )

pi ( x ), q j ( x ) ( i = 1,2, , s ; j = 1,2, , t . ) 都是不可约
多项式. 多项式 作归纳法. 对 s 作归纳法. 若 s = 1, 则必有 s = t = 1, f ( x ) = p1 ( x ) = q1 ( x )
§1.5 因式分解定理
例如, 例如,若 f ( x ), g ( x ) 的标准分解式分别为

2010年硕士研究生《高等代数》考试大纲

2010年硕士研究生《高等代数》考试大纲

五邑大学2010年硕士学位研究生招生《高等代数》课程考试大纲一、课程的性质,目的和任务高等代数是数学(数学与应用数学,数学教育)专业的一门重要基础课程。

通过本课程的教学,应培养学生良好的数学素养,打下较扎实的代数学理论基础,提高学生的抽象思维的能力和逻辑推理能力,并掌握较系统的代数基础知识,为学习后继课程服务。

二、基本要求这门课程大致分为两部分:多项式理论和线性代数。

前者以数域上一元多项式的因式分解理论为中心内容;后者主要讲授线性方程组的理论,向量空间和线性变换。

本课程应着重于基本理论的讲授和基本技能的培养和训练,不适求内容上的完备和全面.三、考试范围(一)多项式理论1. 数域 (A)2. 整除的概念 (A)3. 最大公因式. (A)4. 因式分解定理. (A)5. 重因式. (A)6. 多项式函数. (A)8. 复系数与实系数多项式的因式分解. (A)9. 有理系数多项式. (A)*10.多元多项式. (B)*11.对称多程式. (B)(二) 行列式1. 排列. (A)2. n阶行列式的定义和性质. (A)3. 行列式的依行和依列展开. (A)4. 行列式的计算. (A)5. Crammer法则(克莱姆法则). (A)6. Laplace(拉普拉斯)定理. 行列式的乘法规则. (A)(三)线性方程组1. 线性方程组的消元法. (A)2. n维向量空间 (A)3. 线性相关性. (A)4. 矩阵的秩. (A)5. 线性方组有解的判定定理. (A)6. 线性方程组解的结构. (A)7. 二元高次方程. (B)(四) 矩阵1. 矩阵的概念与运算. (A)2. 矩阵乘积的行列式与秩. (A)3. 矩阵的逆. (A)4. 矩阵的分块. (A)5. 初等矩阵. (A)(五) 二次型1. 二次型的矩阵表示. (A)2. 标准形. (A)3. 唯一性. (A)4. 正定二次型. (A)(六) 线性空间1. 线性空间的定义与简单性质. (A)2. 维数.基与坐标. (A)3. 基变换. (A)4. 线性子空间 (A)5. 子空间的交与和. (A)6. 子空间的直和. (A)7. 线性空间的同构. (A)(七) 线性变换1. 定义和例子 (B)2. 线性变换的运算. (A)3. 线性变换的矩阵. (A)4. 特征值与特征向量. (A)5. 对角矩阵. (A)6. 线性变换的值域与核. (A)7. 不变子空间. (A)8. Jordan标准形介绍. (B)(八) 入一矩阵1. 入一矩阵. (A)2. 入一矩阵在初等变换下的标准形. (A)3. 不变因子. (A)4. 矩阵相似条件. (A)5. 初等因子. (A)*6.Jordan标准形的理论推导. (C)(九) 欧几里得空间1. 定义与基本性质. (A)2. 标准正交基. (A)3. 同构. (A)4. 正交变换. (A)5. 子空间. (A)6. 对称矩阵的准形. (A)四、主要教材和参考书1. 北京大学数学力学系,高等代数(第二版),高教出版社。

复数域与实数域上多项式的因式分解

复数域与实数域上多项式的因式分解
其中an为f ( x)的首项系数, c1 , , cs , p1 , , pr , q1 , , qr 全是实数, l1 , , ls ,k1 , , kr是正整数,且pi2 4qi 0, i 1, 2, , r;l1 ls 2(k1 kr ) n ( f ( x)).
10
首页 上页 下页 返回 结束
设 f ( x) C[x], 并且( f ( x)) 1, 则存在 C, 使得f ( x) ( x ) f1( x),其中( f1( x)) 0.
2
首页 上页 下页 返回 结束
推论1 设 p( x) C[x], 则p( x)是C上的不可约多 项式 ( p( x)) 1.
即:在复数域C上所有次数大于1的多项式全是 可约的.
an n
a n1 n1
a1 a0 0
即 f ( ) 0, 所以也是 f ( x)的根.
7
首页 上页 下页 返回 结束
因此 f ( x)能被
g( x) ( x )( x ) x2 -( )x
整除.
因 和 都是实数,所以g( x)是实系数多
项式, 故有
f ( x) g( x)h(x),
证 对f ( x)的次数用数学归纳法. 因一次多项式本身不可约,定理成立. 假设定理对次数 n的多项式来说成立.
设f ( x)是n次多项式,由代数基本定理, f ( x)有一复根.
如果是实数, 那么
f ( x) ( x ) f1( x)
其中f1 ( x)是n 1次实系数多项式.
如果不是实数, 那么也是f ( x)的根,于是
次式与二次不可约多项式的乘积. 故f ( x)也可以分解成实系数的一次式与二次不
可约多项式的乘积.
12
首页 上页 下页 返回 结束

