陀螺仪基本特性试验
陀螺仪的基本特性
![陀螺仪的基本特性](https://img.taocdn.com/s3/m/6dc5763d0912a216147929a1.png)
3.2 陀螺仪的基本特性双自由度陀螺的两个基本特性是:进动性和定轴性。
3.2.1 陀螺仪的进动性简单的说陀螺的进动性是指当陀螺受到外力矩的作用时,所产生的一种复合扭摆运动,其进动角速度的方向垂直于外力矩的方向,其进动角速度的大小正比与外力矩,或者说,陀螺进动的方向为角动量以最短距离导向外力矩的方向。
为了便于理解,我们以二自由度的框架陀螺为例,其进动表现为:外力矩如沿着内框轴作用时,则陀螺仪绕外框转动;若外力矩沿外框轴作用时,则陀螺绕内框转动。
3.2.2 陀螺仪的定轴性陀螺的定轴性是指转子绕自转轴高速旋转时,如果不受外力矩的作用,自转轴将相对于惯性空间保持方向不变。
换言之,双自由度陀螺具有抵抗干扰力矩,力图保持转子轴相对惯性空间的方位稳定的特性。
在实际的陀螺仪中,由于结构和工艺的不尽完善,总是不可避免的存在干扰力矩,因此,考查陀螺仪的定轴性,更有实际意义的是考查有干扰情况下,在有限的时间内,自转轴保持方位稳定的能力。
由陀螺仪的进动性可以知道,在干扰力矩的作用下,陀螺将产生进动,使得自转轴偏离原有的方位,这种方位偏差就称为漂移。
一般说来,框架陀螺仪的漂移较大,从几度每小时到几十度每小时不等,这就是为什么框架式陀螺测斜仪在测量前要求标桩对北,测量结束后还必须校北的原因。
3.3 陀螺仪的表观进动由于陀螺仪自转轴相对于惯性空间保持方位不变(当陀螺仪的漂移足够小;同地球自转引起的地球相对惯性空间方位变化比较,可近似的认为陀螺仪相对惯性空间的方位不变),而地球以其自转角速度绕极轴相对惯性空间转动,所示观察者若以地球为参考基准,将会看到陀螺仪自转轴相对地球转动,这种相对运动称为陀螺仪的表观运动。
表观运动的实质是陀螺仪可以跟踪测量地球自转角速度。
例如在地球任意纬度处,放置一个高精度的二自由度陀螺仪,并使其自转轴处于当地垂线位置,如图所示,可以看到陀螺的自转轴将逐渐偏离当地的地垂线,而相对地球作圆锥面轨迹的表观进动,每24小时进动一周。
旋转质量陀螺仪及其力学分析
![旋转质量陀螺仪及其力学分析](https://img.taocdn.com/s3/m/8de02a297ed5360cba1aa8114431b90d6c8589cb.png)
陀螺力矩所产生的这种外环稳定效应,称为陀螺动力 稳定效应,简称陀螺动力效应。
2024/7/25
10
第11页/共68页
一 自由陀螺仪的基本特性
3.陀螺力矩与陀螺效应
陀螺动力稳定效应对内框架无效!
2024/7/25
11
第12页/共68页
一 自由陀螺仪的基本特性
3.陀螺力矩与陀螺效应
当基座绕垂直于自转轴的
方向转动时,轴承带动自
转轴改变方向,强迫转子
进动。强迫进动所产生的
陀螺力矩,将引起自转轴
两端轴承的附加压力,压
力过大时,造成转轴弯曲
F
或轴承损坏。
2024/7/25
第13页/共68页
F
12
二 单自由度陀螺的运动方程与动力学分析
1.单自由度陀螺感受转动的特性
ωy
FA
My
ω
FA
2024/7/25
13
第14页/共68页
转子角动量在框架坐标系中表示为:
Hc Je (x )i Je (y cos z sin ) j Jz ( z cos y sin )k
2024/7/25
19
第20页/共68页
3.单自由度陀螺的运动方程
(3) 组件
组件的角动量 H B H b H c
H B (J e Jbx )(x )i (J e Jby )( y cos z sin ) j [J z (J z Jbz )(z cos y sin )]k
2024/7/25
31
第32页/共68页
1.利用欧拉动力学方程列写陀螺运动微分方程
二自由度陀螺的广义坐标:
转子轴绕外环轴的转角
转子轴绕内环轴的转角
陀螺仪基本特性试验
![陀螺仪基本特性试验](https://img.taocdn.com/s3/m/c25a71ff185f312b3169a45177232f60ddcce721.png)
陀螺仪基本特性试验陀螺仪基本特性试验一、实验目的1.用实验的方法观察并验证陀螺仪的基本特性——定轴性,进动性和陀螺力矩效应。
2.学习使用陀螺实验用主要设备——转台。
3.利用线性回归方法进行数据处理。
二、实验设备1.TZS-74陀螺仪表综合试验转台。
2.双自由度陀螺仪。
3.砝码。
4.实验用电源:交流220V,50~(转台用)36V,400~三相电源。
三、实验内容和步骤(一)定轴性实验1.陀螺马达不转时,开动转台,观察陀螺仪是否有定轴性。
2.接通电源,几下陀螺转子的转速方向,开动转台观察转子转动时陀螺仪的定轴性。
(二)进动性实验1.外加力矩,观察进动现象。
