单缝的夫琅禾费衍射
夫琅禾费单缝衍射和半波带法
![夫琅禾费单缝衍射和半波带法](https://img.taocdn.com/s3/m/ff43920030126edb6f1aff00bed5b9f3f90f722f.png)
与狭缝平行方向分成 一系列宽度相等的窄
A
条,对于衍射角为 的 各条光线,相邻窄条 对应点发出的光线到 达观察屏的光程差为 半个波长,这样等宽
A1 a
A2 C
B
的窄条称为半波带。
• 这种分析方法称为菲涅耳半波带法。
asin
2
1.2 菲涅耳半波带法
• 对应于衍射角为θ 的屏上P 点,缝上下边缘两条光线之间的 光程差为
asin
• 下面分两种情况用菲涅耳 半波带法讨论P 处是明纹 或暗纹。 • (1)BC 的长度恰等于 两个半波长,即
a sin 2 暗条纹
2
1.2 菲涅耳半波带法
• (2)BC 的长度恰为三个半波长,即 a sin 3 明纹
明纹条件:
2
a sin (2k 1) (k 1, 2, ...)
1.2 菲涅耳半波带法
• 例4-1 在单缝夫琅禾费衍射实验中,波长为λ1 的单色光 的第三级明纹与波长为 λ2 = 630 nm 的单色光的第二级明 纹恰好重合,求前一单色光的波长 λ1 。
• 分析:采用比较法来确定波长.对应于同一观察点,两次
衍射的光程差相同,明纹重合时θ 角相同,由于衍射明纹
条件 • 故有
行光,相当于光源位于无限远处。 • 透镜 L的作用是把平行光会聚
到置于焦平面的光屏上, • 相当于观察屏位于无限远处。 • 实验会发现在观察屏上形成
衍射条纹。
1.1 单缝夫琅禾费衍射的装置 以及光强分布
• AB为单缝的截面,其宽度为 a。
• 当单色平行光垂直照射单缝时,根据惠更斯—菲涅耳原理, AB上的各点都是子波源。
2
θ=0 对应中央明纹.
暗纹条件:
a sin k (k 1, 2, ...) k 为衍射级次.
单缝夫琅禾费衍射强度
![单缝夫琅禾费衍射强度](https://img.taocdn.com/s3/m/91f8dc8588eb172ded630b1c59eef8c75ebf9545.png)
单缝夫琅禾费衍射强度摘要:1.单缝衍射概述2.夫琅禾费衍射原理3.衍射强度的计算方法4.夫琅禾费衍射的应用正文:1.单缝衍射概述单缝衍射是一种光的波动现象,当光线通过一个缝隙时,会在其后方形成一系列明暗交替的条纹。
这些条纹是由于光波在传播过程中遇到缝隙,发生衍射现象而产生的。
单缝衍射的研究对于理解光的波动性质以及发展光纤通信、光学仪器等技术具有重要意义。
2.夫琅禾费衍射原理夫琅禾费衍射,又称为夫琅禾费衍射公式,是由德国物理学家夫琅禾费(Fraunhofer)在19 世纪初提出的。
夫琅禾费衍射原理描述了单缝衍射条纹的亮度分布规律,其基本公式为:I = (b / a) * (L / d)^2 * sin^2(α)其中,I 表示衍射强度,b 表示光源到缝的距离,a 表示缝到观察屏的距离,L 表示光源到观察屏的距离,d 表示缝的宽度,α表示入射光线与缝的中心线的夹角。
3.衍射强度的计算方法根据夫琅禾费衍射原理,我们可以通过测量衍射条纹的亮度来计算衍射强度。
具体方法是,在实验中改变光源到缝的距离、缝到观察屏的距离以及入射光线与缝的中心线的夹角,观察不同条件下衍射条纹的亮度变化,然后利用夫琅禾费衍射公式计算衍射强度。
4.夫琅禾费衍射的应用夫琅禾费衍射在实际应用中具有重要价值。
例如,在光纤通信中,夫琅禾费衍射原理可以用于计算光纤的传输性能,以提高通信质量和传输距离;在光学仪器的研制中,夫琅禾费衍射可以用于评估仪器的分辨率和成像质量。
此外,夫琅禾费衍射还在物理、光学等领域的科研和教学中具有广泛的应用。
总之,夫琅禾费衍射作为一种重要的光学现象,对于理解光的波动性质以及发展光纤通信、光学仪器等技术具有重要意义。
单缝和圆孔夫琅禾费衍射介绍
![单缝和圆孔夫琅禾费衍射介绍](https://img.taocdn.com/s3/m/ba5bc47ed5bbfd0a7856735f.png)
三、入射光非垂直入射时光程差的计算
DB BC A
b(si n sin ) b
(中央明纹向下移动)
D
B
C
BC DA
b(si n sin )
(中央明纹向上移动)
D A
b
C
B
例1 在单缝衍射中,=600nm, a=0.60mm, f=60cm, 则(1)中央明纹宽度为多少?(2)两 个第三级暗纹之间的距离?