线性代数:第一章多项式2

线性代数:第一章多项式2

线性代数:第⼀章多项式2§6 重因式⼀、重因式的定义定义9 不可约多项式称为多项式的重因式,如果,但.如果,那么根本不是的因式;如果,那么称为的单因式;如果,那么称为的重因式.注意. 重因式和重因式是两个不同的概念,不要混淆.显然,如果的标准分解式为,那么分别是的重,重,… ,重因式.指数的那些不可约因式是单因式;指数的那些不可约因式是重因式.不可约多项式是多项式的重因式的充要条件是存在多项式,使得,且.⼆、重因式的判别设有多项式,规定它的微商(也称导数或⼀阶导数)是.通过直接验证,可以得出关于多项式微商的基本公式:同样可以定义⾼阶微商的概念.微商称为的⼀阶微商;的微商称为的⼆阶微商;等等. 的阶微商记为.⼀个次多项式的微商是⼀个次多项式;它的阶微商是⼀个常数;它的阶微商等于0.定理6 如果不可约多项式是多项式的⼀个重因式,那么是微商的重因式.分析: 要证是微商的重因式,须证,但.注意:定理6的逆定理不成⽴.如, ,是的2重因式,但根本不是是因式.当然更不是三重因式.推论1 如果不可约多项式是多项式的⼀个重因式,那么是,,…,的因式,但不是的因式.推论2 不可约多项式是多项式的重因式的充要条件是是与的公因式.推论3 多项式没有重因式这个推论表明,判别⼀个多项式有⽆重因式可以通过代数运算——辗转相除法来解决,这个⽅法甚⾄是机械的.由于多项式的导数以及两个多项式互素与否的事实在由数域过渡到含的数域时都⽆改变,所以由定理6有以下结论:若多项式在中没有重因式,那么把看成含的某⼀数域上的多项式时, 也没有重因式.例1 判断多项式有⽆重因式三、去掉重因式的⽅法设有重因式,其标准分解式为.那么由定理5此处不能被任何整除.于是⽤去除所得的商为这样得到⼀个没有重因式的多项式.且若不计重数, 与含有完全相同的不可约因式.把由找的⽅法叫做去掉重因式⽅法.例2 求多项式的标准分解式.§7 多项式函数到⽬前为⽌,我们始终是纯形式地讨论多项式,也就是把多项式看作形式表达式.在这⼀节,将从另⼀个观点,即函数的观点来考察多项式.⼀、多项式函数设(1)是中的多项式,是中的数,在(1)中⽤代所得的数称为当时的值,记为.这样,多项式就定义了⼀个数域上的函数.可以由⼀个多项式来定义的函数就称为数域上的多项式函数.因为在与数域中的数进⾏运算时适合与数的运算相同的运算规律,所以不难看出,如果那么定理7(余数定理)⽤⼀次多项式去除多项式,所得的余式是⼀个常数,这个常数等于函数值.如果在时函数值,那么就称为的⼀个根或零点.由余数定理得到根与⼀次因式的关系.推论是的根的充要条件是.由这个关系,可以定义重根的概念. 称为的重根,如果是的重因式.当时,称为单根;当时,称为重根.定理8 中次多项式在数域中的根不可能多于个,重根按重数计算.⼆、多项式相等与多项式函数相等的关系在上⾯看到,每个多项式函数都可以由⼀个多项式来定义.不同的多项式会不会定义出相同的函数呢?这就是问,是否可能有,⽽对于中所有的数都有由定理8不难对这个问题给出⼀个否定的回答.定理9 如果多项式,的次数都不超过,⽽它们对n+1个不同的数有相同的值即,,那么=.因为数域中有⽆穷多个数,所以定理9说明了,不同的多项式定义的函数也不相同.如果两个多项式定义相同的函数,就称为恒等,上⾯结论表明,多项式的恒等与多项式相等实际上是⼀致的.换句话说,数域上的多项式既可以作为形式表达式来处理,也可以作为函数来处理.但是应该指出,考虑到今后的应⽤与推⼴,多项式看成形式表达式要⽅便些.三、综合除法根据余数定理,要求当时的值,只需⽤带余除法求出⽤除所得的余式.但是还有⼀个更简便的⽅法,叫做综合除法.设并且设. (2)其中⽐较等式(2)中两端同次项的系数.得到这样,欲求系数,只要把前⼀系数乘以再加上对应系数,⽽余式也可以按照类似的规律求出.因此按照下表所指出的算法就可以很快地陆续求出商式的系数和余式:表中的加号通常略去不写.例1 ⽤除.例2 求使能被整除注意 :若缺少某⼀项,在作综合除法时该项系数的位置要补上零.四、拉格朗⽇插值公式已知次数的多项式在的值.设依次令代⼊,得这个公式叫做拉格朗⽇(Lagrange)插值公式.例3 求次数⼩于3的多项式,使.下⾯介绍将⼀个多项式表成⼀次多项式的⽅幂和的⽅法.所谓次多项式表成的⽅幂和,就是把表⽰成的形式.如何求系数,把上式改写成,就可看出就是被除所得的余数,⽽就是被除所得的商式.⼜因为.⼜可看出是商式被除所得的余式,⽽.就是被除所得商式.这样逐次⽤除所得的商式,那么所得的余数就是.例4 将展开成的多项式.解令,则.于是.问题变为把多项式表成(即)的⽅幂和,-2 | 1 2 -3 1 5+) -2 0 6 -14--------------------------------------------------------2 | 1 0 -3 7 | -9+) -2 4 -2-------------------------------------------------------2 | 1 -2 1 | 5+) -2 8------------------------------------------------2 | 1 -4 | 9+) -2----------------------------------1 | -6所以.注意:将表成的⽅幂和,把写在综合除法的左边,将的⽅幂和展开成的多项式,那么相当于将表成的⽅幂和,要把写在综合除法的左边.§8 复系数和实系数多项式的因式分解⼀、复系数多项式因式分解定理代数基本定理每个次数的复系数多项式在复数域中有⼀个根.利⽤根与⼀次因式的关系,代数基本定理可以等价地叙述为:每个次数的复系数多项式在复数域上⼀定有⼀个⼀次因式.由此可知,在复数域上所有次数⼤于1的多项式都是可约的.换句话说,不可约多项式只有⼀次多项式.于是,因式分解定理在复数域上可以叙述成:复系数多项式因式分解定理每个次数的复系数多项式在复数域上都可以唯⼀地分解成⼀次因式的乘积.因此,复系数多项式具有标准分解式其中是不同的复数,是正整数.标准分解式说明了每个次复系数多项式恰有个复根(重根按重数计算).⼆、实系数多项式因式分解定理对于实系数多项式,以下事实是基本的:如果是实系数多项式的复根,那么的共轭数也是的根,并且与有同⼀重数.即实系数多项式的⾮实的复数根两两成对.实系数多项式因式分解定理每个次数的实系数多项式在实数域上都可以唯⼀地分解成⼀次因式与含⼀对⾮实共轭复数根的⼆次因式的乘积.实数域上不可约多项式,除⼀次多项式外,只有含⾮实共轭复数根的⼆次多项式.