根据进动规律判断角动量H的方向,并和上面记下的转速方向做一比较。
2.测量进动角速度和外加力矩的关系:(1)在加力杆的前后标尺上分别加不同重量的砝码,记录进动的角度与实践,列表并计算出对应于每一外加力矩的进动角速度值,画出实验曲线。
(2)根据进动规律x Mω=(H J=Ω)计算出对应于每一外加H力矩的进动角速度,画出理论曲线。
(3)将实验曲线与理论曲线进行比较并说明产生误差的原因。
(4)用线性回归的方法进行数据处理,并通过求回归系数的方法求出角动量H的值。
3.测量进动角速度和角动量的关系在同一外力矩作用下,测量陀螺马达在额定转速下和断电一分钟后的进动角速度(断电一分钟后马达转速低于额定转速)。
根据实验结果说明进动角速度和角动量的关系。
(三)陀螺力矩实验1.开动转台,使双自由度陀螺仪基座转动,观察有无陀螺力矩效应,并说明原因。
2.观察双自由度陀螺仪在进动时的陀螺力矩效应。
用手对内框架加力矩,用手的感觉来测量陀螺力矩的大小和方向。
说明陀螺力矩产生的原因。
3.拧紧固定外框架的螺钉。
用手对内框架加力矩。
观察此时转子轴的运动方向。
用手感觉此时对手是否有陀螺力矩作用,加以分析。
4.测量陀螺力矩和进动角速度的关系为了达到测量陀螺力矩的目的,我们拧紧固定外框架的螺钉,是陀螺仪成为单自由度陀螺仪。
B陀螺仪原理1基本特性
![B陀螺仪原理1基本特性](https://img.taocdn.com/s3/m/f78db80ef11dc281e53a580216fc700abb6852e2.png)
陀螺动力效应:陀螺力矩
外加力矩
M H
陀螺力矩:反作用力矩
M g H H
陀螺力矩的方向判断 陀螺力矩的作用对象
陀螺动力(稳定)效应,对外框架有效
陀螺动力(稳定)效应,对内框架无效
定轴性:不通电时转动基座
录像(61s):陀螺不通电时,转动基座
定轴性:通电后转动基座
录像(35s):通电后,转动基座
➢定轴性的相对性(二):章动现象
陀螺受冲击力矩时,自转轴将在 原来的空间方位附近作锥形振荡 运动
章动录像
录像(20s):二自由度陀螺的章动现象(转子减速后)
单自由度陀螺仪基本特性(一)
单自由度陀螺 ➢结构:只有一个(内)框架 ➢特点:转子轴只有一个自由度
和二自由度陀螺的定轴性比较
➢转子轴沿着 x 方向向对基座缺少 转动自由度。
M H
此即二自由度陀螺仪的进动方程
进动角速度的方向和大小
➢进动角速度的方向:最短路径法则 (H 沿着最短路径趋向 M)
➢进动角速度的大小:根据 M = ω×H,写成标量形式:
M = ω·H·sinθ
因此
ω = M /(H·sinθ)
进动角速度大小与外力矩的大小成正比,与转子的动量矩的大小成反比。
➢进动的“无惯性”
➢当基座沿着 x 方向旋转时: 转子轴被迫一起绕 x 旋转 转子轴仍尽力保持在原方位
转子和基座之间存在相互作用
基座对转子沿 x 轴施加力矩 转子轴将绕内框架轴 y 旋转 ➢结论:单自由度陀螺能敏感基 座在其缺少转动自由度的方向 (敏感轴 x 方向)上的转动
单自由度陀螺仪基本特性(二)
和二自由度陀螺的进动性比较
➢动量矩定理
dH M dt
光纤陀螺仪测试方法
![光纤陀螺仪测试方法](https://img.taocdn.com/s3/m/a9e1a1b290c69ec3d4bb7516.png)
光纤陀螺仪测试方法1 范围本标准规定了作为姿态控制系统、角位移测量系统和角速度测量系统中敏感器使用的单轴干涉性光纤陀螺仪(以下简称光纤陀螺仪)的性能测试方法。
2 规范性引用文件下列文件中的条款通过本标准的引用而成为本标准的条款。
凡是注目期的引用文件,其随后所有的修改单(不包含勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。
凡是不注日期的引用文件,其最新版本适用于本标准。
GB 321-1980 优先数和优先系数CB 998 低压电器基本实验方法GJB 585A-1998 惯性技术术语GJB 151 军用设备和分系统电磁发射和敏感度要求3 术语、定义和符号GJB 585A-1998确立的以及下列术语、定义和符号适用于本标准。
3.1 术语和定义3.1.1 干涉型光纤陀螺仪 interferometric fiber optic gyroscope仪萨格奈克(Sagnac)效应为基础,由光纤环圈构成的干涉仪型角速度测量装置。
当绕其光纤环圈等效平面的垂线旋转时,在环圈中以相反方向传输出的两束相干光间产生相位差,其大小正比于该装置相对于惯性空间的旋转角速度,通过检测输出光干涉强度即反映出角速度的变化。
3.1.2 陀螺输入轴 input axis of gyro垂直于光纤环圈等效平面的轴。
当光纤陀螺仪绕该轴有旋转角速度输入时,产生光纤环圈相对于惯性空间输入角速度的输出信号。
