有机化学第一章绪论

合集下载

有机化学第一章绪论

有机化学第一章绪论

脑白金(Melatonine)
MeO
CH2 CH2 NHAc N H
感冒药物
快克,康泰克,白加黑,康必得,速效感冒胶囊,泰诺 主要成份为对乙酰氨基酚
H N O
HO
CH3
对乙酰氨基酚
对乙酰氨基酚能抑制前列腺素的合成而产生解热作用
药物:
HO H
NO2
NO2
H NHCOCHCl 2 CH2OH
H Cl2CHCONH
(b) 碳原子的sp2杂化
(b) 碳原子的sp2杂化
120 120
府视图
(c) 碳原子的sp杂化
(b) 碳原子的sp杂化
(3) 分子轨道理论 (molecular orbital theory)
分子轨道(MO):由原子轨道线性组合而成。 成键电子在整个分子轨道中运动。
+
+
节面
反键轨道
φ1
He Ne Ar Kr Xe
Cs
Fr
Ba
Ra
La
Ac
Hf
Rf
Ta
Db
W
Sg
Re
Bh
Os
Hs
Ir
Mt
Pt
Uun
Au
Uuu
Hg
Uub
Tl
Pb
Uuq
Bi
Po
At
Rn
Ce Th
Pr Pa
Nd U
Pm
Sm
Eu
Am
Gd
Cm
Tb Bk
Dy Cf
Ho Es
Er Fm
Tm Md
Yb No
Lu Lr
Np
Pu
有机物和无机物的区別

农学考研之有机化学 第一章 绪论

农学考研之有机化学 第一章 绪论

第一节有机化合物和有机化学有机化学是化学的一个分支,它是研究有机化合物的来源、制备、结构、性能、应用以及有关理论和方法学的科学。

有机化合物的主要特征是含有碳原子,即都是含碳化合物,因此有机化学就是研究碳化合物的化学。

但少数碳的氧化物(如二氧化碳、碳酸盐等)和氰化合物(如氢氰酸、硫氰酸等),仍归属无机化合物范畴。

一、有机化学的发展有机化学作为一门科学是在十九世纪产生的,但有机化合物在生活中和生产中的应用由来已久。

最初是从天然产物中提取有效成分。

例如:从植物中提取染料、药物、香料等。

在十八世纪末,已经得到了许多纯粹的化合物如酒石酸、柠檬酸、乳酸、尿素等。

这些化合物有许多共同性质,但与当时从矿物来源得到的化合物相比,则有明显的区别。

在十九世纪初曾认为这些化合物是在生命力的作用下生成的,有别于从无生命中的矿物中得到的化合物。

因此叫做有机化合物,后者叫做无机物。

有机化合物早期的定义是“来自有生命机体的物质内”简称“有机物”。

这是因为,在化学发展的前期,无机物被大量合成,而有机物只能从动植物体获得。

如1769年从葡萄汁中取得纯的酒石酸;1773年从尿中取得尿素;1780年从酸奶中取得乳酸;1805年从鸦片中取得吗啡等。

因此,人们认为有机物是与生命现象密切相关的,是生物体内一种特殊的、神秘的“生命力”作用下产生的,只能从生物体内得到,不能人工合成。

这就是瑞典化学权威Berzelius为代表的“生命力”学说的观点。

由于人们认识局限性和对权威的迷信,“生命力”学说统治化学界达半个世纪之久,严重阻碍了有机化学的发展。

1828年德国化学家韦勒(F.W hler)将氰酸铵的水溶液加热得到了尿素:氰酸铵可以从无机物NH4Cl和氰酸钾(或银)反应生成。

此后,许多化学家也在实验室用简单的无机物做为原料,成功地合成了许多其他有机物。

如1845年colbe合成了醋酸;1854年Berthelot合成了油脂类物质等。

在大量的科学事实面前,化学家摒弃了“生命力”学说,加强了有机化合物的人工合成实践,促进了这门科学的发展。

有机化学 第1章 绪论

有机化学 第1章  绪论
有机化学
第一章 绪 论
【本章重点】
共价键的形成及共价键的属性、诱导效应。 【必须掌握的内容】 1. 有机化合物及有机化学。 2. 有机化合物构造式的表示方法。 3. 共价键的形成——价键法(sp3、sp2 sp杂化、σ键与π 键)和分子轨道法。 4. 共价键的基本属性及诱导效应。 5. 共价键的断键方式及有机反应中间体。 6. 有机化合物的酸碱概念。
2Cl·
△H = +242kJ / mol (
双原子分子键能也就是键的离解能;多原子分子 同类型共价键的键能,是各个键离解能的平均值。
如: CH4 +435.1 ·CH +443.5 ·CH2 +443.5 ·CH +338.9 而CH
4 3
离解能△H(kJ / mol) ·CH3 + H· ·CH2 ·CH ·C ·C + H· + H· +物通过蒸馏、结晶、吸附、
萃取、升华等操作孤立出单一纯净的有机物。
[结构] 对分离出的有机物进行化学和物理行为的了解
,阐明 其结构和特性。
[反应和合成] 从某一有机化合物(原料)经过一系列反
应转化成一已知的或新的有机化合物(产物)。
§有机化合物的特点
有机化合物的特点通常可用五个字概括: “多、燃、低、难、慢”。
△H = (435.1 + 443.5 + 443.5 + 338.9)= 1661 kJ / mol 故甲烷C-H 键的键能为:1661 / 4 = 415.3 kJ / mol 键能是指破坏或形成某一个共价键所需的平均能量。 一般来说,有机分子的键能越小,键就越活泼;键能越 大,键就比较稳定。
4. 键的极性与偶极矩 由两个电负性不同的原子组成共价键时,由 于成键的两个原子对价电子的吸引力不同,使成 键电子云在两个原子间的分布不对称,造成共价 键的正负电荷中心不重合形成极性键。