因此,实系数多项式具有标准分解式其中全是实数,,是正整数,并且是不可约的,也就是适合条件..代数基本定理虽然肯定了次⽅程有个复根,但是并没有给出根的⼀个具体的求法.⾼次⽅程求根的问题还远远没有解决.特别是应⽤⽅⾯,⽅程求根是⼀个重要的问题,这个问题是相当复杂的,它构成了计算数学的⼀个分⽀.三、次多项式的根与系数的关系.令(1)是⼀个(>0)次多项式,那么在复数域中有个根因⽽在中完全分解为⼀次因式的乘积:展开这⼀等式右端的括号,合并同次项,然后⽐较所得出的系数与(1)式右端的系数,得到根与系数的关系.其中第个等式的右端是⼀切可能的个根的乘积之和,乘以.若多项式的⾸项系数那么应⽤根与系数的关系时须先⽤除所有的系数,这样做多项式的根并⽆改变.这时根与系数的关系取以下形式:利⽤根与系数的关系容易求出有已知根的多项式.例1 求出有单根5与-2,有⼆重根3的四次多项式.例2. 分别在复数域和实数域上分解为标准分解式.§9 有理系数多项式作为因式分解定理的⼀个特殊情形,有每个次数≥1的有理系数多项式都能分解成不可约的有理系数多项式的乘积.但是对于任何⼀个给定的多项式,要具体地作出它的分解式却是⼀个很复杂的问题,即使要判别⼀个有理系数多项式是否可约也不是⼀个容易解决的问题,这⼀点是有理数域与复数域、实数域不同的.在这⼀节主要是指出有理系数多项式的两个重要事实:第⼀,有理系数多项式的因式分解的问题,可以归结为整(数)系数多项式的因式分解问题,并进⽽解决求有理系数多项式的有理根的问题.第⼆,在有理系数多项式环中有任意次数的不可约多项式.⼀、有理系数多项式的有理根设是⼀个有理系数多项式.选取适当的整数乘,总可以使是⼀个整系数多项式.如果的各项系数有公因⼦,就可以提出来,得到,也就是其中是整系数多项式,且各项系数没有异于±1的公因⼦.如果⼀个⾮零的整系数多项式的系数没有异于±1的公因⼦,也就是说它们是互素的,它就称为⼀个本原多项式.上⾯的分析表明,任何⼀个⾮零的有理系数多项式都可以表⽰成⼀个有理数与⼀个本原多项式的乘积,即.可以证明,这种表⽰法除了差⼀个正负号是唯⼀的.亦即,如果,其中都是本原多项式,那么必有因为与只差⼀个常数倍,所以的因式分解问题,可以归结为本原多项式的因式分解问题.下⾯进⼀步指出,⼀个本原多项式能否分解成两个次数较低的有理系数多项式的乘积与它能否分解成两个次数较低的整系数多项式的乘积的问题是⼀致的.定理10(Gauss 引理) 两个本原多项式的乘积还是本原多项式.定理11 如果⼀⾮零的整系数多项式能够分解成两个次数较低的有理系数多项式的乘积,那么它⼀定可以分解两个次数较低的整系数多项式的乘积.以上定理把有理系数多项式在有理数域上是否可约的问题归结到整系数多项式能否分解成次数较低的整系数多项式的乘积的问题.推论设,是整系数多项式,且是本原多项式,如果,其中是有理系数多项式,那么⼀定是整系数多项式.这个推论提供了⼀个求整系数多项式的全部有理根的⽅法.定理12 设是⼀个整系数多项式.⽽是它的⼀个有理根,其中互素,那么(1) ;特别如果的⾸项系数,那么的有理根都是整根,⽽且是的因⼦.(2)其中是⼀个整系数多项式.给了⼀个整系数多项式,设它的最⾼次项系数的因数是,常数项的因数是那么根据定理12,欲求的有理根,只需对有限个有理数⽤综合除法来进⾏试验.当有理数的个数很多时,对它们逐个进⾏试验还是⽐较⿇烦的.下⾯的讨论能够简化计算.⾸先,1和-1永远在有理数中出现,⽽计算与并不困难.另⼀⽅⾯,若有理数是的根,那么由定理12,⽽也是⼀个整系数多项式.因此商都应该是整数.这样只需对那些使商都是整数的来进⾏试验.(我们可以假定与都不等于零.否则可以⽤或除⽽考虑所得的商.)例1 求多项式的有理根.例2 证明在有理数域上不可约.⼆、有理数域上多项式的可约性定理13 (艾森斯坦(Eisenstein)判别法) 设是⼀个整系数多项式.若有⼀个素数,使得1. ;2. ;3. .则多项式在有理数域上不可约.由艾森斯坦判断法得到:有理数域上存在任意次的不可约多项式.例如.,其中是任意正整数.艾森斯坦判别法的条件只是⼀个充分条件.有时对于某⼀个多项式,艾森斯坦判断法不能直接应⽤,但把适当变形后,就可以应⽤这个判断法.例3 设是⼀个素数,多项式叫做⼀个分圆多项式,证明在中不可约.证明:令,则由于,,令,于是,由艾森斯坦判断法,在有理数域上不可约,也在有理数域上不可约.第⼀章多项式(⼩结)⼀元多项式理论,主要讨论了三个问题:整除性理论(整除,最⼤公因式,互素);因式分解理论(不可约多项式,典型分解式,重因式);根的理论(多项式函数,根的个数).其中整除性是基础,因式分解是核⼼.⼀、基本概念.1.⼀元多项式(零多项式),多项式的次数.多项式的相等,多项式的运算,⼀元多项式环.2.基本结论:(1) 多项式的加法,减法和乘法满⾜⼀些运算规律.(2)(3) 多项式乘积的常数项(最⾼次项系数)等于因⼦的常数项(最⾼次项系数)的乘积.⼆、整除性理论1.整除的概念及其基本性质.2.带余除法.(1) 带余除法定理.(2) 设.因此多项式的整除性不因数域的扩⼤⽽改变.3. 最⼤公因式和互素.(1) 最⼤公因式,互素的概念.(2) 最⼤公因式的存在性和求法------辗转相除法.(3) 设是与的最⼤公因式,则.反之不然.(4) .(5)三、因式分解理论1.不可约多项式(1) 不可约多项式的概念.(2) 不可约多项式p(x)有下列性质:(3) 整系数多项式在有理数域上可约它在整数环上可约.(4) 艾森斯坦判断法.2.因式分解的有关结果:(1) 因式分解及唯⼀性定理.(2) 次数⼤于零的复系数多项式都可以分解成⼀次因式的乘积.(3) 次数⼤于零的实系数多项式都可以分解成⼀次因式和⼆次不可约因式的乘积.3.重因式(1) 重因式的概念.(2) 若不可约多项式是的重因式,则是的重因式.(3) 没有重因式.(4) 消去重因式的⽅法:是⼀个没有重因式的多项式,它与具有完全相同的不可约因式.四、多项式根的理论1.多项式函数,根和重根的概念.2.余数定理.去除所得的余式为,则3.有理系数多项式的有理根的求法.4.实系数多项式虚根成对定理.5.代数基本定理.每个次复系数多项式在复数域中⾄少有⼀个根.因⽽次复系数多项式恰有个复根(重根按重数计算).6.韦达定理.7.根的个数定理.F[x]中次多项式在数域F中⾄多有个根.8.多项式函数相等与多项式相等是⼀致的.重点:⼀元多项式的因式分解理论.难点:最⼤公因式的概念,多项式的整除,互素和不可约多项式等概念之间的联系与区别.本章主要内容之间的内在联系可⽤下列图表表⽰:。

