[生物,研究进展,技术]关于生物法污染治理的生物强化技术研究进展

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

关于生物法污染治理的生物强化技术研究进展

随着现代合成工业的发展,大量具有结构复杂性和生物陌生性的异生化合物( Xenobiotics) 进入环境中。这些物质基本都是属于生物难降解化学物质,很难在短时间内被微生物利用而进入物质循环。对这些污染物质的治理,给传统的生物处理技术带来极大挑战。为了提高对这类污染物质的去除率,现已开发出一系列生物处理新技术,生物强化技术也由此应运而生。生物强化技术产生于20 世纪70 年代中期,20 世纪80 年代以来在污染土壤与污染海洋的修复,工业废水、地表水及地下水中难降解有毒有害物质的治理,以及城市污水的处理中得到了广泛的研究和应用,并实现了污染物的高效生物降解。

1 生物强化技术概述

生物强化技术即生物增强技术( Bioaugmentation),又称生物增效技术,是为了提高生物处理系统的处理能力,而向该系统中投加从自然界中筛选的优势菌种或通过基因工程产生的高效菌种,以去除某一种或某一类有害物质的方法。

生物强化技术产生初期是因为一些废水处理厂的突发事故,如菌体大量死亡、有毒有害物质泄露等致使废水经处理后达不到排放标准,于是必须直接投加高效菌种强化处理过程以改善出水水质,并使废水处理系统恢复正常。一般的生物治理技术对于浓度较高、易于生物降解的废水中的污染物的去除效率高。但是,当废水中含有对微生物有毒物质时,这些有毒物质会对系统中的治污功能菌起到毒害作用,使得功能微生物的降解污染物的速率下降甚至自身死亡,从而导致处理效果恶化。对于难处理的废水,用一般生物方法处理,通常存在污染物降解速率较慢、治污功能菌需要一段较长的时间来适应的问题,同时在外界环境条件较苛刻,如温度、pH 较低时,治污功能菌的代谢活性会显著降低,而使用生物强化技术恰好能够弥补这些不足,其通过投加优势功能菌种可迅速有效降解目标污染物。总而言之,由于具有成本低廉、操作简单、效率较高等技术优势,生物强化技术在生物法污染治理领域逐步得到了推广应用并取得了显著的效果。

本文主要结合废水、废气的相关研究,就生物法污染治理的生物强化技术研究进展及其典型应用实例进行论述。

2 生物强化法降解理论

废水净化方面。废水中生物强化处理的关键任务是基质的去除,而微生物的生长是基质去除的结果。在Monod 生长模型中,最重要的参数是max与Ks,它们取决于两大因素,一是微生物种群特性,二是基质特性。

另外,Cap deville建立的生物膜生长动力学模型,因考虑到活性生物量和非活性物质之间的相互作用及影响,具有普遍意义。此外,还有一级反应的动力学模型、指数增长模型、逻辑方程等,它们都各具特色。

生物法废气净化传质机理目前主要有两种理论解释: 一种是国际上普遍认同的荷兰学者Ottengraff依据传统的双膜理论提出的吸收生物膜理论,该理论是以生物滤池为研究对象而建立的,不适合用来描述生物吸附和生物滴滤工艺处理废气过程的反应机理; 孙珮石等针对

低浓度挥发性有机废气提出吸附理论,他们经过试验,表明吸附生物膜理论及其动力学模型对于描述生物膜填料塔对低浓度甲苯、苯乙烯、NOx 等4 种气态污染物的净化过程具有良好的适用性。

3 生物强化法净化效率的影响因素

3. 1 填料

目前国内外使用的生物填料大致可以分为三大类: ①定型固定式填料,主要是蜂窝类填料; ②悬挂式填料,如软性填料、半软性填料、弹性立体填料、组合型填料等; ③堆积式、悬浮式填料,即分散式填料,如鲍尔环、阶梯环、空心球、悬浮粒陶粒等。

在选择一种合适的填料时,主要考虑: 比表面积、密度、孔隙率、pH 值、持水能力、缓冲能力等。填料的比表面积和孔隙率除了直接影响单位体积填充层上的生物量,还直接影响整个滤床的阻力和是否易堵塞等问题,而最关键的因素还是成本问题。开发高性价比、高传质速度、高生物膜量、高降解能力的多孔载体和组合填料,是未来发展的趋势。

3. 2 主要工艺操作参数

3. 2. 1 微生物菌种

微生物是生物强化法处理废水、废气的主要实现者,能降解污染物成分的微生物很多,主要有细菌、真菌和放线菌。在微生物菌种方面,投菌量是生物强化技术的重要影响因素,随着投菌量的增加一般增强效果会提高,但菌量投加过大,成本就会升高。投菌方式也是影响净化效率的关键因素。如何选择优势菌种,驯化获得高效降解微生物已成为当前生物法处理工业废气研究的热点。

3. 2. 2 营养物质

微生物的生长需要一定比例的营养物质,这些营养物质主要包括水、碳源、氮源、无机盐和生长因子。生物强化处理系统中,需要调节废水和废气中微生物营养物质的比例来缩短挂膜时间,增强微生物的活性,提升净化效果。