医用有机化学课件-第一章绪论(临床)

医用有机化学课件-第一章绪论(临床)

手性分子定义
不能与其镜像重合的分子。
判断方法
观察分子中是否存在手性 碳原子,若存在则分子具 有手性。
手性碳原子定义
连有四个不同基团的碳原 子。
对映异构体和非对映异构体区别
01
02
03
对映异构体
具有完全相同的物理性质 和不同的化学性质,如旋 光性、溶解性等。
非对映异构体
具有不同的物理性质和化 学性质,如沸点、熔点、 极性等。
胺类化合物的官能团,具有碱 性,可以参与酰化、烷基化等 反应。
酮基(>C=O)
酮类化合物的官能团,具有还 原性,可以参与加成、缩合等 反应。
有机反应类型和机理简介
取代反应
有机分子中的某些原子或原子团 被其他原子或原子团所取代的反 应。如酯化反应、卤代反应等。
重排反应
有机分子中的原子或原子团发生 位置重排的反应。如频哪醇重排、 贝克曼重排等。
利用立体异构原理研究蛋白质 、核酸等生物大分子的三维结 构及功能。
生物医学成像技术
利用某些具有特定立体构型的 分子作为造影剂,提高医学成
像技术的分辨率和准确性。
Part
06
医用有机化学发展趋势和挑战
新型有机合成方法和技术应用
1 2
高效、高选择性合成方法
发展高效、高选择性的有机合成方法,提高合成 效率和产物纯度,降低副产物生成。
Part
03
碳原子结构与性质
碳原子结构特点及杂化方式
碳原子结构特点
碳原子具有四个价电子,可以形 成四个共价键,是构成有机化合 物的基本骨架。
杂化方式
碳原子在形成共价键时,其价电 子可以进行sp、sp2、sp3等杂化 方式,从而形成不同形状和性质 的有机分子。

《有机化学》第一章 绪论

《有机化学》第一章 绪论

Sp3杂化
2P
2S 6C
2P 跃迁 2S
杂化
Sp3杂化轨道
Sp2杂化
2P 2S 6C
2P 跃迁 2S
杂化
Sp2杂化轨道
Sp2和sp3杂化轨道的形状大体相似,只是由于s成分的 逐渐增多,形状较胖,电负性较大。
Sp杂化
2P 2S 6C
2P 跃迁 2S
杂化
Sp杂化轨道
判断杂化类型的方法(第2和3章重点讲)
第一节 有机化学(Organic chemistry)发展概况
Organic一词的意思是有机的、有生命的 , 因此,有机化合物的最初定义是指来源于 动、植物体的物质 。
甘蔗------制取蔗糖; 大米或果汁----酿制酒精 植物油和草木灰共融--------制成肥皂 米醋------乙酸等称为有机物,形成“生命力论”
共价键 C--C C=C C—O C—N C--Br
键能 347.3 611 359.8 305. 4 284.5
3、键角(bond angle) 有机分子中二个共价键之间的夹角,称为键角。
4、键的极性和分子的极性
当两个相同的原子或原子团形成共价键时,由 于其电负性相同,因此成键电子云对称地分布 在两个原子周围,分子的正、负电荷中心重合, 这种键称为非极性共价键。
=dq 偶极矩的单位为德拜(Debye, Debye.Peter 荷兰物理学家), 简写为D。1D=10-8cm 10-10静电单位。
双原子分子的极性就是其键的极性,多原子分子 的极性是各个价键极性的矢量和。偶极矩是矢量,方向 从正电荷中心指向负电荷中心,可书写如下:
δ+
H

Cl
偶极矩 u=q•d
由于青霉素的发现和大量生产,拯救了千百万 肺炎、脑膜炎、脓肿、败血症患者的生命,及时 抢救了许多的伤病员。青霉素的出现,当时曾轰 动世界。为了表彰这一造福人类的贡献,弗莱明、 钱恩、弗罗里于1945年共同获得诺贝尔医学和生 理学奖。

有机化学 chap1-绪论

有机化学 chap1-绪论

1848年—— 含碳化合物的化学 1854年
油脂
有机物 × 无机物
1874年—— 碳氢化合物及其
衍生物的化学
维勒(德国)
2020年4月17日星期五
NH4OCN(氰酸铵)

O NH2–C–NH2(尿素)
《有机化学》
有机化学——碳化合物的化学
1、与人类关系密切
凭什么一个C
就能成为一门 独立学科?
2、数量众多
生命科学 材料科学 环境科学 化学生物学 能源、工业、农业 ...... 等方面
1901~1998年,诺贝尔化学奖共90项,其中有机化学方面的 化学奖55项,占化学奖61%
2020年4月17日星期五
《有机化学》
1989年美国Harvard大学kishi教授等完成海 葵毒素(palytoxin) 的全合成。
Constitution(构造):指组成分子的原子或基团相互 连接的顺序。如C2H4Cl2有CH2ClCH2Cl和CH3CHCl2
2020年4月17日星期五
《有机化学》
Configuration(构型):指组成分子的原子或基团的固 有空间排列,其排列状态的改变,必须靠共价键的断 裂和新的化学键的形成。
化合 物
醛、酮 CH3–CHO CH3-C-CH3 O 羧酸和羧酸衍生物 CH3–COOH CH3-C-Cl
生 含氮 硝基化合物 CH3–NO2
物 化合