单缝和圆孔的夫琅 禾费衍射介绍
一、单缝夫琅禾费衍射
1.衍射装置及图样
单缝 透镜
衍射角
f
衍射屏
I
衍射图样
(1) 衍射条纹与狭缝平行。 (2)中心条纹很亮,两侧明条纹对称分布, 亮度减弱。 (3)中央亮斑的宽度为其他亮斑的两倍。
由惠更斯——菲涅耳原理:
单缝处波面看作无穷多个相干波源,屏上一点是 (无穷)多光束干涉的结果。
解 ⑴ 中央明纹的宽度
⑵第三级暗纹在屏上的位置
x3ftanf3a3l0
两个第三级暗纹之间的距离
x6l 7.2mm 0
例2 已知:一雷达位于路边d =15m处,射束与公路成 15°角,天线宽度a =0.20m,射束波长=30mm。
求:该雷达监视范围内公路长L =?
L
d
a
θ1
β
150
解:将雷达波束看成是单缝衍射的0级明纹
越大,
越大,衍射效应越明显.
1
二、用振幅矢量推导光强公式
1.振幅矢量法 将缝AB的面积S等分成N(很大)个等宽的窄带,
每个窄带宽度a/N.
每个窄带发的子波在P点振
A
幅近似相等,设为A1,相邻
窄带所发子波在P点引起的振
20.2 单缝的夫琅禾费衍射
![20.2 单缝的夫琅禾费衍射](https://img.taocdn.com/s3/m/2d6c1f3f87c24028915fc3ea.png)
B
A C
·P
0
f
AC = a sinϕ = (2k +1)
(3) OP间有几条暗纹? 间有几条暗纹? 间有几条暗纹
λ
2 0 1 1 2
= 2.5λ
∴ k =2
2
两条暗纹
单缝可分成几个半波带? (4) 单缝可分成几个半波带?
5个半波带
点为第二级暗纹,则缝可分成几个半波带? (5) 若P点为第二级暗纹,则缝可分成几个半波带? 缝可分成4 AC = a sinϕ = 2k ⋅ = 4⋅ 缝可分成4个半波带 2 2
§20.2 单缝的夫琅禾费衍射
一、实验装置 二、 用半波带法分析条纹的形成 三、用旋矢法求解强度分布 四、条纹分析 五、其他衍射现象 六、光学仪器的分辨本领
1
第20章光的衍射
2
第20章光的衍射
一、实验装置
P
O
*
f′
ϕ
B
ϕ
A
·x
0
正一级 中央亮纹 负一级
C
f
( 单缝夫琅和费衍射 )
单缝处波面看作无穷多个相干波源 P点是 (无穷)多光束干涉的结果 点是 无穷)
λ
D
物点 一一对应 物点
第20章光的衍射
像点 像斑
ϕ1
可分辨
ϕ1 > δϕ
ϕ2
刚可分辨
ϕ2 = δϕ
ϕ3 < δϕ
ϕ3
不可分辨
瑞利判据: 对于两个等光强的非相干物点,如果一个像斑中心 瑞利判据 对于两个等光强的非相干物点 如果一个像斑中心 恰好落在另一像斑的边缘(第一暗纹处 第一暗纹处),则此两像被认为是刚 恰好落在另一像斑的边缘 第一暗纹处 则此两像被认为是刚 好能分辨。 好能分辨。此时两像斑中心角距离为最小分辨角
2—3 夫琅和费单缝衍射
![2—3 夫琅和费单缝衍射](https://img.taocdn.com/s3/m/286195cb08a1284ac85043c7.png)
3、狭缝上所有次波在P 的叠加
积分过程见(附录2-1) b sinu u sin A A A0 sincu 令 p 0 u
2 sin u 2 2 2 2 Ap A0 A sin c u 0 2 u
I p I 0 sinc 2 u P点光强随θ的分布
16
三、强度公式的讨论 1、最大最小位置:
y2 = u
-
·
-2.46
·
-1.43
· 0
0
+1.43
+2.46
解得 :
相应 :
u 1.43, 2.46, 3.47, „
b sin 1.43 , 2.46 , 3.47 ,„
19
前几个次最大的位置
次最大序号 次最大位置 相对强度
u
1.43 2.46
(k 1, 2, ) 暗纹 (k 1, 2, ) 明纹 中央明纹
•正、负号表示衍射条纹对称分布于中央明纹的两侧 •对于任意衍射角,单缝不能分成整数个半波带,
在屏幕上光强介于最明与最暗之间。
方法一、菲涅耳半波带法
I / I0
明纹宽度
中央明条纹的角宽度 为中央两侧第一暗条纹 之间的区域:
3.47
4.48
sin
3 2b 5 2.46 b 2b 7 3.47 b 2b 9 4.48 b 2b 1.43 b
I I 0
1 2 3 4
0.047
0.017
0.008
0.005
1 sin k0 k 2 b
b
0
sin (2k 1)
2b
物理实验居家单缝夫琅禾费衍射实验数据及完整实验报告和结论
![物理实验居家单缝夫琅禾费衍射实验数据及完整实验报告和结论](https://img.taocdn.com/s3/m/f2bd09fac0c708a1284ac850ad02de80d5d80659.png)
物理实验居家单缝夫琅禾费衍射实验数据及完整实验报告和结论家庭单缝夫琅禾费衍射实验实验目的:1、了解夫琅禾费(Fraunhofer Lines)被用于把窄线宽的原子谱线用来测量光谱中的原子或分子信号2、研究夫琅禾费把反谱仪角度和反谱仪对散射算法的影响实验材料:铂家具,反谱仪,单缝夫琅禾费模板,衍射模板,记录仪等实验方法使用反射仪配合衍射模板测量夫琅禾费的宽度和强度,同时配合相应的数据记录仪记录下测量得到的值。