实系数多项式

实系数多项式

55
第一章 多项式
若 不为实数,则 也是 f ( x) 的复根,于是
f ( x) ( x )( x ) f2( x) x2 ( )x f2( x)
设 a bi ,则 a bi, 2a R , a2 b2 R 即在R上 x2 ( )x 是 一个二次不可约多项式.
从而 ( f2 ) n 2. 由归纳假设 f1( x) 、f2( x)可分解成一次因式与二次
不可约多项式的乘积. 由归纳原理,定理得证.
§8 复系数与实系数多项式的因式分解 © 2009, Henan Polytechnic University
66
推论1
第一章 多项式
f ( x) R[ x], f ( x) 在R上具有标准分解式 f ( x) an( x c1)k1 ( x c2 )k2 ( x cs )ks ( x2 p1x q1)l1
一、复系数多项式
第一章 多项式
1. 代数基本定理
f ( x) C[x] , 若 ( f ( x)) 1 , 则 f ( x) 在复数域 C上必有一根.
推论1(代数基本定理的等价叙述) f ( x) C[x] , 若 ( f ( x)) 1 , 则存在 x a C[x] ,
f ( x) a( x 1)r1 ( x 2 )r2 ( x s )rs
其中1,2 , ,s是不同的复数,r1,r2, ,rs Z+
推论2 f ( x) C[x],若 ( f ( x)) n ,则 f ( x) 有n个 复根(重根按重数计算).
§8 复系数与实系数多项式的因式分解 © 2009, Henan Polytechnic Un多项式

高等代数

高等代数

多项式第一节 数域定义1 设P是由一些复数组成的集合,其中包括0与1.如果P中任意两个数(这两个数也可以相同)的和·差·积·伤(除数不为零)仍然是P 中的数,那么P就称为一个数域。

第二节 一元多项式 定义2 设n是一非负整数。

形式表达式110...nn n n a x a xa --+++(1),其中01,,...,na a a 全属于数域P,称为系数在数域P中的一元多项式,或者简称为数域P 上的一元多项式。

定义3 如果在多项式f (x )与g (x )中,除去系数为零的项外,同次项的系数全相等,那么f (x )与g (x )就称为相等,记为f (x )=g (x )系数全为零的多项式称为零多项式,记为0定义4 所有系数在数域P 中的一元多项式的全体,称为数域P上的一元多项式环,记为[P],P称为[P]的系数域第三节 整除的概念带余除法 对于P[x]中任意两个多项式f(x)与g(x),其中()0g x ≠,一定有P[x]中的多项式q(x),r(x)存在,使()()()()fx q x g x r x =+成立,其中()()()()r x g x ∂<∂或者()0r x =,并且这样的q(x),r(x)是唯一决定的。

定义5 数域P上的多项式g(x)称为整除f(x),如果有数域P上的多项式h(x)使等式()()()fx g x h x =成立。

我们用“()()|g x f x ”表示g(x)整除f(x),用“()|()g x f x ”表示g(x)不能整除f(x)定理1 对于数域P上的任意两个多项式f(x),g(x),其中()()()0,|g x g x fx ≠的充分必要条件是g(x)除f(x)的余式为零。

第四节 最大公因式定义6 设f(x),g(x)是P[x]中两个多项式。

P[x]中多项式d(x)称为f(x),g(x)的一个最大公因式,如果它满足下面两个条件:(1)d(x)是f(x),g(x)的公因式;(2)f(x),g(x)的公因式全是d(x)的因式。

第一章多项式(教案)

第一章多项式(教案)