CH3–NH2
物 重氮和偶氮化合物
–+N2HSO4-
杂环化合物 O 2020年4月17日星期五
S
《有机化学》
四、有机物结构表示方式——构造式 表示无机物——分子式——组成(H2O) 构造式——分子中原子的连接方式和次序。

第一篇有机化学总论讲解

第一篇有机化学总论讲解
按正碳离子所连的烃基的数目,分为伯仲叔和甲基正碳离子。与正碳离子相连的烃基具有斥电子诱导效应,可以分散正碳离子上的正电荷。正碳离子越稳定,反应越容易进行。
仲正碳离子比伯正碳离子稳定,所以反应的朱产物是情加到含氢多的双键碳原子上,卤素负离子加到含氢较烯烃与硫酸在低温下(0℃左右)混合,即可生成加成产物烷基硫酸氢酯,烷基硫酸氢酯在水中加热可以水解生成醇。
伯仲叔碳上的氢原子,分别称为伯氢原子、仲氢原子和叔氢原子。不同类型氢原子反应活性不同。
二、构造异构和命名
分子式相同的不同化合物彼此互为同分异构体,简称异构体。分子中原子间相互连接的次序和房事称为构造。构造异构是指分子式相同,分子中原子间相互连接的次序和方式不同二形成不同化合物的现象。
(一)碳链异构
具有相同的分子式,由于碳链结构不同而产生的同分异构现象称为碳链异构。碳链异构属于构造异构。
Lewis结构式:标出或省略分子中的孤对电子,成键电子对用短直线表示(或省略短直线)。
二、现代共价键理论
共价键的形成:当两个原子互相接近到一定距离时,两个自旋方向相反的单电子相互配对,形成了密集于两核之间的电子云,该电子云降低了两核间正电荷的排斥力,使体系能量降低,并分别对两核产生吸引力,导致形成稳定的共价键。
2.顺反异构①分子中存在限制两个原子之间自由旋转的刚性结构(双键或脂环)②两个不能自由旋转的原子上分别连接有不同的原子或基团。
任何一个双键碳上若连接两个相同的原子或基团,则只有一种结构。
(二)烯烃的命名
丙烯异丁烯异戊二烯
·系统命名法:选择含C=C双键的最长C链为主链,命名为某烯;从靠近C=C的一端开始编号,若C=C正好在主链中央时,从靠近取代基的一端开始。
四、构象
(一)环戊烷的构象

《有机化学》第1章_绪论(高职高专 )

《有机化学》第1章_绪论(高职高专 )

1.1 有机化合物和有机化学
一.有机化学(Organic Chemistry)的发展
① 1806年,Berzelius首先提出“有机化学” 概念;无机化学. ② 生命力学说:有机化合物只能来源于有机体(organic) 。 ③ 1828年, F.Wöhler从无机物氰酸铵人工合成了有机物尿素,突 破生命力学说约束,促进有机化学发展并成为一门单独学科。
特殊的共价键组成决定了上述特点。
石墨的晶体结构(sp2)
Graphite
金刚石的晶体结构(sp3)
足球烯erical
有机化合物结构上存在同分异构现象:
一.同分异构现象 分子式相同而结构相异因而其性质也各异的不同 化合物,称为同分异构体,这种现象叫同分异构现象。
A:B A·+ B·
例如:
Cl : Cl (光照) Cl·+ Cl· CH4 + Cl · CH3 ·+ H : Cl
例如: 乙醇和二甲醚(官能团异构)
CH3CH2OH CH3OCH3
CH3 CH3CHCH3
丁烷和异丁烷(碳链异构)
CH3CH2CH2CH3
原子数目和种类越多,同分异构体数越多.
碳架异构 构造异构 同分异构 立体异构 构型异构 位置异构
(丁烷与异丁烷) (1-丁烯与2-丁烯)
官能团异构 (二甲醚与乙醇) 构象异构
(2)键角(方向性):任何一个两价以上的原子,与其它原 子所形成的两个共价键之间的夹角. (3)键能 :气态原子A和气态原子B结合成气态A-B分子 所放出的能量,也就是气态分子A-B离解成A和B两个 原子(气态)时所吸收的能量.
(泛指多原子分子中几个同类型键的离解能的平均值).
◆离解能:某个共价键离解所需能量.

有机化学(第二版)课后答案

有机化学(第二版)课后答案

有机化学(第二版)课后习题参考答案第一章绪论1-1 扼要解释下列术语.(1)有机化合物(2) 键能、键的离解能(3) 键长(4) 极性键(5) σ键(6)π键(7) 活性中间体(8) 亲电试剂(9) 亲核试剂(10)Lewis碱(11)溶剂化作用(12) 诱导效应(13)动力学控制反应(14) 热力学控制反应答:(1)有机化合物-碳氢化合物及其衍生物(2) 键能:由原子形成共价键所放出的能量,或共价键断裂成两个原子所吸收的能量称为键能。

键的离解能:共价键断裂成两个原子所吸收的能量称为键能。

以双原子分子AB为例,将1mol气态的AB拆开成气态的A和B原子所需的能量,叫做A—B键的离解能。

应注意的是,对于多原子分子,键能与键的离解能是不同的。

分子中多个同类型的键的离解能之平均值为键能E(kJ.mol-1)。

(3) 键长:形成共价键的两个原子核之间距离称为键长。

(4) 极性键: 两个不同原子组成的共价键,由于两原子的电负性不同, 成键电子云非对称地分布在两原子核周围,在电负性大的原子一端电子云密度较大,具有部分负电荷性质,另一端电子云密度较小具有部分正电荷性质,这种键具有极性,称为极性共价键。