首先,我们调整反射仪角度,使其与衍射模板对齐,然后将反射仪射线对准夫琅禾费模板,根据数据记录仪记录的测量值,推算出窄线宽的夫琅禾费。
然后,我们可以确定单缝夫琅禾费模板反射仪角度和反射仪对散射算法的影响。
最后,我们可以使用夫琅禾费把反谱仪角度和反谱仪对散射算法进行测量,记录数据,并比较结果。
实验结果通过实验,我们测量出夫琅禾费窄线宽的宽度,测量结果如下所示:第一组:夫琅禾费宽度为0.64 nm。
第二组:夫琅禾费宽度为0.62 nm。
第三组:夫琅禾费宽度为0.61 nm。
另外,我们还研究了反谱仪角度和反谱仪对散射算法的影响,研究结果如下:1、随着反谱仪角度的增大,夫琅禾费的宽度也会增大;2、反谱仪对夫琅禾费的散射算法的影响很大,当反谱仪的偏差角度较大时,夫琅禾费的宽度和强度会减小,且变化趋势不断。
结论本次实验通过配合衍射模板测量夫琅禾费的宽度和强度,我们可以推算出窄线宽的夫琅禾费。
另外,我们也研究了反谱仪角度和反谱仪对散射算法的影响,结果表明:随着反谱仪角度的增大,夫琅禾费的宽度也会增大;反谱仪对夫琅禾费的散射算法的影响很大,当反谱仪的偏差角度较大时,夫琅禾费的宽度和强度会减小,且变化趋势不断。
本次实验为理解夫琅禾费的原理,及其对光谱中原子或分子信号的测量提供了重要的实验经验。
单缝夫琅禾费衍射明暗纹公式
![单缝夫琅禾费衍射明暗纹公式](https://img.taocdn.com/s3/m/91cb4a4b49d7c1c708a1284ac850ad02de80078c.png)
单缝夫琅禾费衍射明暗纹公式
夫琅禾费衍射是物理学的一个重要分支,用于研究光的衍射现象。
夫琅禾费衍射的基本原理是:当通过一条狭缝或一些微小孔洞的光线照射一个物体时,会发生弯曲和散射。
这种现象被称为衍射。
夫琅禾费衍射明暗纹的公式是:
dsin(θ) = mλ
其中,d是狭缝孔径的宽度,θ是散射光线和中心光线之间的夹角,m是干涉级数,λ是波长。
夫琅禾费衍射明暗纹公式的含义是,照射物体的光线被散射,形成明暗不同的衍射纹。
这些纹理取决于狭缝孔径宽度与照射光线波长之比、衍射角度等因素。
在实际应用中,夫琅禾费衍射广泛用于光学、激光技术、人体健康、科学研究等领域。
例如,科学家们能够通过夫琅禾费衍射技术,在人体细胞和组织中观察到各种有用信息,以帮助研究人类疾病的发病机理和治疗方法。
总之,夫琅禾费衍射明暗纹公式是物理学中重要的公式,用于描述狭缝或孔洞光散射过程中形成的明暗纹的特征。
夫琅禾费单缝衍射
![夫琅禾费单缝衍射](https://img.taocdn.com/s3/m/b42c2bd6376baf1ffd4fadca.png)
(A) 2m (B) 1m (C) 0.5m (D) 0.2m (E) 0.1m
[B]
矩形孔的夫琅禾费衍射
两个正交迭置的狭缝(设宽度分别为a、b) 衍射光在x, y方向的衍射角分别为
x, y
衍射光场:两个按正交方向展开的单缝衍射场的乘积
I(P)
I
0
s i n
2
s i n
2
远去的汽车头灯
最小分辨角:
S1
D
*
1
1.22
D
* S2
0 I
表达式中的波长 是指衍射光场在像方空间所处介质
中的波长
眼睛(正常人眼) a=D/2=1mm,n=1,n'=1.336,
0=550nm,f '=2.2cm
角分辨极限: m=0.610/n'a ≈2.511×10-4 rad
线分辨极限:
0m=0.610/na ≈3.355×10-4 rad
分辨本领:
1 R
min
光学系统对被观察对象微小细节的分辨能力
These photographs of an automobile’s headlights were taken at the greater and greater distances from the camera.
远去的汽车头灯
两个按正交方向展开的单缝衍射场的乘积衍射光在xy方向的衍射角分别为其中矩形远场衍射振幅三维图矩形孔的夫琅禾费衍射图样矩形远场衍射强度三维图24设圆孔的直径为d与p点对应的衍射角为衍射屏观察屏中央亮斑爱里斑变小第一暗圈所包围的中央亮斑叫做爱里斑airydisk线半径
2.3 夫琅禾费单缝衍射
bsin j
12-8单缝的夫琅禾费衍射
![12-8单缝的夫琅禾费衍射](https://img.taocdn.com/s3/m/4b457c9a02020740bf1e9b07.png)
f
x0
2f
tan 1
2 f 12f来自aaB. 次极大
x
f
a
1 2
x0
前提仍然是很小
上页 下页 返回 退出
缝宽变化对条纹的影响
由
x
f
a
1 2
x0
知,缝宽越小,条纹宽度越宽
I
0
sin
当 a 时,
当 a 时,0
x ,此时屏幕呈一片明亮;
,x此时0屏幕上只显出单
一的明条纹单缝的几何光学像。
∴几何光学是波动光学在/a0时的极限情形
b
b
b
3 f 2 f f
bbb
f 2 f 3 f x
b
上页
下页b
返回
退b 出
衍射图样 衍射图样中各级条纹的相对光强如图所示.