高等代数 北大三版第一章 多项式教学目的:1.了解多项式的概念,多项式的运算及运算律。

2.会求多项式的最大公因式及各数域上的因式分解。

3.了解多项式与对称多项式的概念。

教学重点与难点:1.整除理论。

2.有理数域上的因式分解。

§1. 数域代数性质:关于数的加减乘除等运算性质 引入:关于数的范围的讨论定义:设P 是一些复数组成的集合,其中包括0和1,如果P 中任意两个数的和、差、积、商(除数不为0)仍是P 中的数,那么称P 为一个数域。

另一说法: 如果包含0和1 的一个数集P ,对于加减乘除(除数不为0)运算都是封闭的,那么称P 为一个数域。

例: 1.Q R C Z W 2Z (前3个是,后3个不是) 2.R * C + }0{ +C (均不是)3.},|2{1Q b a b a P ∈+==)2(Q 是 证明封闭 }|2{2N n n P ∈= 不是4.},,|{, (31)10+++++∈∈=N m n Z a P j n mnn b i b b b a a a ππππ 是 重要结论: 最小数域为有理数域 (任何数域包含有理数域)§2.一元多项式一. 一元多项式的概念定义:设n 是一非负整数,x 是一个符号(文字),形式表达式:01111...a x a x a x a n n n n ++++-- 其中P n i a i ∈=)...0(。

称为系数在数域P 中的一元多项式。

(数域P 上的一元多项式)① 记 )(x f =01111...a x a x a x a n n n n ++++--=i ni i x a ∑=0)(x g =01111...b x b x b x b m m m m ++++--=j mj j x b ∑=0② 其中ini i xa ∑=0称为)(x f 的i 次项 i a 为i 次项系数。

③ 0≠n a ,则n n x a 为)(x f 的首项 n a 为首项系数,n 为)(x f 的次数。

高等代数实系数和复系数多项式的因式分解

高等代数实系数和复系数多项式的因式分解


n−2
(ε 2
+
ε
n+2 2
)x
+
1].
. . . .... .... .... . . . . .... .... .... . .
. .. . . ..
例题选讲
例 设 f(x), g(x) 是两多项式,且 f(x3) + xg(x3) 可被 x2 + x + 1 整除, 则 f(1) = g(1) = 0.
两边取共轭数,有
f(α¯) = anα¯n + an−1α¯n−1 + · · · + a0 = 0,
这就是说,f(α¯) = 0,α¯ 也是 f(x) 的根.
. . . .... .... .... . . . . .... .... .... . .
. .. . . ..
实系数多项式因式分解定理
. .. . . ..
高斯与代数基本定理
代数基本定理在代数乃至整个数学中起着基础作用. 据说,关于 代数学基本定理的证明,现有 200 多种证法. 迄今为止,该定理 尚无纯代数方法的证明. 大数学家 J.P. 塞尔曾经指出:代数基本 定理的所有证明本质上都是拓扑的. 美国数学家 John Willard Milnor 在数学名著《从微分观点看拓扑》一书中给了一个几何直 观的证明,但是其中用到了和临界点测度有关的 sard 定理. 复变 函数论中,对代数基本定理的证明是相当优美的,其中用到了很 多经典的复变函数的理论结果.
. . . .... .... .... . . . . .... .... .... . .
. .. . . ..
高斯与代数基本定理
该定理的第一个证明是法国数学家达朗贝尔给出的,但证明不完 整. 接着,欧拉也给出了一个证明,但也有缺陷,拉格朗日于 1772 年又重新证明了该定理,后经高斯分析,证明仍然很不严 格的. 代数基本定理的第一个严格证明通常认为是高斯给出的 (1799 年在哥廷根大学的博士论文),高斯后来又给出了另外三个 证法,其中第四个证法是他 71 岁公布的,并且在这个证明中他 允许多项式的系数是复数.

高等代数使用教材及辅导材料

高等代数使用教材及辅导材料

高等代数使用教材及辅导材料课程:高等代数高等代数北京大学数学系几何与代数教研室高等教育出版社 1978高等代数丘维声高等教育出版社 1996高等代数张禾瑞郝炳新高等教育出版社 1983高等代数习题课教材钱芳华黎有高卜淑云邓培民广西师范大学出版社 1997高等代数解题方法许甫华张贤科清华大学出版社 2001高等代数习题课参考书张均本高等教育出版社 1991线性代数试题选解魏宗宣中南工业大学出版社 1986用MAPLEV学习线性代数丘维声(译)高等教育出版社施普林格出版社 2001高等代数教学大纲数学与应用数学专业《高等代数》教学大纲一、课程说明:《高等代数》是河北师范大学数学与应用数学专业(数学系)的一门重要的基础课,其主要任务是使学生获得数学的基本思想方法和多项式理论、行列式、线性方程组、矩阵论、二次型、线性空间、线性变换、欧氏空间等方面的系统知识。

它一方面为后继课程(如近世代数、数论、离散数学、计算方法、微分方程、泛涵分析)提供一些所需的基础理论和知识;另一方面还对提高学生的思维能力,开发学生智能、加强“三基”(基础知识、基本理论、基本理论)及培养学生创造型能力等重要作用。

二、教学目的及要求:通过本课程教学的主要环节(讲授与讨论,习题课,作业,辅导等),使学生对多项式理论、线性代数的“解析理论”、与“几何理论”及其思想方法有较深的认识和理解,从而有助于学生正确理解高等代数的基本概念和论证方法及提高分析问题解决问题的能力。

三、教学重点及难点:带余除法、最大公因式的性质、不可约多项式的定义及性质、重因式、多项式的有理根等;计算行列式的一些方法;线性方程组及其相关理论的理解及应用;矩阵理论的灵活应用;正定二次型的等价条件及二次型的标准形;向量空间一些基本概念的理解及相关理论的灵活应用;线性变换与矩阵的联系、矩阵相似、线性变换在不同基下的矩阵、矩阵的特征值、特征向量及子空间理论;一些基本概念(内积空间、欧氏空间、正交矩阵、酉空间)的理解。