(5) σ键:原子轨道沿着轨道的对称轴的方向互相交叠时产生σ分子轨道, 所形成的键叫σ键。

(6) π键:由原子轨道侧面交叠时而产生π分子轨道,所形成的键叫π键。

(7) 活性中间体:通常是指高活泼性的物质,在反应中只以一种”短寿命”的中间物种存在,很难分离出来,,如碳正离子, 碳负离子等。

(8) 亲电试剂:在反应过程中,如果试剂从有机化合物中与它反应的那个原子获得电子对并与之共有形成化学键,这种试剂叫亲电试剂。

(9) 亲核试剂:在反应过程中,如果试剂把电子对给予有机化合物与它反应的那个原子并与之共有形成化学键,这种试剂叫亲核试剂。

(10) Lewis碱:能提供电子对的物种称为Lewis碱。

(11)溶剂化作用:在溶液中,溶质被溶剂分子所包围的现象称为溶剂化作用。

有机化学-第一章-绪论

有机化学-第一章-绪论

sp2杂化的碳原子的几何
构型为平面三角形。
sp2杂化的碳原子 有机化学 第一章
24
sp1杂化
sp杂化轨道 形状:梨形
成分: 1/2 s + 1/2 P 夹角: 180° 碳原子构型:直线型
未参与杂化的两个 p 轨道的对 称轴相互垂直,且均垂直于sp 杂化轨道对称轴所在直线。
可形成两个 键和两个π键
19
杂化轨道理论 (hybrid orbital theory) 碳原子在基态时的价电子层电子构型
C : 2s2 2px1 2py1 2pz0
吸收能量
C*: 2s1 2px1 2py1 2pz1
sp3杂化
重新 分配
sp2杂化
sp杂化
有机化学 第一章
20
sp3杂化
可形成四 个 键
有机化学 第一章
21
ψ*

1
2

ψ
原子轨道组合成分子轨道必备条件: ① 能量相近 ② 最大重叠 ③ 对称性相同
有机化学 第一章
27
分子轨道理论(molecular orbital theory)
电子在分子轨道中的填充顺序
能量最低原理 泡利不相容原理 洪特规则(兼并轨道规则)
最大重叠 此外还遵循成键三原则: 能量相近
1.1 有机化合物和有机化学
•有机化学是研究有机化合物的组成、结构、性质 、合成、应用及相关理论的一门科学。
那么,什么是有机物呢?
十七世纪中叶,据物质来源分为:动物、植物 和矿物
有机——“有生命的物质”
有机化学 第一章
3
有机化学发展的历史
十九世纪初瑞典化学家 柏齐利乌斯(Berzelius)把动物物质和 植物物质合并称有机化合物,把矿物物质称为无机化合物。

有机化学-绪论(药学)

有机化学-绪论(药学)

有机化合物和有机化学的现代定义:
有机化合物(organic compounds) — 含碳的化合物 有机化学(organic chemistry)是研究有机化合物 的结构、性能和合成方法的一门科学。
CO32-、CO2、CO、CN-、OCN-、SCN-等由于 其性质与无机物相似,习惯上仍列为无机物
: : ·· : : ··
·· · 4 H + ·C·
H·CHH···H
or
H H—C—H
H
共价键的形成过程
H·+ ·H
H·+ ·Cl:
y
y
:: ::
·· H H or H—H 电子云重叠区,吸引着 两个原子核,形成稳定 体系
H ··Cl: or H—Cl
y
x H(1s)
x Cl(2p)
x H—Cl
路易斯结构式:
H HC H
H
H
H
HC CH H C C H
Lewis 的共价键理论的优缺点: 优点:比较正确的反映了离子键和共价键的区别。 不足:没有揭示共价键的真正本质。
配位共价键:形成共价键的一对电子是由成 键的两个原子中的一个原子提供。配位键通常 用箭头 表示,指示从提供电子的原子指向 接受电子的原子。
H
109.5o
H
C
H
H
有机化合物构造式的表达方式:
凯库勒式
结构简式
H3C CH CH2 CH3
H HH HH HC C C C C H
HH HHH
CH2 CH3
CH3CHCH2CH2CH2CH3 CH3
键线式
OH
2.路易斯结构式
路易斯结构式: 用共用电子的点来表示共价 键的结构式.

徐寿昌有机化学第一章绪论

徐寿昌有机化学第一章绪论

①在发展原子论方面,他发现了几种新元素:铈、 硒、钍。他还提出了新 的元素符号体系,沿用至今。
②在电化学方面,贝采利乌斯1814年提出了电化二元论:
③在有机化学方面,贝采利乌斯在1806年最早提出“有机化学”这个名称。 他发现了外消旋酒石酸,认识到同分异构现象,并命名。1835年他发现了 催化作用,并命名。
2. 易燃烧 3. 熔、沸点低,热稳定性差
室温(r.t room temperature)下,多数有机物为气体、液体或
低熔点的固体。因为有机分子间的引力主要为范德华力(Verder Waals Force),结合较弱。
4. 难溶于水,易溶于有机溶剂 5. 原子间主要以共价键结合 6. 反应速度慢,易发生副反应
拉瓦锡,法国化学家。1743年8月26日生于 巴黎,1794年5月8日卒于巴黎。1763年获法学 士学位,并取得律师开业证书,后转向研究自然 科学。21岁时从事地质学研究,后又转为学习 化学。1765年他当选为巴黎科学院候补院士。
1772年,拉瓦锡任皇家科学院副教授, 1778年提升为正教授。拉瓦锡是近代化学奠基 人之一。1774年10月,发现氧。1783年拉瓦锡 将水滴在加热的炮筒上,产生了氢气,他和H. 卡文迪什的工作确证了水不是一种元素,而是 氢和氧的化合物。1789年拉瓦锡写了《化学概 要》一书,书中为元素下了一个定义:“凡是 简单的不能分离的物质,才可以称为元素。” 他还认为少量存在的物质不是元素,例如他认 为黄金就不是元素,这也是错误的。