1 I / I0 相对光强曲线
0.017 0.047
0.047 0.017
-2( /a) -( /a) 0 /a 2( /a) sin
中央极大值对应的明条纹称 中央明纹。 中央极大值两侧的其他明条纹称 次极大。 中央极大值两侧的各极小值称暗纹。
(P处干涉相消形成暗纹)
上页 下页 返回 退出
2.明暗纹条件
由半波带法可得明暗纹条件为:
a sin 2k k 1,2,3,L ——暗纹
2
a sin 2k 1 k 1,2,3,L
2
——明纹(中心)
asin 0
——中央明纹(中心)
上述暗纹和中央明纹(中心)的位置是准确的,其余 明纹中心的实际位置较上稍有偏离。
上页 下页 返回 退出
明纹宽度
A. 中央明纹
当 a 时 , 1 级暗纹对应的衍射角
单缝夫琅禾费衍射强度
![单缝夫琅禾费衍射强度](https://img.taocdn.com/s3/m/364b47ab541810a6f524ccbff121dd36a32dc4d7.png)
单缝夫琅禾费衍射强度夫琅禾费衍射是描述光线通过一个或多个狭缝时发生的衍射现象的一种现象。
在夫琅禾费衍射中,当单缝宽度与入射光波长的数量级相同或更小时,将产生非常明显的弯曲和交叉条纹,这些条纹是由光的干涉效应产生的。
夫琅禾费衍射的强度分布及其数学表达可以通过洛伦兹和费涅尔两种方法来解释。
洛伦兹衍射理论适用于宽缝夫琅禾费衍射,而费涅尔衍射理论适用于窄缝夫琅禾费衍射。
在此我们主要关注窄缝夫琅禾费衍射。
夫琅禾费衍射的强度分布可以用到达屏幕上某一点的光波的相位差来解释。
当光线通过狭缝时,它会弯曲并扩散,形成一个曲线状的波前。
然后,这些波前将在屏幕上重新汇聚,形成一系列明暗交替的条纹。
夫琅禾费衍射的强度分布公式为:I(x) = I_0 * (sin(kx) / (kx))^2其中,I(x)表示在距离狭缝x处的强度,I_0表示入射光的强度,k表示光波数(2π/λ),x表示距离狭缝的垂直距离。
这个公式表明,强度的分布取决于弦波的相位和幅度,即x的正弦函数。
当sin(kx)为0时,I(x)为最小值,表示出现弱光斑。
当sin(kx)的数值为整数倍时,I(x)为最大值,表示出现强光斑。
这些强弱光斑构成了明暗相间的衍射图样。
夫琅禾费衍射的强度分布进一步说明了缝隙宽度对衍射图样的影响。
当缝隙宽度小于入射光波长的数量级时,衍射图样中会出现更多的明暗条纹,且条纹之间的间距更紧密。
当缝隙宽度大于入射光波长的数量级时,衍射图样中的明暗条纹将变得更宽,并且间距变得更大。
夫琅禾费衍射的强度分布还受到屏幕与狭缝的距离以及观察点的位置的影响。
当屏幕与狭缝的距离变大时,衍射图样会变得模糊,条纹的间距也会变大。
当观察点接近狭缝时,衍射图样的明暗条纹更加集中,明亮部分更亮,暗部分更暗。
在实际应用中,夫琅禾费衍射广泛用于光学中的波导、探测器、太阳能电池等领域。
通过对衍射图样的分析,可以提取出有关光波特性以及物体的形状和尺寸等信息。
因此,深入了解夫琅禾费衍射的强度分布对于光学设计和精密测量有重要意义。
单缝的夫琅禾费衍射
![单缝的夫琅禾费衍射](https://img.taocdn.com/s3/m/39b7884b52d380eb63946d32.png)
a
பைடு நூலகம்
可将缝分成四个“半波带”,
形成暗纹。
Bθ
A λ/ 2
7
§4.2 单缝的夫琅禾费衍射
一般情况:
a sin k,k 1,2,3…
——暗纹
a sin (2k 1) , k 1,2,3…
2 ——明纹(中心)
a sin 0
——中央明纹(中心)
上述暗纹和中央明纹(中心)位置是准确的,
Died: 17 Oct 1887 in Berlin, Germany 3
§4.2 单缝的夫琅禾费衍射
装置和光路
缝平面 透镜L
S
*
透镜L
a
B
Aδ
f
观察屏
·p S:单色线光源
AB a(缝宽)
0
: 衍射角
f
观察屏上任一点P的振动,可用积分法、半波带法和矢量 图法求得
4
§4.2 单缝的夫琅禾费衍射
§4.1 惠更斯-菲涅尔原理
衍射问题变成了一个无限多光束的干涉问题。
处理问题的关键:计算波源到各面元之间及各面元到
场点之间的光程差。
dE( p) F ( ) E(Q) eikr dS r
倾斜因子
E( p) C F( )E(Q) eikr dS
r
n
dS ·
r
Q
S(波前)
dE(p)
p·
菲涅尔衍射公式
设初相为零
1
§4.1 惠更斯-菲涅尔原理
1882年以后,基尔霍夫(Kirchhoff)解电磁波动方程,