3.1.3 标度因数非线性度 scale factor nonlinearity在输入角速度范围内,光纤陀螺仪输出量相对于最小二乘法拟合直线的最大偏差值与最大输出量之比。
3.1.4 零偏稳定性 bias stability当输入角速度为零时,衡量光纤陀螺仪输出量围绕其均值的离散程度。
以规定时间内输出量的标准偏差相应的等效输入角速度表示,也可称为零漂。
3.1.5 零偏重复性 bias repeatability在同样条件下及规定间隔时间内,多次通电过程中,光纤陀螺仪零偏相对其均值的离散程度。
陀螺仪实验报告
![陀螺仪实验报告](https://img.taocdn.com/s3/m/a597e5d36137ee06eff918a8.png)
university of science and technology of china 96 jinzhai road, hefei anhui 230026,the people’s republic of china陀螺仪实验实验报告李方勇 pb05210284 sist-05010 周五下午第29组2号2006.10.22 实验题目陀螺仪实验(演示实验)实验目的1、通过测量角加速度确定陀螺仪的转动惯量;2、通过测量陀螺仪的回转频率和进动频率确定陀螺仪的转动惯量;3、观察和研究陀螺仪的进动频率与回转频率与外力矩的关系。
实验仪器①三轴回转仪;②计数光电门;③光电门用直流稳压电源(5伏);④陀螺仪平衡物;⑤数字秒表(1/100秒);⑥底座(2个);⑦支杆(2个);⑧砝码50克+10克(4个);⑨卷尺或直尺。
实验原理1、如图2用重物(砝码)落下的方法来使陀螺仪盘转动,这时陀螺仪盘的角加速度?为:?=d?r/dt=m/ip (1) 式中?r为陀螺仪盘的角速度,ip为陀螺仪盘的转动惯量。
m=f.r为使陀螺仪盘转动的力矩。
由作用和反作用定律,作用力为:f=m(g-a) (2) 式中g为重力加速度,a为轨道加速度(或线加速度)轨道加速度与角加速度的关系为:a=2h/tf2; ?=a/r (3) 式中h为砝码下降的高度,r如图1所示为转轴的半径,tf为下落的时间。
将(2)(3)代入(1)2ip?2mr2t?h2mgr可得: (4)2f测量多组tf和h的值用作图法或最小二乘法拟合数据求出陀螺仪盘的转动惯量。
2、如图3所示安装好陀螺仪,移动平衡物w使陀螺仪ab轴(x轴)在水平位置平衡,用拉线的方法使陀螺仪盘绕x轴转动(尽可能提高转速),此时陀螺仪具有常数的角动量l:l=ip.?r (5) 当在陀螺仪的另一端挂上砝码m(50g)时就会产生一个附加的力矩m*,这将使原来的角动量发生改变:dl/dt=m*=m*gr* (6) 由于附加的力矩m*的方向垂直于原来的角动量的方向,将使角动量l变化dl,由图1可见: dl=ld?这时陀螺仪不会倾倒,在附加的力矩m*的作用下将会发生进动。
陀螺仪测试方法V1.0
![陀螺仪测试方法V1.0](https://img.taocdn.com/s3/m/d944ff7a7fd5360cba1adbf4.png)
测试效果图中的X、Y、Z线 条不会随着手机朝向的改变 而改变
测试各轴晃动时,将手机朝向变为左
6
方位测试
侧横放,但不改变晃动方向(即XYZ 三轴随着手机的朝向变动而变动,非
绝对固定)
测试效果图中的X、Y、Z线 条不会随着手机朝向的改变 而改变
7
测试各轴晃动时,将手机朝向变为右 侧横放,但不改变晃动方向(即XYZ 三轴随着手机的朝向变动而变动,非 绝对固定)
1.Z轴应为蓝线,若发现围绕 Z轴晃动时,出现的不是蓝 线,那就是问题; 2.晃动的越快,线条越密 集;晃动的越慢,线条越稀 疏; 3.晃动幅度越大,线条越高 度越大;晃动幅度越小,线 条高度越小; 4.在线条图的下方坐标值显 示处,Z坐标值会根据晃动幅 度和晃动速度计算出来,值 越大,表示晃动幅度和晃动 速快越快
备注
1.Y轴应为绿线,若发现围绕 X轴晃动时,出现的不是绿 线,那就是问题; 2.晃动的越快,线条越密 集;晃动的越慢,线条越稀 疏; 3.晃动幅度越大,线条越高 度越大;晃动幅度越小,线 条高度越小; 4.在线条图的下方坐标值显 示处,Y坐标值会根据晃动幅 度和晃动速度计算出来,值 越大,表示晃动幅度和晃动 速快越快
在线条图的下方坐标值显示处z坐标值会根据晃动幅度和晃动速度计算出来值越大表示晃动幅度和晃动速快越快测试各轴晃动时将手机朝向变为平放桌面但不改变晃动方向即xyz三轴随着手机的朝向变动而变动非绝对固定测试效果图中的xyz线条不会随着手机朝向的改变而改变原因
陀螺仪
注意事项:测试时请安装Z-DeviceTest,进入Gyroscope测试项测试。 该方法仅能测试陀螺仪是否有效,参数需要硬件测试核实
原因:陀螺仪仅关注晃动方 向,不会根据手机实际方向 改变
陀螺仪实验报告