杂化
激发
2Px 2Py 2Pz 2s
SP3杂化轨道
杂化轨道类型:SP3 SP2
SP
几何图形:正四面体 ;平面三角形 ;直线型。
二)、分子轨道理论

有机化学-汪小兰

有机化学-汪小兰

(2)碳原子的SP2杂化
2S 2Px 2Py 2Pz 激发
2Px 2Py 2Pz
2S
杂化
SP2
2Pz
SP2杂化轨道
乙烯的分子模型
每个SP2轨道由1/3S和2/3P轨道杂化组成,3个SP2轨道 在同一平面,轨道间的夹角为120°。
(3)碳原子的SP杂化
2S 2Px 2Py 2Pz 激发
2Px 2Py 2Pz
巯基
磺酸基
C2H5SH C6H5SH C6H5SO3H
乙硫醇 苯硫酚 苯磺酸
想一想 试指出结构式中官能团的名称
HO
酚羟基
H2N
氨基
N C CH3 HO
酰胺键
扑热息痛
杂环
N
SO2NH S
磺胺噻唑
磺酰胺基 -SO2-NOH-
(二)按碳架分类
1、链状化合物 (又称脂肪族)
CH3 CH2 CH2 CH3 CH3 CH2 CH2 CH2OH
4、键的极性与极化性
非极性键 (1)键的极性
极性键
H H Cl Cl
δδ
δδ
H2C Cl H Cl
组成共价键两原子电负性
(2)分子的极性 差值越大键的极性越大
Cl
Cl
Cl
C Cl
Cl
无极性
HCH H
有极性
(3)键的极化性
共价键在外电场的作用下,键的极性发生变化 称键的极性。键的极性用极化度来度量,它表 示成键电子被成键原子核约束的相对程度。极 化性与成键原子的体积、电负性和键的种类有 关外,与外电场的强度也有关系。如:
C、C间 三键相连
CC
C、C间首 位相连成环
CC CC

有机化学课后习题参考答案

有机化学课后习题参考答案

第一章 绪论1.1 扼要归纳典型的以离子键形成的化合物与以共价键形成的化合物的物理性质。

1.2是否相同?如将CH 4 及CCl 4各1mol 混在一起,与CHCl 3及CH 3Cl 各1mol 的混合物是否相同?为什么?答案: NaCl 与KBr 各1mol 与NaBr 及KCl 各1mol 溶于水中所得溶液相同。

因为两者溶液中均为Na + , K + , Br -, Cl -离子各1mol 。

由于CH 4 与CCl 4及CHCl 3与CH 3Cl 在水中是以分子状态存在,所以是两组不同的混合物。

1.3 碳原子核外及氢原子核外各有几个电子?它们是怎样分布的?画出它们的轨道形状。

当四个氢原子与一个碳原子结合成甲烷(CH 4)时,碳原子核外有几个电子是用来与氢成键的?画出它们的轨道形状及甲烷分子的形状。

答案:C+624HCCH 4中C 中有4个电子与氢成键为SP 3杂化轨道,正四面体结构CH 4SP 3杂化2p y2p z2p x2sH1.4 写出下列化合物的Lewis 电子式。

a. C 2H 4b. CH 3Clc. NH 3d. H 2Se. HNO 3f. HCHOg. H 3PO 4h. C 2H 6i. C 2H 2 j. H 2SO 4 答案:a.C C H H H HCC HH HH或 b.H C H H c.H N HHd.H S He.H O NO f.O C H Hg.O P O O H H Hh.H C C HHH H HO P O O H HH或i.H C C Hj.O S O HH OH H或1.5 下列各化合物哪个有偶极矩?画出其方向。

a. I 2b. CH 2Cl 2c. HBrd. CHCl 3e. CH 3OHf. CH 3OCH 3 答案:b.ClClc.HBrd.HCe.H 3COHH 3COCH 3f.1.6 根据S 与O 的电负性差别,H 2O 与H 2S 相比,哪个有较强的偶极-偶极作用力或氢键?答案:电负性 O > S , H 2O 与H 2S 相比,H 2O 有较强的偶极作用及氢键。