此外,废水的水质、曝气量、曝气方式、水力停留时间,废气的各污染物入口气体浓度、气体流量、液体喷淋量及其pH 值,反应器工艺类型、污染场地、滤出液pH 值、生物安全性检测、活性检测、效果评价和可行验证等都是净化效率的影响因素。在生物强化法处理废水、废气的工程实践中,很多影响因素都是相互关联制约的,对上述因素进行全面地了解还需要深入探索研究。

4 生物强化技术的研究进展与应用实例

4. 1 直接投加高效降解微生物或共代谢基质类物质的强化技术

直接投加高效降解微生物技术是生物强化技术应用领域中最为普遍的方式之一。其通过

驯化、筛选、诱变、基因重组等技术,得到以目标污染物为唯一碳源和能源的微生物。通过向处理系统中投入这些高效降解微生物,即可实现对目标污染物的高效去除。这些被投入到废水中的高效降解微生物,有些以游离的状态存在,有些可以附着在载体上,以高效生物膜的形式存在。

投加微生物共代谢基质及辅助营养物质的技术主要的针对目标是一些难降解的有机物。微生物无法直接将这些难降解的有机物作为碳源及能源用于生长,而是以甲烷、丙烷、甲苯、酚、氨和二氯苯氧基乙酸等为原始底物,对这些底物进行降解以获取生长所需能量。微生物降解后产生的氧化酶可以改变目标污染物的结构,从而实现对目标污染物的降解。作为基质类物质,应考虑毒性相对较低、价格低廉且多种用途等因素。有研究表明,在生物强化的同时添加一些无毒害作用的营养物质( 如乳酸、甲酸、乙酸等) 可以大大提高生物强化的效果。但是对于生物的共代谢作用机理的研究,目前尚未见报道,还需深入研究。

姚力等研究了好氧反硝化菌强化序批式活性污泥反应器( SBR1)处理生活污水的性能,同时以只接种相同量普通活性污泥的序批式活性污泥反应器( SBR2) 作为对照,结果表明: 在反应器的启动阶段,SBR1 对COD 和TN 的平均去除率明显好于SBR2,好氧反硝化菌能在反应器中大量繁殖,其新陈代谢消耗大量的有机物,并高效除氮; 当C /N 为4∶ 1 ( 质量比,下同) 和6∶ 1 时,SBRl 对COD 和TN 的去除率明显高于SBR2; 当C/N为8∶1 时,SBRl 对COD 和TN 的去除效果达到最好,对两者的平均去除率分别达到85. 31%和61. 14%; 当C/N 为10∶1 和12∶1 时,两反应器对废水COD 去除效果的差距缩小,但SBR1 对TN 的平均去除率分别为58. 98%和51. 64%,明显高于SBR2。在整个不同C/N运行状况下,SBRl 的出水NH+4 - N 基本在0. 5mg /L以下,去除率均接近100%。张雨山将4 株耐盐净污菌引入到循环式活性污泥法( CAST) 反应器中,构成了新型的生物强化CAST含盐废水处理系统。研究发现:CAST 系统中接种耐盐净污菌可达到在强化活性污泥对含盐废水适应性的同时提高生物处理效果的目的。经过耐盐净污菌强化后的CAST 系统对含盐废水的处理效果明显优于未经强化的生物处理系统,其对COD 的去除率达到90%以上,提高了20%左右。生物强化CAST 也具有一定的脱氮除磷能力,其对氨氮的去除率为95% 左右,对总氮的去除率为65%左右,对总磷的去除率在30% ~75%。,在投菌前,出水CODCr和氨氮分别高达210mg /L、48mg /L; 经高效菌种强化后,CODCr先升高随后降至162mg /L,氨氮则降至15mg /L 以http: / /hjkxdk. yies. org. cn 生物法污染治理的生物强化技术研究进展姜阅下。高效菌的投加,明显加快了生物脱氮系统的启动,缩短了启动期。某制药厂从其废水处理系统中分离筛选得到两株具有高效COD 去除能力的菌株,命名为LX - 2 和LX - 10,以制药生产废水为培养基于35℃、120 r /min 培养,测定其COD 降解能力。结果表明菌株LX - 2 和LX - 10 具有较好的COD 去除能力,COD 去除率分别为83. 8% 和81. 2%,混合菌株对COD 的去除效果明显优于单株菌株,其COD 去除率达到92. 4%,投加高效混合菌的活性污泥对COD 的去除率提高了15%,强化系统显示出了明显的优势。

毛永杨等以生物膜填料塔为反应器,分别考察了外加乙酸钠、葡萄糖、酒石酸钾钠、甲醇等4 种低分子有机碳源对烟气同时脱硫脱氮效率的影响。实验研究结果表明,外加乙酸钠的脱氮效果最佳,对NOx 的平均去除率为62. 05%; 外加葡萄糖、酒石酸钾钠、甲醇时的NOx 平均去除率分别为51. 03%、46. 98%、58. 71%。乙酸钠、酒石酸钾钠、甲醇均能使SO2的去除率达到100%,葡萄糖显著降低了SO2的去除率。乙酸钠是生物膜填料塔烟气同时脱硫脱氮技术中适宜的外加碳源。实验是为微生物创造必要的生存条件,实现对其生物活性的增强,进而达到对污染物的高效去除的目的。该法体现了烟气污染的治理趋势,是一种很有前景的

相关文档
最新文档