![陀螺仪实验报告](https://img.taocdn.com/s3/m/47eaa0c3f8c75fbfc67db221.png)
university of science and technology of china 96 jinzhai road, hefei anhui 230026,the people's republic of china陀螺仪实验实验报告李方勇 pb05210284 sist-05010 周五下午第29组2号2006.10.22 实验题目陀螺仪实验(演示实验)实验目的1、通过测量角加速度确定陀螺仪的转动惯量;2、通过测量陀螺仪的回转频率和进动频率确定陀螺仪的转动惯量;3、观察和研究陀螺仪的进动频率与回转频率与外力矩的关系。
实验仪器①三轴回转仪;②计数光电门;③光电门用直流稳压电源(5伏);④陀螺仪平衡物;⑤数字秒表(1/100秒);⑥底座(2个);⑦支杆(2个);⑧砝码50克+10克(4个);⑨卷尺或直尺。
实验原理1、如图2用重物(砝码)落下的方法来使陀螺仪盘转动,这时陀螺仪盘的角加速度?为:?=d?r/dt=m/ip (1) 式中?r为陀螺仪盘的角速度,ip为陀螺仪盘的转动惯量。
m=f.r为使陀螺仪盘转动的力矩。
由作用和反作用定律,作用力为:f=m(g-a) (2) 式中g为重力加速度,a为轨道加速度(或线加速度)轨道加速度与角加速度的关系为:a=2h/tf2; ?=a/r (3) 式中h为砝码下降的高度,r如图1所示为转轴的半径,tf为下落的时间。
将(2)(3)代入(1)2ip?2mr2t?h2mgr可得: (4)2f测量多组tf和h的值用作图法或最小二乘法拟合数据求出陀螺仪盘的转动惯量。
2、如图3所示安装好陀螺仪,移动平衡物w使陀螺仪ab轴(x轴)在水平位置平衡,用拉线的方法使陀螺仪盘绕x轴转动(尽可能提高转速),此时陀螺仪具有常数的角动量l:l=ip.?r (5) 当在陀螺仪的另一端挂上砝码m(50g)时就会产生一个附加的力矩m*,这将使原来的角动量发生改变:dl/dt=m*=m*gr* (6) 由于附加的力矩m*的方向垂直于原来的角动量的方向,将使角动量l变化dl,由图1可见: dl=ld?这时陀螺仪不会倾倒,在附加的力矩m*的作用下将会发生进动。
陀螺仪漂移及测试课件
![陀螺仪漂移及测试课件](https://img.taocdn.com/s3/m/9f757057640e52ea551810a6f524ccbff121ca2e.png)
陀螺仪测试中的注意事项
在进行陀螺仪测试时,应确保测试环 境干净整洁,避免灰尘、污垢等杂质 对测试结果造成影响。
在进行动态测试时,应遵循安全操作 规程,确保测试过程中的安全。
测试前应对陀螺仪进行充分的预热, 以确保其性能稳定。
对于高精度的陀螺仪,应采用高精度 的测试设备进行测试,以确保测试结 果的准确性。
陀螺仪的种类和用途
机械陀螺仪
微机械陀螺仪
利用旋转轴的定轴性,用于方向测量 和控制系统,如导弹、飞机、船舶等 导航系统。
利用微机械加工技术制造,具有低成 本、小型化、集成化等特点,用于消 费电子产品、智能穿戴设备等。
光学陀螺仪
利用光束的干涉效应,具有高精度、 抗电磁干扰等特点,用于高精度测量 和控制系统,如卫星定位系统、惯性 导航系统等。
CHAPTER
陀螺仪静态测试
01
02
陀螺仪静态测试是指将 陀螺仪置于静止状态下 进行测试,以评估其性能。
测试内容包括检查陀螺 仪的零点稳定性、分辨 率、噪声水平等。
03
静态测试通常在实验室 环境下进行,以确保测 试结果的准确性。
04
静态测试还可以用于评 估陀螺仪在不同温度和 湿度条件下的性能表现。
陀螺仪动态测试
01
02
03
04
陀螺仪动态测试是指在实际运 动状态下对陀螺仪进行测试, 以评估其在动态环境中的性能。
测试内容包括检查陀螺仪的动 态响应速度、抗干扰能力、稳
定性等。
动态测试通常在振动台、离心 机等设备上进行,以模拟实际
使用中的各种运动状态。
动态测试还可以用于评估陀螺 仪在不同运动状态下的性能表 现,如旋转、俯仰、滚动等。
CHAPTER
某型燃气陀螺仪光电特性测试原理分析
![某型燃气陀螺仪光电特性测试原理分析](https://img.taocdn.com/s3/m/b6146cd209a1284ac850ad02de80d4d8d15a0188.png)
某型燃气陀螺仪光电特性测试原理分析摘要:某型燃气陀螺仪(以下简称“陀螺仪”)是某类控制部件之一,为飞行过程中提供角度姿态信号,经综合处理后形成控制指令,实现飞行姿态控制。
本文主要对陀螺仪的光电特性测试进行原理分析,加强陀螺仪工作原理、结构及光电测试原理理解。
关键词:陀螺仪;光电特性;测试1引言目前由于陀螺仪自身具备的定轴特性(jinertia or rigidity)、进动特性(precession)被广泛应用于航空、航天及航海等领域。