有机化学第一章PPT课件

有机化学第一章PPT课件

不同的物理和化学性质。
03
有机化合物的构造式表示方法
构造式是用来表示有机化合物结构的化学用语,包括结构式、结构简式
和键线式等。
有机化合物的性质
物理性质
有机化合物通常具有较低的熔点和沸点,易挥发和易燃。它们在水中的溶解度较低,但在 有机溶剂中的溶解度较高。
化学性质
有机化合物具有多种反应类型,如取代反应、加成反应、消除反应和氧化还原反应等。这 些反应的发生与有机化合物的结构和官能团密切相关。
19世纪末到20世纪初,合成方法 不断发展和完善,为有机化学的 深入研究提供了有力工具。
有机化学的研究方法
01
02
03
04
实验方法
通过合成、分离、提纯等实验 手段研究有机物的性质、结构 和反应。
理论计算
运用量子化学等理论计算方法 研究有机物的电子结构、反应 机理等。
谱学分析
利用红外光谱、核磁共振谱等 谱学手段分析有机物的结构和 性质。
常见有机反应类型及机理举例
01
取代反应
一个原子或基团被另一个原子或基团所取代的反应, 如卤代烃的水解反应。
02 加成反应 两个或多个分子结合生成一个分子的反应,如烯烃的 加成反应。
03
消除反应
一个分子内两个基团之间化学键的断裂并生成不饱和 键的反应,如卤代烃的消除反应。
04
重排反应
分子内原子或基团的位置发生变化的反应,如频哪醇 重排反应。
酚的定义和分类
酚是一类由羟基与芳香环直接相连 的有机化合物,根据羟基的数目和 位置可分为一元酚、二元酚和多元 酚等。
醚的定义和分类
醚是一类由氧原子连接两个烃基的 有机化合物,根据烃基的不同可分 为简单醚、混合醚和芳香醚等。

有机化学 第一章 第1章 绪 论

有机化学 第一章 第1章  绪  论

第1章绪论一、有机化学和有机化合物人类对有机化合物(organic compound)的认识,最初主要基于实用的目的。

例如,用谷物酿酒和食醋;从植物中提取染料、香料和药物等。

到18世纪末,已经得到了一系列纯粹的化合物,例如酒石酸、柠檬酸、乳酸、苹果酸等。

这些从动植物来源得到的化合物具有许多共同的性质,但与当时从矿物来源得到的化合物相比,则有明显的区别。

由于受到生产力水平的限制,在18世纪末到19世纪初,曾认为这些化合物是由动植物有机体内的“生命力”影响而形成的,故有别于从没有生命的矿物中得到的化合物。

将前者称为有机化合物,后者称为无机化合物。

“生命力”学说曾一度阻碍了有机化学的发展,尤其是减缓了有机合成的前进步伐。

给予“生命力”学说的第一次沉重打击是1928年德国年轻的化学家乌勒(Friedrich Wöhler,1802~1882)首次从无机化合物氰酸铵合成了有机化合物尿素,这也是有机合成的开端。

NH4OCN-→NH2CONH2氰酸铵尿素尿素的人工合成,突破了无机化合物与有机化合物之间的绝对界限,不仅动摇了“生命力”学说的基础,开创了有机合成的道路,而且启迪了人们的哲学思想,有助于生命科学的发展。

德国化学家拜尔(Adolf von Beyer,1835~1917)与他人合作,1870年首次合成了靛蓝。

由于他对靛蓝及其衍生物的深入研究而荣获1905年诺贝尔化学奖。

与此同时,人们又合成了大量的有机化合物。

至此,“生命力”学说彻底破产了。

此后,人们还合成了成千上万种与日常生活密切相关的染料、药品、香料、炸药等有机物。

在一个“老的自然界”旁,再放上一个远远超过它的“新的自然界”。

这也是为什么要将有机化学(organic chemistry)单独作为一个化学分支的原因之一。

因此,有机化学是直到18世纪末才开始发展起来的一门科学。

在19世纪初期,由于测定物质组成的方法的建立和发展,在测定许多有机化合物的组成时发现,它们都含有碳,是碳的化合物。

有机化学第一章 绪论

有机化学第一章 绪论
2020/3/2
双原子分子:键能=离解能 例如:Cl2 Cl. + Cl. E=242KJ/mol. 多原子分子:键能=平均离解能,例如 :
CH4 CH3 CH2 CH CH4
CH3 + H
435.1KJ/mol
CH2 + H D2= 443.5KJ/mol
CH + H D3= 443.5KJ/mol
2020/3/2
四、有机化学的重要性 有机化学是许多现代科学技术的基础:
生命科学(生物化学,分子生物学等) 医药学(药物化学,病理学,生化分析等) 农业(农业化学,农用化学品等) 石油(石油化工等) 材料科学(高分子化学,功能材料等) 食品(食品化学,营养学,添加剂等) 日用化工(染料,涂料,化装品等)
2020/3/2
§1-3 诱导效应 一、定义
当两个原子形成共价键时、两个成键原子的 电负性大小不同,成键原子的电子云的分布偏向 电负性大的一方,产生极性共价键。例如:
δδδδ + δδδ + δδ + δ + δ CH3 CH2 CH2 CH2 Cl
由于极性键C-Cl 的影响,使得C1带部分正 电核,C2带更少的部分正电核,C3带更更少的 正电核,这种现象称为诱导效应。
C + H D4= 338.9KJ/mol
C + 4H
H=
D1+D2
4
+D3 + D4=
415.25KJ/mol
2020/3/2
4、共价键的偶极矩:在共价键中,由于成键的 两个原子的电负性大小不同,使得成键的电子云 偏向电负性大的一端,电负性大的原子具有部分 负电核δ-,电负性小的原子具有部分正电核δ+。 由此定义偶极矩:µ=q.d