复系数和实系数多项式的因式分解

复系数和实系数多项式的因式分解

§8 复系数与实系数多项式的因式分解一、 复系数多项式因式分解定理1.代数基本定理 每个次数1≥的复系数多项式在复数域中有一个根. 利用根与一次因式的关系,代数基本定理可以等价地叙述为:每个次数1≥的复系数多项式在复数域上一定有一个一次因式. 由此可知,在复数域上所有次数大于1的多项式都是可约的,不可约多项式只有一次多项式. 于是,因式分解定理在复数域上可以叙述成:2.复系数多项式因式分解定理 每个次数1≥的复系数多项式在复数域上都可以唯一地分解成一次因式的乘积.因此,复系数多项式具有标准分解式其中s ααα,,,21 是不同的复数,s l l l ,,,21 是正整数.标准分解式说明:每个n 次复系数多项式恰有n 个复根(重根按重数计算). 3结论 :设(),()f x g x 是复数域上的两个多项式,如果 ()f x 的根都是()g x 的根, 则 ()|()f x g x例:若)(|1n x f x -,则 )(|1n n x f x - 4、n 次多项式的根与系数的关系.令.)(11n n n a x a x x f +++=- (1)是一个n (>0)次多项式,那么在复数域C 中)(x f 有n 个根,,,,21n ααα 因而在][x C 中)(x f 完全分解为一次因式的乘积: 展开这一等式右端的括号,合并同次项,然后比较所得出的系数与(1)式右端的系数,得到根与系数的关系.其中第),,2,1(n k k =个等式的右端是一切可能的k 个根的乘积之与,乘以k )1(-.若多项式的首项系数,10≠a 那么应用根与系数的关系时须先用0a 除所有的系数,这样做多项式的根并无改变.这时根与系数的关系取以下形式:利用根与系数的关系容易求出有已知根的多项式.例1. 求出有单根5与-2,有二重根3的四次多项式.二、实系数多项式因式分解定理对于实系数多项式有:如果α是实系数多项式)(x f 的复根,那么α的共轭数α也是)(x f 的根,即实系数多项式的非实的复数根两两成对出现。

一复系数多项式

一复系数多项式

求 x n 1 在 C 上与在 R 上的标准分解式. 在复数范围内 x n 1 有n个复根,
解: 1)
1, , ,
2
,
n1
这里
k
2 2 cos i sin , n 1 n n k 1,2, , n
2 n1
2k 2k cos i sin , n n
k1 , , ks , l1 , , l s Z ,
且 p 4q 0, i 1,2 r ,即 x pi x qi 为
2
2
R上的不可约多项式.
推论2
实数域上不可约多项式只有一次多项式和某些二 次不可约多项式,所有次数≥3的多项式皆可约.
例1
x n 1 ( x 1)[ x 2 ( n1 ) x n1 ]
[ x 2 (
2

)x

]
2 n1 2 ( x 1)( x 2 x cos 1) [ x 2 x cos 1] n n
当n为偶数时
x 1 ( x 1)( x 1)[ x (
n 2 n1
) x
]
n1
]
[ x 2 (
n 2 2
2

n 2 2
)x
n 2 2

n 2 2
2 n2 2 ( x 1)( x 1)( x 2 x cos 1) [ x 2 x cos 1] n n
∴ 2)

x 1 ( x 1)( x )( x ) ( x
n
)
在实数域范围内

k

高等代数第6章多项式

高等代数第6章多项式
q1 ( x ) =
f(x)-g(x)q1(x)=f1(x) deg f1(x)≤n-1 ≤ f1(x)-g(x)q2(x)=f2(x) deg f2(x)≤n-2 ≤ … … … fk(x)-g(x)qk+1(x)=fk+1(x) f1(x), f2(x),…, fk(x)的次数渐减 直到小于 的次数渐减,直到小于 … 的次数渐减 直到小于g(x)的次数 的次数
设数域P上的多项式 设数域 上的多项式 f(x) = anxn+an-1xn-1+…+a1x+a0 , … (1) an,an-1,…,a1,a0称为 的系数 系数全为 称为f(x)的系数,系数全为 系数全为0 … 的多项式称为零多项式 记作0. 零多项式,记作 的多项式称为零多项式 记作 (2) akxk (k=n,n-1,…,1,0)称为 的k次项 k 称为f(x)的 次项 次项,a 称为 称为f(x)的k次项系数 次项系数. 称为 的 次项系数 (3) 零次项 0也称为 零次项a 也称为f(x)的常数项. 的常数项. (4) 若an≠0,称anxn为f(x)的首项,an称为f(x)的 称 的首项 称为 的 首项系数,n称为 称为f(x)的次数,常记作 常记作degf(x). 首项系数 称为 的次数 常记作 (5) 非零常数是零次多项式 非零常数是零次多项式 零次多项式. (6) 零多项式是唯一无法确定次数的多项式 零多项式是唯一无法确定次数的多项式. (7) 只有 只有f(x)≠0, degf(x)才有意义 才有意义. ≠ 才有意义
乘法运算式
例1.设f(x)=2x2+3x-1, g(x)=x3+2x2-3x+2,则 设 则 f(x)=2x2+3x-1, g(x)=x3+2x2-3x+2 . ×) 2x5+3x4- x3 4x4+6x3-2x2 -6x3-9x2+3x 4x2+6x-2 . f(x)g(x)=2x5+7x4- x3- 7x2+9x-2 也可仅取系数,但要注意添 注.(1)也可仅取系数 但要注意添 也可仅取系数 但要注意添0. (2)也可按升幂排列 也可按升幂排列. 也可按升幂排列

复系数多项式.