而本文涉及的燃气陀螺仪则是利用陀螺仪的定轴性,测量出装备飞行中在空间绕其纵轴的旋转相位和旋转转速,产生基准脉冲信号,作为形成控制指令的基准。
该型陀螺仪的工作过程较为抽象简化,在地面检测呈现多项独立性检测,与实际使用差异大,导致测试理解难度大、操作困难。
本文中针对该型陀螺仪光电特性测试进行具体介绍,使陀螺仪的使用及测试原理更易理解。
2陀螺仪工作原理如图1陀螺仪结构示意图,陀螺仪实际工作时,燃气室内药柱燃烧产生高压燃气,通过与工作室连同的气孔进入工作室;当燃气作用在锁紧簧片的压力大于锁紧簧片作用在陀螺仪锁紧销的压力,锁紧簧片解锁;燃气即刻作用在转子,转子以约90000r/min高速转动。
高速转子与内外环形成定轴整体,而与弹体相固定的外壳(安装光电组件)随弹体旋转(见图2)。
当光电组件存在光信号起始位置旋转一周后再次检测到光信号,依次循环,则在既定基准周期内得到光信号次数(即旋转圈数),换算后即为旋转相位和旋转转速。
在陀螺仪工作过程中,光信号的感应强度、脉宽和定轴性保持的惯转时间为陀螺仪工作的重要指标,也是在研制生产和维修过程中检定陀螺仪合格的项目。
3测试原理分析陀螺仪的地面检测光电特性主要检查惯转时间、光电流、暗电流、补偿角及开启角。
说明:1-壳体;2-外环;3-盖帽;4-锁紧簧片;5-内环;6-转子;7-光电组件;8-挡光板。
图1 陀螺仪结构示意图1图2 陀螺仪结构示意图23.1 特性解析陀螺仪的光电特性主要依靠陀螺仪定轴性、光电组件实现,光电组件包括挡光板、光信号发生器及感受器。
陀螺实验报告
![陀螺实验报告](https://img.taocdn.com/s3/m/b9453b5efbd6195f312b3169a45177232f60e4a4.png)
陀螺实验报告陀螺实验报告引言:陀螺是一种旋转的物体,它的运动规律一直以来都吸引着科学家们的注意。
为了更好地理解陀螺的运动特性,我们进行了一系列的陀螺实验。
本报告将详细介绍实验的目的、实验装置、实验步骤、实验结果以及实验结论。
实验目的:本次实验的目的是研究陀螺的稳定性和运动规律,通过实验探究陀螺的物理特性和运动机制。
实验装置:我们使用了一架陀螺装置,该装置由一个陀螺仪和一个支架组成。
陀螺仪由一个圆盘和一个轴组成,圆盘上有一个固定的重物。
支架上有一个可调节的支点,用于保持陀螺仪的平衡。
实验步骤:1. 调整支架:首先,我们需要调整支架,使得支点与陀螺仪的轴线垂直,并保持支点的稳定性。
2. 给陀螺仪加力:接下来,我们用手指轻轻地给陀螺仪加力,使其开始旋转。
注意力的大小和方向要一致,以确保陀螺仪的旋转方向和速度。
3. 观察陀螺仪的运动:我们仔细观察陀螺仪的运动,包括旋转的速度、旋转的方向以及陀螺仪的稳定性。
4. 记录实验数据:我们记录下陀螺仪的旋转时间、旋转速度以及稳定性等实验数据。
5. 重复实验:为了提高实验的准确性,我们进行了多次实验,并记录每次实验的数据。
实验结果:通过实验观察和数据记录,我们得到了以下实验结果:1. 陀螺仪的旋转速度与加力的大小和方向有关,加力越大,陀螺仪的旋转速度越快。
2. 陀螺仪的旋转方向与加力的方向一致。
3. 陀螺仪在旋转过程中具有一定的稳定性,能够保持一定的旋转时间和旋转速度。
实验结论:通过本次实验,我们得出以下结论:1. 陀螺的运动规律与加力的大小和方向有关,加力越大,陀螺的旋转速度越快。
2. 陀螺的旋转方向与加力的方向一致。
3. 陀螺具有一定的稳定性,能够保持一定的旋转时间和旋转速度。
进一步研究:虽然本次实验对陀螺的运动特性进行了初步研究,但还有许多问题值得进一步探索。
例如,我们可以研究不同形状和重量的陀螺对运动规律的影响,以及陀螺的旋转速度与稳定性之间的关系等。
结语:通过本次实验,我们对陀螺的运动特性有了更深入的了解。
陀螺控制技术实验报告
![陀螺控制技术实验报告](https://img.taocdn.com/s3/m/259957999fc3d5bbfd0a79563c1ec5da50e2d6ad.png)
一、实验目的1. 理解陀螺控制技术的基本原理;2. 掌握陀螺控制实验的操作方法;3. 分析陀螺控制过程中的影响因素;4. 评估陀螺控制技术的性能。
二、实验原理陀螺控制技术是一种基于陀螺仪的旋转物体,通过控制其旋转状态来实现目标物体运动的控制方法。
陀螺仪具有角动量守恒特性,即当不受外力矩作用时,陀螺的角速度保持不变。
利用这一特性,通过控制陀螺的旋转状态,可以实现对目标物体的稳定控制。
三、实验设备1. 陀螺仪;2. 控制系统;3. 数据采集与分析系统;4. 实验平台。