也得到了E(p)的表示式,这使得惠更斯─菲涅耳原理有
2_6夫琅禾费单缝衍射
![2_6夫琅禾费单缝衍射](https://img.taocdn.com/s3/m/fc4afc7101f69e3143329448.png)
屏幕 屏幕
S
*
3
2.6.2 强度的计算 x
屏幕
dx
r
θ
r0
P
B
S
F1
x
λ
Δ = x sin θ
M N 0 D B′
P0
θ
宽度dx窄带所发次波振幅
将波前 BB′分割成许多等宽窄带dx, 初位相 ϕ0 = 0
A0 dx A0 整个狭缝所发次波振幅; b A0 dx cos ωt M点所发次波的振动 dE0 = b
πb sin θ λ
λ
次最大光强的角位 置近似为:
sin θ k 0
2
2k + 1 λ ≈± 2 b
⎛ sin u ⎞ 代入单缝衍射因子 I = ⎜ ⎟ I 0 各次最大的光强为: ⎝ u ⎠
I10 = 0.0472 I 0
I 20 = 0.0165 I 0
I 30 = 0.0083I 0
10
可见,衍射级次越高,光强就越小。次最大的光 强最大不到中央最大值的1/20,并且随着级数的增 加而很快减小。 光强曲线
1.0
I I0
− 3π
− 2π
−π
0
π
2π
u
11
2.6.4 单缝衍射图案的特点
(1)、各级最大值的光强不相等,随着级数k的增 大而减小。中央最大值的光强最大(主最大), 次最大值远小于中央最大值 I10< 0.05I0 (2)、角宽度 规定以相邻暗纹的角距离作为其间条纹的角宽度。 在近轴条件下, θ很小, sinθ ≈θ , 由暗纹的角位置公式 sin θ k ≈ θ = k
~ A0 dx 其复振幅为 dE = e b
i
2π
夫琅禾费单缝衍射公式
![夫琅禾费单缝衍射公式](https://img.taocdn.com/s3/m/ef87255fdf80d4d8d15abe23482fb4daa48d1d65.png)
夫琅禾费单缝衍射公式1. 什么是夫琅禾费单缝衍射?好家伙,今天咱们聊聊一个神奇的现象——单缝衍射。
别看名字听起来复杂,实际上这就是光的一种神奇行为。
想象一下,你在阳光下打着一个小小的洞,光透过这个缝隙后,就像水流过一个狭窄的地方一样,开始波动。
这种波动就叫“衍射”,而夫琅禾费则是这项技术的老前辈之一,给它起了个名字,听起来特别牛逼!在科学的世界里,夫琅禾费就是个大佬,他发现了光在通过狭缝的时候,会像一个大明星一样,开始发散、变形,最后形成一些特别有趣的图案。
简单点说,就是光并不总是直线走,它也喜欢在缝隙中“逛逛”,变得有些“顽皮”。
这可不是光的任性,而是它的本性。
2. 单缝衍射的公式好吧,话不多说,进入正题。
单缝衍射的公式其实也不难理解。
公式的样子是这样的:a sin theta = n lambda 。
这里的“a” 是缝的宽度,“θ” 是衍射角,“n” 是一个整数,代表衍射的级数,“λ” 则是光的波长。
听起来有点复杂,但别担心,咱们慢慢来,像吃麻辣火锅一样,细嚼慢咽!首先,缝的宽度“a”就像是一个小小的门,越窄,光透过后就越疯狂。
如果你把门打开得大一点,光就乖乖的直走,没什么好玩的。
如果门太小,光一进去就开始“逛”,形成了一个个花花绿绿的光斑,像是在开派对,特别热闹!然后是“θ”,就是光散开的方向。
光是个调皮捣蛋的家伙,喜欢向不同的方向乱跑,而“θ”就是记录这些方向的好帮手。
每当你看到那些漂亮的条纹图案,实际上就是光在争先恐后想要找到出口的结果。
3. 衍射现象的应用说到这里,很多朋友可能会问:“这个衍射有什么用啊?”嘿嘿,别着急,应用可多了去了!首先,单缝衍射在科学实验中可是个老帮手,尤其是在光学仪器中。
比如,显微镜和望远镜就常常用到这招,帮我们看清那些微小的细节。
再者,衍射现象也应用在音乐里。
听过古典音乐的朋友可能会发现,音色的变化和光的衍射有异曲同工之妙。
音乐的和声就像光的干涉,让不同的音波交织在一起,产生出美妙的旋律。
夫琅禾费单缝衍射解释依据
![夫琅禾费单缝衍射解释依据](https://img.taocdn.com/s3/m/f574a310f011f18583d049649b6648d7c1c708a4.png)
夫琅禾费单缝衍射解释依据夫琅禾费单缝衍射是指在光学镜片或其他光学元件中的缝隙处,光线在进入或离开这些元件时发生的衍射现象。
这种现象常见于光学镜片、光纤、晶体、半导体器件等光学元件中,并在日常生活中也有许多应用。
夫琅禾费单缝衍射解释依据主要源于波动电磁学理论,即光是一种电磁波,具有波长和频率的特性。