复系数多项式.
2 2
R上的不可约多项式.
§1.8 复系数与实系数多项式的因式分解
推论2
实数域上不可约多项式只有一次多项式和某些二 次不可约多项式,所有次数 3的多项式皆可约.
§1.8 复系数与实系数多项式的因式分解
附:单位根、单位原根
定义1 多项式 x n 1 在复数域上的任一根都称为
n 次单位根.
n x 1 的n个复根为 事实上,在复数范围内
复根(重根按重数计算).
§1.8 复系数与实系数多项式的因式分解
二、实系数多项式
命题:若 是实系数多项式 f ( x ) 的复根,则 的共轭复数 也是 f ( x ) 的复根.
n n1 f ( x ) a x a x a0 , ai R 证:设 n n1
1, , , ,
2
n1
这里
2 2 cos i sin , n 1 n n 2k 2k k cos i sin , k 0,1, , n 1. n n
§1.8 复系数与实系数多项式的因式分解
定义2 若1, , , ,
若 为根,则
f ( ) an n an1 n1 a0 0
两边取共轭有
f ( ) an an1
n
n1
a0 0
∴ 也是为 f ( x ) 复根.
§1.8 复系数与实系数多项式的因式分解
实系数多项式因式分解定理
f ( x ) R[ x ],若 ( f ( x )) 1, 则 f ( x ) 可唯一
5 2 3 4
x 1 ( x 1)( x )( x )( x )( x )( x )

高等代数§1.8 复系数与实系数多项式的因式分解

高等代数§1.8 复系数与实系数多项式的因式分解

地分解成一次因式与二次不可约因式的乘积.
推论5 设f ( x ) [ x ], 则 f ( x ) 在 上具有标准分解式
f ( x ) an ( x c1 )k1 ( x c2 )k2 ( x c s )ks ( x 2 p1 x q1 )k1
( x 2 pr x qr )kr
若 ( p( x )) 1, 下证 ( p( x )) 2 即可. 由代数基本定理, p( x )存在复根
则 也是 p( x )的根,即 x | p( x ), x | p( x ).
注意到( x , x ) 1 (否则, ,则 p( x )在 上 存在一次因式,这与 p( x )实不可约相矛盾.) 所以, ( x )( x ) | p( x ).
推论2 复数域上不可约多项式只有一次多项式. 即 f ( x ) [ x ], 若 ( f ( x )) 1, 则 f ( x ) 可约.
2、复系数多项式因式分解定理
定理2 f ( x ) [ x ], 若 ( f ( x )) 1, 则 f ( x ) 在 复数域上可唯一分解成一次因式的乘积.
[ x 2 (
n 2 2 n 2 2 n 2 2 n 2 2

)x

]
2 n2 2 ( x 1)( x 1)( x 2 x cos 1) [ x 2 x cos 1] n n
2
不可约多项式.

求 x n 1 在 上与在 上的标准分解式.
在复数范围内 x n 1 有n个复根,
2 n 1
解: 1)
1, , , , 2 2 i sin , 这里 cos n n 2k 2k k cos i sin , n n

高等代数第1章.

高等代数第1章.
sihuabin@ 南昌大学理学院数学系
例1 求方程2x4-x3+2x-3=0的有理根。 解: 由定理12,方程的有理根为r/s 则必有s⎪an=2,r⎪a0=-3 从而方程的可能有理根为±1,±3,±1/2,±3/2 用综合除法可知,只有1为方程的根。 例2 证明:f(x)=x3-5x+1在Q上不可约。 证明: 若f(x)可约 则f(x)至少有一个一次因式,即有一个有理根 但f(x)的有理根只可能是±1 而f(1)=-3,f(-1)=5 矛盾! 所以f(x)不可约
§1.8 复系数与实系数多项式的因式分解
代数基本定理:对于任意的f(x)∈C[x],若 ∂(f(x))≥1,则f(x)在复数域C上必有一根。 利用根与一次因式的关系,代数基本定理 可以等价地叙述为: 推论1 对于任意的f(x)∈C[x],若∂(f(x))≥1, 则存在x-a∈C[x],使得(x-a)⎪f(x),即f(x)在 复数域上必有一个一次因式。 推论2 复数域上的不可约多项式只有一次多项 式,即对于任意的f(x)∈C[x],若∂(f(x))>1, 则f(x)可约。

n+1 2
)x + ε
n −1 2
ε
n +1 2
]
当n为偶数时 x n − 1 = ( x − 1)( x + 1)[ x 2 − (ε + ε n+1 ) x + εε n+1 ] ⋅ ⋅ ⋅
n− 2 2 n+ 2 2 n− 2 2
[ x 2 − (ε + ε )x + ε ε ] 2π n−2 2 2 = ( x − 1)( x + 1)( x − 2 x cos + 1) ⋅ ⋅ ⋅ [ x − 2 x cos π + 1] n n
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1111
第一章 多项式
(2) x4 2x2 25 x4 10x2 25 8x2
( x2 5)2 8x2 ( x2 2 2x 5)( x2 2 2x 5)
( x2 2 2x 5) ( x 2 3i)( x 2 3i) ( x2 2 2x 5) ( x 2 3i)( x 2 3i)
f ( x) ( x 1)2( x 2)( x 3 i)( x 3 i) g( x 1 i)( x 1 i) ( x 1)2( x 2)( x2 6x 10)( x2 2x 2) x7 8x6 21x5 6x4 68x3 144x2 124x 40.
n
k 1, 2, , n
kk 1
§8 复系数与实系数多项式的因式分解 © 2009, Henan Polytechnic University
R上的不可约多项式.
§8 复系数与实系数多项式的因式分解 © 2009, Henan Polytechnic University
88
推论2
第一章 多项式
实数域上不可约多项式只有一次多项式和某些二 次不可约多项式,所有次数 3的多项式皆可约.
§8 复系数与实系数多项式的因式分解 © 2009, Henan Polytechnic University
§8 复系数与实系数多项式的因式分解 © 2009, Henan Polytechnic University
( x 1)
1717
第一章 多项式
( x 1)( x )( x 2 )( x 1)( x 2 )( x )
( x 1)( x 1)( x2 x 1)( x2 x 1)
§8 复系数与实系数多项式的因式分解 © 2009, Henan Polytechnic University
1212
第一章 多项式 例2 分别求以1,1,-2,3+i,,1-i为根的次数最低的复
系数和实系数多项式. 解 (1) 所求的复系数多项式为
f ( x) ( x 1)2( x 2)( x 3 i)( x 1 i) x5 4x4 (1 2i)x3 14x2 (20 6i)x 8 4i.
§8 复系数与实系数多项式的因式分解 © 2009, Henan Polytechnic University
1414
附:单位根、单位原根
第一章 多项式
定义1 多项式 xn 1 在复数域上的任一根都称为
n 次单位根.
事实上,在复数范围内 xn 1 的n个复根为
1, , 2, L , n1
55
实系数多项式因式分解定理
第一章 多项式
f ( x) R[x],若 ( f ( x)) 1, 则 f ( x)可唯一 地分解成一次因式与二次不可约因式的乘积.
证:对 f ( x) 的次数作数学归纳.
① ( f ( x)) 1 时,结论显然成立.
② 假设对次数<n的多项式结论成立.
这里 cos 2 i sin 2 , n 1
n
n
k