四、实验步骤1. 熟悉实验设备,了解陀螺仪的基本结构和工作原理;2. 连接实验设备,确保信号传输畅通;3. 开启控制系统,设置实验参数;4. 进行陀螺控制实验,观察陀螺的运动状态;5. 采集实验数据,分析陀螺控制过程中的影响因素;6. 评估陀螺控制技术的性能。
五、实验结果与分析1. 陀螺控制实验中,当控制系统输出一定的控制信号时,陀螺的旋转状态发生改变,实现目标物体的运动控制;2. 在实验过程中,发现以下影响因素:(1)陀螺仪的角速度:陀螺仪的角速度越大,控制效果越好;(2)控制系统参数:控制系统的参数设置对陀螺控制效果有较大影响,需要根据实际情况进行调整;(3)实验平台稳定性:实验平台的稳定性对陀螺控制效果有直接影响,实验平台应保持平稳;3. 通过实验数据分析,陀螺控制技术的性能如下:(1)控制精度:在实验条件下,陀螺控制技术的控制精度较高;(2)响应速度:陀螺控制技术的响应速度较快,能够满足实时控制需求;(3)抗干扰能力:陀螺控制技术具有一定的抗干扰能力,能够在一定范围内抵抗外界干扰。
六、实验结论1. 陀螺控制技术具有较好的控制效果,能够实现对目标物体的稳定控制;2. 通过实验验证,陀螺控制技术在实际应用中具有较高的实用价值;3. 陀螺控制技术在实际应用中,需要根据具体情况调整控制系统参数,提高控制效果。
七、实验心得通过本次陀螺控制技术实验,我对陀螺控制技术有了更深入的了解,掌握了陀螺控制实验的操作方法。
光纤陀螺仪测试规范
![光纤陀螺仪测试规范](https://img.taocdn.com/s3/m/edcd8225ccbff121dd368368.png)
光纤陀螺仪测试规范1范围本方案规范了光纤陀螺的技术要求、质量保证和交货准备等方面的要求,以及相应的测试条件、测试项目、测试方法、测试程序,适用于在航海、航空、航天及陆用等惯性技术领域中应用的陀螺仪的设计、制造及检验。
2 测试条件与测试设备2.1测试条件2.1.1 环境条件2.1.1.1 大气条件标准大气条件如下:环境温度:23℃±2℃相对湿度:20%~80%大气压力:86KPa ~ 106KPa5 测试主要项目5.1.1 光纤陀螺在室温环境下性能a) 标度因数;b) 标度因数非线性度;c) 标度因数不对称度;d) 标度因数重复性。
5.1.2 零偏a) 零偏;b) 零偏稳定性;c) 零偏重复性(逐次、逐日)。
5.1.3 阈值5.1.4 随机游走系数5.2 振动环境性能5.3 冲击试验5.4 标度因数、零偏、零偏稳定性与环境温度项目综合测试a) 标度因数温度灵敏度;b) 零偏温度零敏度; c) 陀螺启动时间;d) 温度梯度对陀螺零偏的影响。
6 测试方法 6.1 标度因数 6.1.1 标度因数数值 6.1..1.1 测试设备a) 具有角度输出的速率位置转台(速率平稳度优于5×10-3,测量范围大于±0.001°/s ~ ±500°/s );b) 陀螺输出测试和记录装置; c) 陀螺测试专用工装夹具。
6.1.1.2 测试程序陀螺仪通过安装夹具固定在速率转台上。
在输入角速率范围内,按GB321规定的R5系列,适当圆整,均匀删除后选取输入角速率,在正转、反转方向输入角速率范围内,分别不能小于11个角速率档,包括最大输入角速率。
当速率平稳时进行测试。
程序如下:a) 转台加电,设定转台的转动角速度、速率值和转动方向,接通陀螺仪电源,预热一定时间。
转台输入角速率按从小到大的顺序改变,转台正转测试陀螺仪输出,停转;转台反转,测试陀螺仪输出停转;b) 设定采样间隔时间为1S 及采样次数,测试陀螺仪测试陀螺仪输出量,求得该输入角速率下陀螺仪输出的平均值; 6.1.1.3 计算方法设j F 为第j 个输入角速度时光纤陀螺仪输出的平均值,标度因数绝对值计算方法见公式:j F =1N1Njpp F=∑ (1)式中: j F —陀螺仪第P 个输出值,N —采样次数。
陀螺仪的实验报告
![陀螺仪的实验报告](https://img.taocdn.com/s3/m/abb9e413f11dc281e53a580216fc700abb6852f3.png)
陀螺仪的实验报告陀螺仪的实验报告引言:陀螺仪是一种测量和检测旋转运动的仪器,广泛应用于航空航天、导航系统、惯性导航等领域。
本实验旨在通过搭建一个简单的陀螺仪实验装置,探究陀螺仪的原理和应用。
实验装置:实验装置由一个陀螺仪、一个支架和一个旋转轴组成。
陀螺仪由一个旋转的转子、一个固定的支架和一个测量旋转角度的仪表组成。
实验步骤:1. 将陀螺仪固定在支架上,并确保转子能够自由旋转。
2. 将支架固定在旋转轴上,确保支架能够在水平面上自由旋转。
3. 启动陀螺仪,并记录起始时刻的旋转角度。
4. 通过手动旋转支架,使陀螺仪的转子发生旋转。
5. 观察仪表上的旋转角度变化,并记录下来。
6. 反复进行步骤4和步骤5,记录不同旋转速度和旋转方向下的旋转角度。
实验结果:在本实验中,我们发现陀螺仪的转子在受到外力作用时,会产生一个与外力方向垂直的陀螺力矩。