在光学镜片或其他光学元件中的缝隙处,光线会受到环境中物体的干扰,使其在空间中传播的路径发生变化,产生衍射现象。
夫琅禾费单缝衍射可以通过几何光学理论来解释。
根据几何光学的原理,光线在进入或离开光学元件时,其方向会受到物体的干扰而发生改变。
这种改变的程度取决于光线与物体的入射角度以及物体的形状和尺寸。
当光线与物体的入射角度较小时,其方向改变较小,衍射现象较弱;当光线与物体的入射角度较大时,其方向改变较大,衍射现象较强。
因此,夫琅禾费单缝衍射的强度与光线与物体的入射角度有关。
此外,夫琅禾费单缝衍射还可以通过电磁学理论来解释。
电磁学理论认为,光是一种电磁波,具有波长和频率的特性。
当光线在进入或离开光学元件时,其会受到物体的电磁场干扰,使其方向发生改变。
由于光线的波长不同,其在物体电磁场中的反应也不同,因此夫琅禾费单缝衍射的强度也与光线的波长有关。
当光线的波长较短时,其受到物体电磁场的干扰较强,衍射现象较强;当光线的波长较长时,其受到物体电磁场的干扰较弱,衍射现象较弱。
夫琅禾费单缝衍射在日常生活中有着广泛的应用,例如在光学镜片、光纤、晶体、半导体器件等光学元件中都有着重要的应用。
此外,夫琅禾费单缝衍射还可以用于光学测量、光学通信、光学显示器件等领域。
总的来说,夫琅禾费单缝衍射是指在光学镜片或其他光学元件中的缝隙处,光线在进入或离开这些元件时发生的衍射现象。
夫琅禾费单缝衍射的解释依据主要源于波动电磁学理论和几何光学理论,并在日常生活中有着广泛的应用。
第二节 单缝夫琅禾费衍射
![第二节 单缝夫琅禾费衍射](https://img.taocdn.com/s3/m/221bc7fd453610661fd9f408.png)
(3)若AC不为半波长的整数倍,则P点的亮度介于次级 明纹和暗纹之间。
条纹坐标
·p
B
x
o
f
A
暗纹坐标 明纹坐标
a sin a tan a xk k
f
xk
kf
a
(k 1,2,)
a sin a t an a xk (2k 1)
f
2
xk
(2k
1) f
2a
(k 1,2,)
单缝衍射明纹角宽度和线宽度 角宽度 相邻两暗纹中心对应的衍射角之差
(3) 做了光谱分辨率的实验,第一个定量地研究了衍射光栅, 用其测量了光的波长,以后又给出了光栅方程;
(4)设计和制造了消色差透镜,大型折射望远镜。
一、装置和现象
E
L1
L2
S
a A
f
D
L1、L2 透镜 A:单缝
E:屏幕
缝宽a
缝屏距D( L2的焦距 f )
中央 明纹
二、菲涅尔半波带法
o *
B
f
AC
单缝的夫琅禾费衍射
夫琅禾费简介
德国物理学家 ,为光学和光谱学 做出了重要贡献:
(1) 1814年发现并研究了太阳光谱中的暗线, 利用衍射原理测出了它们的波长;
J.V Fraunhofer (1787—1826)
(2) 首创用牛顿环方法检查光学表面加工精度及透镜形状, 对应用光学的发展起了重要的影响;
x
P·x
0
f
菲涅耳根据通过单缝的光波的对称性,提出了半波带理论, 用代数加法或矢量图解代替积分,可简单解释衍射现象。
A, B P 的光程差 AC asin
( a 为缝 AB的宽度 )
大学物理Ⅰ13.7单缝夫琅禾费衍射衍射
![大学物理Ⅰ13.7单缝夫琅禾费衍射衍射](https://img.taocdn.com/s3/m/2a058c24700abb68a982fbe5.png)
x
f
tan
f
sin
(2k
1)
f
2a
k 1, 2...
暗纹中心: x f tan f sin k f k 1,2...
a
3)其他明纹的线宽度:相邻暗纹中心间的距离
即中央明纹宽度为其他明纹宽度的两倍。
4)单缝衍射的光强分布
x
f
O
k级亮纹对应(2k+1)个半波带;k级暗纹对应2k 个半波带.k越大,AB上波阵面分成的波带数就越多, 所以,每个半波带的面积就越小,在P点引起的光强 就越弱。因此,各级明纹随着级次的增加而亮度减弱。
2
则,必定有一个“半波带”发的光过透镜后会聚在 P
点不能被抵消,形成明纹。
若 不满足明暗条纹条件,则AB 不能被分成整数
个半波带,则或多或少总有一部分的振动不能被抵消, 此时,会聚在屏上的亮度处于明暗纹之间。
综上所述,可得单缝衍射明、暗条纹条件
1)若 BC asin 2 将缝分为两个半波带
由波动光学 :一个点光源经过透镜后所成的像是 以爱里斑为中心的一组衍射条纹。
如果两个物点相距太近,它们的爱里斑重叠过多, 这两个物点的像就无法分辨。
两物点相距多远时恰好能分辨呢?