2k
cos
i sin 2k
,
k 0,1, , n 1.
n
n
§8 复系数与实系数多项式的因式分解 © 2009, Henan Polytechnic University
1515
2, L , n1 是 xn 1 的全部根,
f ( x) a( x 1)r1 ( x 2 )r2 ( x s )rs
其中1,2 , ,s是不同的复数,r1,r2, ,rs Z+
推论2 f ( x) C[x],若 ( f ( x)) n ,则 f ( x) 有n个 复根(重根按重数计算).
f ( x) x6 27 在复数域上的分解式为:
x6 27 ( x 3i)( x 3i)( x 3 3i ) 2
g( x 3 3i )( x 3 3i )( x 3 3i ).
2
2
2
§8 复系数与实系数多项式的因式分解 © 2009, Henan Polytechnic University
从而 ( f2 ) n 2. 由归纳假设 f1( x) 、f2( x)可分解成一次因式与二次
不可约多项式的乘积. 由归纳原理,定理得证.
§8 复系数与实系数多项式的因式分解 © 2009, Henan Polytechnic University
77
推论1
第一章 多项式
f ( x) R[ x], f ( x) 在R上具有标准分解式 f ( x) an( x c1)k1 ( x c2 )k2 ( x cs )ks ( x2 p1x q1)l1
f ( ) an n an1 n1 a0 0 两边取共轭有 f ( ) an n an1 n1 a0 0
∴ 也是为 f ( x)复根.
§8 复系数与实系数多项式的因式分解 © 2009, Henan Polytechnic University
设 ( f ( x)) n,由代数基本定理, f ( x)有一复根 .
若 为实数, 则 f ( x) ( x ) f1( x),其中( f1 ) n 1.
§8 复系数与实系数多项式的因式分解 © 2009, Henan Polytechnic University
99
第一章 多项式
例1 分别在实数域与复数域上分解因式
(1) f ( x) x6 27; (2) f ( x) x4 2x2 25. 解 (1) f ( x) x6 27 ( x2 )3 33
( x2 3)( x4 3x2 9)
x2 3 ( x 3i)( x 3i)
第八节 复系数与实系数多项式的 因式分解
一、复系数多项式 二、实系数多项式
1
一、复系数多项式
第一章 多项式
1. 代数基本定理
f ( x) C[ x] , 若 ( f ( x)) 1 , 则 f ( x) 在复数域 C上必有一根.
推论1(代数基本定理的等价叙述) f ( x) C[ x] , 若 ( f ( x)) 1 , 则存在 x a C[x] ,
1616
第一章 多项式
例3 (1)求 x5 1 在 C上与在 R上的标准分解式.
(2)求 x6 1 在 C上与在 R 上的标准分解式. (3) 给出 xn 1 在 C 上与在 R 上的标准分解式.
解 x5 1 ( x 1)( x )( x 2 )( x 3 )( x 4 )
使 (x a) | f ( x) . 即, f ( x) 在复数域上必有一个一次因式.
§8 复系数与实系数多项式的因式分解 © 2009, Henan Polytechnic University
22
推论2
第一章 多项式
复数域上的不可约多项式只有一次多项式,即 f ( x) C[x], ( f ( x)) 1, 则 f ( x)可约.
2. 复系数多项式因式分解定理
f ( x) C[x], 若( f ( x)) 1, 则 f ( x)在复数域 C 上可唯一分解成一次因式的乘积.
§8 复系数与实系数多项式的因式分解 © 2009, Henan Polytechnic University
33
推论1
第一章 多项式
f ( x) C[x], 若 ( f ( x)) 1, 则 f ( x) 在 C 上具有标准分解式
66
第一章 多项式
若 不为实数,则 也是 f ( x) 的复根,于是
f ( x) ( x )( x ) f2( x) x2 ( )x f2( x)
设 a bi ,则 a bi, 2a R , a2 b2 R 即在R上 x2 ( )x 是 一个二次不可约多项式.
L L ( x2 pr x qr )lr
其中 c1,c2 , ,cs , p1, , pr ,q1, ,qr R, k1, ,ks ,l1, , ls Z ,
且 pi2 4qi 0, i 1,2 r ,即 x2 pi x qi 为
(3) ① 在复数范围内 xn 1有n个复根,
1, , 2, L , n1 其中 cos 2 i sin 2 , n 1
n
n
∴ xn 1 (x 1)(x )( x 2)L ( x n1)
② 在实数域范围内
∵ k nk , k k 2cos 2k ,
所以, x4 2x2 25 在实数域与复数域上的分解式分别为: x4 2x2 25 ( x2 2 2x 5)( x2 2 2x 5);
x4 2x2 25 ( x 2 3i)( x 2 3i)
g( x 2 3i)( x 2 3i).
(2) 因实系数多项式以3+i,,1-i为根,故3-i,,1+i也是 所求多项式的根,所以所求多项式至少有7个根.分别为:
1,1,-2,3+i,3-i,1+I,1-i.
§8 复系数与实系数多项式的因式分解 © 2009, Henan Polytechnic University
1313
第一章 多项式 从而,所求多项式为
( x 1)( x )( x )( x 2 )( x 2 )
相关文档
最新文档