这个陀螺力矩使得陀螺仪的转子保持旋转,并且会使支架产生一个倾斜角度。
同时,我们还观察到陀螺仪的旋转角度与旋转速度呈线性关系,即旋转速度越大,旋转角度也越大。
讨论:陀螺仪作为一种测量旋转运动的仪器,具有广泛的应用前景。
在航空航天领域,陀螺仪被用于测量飞机、导弹等飞行器的姿态和角速度,从而实现精确的导航和控制。
在导航系统中,陀螺仪可以配合加速度计等其他传感器,实现惯性导航,提高导航的准确性和稳定性。
此外,在工业生产中,陀螺仪也可以用于测量机械设备的旋转角度和角速度,监测设备的工作状态。
结论:通过本次实验,我们深入了解了陀螺仪的原理和应用。
陀螺仪作为一种测量旋转运动的仪器,具有广泛的应用前景。
在实际应用中,我们可以根据具体需求选择不同类型和精度的陀螺仪。
同时,我们还需要注意陀螺仪的灵敏度和稳定性,以保证测量结果的准确性。
致谢:在此,感谢本次实验的指导老师和实验室的支持。
通过这次实验,我们不仅学到了关于陀螺仪的知识,也提高了实验操作和数据分析的能力。
感谢所有为本次实验付出努力的人们。
陀螺仪实习报告
![陀螺仪实习报告](https://img.taocdn.com/s3/m/eac0b67ddc36a32d7375a417866fb84ae45cc38a.png)
一、实习目的本次实习旨在了解陀螺仪的基本原理、结构、工作方式以及在实际应用中的重要作用。
通过实习,使学生掌握陀螺仪的基本操作技能,提高学生对陀螺仪相关知识的理解和应用能力。
二、实习时间2021年X月X日至2021年X月X日三、实习地点XX大学实验室四、实习内容1. 陀螺仪基本原理陀螺仪是一种利用陀螺效应进行测量的装置,其主要原理是陀螺仪的转子在旋转过程中,具有保持角动量守恒的特性。
当陀螺仪受到外力矩的作用时,其角速度会发生变化,但角动量保持不变。
通过测量陀螺仪的角速度变化,可以确定陀螺仪的角加速度,从而实现角度、角度速度、角加速度的测量。
2. 陀螺仪结构及工作方式陀螺仪主要由转子、陀螺仪支架、传感器、信号处理电路等组成。
陀螺仪的工作方式如下:(1)转子:陀螺仪的核心部件,由高速旋转的轴和旋转体组成。
转子在高速旋转过程中,具有保持角动量守恒的特性。
(2)陀螺仪支架:用于支撑转子,使其能够自由旋转。
(3)传感器:用于测量陀螺仪的角速度、角加速度等参数。
(4)信号处理电路:将传感器采集到的信号进行处理,得到所需的测量结果。
3. 陀螺仪实际应用陀螺仪在军事、航空航天、航海、工业等领域具有广泛的应用,以下列举几个典型应用:(1)军事领域:陀螺仪可用于导航、制导、稳定平台等,提高武器装备的精度和可靠性。
(2)航空航天领域:陀螺仪可用于飞机、卫星的导航、姿态控制等,保证飞行器的稳定性和安全性。
(3)航海领域:陀螺仪可用于船舶导航、姿态控制等,提高船舶的航行精度和安全性。
(4)工业领域:陀螺仪可用于旋转机械的监测、控制等,提高生产效率和产品质量。
五、实习过程1. 实习前期准备(1)学习陀螺仪的基本原理、结构、工作方式等相关知识。
(2)了解陀螺仪在各个领域的应用。
(3)熟悉实验室设备,包括陀螺仪、传感器、信号处理电路等。
2. 实习过程(1)观察陀螺仪的结构,了解其各个组成部分的功能。
(2)操作陀螺仪,进行角度、角度速度、角加速度等参数的测量。
陀螺仪检验方法
![陀螺仪检验方法](https://img.taocdn.com/s3/m/81db555c974bcf84b9d528ea81c758f5f61f298a.png)
陀螺仪检验方法
陀螺仪的检验方法主要包括以下几个步骤:
标度因子(偏移和灵敏度)测试:这是陀螺仪性能测试中最重要和最常见的一项。
标度因子是指陀螺仪输出与其输入之间的比例关系,包括偏移和灵敏度两部分。
非线性误差测试:非线性误差是指陀螺仪输出与输入之间的非线性关系。
这种误差通常通过比较陀螺仪的实际输出和理论输出来测量。
偏差测试:偏差是指陀螺仪在没有输入时的输出。
这种误差通常通过在陀螺仪静止时测量其输出来得到。
分辨率测试:分辨率是指陀螺仪能够检测到的最小的输入变化。
这种性能通常通过测量陀螺仪在微小输入变化下的输出变化来得到。
灵敏度对温度漂移和灵敏度对加速度漂移的测试:这两项测试是为了评估陀螺仪在温度变化和加速度变化下的性能变化。
校准:在使用陀螺仪前,需要进行校准。
校准过程通常包括将陀螺仪放置在静止状态下一段时间,然后按照说明书中的步骤进行校准,包括改变陀螺仪的姿态,并根据陀螺仪的指示进行调整。
陀螺实验报告
![陀螺实验报告](https://img.taocdn.com/s3/m/2e6dee6f3868011ca300a6c30c2259010202f3eb.png)
一、实验目的1. 了解陀螺仪的基本原理和构造;2. 掌握陀螺仪的实验方法及操作技巧;3. 通过实验验证陀螺仪的稳定性、灵敏度等性能指标;4. 分析陀螺仪在不同条件下的工作状态。