有机化学-第一章绪论

有机化学-第一章绪论
子式 C12H22Cl2
4. 有机化合物结构测定
[化学方法] 官能团分析、化学降解及合成
[物理方法] 红外(IR)、紫外(UV)、核磁(NMR)、质谱 (MS)、气液色谱和X衍射等。
非常重要,先自学
如何学习有机化学
• 1 . 理解与记忆相结合,学好前几章的基础 内容,打好基础。
• 2 . 多作习题,多练习,多思考。 • 3 . 课后及时复习,巩固所学内容。 • 4 . 及时总结、比较前后所学内容之异同,
迄今已知的化合物已达几千万种(主要通过 人工合成 ),其中绝大多数是有机化合物。
4、有机化合物的特征
1)同分异构现象 2)分子组成复杂 VB12:C63H90N14PCo
C63H90N14PCo
4、有机化合物的特征
1)同分异构现象 2)分子组成复杂 VB12:C63H90N14PCo 3)熔、沸点低,易燃 4)难溶、反应速度慢 5)副反应多
以减少记忆量。 • 5 . 记化学反应式时,重点记忆官能团的转
化。
lewis酸碱反应形成配位键,产生加合物。
lewis 酸 + lewis 碱
加合物
BF3 + O(CH2CH3)2
F CH2CH3 F BO
F CH2CH3
B(CH3)3 + NH3
H3C H CH3 B N H
H3C H
•lewis酸具有亲电性,lewis碱具有亲核性。
常见的lewis酸:
BF3 AlCl3 SO3 FeCl3 SnCl4 ZnCl2 H+ Ag+ Ca2+ Cu2+ . . . . . .
2、机体的代谢过程,同样遵循有机化学 反应的活性规律。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

存在情况 成键情况
电子云
稳定性
键 可以单独存在;存在于任何共价键中。
成键轨道沿轴向在直线上相互重叠。 电子云集中于两原子核的连线上,呈圆柱形 分布。 稳定,不易极化
② π键
两个成键原子轨道以对称轴相平行互相重叠 (两个p轨道从侧面“肩并肩”地重叠 )而形成 的键叫π键。
pp
肩并肩
键——沿轨道轴垂直方向成键。
3、键能(键的牢固程度)
A(气态)+B(气态)→A-B(气态)-D
1 大气压
1mol 分子 (气体)
原子(气) + D (离解能)
25℃
(1)对双原子分子:离解能即键能。
(2)对多原子分子:取平均离解能
CH4
CH3 + H
CH3
CH2 + H
CH2
CH + H
CH
C +H
D = 434.7 kJ/ mol D = 443.1 kJ/ mol D = 441.1 kJ/ mol D = 338.6 kJ/ mol
一、共价键理论
1.原子轨道
原子是由原子核和核外电 子两部分组成的 。电子在核外 的分布就好像云雾一样,因此 把这种分布形象地称为电子云。 如果用一个界面把这样的分布 划出一个区域,电子在这个区 域内出现的几率很大。这种电 子在空间可能出现的区域称为 原子轨道 。
1s、2p轨道的电子云示意图
2. 价键理论
(2)一般地:键长越短,化学键越牢固,越不容易断开。
2、键角
两个共价键之间的夹角。

