计量经济学复习要点说明
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
计量经济学复习要点
参考教材:李子奈 潘文卿 《计量经济学》 数据类型:截面、时间序列、面板
第二章 简单线性回归
回归分析的基本概念,常用术语
现代意义的回归是一个被解释变量对若干个解释变量依存关系的研究,回归的实质是由固定的解释变量去估计被解释变量的平均值。
简单线性回归模型是只有一个解释变量的线性回归模型。 回归中的四个重要概念
1. 总体回归模型(Population Regression Model ,PRM)
t t t u x y ++=10ββ--代表了总体变量间的真实关系。
2. 总体回归函数(Population Regression Function ,PRF )
t t x y E 10)(ββ+=--代表了总体变量间的依存规律。
3. 样本回归函数(Sample Regression Function ,SRF )
t
t t e x y ++=10ˆˆββ--代表了样本显示的变量关系。 4. 样本回归模型(Sample Regression Model ,SRM )
t
t x y 10ˆˆˆββ+=---代表了样本显示的变量依存规律。 总体回归模型与样本回归模型的主要区别是:①描述的对象不同。总体回归模型描述总体中变量y 与x 的相互关系,而样本回归模型描述所关的样本中变量y 与x 的相互关系。②建立模型的依据不同。总体回归模型是依据总体全部观测资料建立的,样本回归模型是依据样本观测资料建立的。③模型性质不同。总体回归模型不是随机模型,而样本回归模型是一个随机模型,它随样本的改变而改变。
总体回归模型与样本回归模型的联系是:样本回归模型是总体回归模型的一个估计式,之所以建立样本回归模型,目的是用来估计总体回归模型。
线性回归的含义
线性:被解释变量是关于参数的线性函数(可以不是解释变量的线性函数) 线性回归模型的基本假设
简单线性回归的基本假定:对模型和变量的假定、对随机扰动项u 的假定(零均值假定、同方差假定、无自相关假定、随机扰动与解释变量不相关假定、正态性假定) 普通最小二乘法(原理、推导)
最小二乘法估计参数的原则是以“残差平方和最小”。 Min
21ˆ()n
i i i Y Y =-∑
01
ˆˆ(,)ββ: 1
1
2
1
()()
ˆ()n
i
i i n i
i X
X Y Y X X ==--β=-∑∑ ,
01ˆˆY X β=-β
OLS 估计量的性质
(1)线性:是指参数估计值0β和1β分别为观测值t y 的线性组合。 (2)无偏性:是指0β和1β的期望值分别是总体参数0β和1β。 (3)最优性(最小方差性):是指最小二乘估计量0β和1β在在各种线性无偏估计中,具有最
小方差。
高斯-马尔可夫定理
OLS 参数估计量的概率分布
OLS 随机误差项μ的方差σ2的估计
拟合优度的检验R 2
离差平方和的分解:TSS=ESS+RSS
“拟合优度”是模型对样本数据的拟合程度。检验方法是构造一个可以表征拟合程度的指标——判定系数又称决定系数。
(1)21SSE SST SSR SSR
R SST SST SST
-===-,表示回归平方和与总离差平方和之比;反映了样本回归线对样本观测值拟合优劣程度的一种描述; (2) 2[0,1]R ∈;
(3) 回归模型中所包含的解释变量越多,2R 越大!
2
^22()i Var x σβ=∑2^
22i e n σ=
-∑
变量显著性检验,t 检验 1
ˆ
1
ˆββS t =
例子:回归报告
函数形式(对数、半对数模型系数的解释)
(1)01ˆˆˆi i
Y X =β+β:X 变化一个单位Y 的变化 (2)01ˆˆˆln ln i i Y X =β+β: X 变化1%,Y 变化1ˆβ%,表示弹性。 (3)01ˆˆˆln i i Y X =β+β:X 变化一个单位,Y 变化百分之1001ˆβ (4)01ˆˆˆln i i
Y X =β+β:X 变化1%,Y 变化1ˆβ/100。 第三章 多元线性回归
1、变量系数的解释(剔除、控制其他因素的影响)
0112
2ˆˆˆˆi i i Y X X =β+β+β 对斜率系数1ˆβ的解释:在控制其他解释变量(X2)不变的条件下,X1变化一个单位对Y 的影响;或者,在剔除了其他解释变量的影响之后,X1的变化对Y 的单独影响!
2、多元线性回归模型中对随机扰动项u 的假定,除了零均值假定、同方差假定、无自相关假定、随机扰动与解释变量不相关假定、正态性假定以外,还要求满足无多重共线性假定。
3、多元线性回归模型参
数的最小二乘估计式;参数估计式的分布性质及期
望、方差和标准误差;在基本假定满足的条件下,多元线性回归模型最小
二乘估计式是最佳线性无偏估计式。
最小二乘法 (OLS) 公式: Y ' X X)' (X ˆ-1=β
2ˆvar(σ-1(X'X)β)=
估计的回归模型:
的方差协方差矩阵:
残差的方差 :
ˆˆY =X β
+u 2ˆˆ'u u n k -s =
βˆ的估计的方差协方差矩阵是:
4、修正可决系数的作用和方法。
222
2
2()
111()(1)
()i
i i i e
n k e n R Y Y n n k Y Y --=-=-----∑∑∑∑ 5、F 检验是对多元线性回归模型中所有解释变量联合显著性的检验,F 检验是在方差分
析基础上进行的。
6、t 检验
7、可化为线性回归的模型 8、约束回归
第四章 放宽基本假设
一、异方差
什么是异方差 异方差的后果
异方差的检验(White 检验) 异方差的处理 加权最小二乘法 异方差稳健标准误
二、序列相关
什么是序列相关 序列相关的后果
序列相关
的检验(DW 检验、
LM 检验)
序列相关的处理 广义最小二乘法 Newey-West 稳健标准误
三、多重共线性
多重共线性的概念 多重共线性的后果 多重共线性的检验
2ˆvar(s -1(X'X)β)
=β
ˆ