二、实验原理陀螺仪是一种利用陀螺效应进行测量的装置。
当陀螺旋转时,其旋转轴与旋转平面始终保持垂直。
陀螺仪的基本原理是利用陀螺的这种特性,通过测量陀螺的角速度和角加速度,来反映物体的运动状态。
三、实验器材1. 陀螺仪;2. 支架;3. 旋转器;4. 角度测量仪;5. 数字秒表;6. 计算器。
四、实验步骤1. 将陀螺仪安装在支架上,确保陀螺仪的旋转轴与支架垂直;2. 使用旋转器将陀螺仪旋转至水平状态;3. 用角度测量仪测量陀螺仪的初始角度;4. 记录陀螺仪旋转一周所需时间;5. 分别在水平、垂直和倾斜三个方向上测量陀螺仪的稳定性;6. 记录陀螺仪在不同方向上的旋转频率;7. 观察并记录陀螺仪在不同条件下的工作状态。
五、实验数据及分析1. 陀螺仪初始角度为0°,旋转一周所需时间为T1秒;2. 在水平方向上,陀螺仪旋转频率为f1 Hz;3. 在垂直方向上,陀螺仪旋转频率为f2 Hz;4. 在倾斜方向上,陀螺仪旋转频率为f3 Hz;5. 陀螺仪在不同方向上的稳定性表现良好。
六、实验结果与分析1. 陀螺仪在水平、垂直和倾斜三个方向上的旋转频率基本一致,说明陀螺仪具有良好的稳定性;2. 陀螺仪在不同方向上的旋转频率与旋转一周所需时间成正比,符合陀螺仪的原理;3. 陀螺仪在不同条件下的工作状态表现良好,验证了陀螺仪的灵敏度。
七、实验结论通过本次实验,我们掌握了陀螺仪的基本原理和实验方法,验证了陀螺仪的稳定性和灵敏度。
陀螺仪作为一种重要的测量装置,在军事、航空航天、航海等领域具有广泛的应用前景。
八、实验注意事项1. 实验过程中,确保陀螺仪的旋转轴与支架垂直,避免因支架倾斜而影响实验结果;2. 使用旋转器旋转陀螺仪时,力度要适中,避免过大的力矩影响陀螺仪的旋转;3. 观察陀螺仪的工作状态时,注意观察其旋转频率和稳定性,以便及时发现问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
陀螺仪基本特性试验一、实验目的
1.用实验的方法观察并验证陀螺仪的基本特性——定轴性,进动性和陀螺力矩效应。
2.学习使用陀螺实验用主要设备——转台。
3.利用线性回归方法进行数据处理。
二、实验设备
1.TZS-74陀螺仪表综合试验转台。
2.双自由度陀螺仪。
3.砝码。
4.实验用电源:交流220V,50~(转台用)36V,400~三相电源。
三、实验内容和步骤
(一)定轴性实验
1.陀螺马达不转时,开动转台,观察陀螺仪是否有定轴性。
2.接通电源,几下陀螺转子的转速方向,开动转台观察转子转
动时陀螺仪的定轴性。
(二)进动性实验
1. 外加力矩,观察进动现象。
根据进动规律判断角动量H 的方
向,并和上面记下的转速方向做一比较。
2. 测量进动角速度和外加力矩的关系:
(1) 在加力杆的前后标尺上分别加不同重量的砝码,记录进
动的角度与实践,列表并计算出对应于每一外加力矩的
进动角速度值,画出实验曲线。
(2) 根据进动规律x M H
ω=(H J =Ω)计算出对应于每一外加力矩的进动角速度,画出理论曲线。
(3) 将实验曲线与理论曲线进行比较并说明产生误差的原
因。
(4) 用线性回归的方法进行数据处理,并通过求回归系数的
方法求出角动量H 的值。
3. 测量进动角速度和角动量的关系
在同一外力矩作用下,测量陀螺马达在额定转速下和断电一分钟后的进动角速度(断电一分钟后马达转速低于额定转速)。
根据实验结果说明进动角速度和角动量的关系。
(三) 陀螺力矩实验
1. 开动转台,使双自由度陀螺仪基座转动,观察有无陀螺力矩
效应,并说明原因。
2. 观察双自由度陀螺仪在进动时的陀螺力矩效应。
用手对内框
架加力矩,用手的感觉来测量陀螺力矩的大小和方向。
说明陀螺力矩产生的原因。
3.拧紧固定外框架的螺钉。
用手对内框架加力矩。
观察此时转
子轴的运动方向。
用手感觉此时对手是否有陀螺力矩作用,加以分析。
4.测量陀螺力矩和进动角速度的关系
为了达到测量陀螺力矩的目的,我们拧紧固定外框架的螺钉,是陀螺仪成为单自由度陀螺仪。
然后打开转台,是陀螺已跟随着基座以相同的角速度进动,这是在内框轴上就受到一个陀螺力矩,我们在加力杆上加砝码,便可在内框架轴上施加重力力矩来平衡陀螺力矩。
(1)转动转台,测量转台的角度和时间,并同时在加力杆上加砝码平衡陀螺力矩。
列表计算出陀螺力矩与进动角度
的关系,并画出试验曲线。
(2)根据陀螺力矩公式计算陀螺力矩与进动角速度的关系,并列表画出理论曲线。
(3)将试验曲线与理论曲线进行比较,并说明产生误差的原因。
(四)观察章动现象
1.用手在双自由度陀螺仪上施加冲击力矩,观察并记录章动现
象。
2.关闭陀螺马达电源,等陀螺马达转速降低及停转后再用手在
陀螺仪上施加陀螺力矩,观察并记录陀螺仪的运动情况。