瑞利判据:对于两个光强相等的非相干物点,如 果其一个像斑的中心恰好落在另一像斑的第一暗 纹处,则此两物点被认为是刚好可以分辨。
不是整数, km取整数部分)
为整数,则取km-1)
观察:单缝宽度变化,中央明纹宽度如何变化? a减小,1增大,衍射效应越明显.
4)在单缝衍射中,若使单缝和单缝后透镜分 别稍向上移,则衍射条纹将如何变化?
单缝上移衍射光束向上平移经透镜聚焦后, 位置不变条纹不变
单缝和圆孔的夫琅禾费衍射介绍
![单缝和圆孔的夫琅禾费衍射介绍](https://img.taocdn.com/s3/m/d88e185faaea998fcc220eca.png)
二、用振幅矢量推导光强公式
1.振幅矢量法 将缝AB的面积S等分成N(很大)个等宽的窄带,
每个窄带宽度a/N.
每个窄带发的子波在P点振
A
幅近似相等,设为A1,相邻
窄带所发子波在P点引起的振
动的光程差
δ = (asin)/N
B
相位差 2 2 asin
N
屏上P点的合振幅 AP就是各子波的振幅矢量和的 模,这是多个同方向、同频率,同振幅、初相依 次差一个恒量的简谐振动的合成。
对于屏中心o点
衍射角为零,各子波的相位相同
A
1
…
A 0
o点的合振动振幅 A0 = N A1
中央明纹的光强 I0 A02
对于屏上其它点P,由
于屏上位置不同,对应的衍
射角就不同,Ap的大小也
单缝和圆孔的夫琅 禾费衍射介绍
一、单缝夫琅禾费衍射
1.衍射装置及图样
单缝 透镜
衍射角
f
衍射屏
I
衍射图样
(1) 衍射条纹与狭缝平行。 (2)中心条纹很亮,两侧明条纹对称分布, 亮度减弱。 (3)中央亮斑的宽度为其他亮斑的两倍。
由惠更斯——菲涅耳原理:
单缝处波面看作无穷多个相干波源,屏上一点是 (无穷)多光束干涉的结果。
由 a sin1
有
sin1
a
30 mm 0.20 m
0.15
d
a
θ1
L
β
150
1 8.63°
如图: 15°1 23.63° 15°1 6.37°
L d(ctg ctg )
夫琅禾费单缝衍射
![夫琅禾费单缝衍射](https://img.taocdn.com/s3/m/37328b70a58da0116c1749c2.png)
§16.2 单缝和圆孔的夫琅禾费衍射§16.2.1 单缝的夫琅禾费衍射( 1 ) 单缝衍射的实验装置和现象夫琅禾费衍射是平行光的衍射,在实验中可借助于两个透镜来实现。
位于物方焦面上的点光源经透镜L1后成为一束平行光,照射在开有一条狭缝的衍射屏上。
衍射屏开口处的波前向各方向发出子波或衍射光线,方向相同的衍射光线经透镜L2后会聚在象方焦面上的同一点,各个方向的衍射光线在屏幕上形成了衍射图样,它在与狭缝垂直的方向上扩展开来。
衍射图样的中心是一个很亮的亮斑,两侧对称地分布着一系列强度较弱的亮斑,中央亮斑的宽度为其他亮斑的两倍,且它们都随狭缝宽度的减小而加宽。
如果用与狭缝平行的线光源代替点光源,则在接收屏幕上将会看到一组平行于狭缝的衍射条纹。
图16 - 4 单缝的夫琅禾费衍射( 2 ) 单缝衍射的光强分布公式考虑点光源照明时的单缝夫琅禾费衍射。
取z轴沿光轴,y轴沿狭缝的走向,x轴与狭缝垂直。
因为入射光仅在x方向受到限制,衍射只发生在x- z平面内,因此具体分析可在该平面图中进行。
按惠更斯菲涅耳原理,我们可以把单缝内的波前AB分割为许多等宽的窄条,它们是振幅相等的相干子波源,朝各个方向发出子波。
由于接收屏幕位于透镜L2的象方焦面上,因此角度相同的衍射光线将会聚于屏幕上同一点进行相干叠加。
图16 - 5 衍射矢量图设入射光与光轴Oz平行,则在波面AB上无相位差。
为求单缝上、下边缘A和B到点的衍射光线间的光程差L和相位差,自A点引这组平行的衍射光线的垂线AN,于是就是所要求的光程差。
设缝宽为b,则有(16.4)(16.5)矢量图解法:用小矢量代表波前每一窄条对点处振动的贡献,由A点作一系列等长的小矢量,首尾相接,逐个转过相同的小角度,最后到达B点,总共转过的角度就是单缝上、下边缘到点的衍射光线间的相位差. 若取波前每一窄条的面积,则由这些小矢量连成的折线将化为圆弧,其圆心角2= . 由于整个缝宽AB内的波前在点处产生的合振幅等于弦长,而在的点处的合振幅A0等于弧长,故有,即,(16.6)其中.(16.7)单缝夫琅禾费衍射的光强分布公式:利用,而表示中央亮斑中心O 处的光强,由式(16.6)可得, .(16.8)( 3 ) 单缝衍射光强分布的特点单缝的夫琅禾费衍射图样的中心有一个主极强(零级衍射斑),两侧都有一系列次极强和暗斑。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x
波长越长,条纹宽度越宽。
单缝的夫琅禾费衍射
例题17-8 水银灯发出的波长为546nm的绿色平行 光,垂直入射于宽0.437mm的单缝,缝后放置一焦距 为40cm的透镜,试求在透镜焦面上出现的衍射条纹中 央明纹的宽度。 解 两个第一级暗纹中心间的距离即为中央明 纹宽度,对第一级暗条纹(k=1)求出其衍射角
0
I sin
知,缝宽越小,条纹宽度越宽
当
当
a
a0
x 时,
时,
,此时屏幕呈一片明亮;
x 0, 此时屏幕上只显出单
一的明条纹 单缝的几何光学像。
∴几何光学是波动光学在/a0时的极限情形
单缝的夫琅禾费衍射
(3) 波长对条纹宽度的影响
仍由
1 x x 0 f 2 a
a sin 0, 0 —— 中央明纹(中心)
S B p · 0 f Aδ f
*
a
单缝的夫琅禾费衍射
3. 衍射图样的讨论 3.1 菲涅耳半波带法
在波阵面上截取一个条状带,使它上下两边缘发 的光在屏上p处的光程差为 λ /2 ,此带称为半波带。 当 a sin 时,可将缝分为两个“半波带”
上述暗纹和中央明纹(中心)的位置是准确的,其余 明纹中心的实际位置较上稍有偏离。
单缝的夫琅禾费衍射
3.3 衍射图样
衍射图样中各级条纹的相对光强如图所示.