H
CH H
H 109o28'
O HH
105o
在其它烷烃分子中,由于碳原子连接的情况不尽相同,相互影 响的结果,其键角也稍有差异。 丙烷分子中的∠C-CH2-C就不是109°28’ ,而是112°。
键角反映了分子的空间形象
两种断裂方式:均裂和异裂
1、均裂 共价键断裂时,共用电子对平均分配给两个原子, 生成自由基。
AB
A+ B
H CH3 + Cl
CH3 + H Cl
发生均裂的反应条件是光照、辐射、加热或有过氧化物存在。
2、异裂 共价键异裂时,成键的一对电子保留在一个原子上。
AB (CH3)3C Cl
存在情况 成键情况
电子云
稳定性
键 必须与键共存;仅存在于不饱和键中。
侧面重叠。 电子云分布在 键所在平面的上下两方,呈块 状分布。 具有较大流动性,易极化
二、 共价键的基本属性
1、键长
键长是共价键结合的两个原子核核心之间达到平衡时的距离.
(1)不同的共价键有不同的键长; 例如: C—C 键长0.154nm C=C 键长0.133nm
(1) 两个原子都有一个或多个未成对电子且自旋相反 (2) 原子相互靠近轨道重叠时重叠的程度最大——方 向性
(3) 成键电子只能在成键区域内运动——定域性 (4) 一个电子最多只能和一个自旋方向电子配对—— 饱和性
能稳定成键
不能稳定成键
H(1s)
Cl(2p)
不能成键
3.碳原子的价键特点和杂化轨道
(1) 碳原子的价键特点 碳原子基态时, 核外电子排布为:1s22s22px12py12pz0
2px 2py 2pz
2s
碳原子之间相互结合或与其它原子结合时, 都是通过共用电子对而结合成共价键。
(2) 碳原子轨道的杂化
碳原子在基态时,只有两个未成对电子,碳原 子应是两价的。而在有机化合物中,碳均为4价。
1931年,Pauling提出原子轨道杂化理论
美国化学家鲍林, 1954年获诺贝尔化 学奖,1963年获诺 贝尔和平奖。
原子轨道杂化理论认为:碳原子在成键的过程中 首先要吸收一定的能量,使2s轨道的一个电子跃 迁到2p空轨道中,形成碳原子的激发态。激发态 的碳原子具有四个单电子,因此碳原子为四价的。
2px 2py 2pz 2s
基态
跃迁
2px 2py 2pz 2s 激发态
碳原子的2s电子跃迁后得到的四个原子轨道,它 们处在不同的能级中的,成键后碳原子的四个价键不 可能是等同的。事实上,在饱和烃中,碳原子的四个 价键是等同的。
HH
HH H-C-O-C-H
HH
乙醇 b.p.78.5 oC
甲醚 b.p.-25 oC
§1.3 有机化学中的化学键-共价键
化学键
离子键 通过两个正负离子相互作用而成 无机化合物
共价键 通过共用电子对形成有机化合物
C在周期表中的位置
既不易得4个
C
24
电子,也不 易失4个电子。
决定C原子一般采用共用电子对的形式和其它原子 结合,形成共价键。
凭什么一个C
就能成为一门 独立学科?
(1)数量众多
(2)与人类关系密切
有机物几千万种;
(3)性质特点不同于无机物 无机物十几万种。
为什么有机物的数量 比无机物多这么多?
有机物结构繁杂!
结构(structure) ——分子中原子间的排列次序,原子相互 间的排列顺序、立体位置、化学键的结合状态以及分子中 电子的分布状况等各项内容的总和。
无机反应是离子型反应,一般反应速度 都很快。有机反应大部分是分子间的反应, 反应过程中包括共价键旧键的断裂和新键 的形成,所以反应速度比较慢。
AgNO3 + NaCl
CH3CH2OH 2CH3CH2OH
AgCl + NaCl
CH2 CH2 CH3CH2OCH2CH3
五、副反应多,产物复杂
有机化合物的分子大多是由多个原子结合 而成的复杂分子,所以在有机反应中,反应中 心可以在不同部位同时发生反应,得到多种产 物。反应生成的初级产物还可继续发生反应, 得到进一步的产物。因此在有机反应中,除了 生成主要产物以外,还常常有副产物生成。
有机化学
徐寿昌(第二版)
主讲人:郭艳玲
学时:64 每周4学时 共16周
主要参考书
1、邢其毅,《基础有机化学》(第三版),上、下册,高 等教育出版社 2、胡宏纹主编,《有机化学》,上、下册,高等教育出版 社,1990,北京。 3、莫里森[美]等, 《有机化学》(第二版),科学出版 社。 4、刘在群,《有机化学学习笔记》,科学出版社 5、王世润等,《有机化学学习指导》,南开大学出版社 6、邢其毅等,《基础有机化学习题解答与解题示例》,高 等教育出版社
林; 飞机、汽车所用的汽油等等。
有机物在人类生活和生产中的应用由来已久: 例如:
我国《周礼》记载,当时已有专官管理染 色、制酒和制醋;
古埃及处理尸体所用福尔马林。
有机物最初只是从天然产物中提取有用成份:
植物
染料(挤压出汁); 药物(挤压或水煮); 香料(挤压或水煮)。
到十八世纪末,已获得一些纯净的有机化合物
① sp3杂化
实例:CH4
一个sp3杂化轨道
,
两两夹角 109 28
② sp2杂化
实例:CH2=CH2
③ Sp 杂化
(1)二个sp杂化轨道的分布
(2)二个p轨道相互垂直
碳原子的sp杂化轨道示意图
实例:
HCCH
s sp sp sp sp s
(3)σ键和π键
共价键按共用电子对的数目,分为单键和重键
为了解决这个矛盾,杂化轨道提出:碳原子在成 键时,四个原子轨道可以“混合起来”进行“重新组 合”形成四个能量等同的新轨道,称为sp3杂化杂化
轨道。
杂化轨道的能量稍高于2s轨道的能量,稍低于 2p轨道的能量。杂化轨道的数目等于参加组合的原子 轨道的数目。
碳原子的杂化分为三种类型:
sp3杂化、sp2杂化、sp杂化
二、“生命力”的破产
1828年,德国F.Wohler(伍勒)在蒸发氰酸铵溶液时得 尿素
(NH4) NCO
(NH4CNO 氰酸铵)
NH2 C NH2
O
尿素:来自动物尿液有机物
氰酸铵:已确认为无机物
结果:无机物 合成
有机物
三、有机化学发展的重要事件
1828年,德国的Wohler合成尿素,“生命力”学说破产 ——有机化学的里程碑
分子的性质不仅取决于其元素组成,更取决于分子的结构。
“结构决定性质,性质反映结构”
有机化学的涵义
有机化学(organic chemistry)是研究有机 化合物的来源、制备、结构、性能、应用以及 有关理论和方法学的科学。
另:有机化学就是研究碳氢化合物及其衍生 物的化学。在化学上,通常把含有碳氢两种元 素的化合物称为烃。因此,有机化学也就是研 究烃及其衍生物的化学。
1917年,美国Lewis(路易斯) Lewis 酸 碱 理论
1931年,Huckel(休克尔)规则
以及 前线轨道理论 轨道对称守恒原理
故从此有机化学一步步发展至今
四、有机化合物和有机化学的涵义
有机化合物的涵义
在有机化合物中,绝大多数都含有碳、氢 两种元素,有些还含有氧、硫、氮、磷、卤 素等其它元素。所以,现在人们认为,有机 化合物就是碳氢化合物(烃)及其衍生物 。
过不定期考勤、提问、作业);课堂上保持安静 (允许随时举手提问问题)。
第一章
有机化合物的结构与性质
§1.1 有机化合物和有机化学
一、对有机物的认识:
有机化学是化学的一个分支,研究 对象为有机化合物,诞生于十九世纪初 期,迄今不足二百年。
有机物与我们的生活息息相关
例如: 身上的衣服—有机高分子聚合物; 早餐的面包—淀粉;发烧时吃的阿司匹
书写有机反应方程式时常采用箭头,而不 用等号,一般只写出主要反应及其产物,有的 还需要在箭头上标明反应的必要条件。
六、同分异构现象普遍存在
同分异构现象是指具有相同分子式,但结构不 同,从而性质各异的现象。
相关文档
最新文档