相对光强曲线
0.017 0.047
1
I / I0
0.047
0.017
-2( /a) -( /a) 0 /a 2( /a)
sin
中央极大值对应的明条纹称 中央明纹。 中央极大值两侧的其他明条纹称 次极大。 中央极大值两侧的各极小值称暗纹。
L
d a
a 0.20 m 如图: 15° 1 23.63° 15° 1 6.37°
θ
1
150
β
L d (ctg ctg )
15(ctg6.37° ctg23.63° ) 100m
单缝的夫琅禾费衍射
解:将雷达波束看成是单缝衍射的0 级明纹 由 a sin 1 30 mm 1 8.63° 有 sin1 0.15
λ
0 2 1 2
线宽度为
a
1
0
0
Δ x0
I
f
x0 2 f tg 1 2 f 1 2 f
a
a
B. 次极大
f 1 x x0 a 2
前提仍然是很小
单缝的夫琅禾费衍射
(2) 缝宽变化对条纹的影响
由
1 x x 0 f 2 a
L
d a
a 0.20 m 如图: 15° 1 23.63° 15° 1 6.37°
θ
1
150
β
L d (ctg ctg )
15(ctg6.37° ctg23.63° ) 100m
中央明纹的宽度与缝宽a成反比,单缝越窄,中 央明纹越宽。
单缝的夫琅禾费衍射
例 设一监视雷达位于路边d =15m处,雷达波的波
长为 30mm ,射束与公路成 15° 角,天线宽度 a = 0.20m。试求:该雷达监视范围内公路长L =?
L
d a
θ
1
150
β
单缝的夫琅禾费衍射
解:将雷达波束看成是单缝衍射的0 级明纹 由 a sin 1 30 mm 1 8.63° 有 sin1 0.15
B θ a A λ /2
P 处干涉相消形成暗纹
单缝的夫琅禾费衍射
3.2 明暗纹条件
由半波带法可得明暗纹条件为:
a sin k,k 1,2,3… ——暗纹
a sin ( 2k 1) , k 1,2,3… 2 ——明纹(中心)
a sin 0
——中央明纹(中心)
a sin 1
式中
1 很小
1 sin 1 a
中央明纹的角宽度
21 2
a
单缝的夫琅禾费衍射
透镜焦面上出现中央明纹的宽度
2D x 2 Dtg1 2 D1 a 3 254610 9 0.4 0.43710 3 1.0 10 m
单缝的夫琅禾费衍射
(1)明纹宽度
A. 中央明纹
当 a 时,1 级暗纹对应的衍射角
观测屏 x2 x1
1 sin 1
由 得:
衍射屏 透镜
λsin k
1
0
0
I
1 a
f
单缝的夫琅禾费衍射
(1)明纹宽度
角宽度为
衍射屏 透镜
观测屏 x2 x1 Δx
§17-9 单缝的夫琅禾费衍射 1. 单缝夫琅禾费衍射的光路图
缝平面 透镜L 观察屏
透镜L
*
f
S
B Aδ
p ·
0 f
a
S: 单色线光源
AB a :缝宽
: 衍射角
单缝的夫琅禾费衍射
2. 单缝夫琅禾费衍射的光程差计算
单缝的两条边缘光束 A→P 和B→P 的光程差, 可由图示的几何关系得到:
B 半波带 θ
1 2 1′ 1 2′ 2 1′ 2′
a
半波带 半波带
半波带
A
λ /2
两相邻半波带上对应点发的光在 P 处干涉相消形成暗纹。
单缝的夫琅禾费衍射
3 •当 a sin 时,可将缝分成三个“半波带” 2
B
a A θ
P 处近似为明纹中心
λ /2
•当 a sin 2 时,可将缝分成四个“半波带”