等离子体氧化技术
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
缺点
• 1)膜层为蜂窝状的多孔结构,故膜层的耐 腐蚀性能比较低;
• 2)膜层中含有大量基体金属的氧化物和氢 氧化物,容易与酸性介质反应;
• 3)膜层厚度较小,虽然材料耐磨性好,但 总体来说其耐磨寿命较短;
• 4)高耗能,在高电压,大电流下进行,单 个工作的加工面积很难提高,降低了生产 效率。
应用
现状
• 目前,美、俄、日、德等国已将PEO应用 于尖端武器装备的制造中,解决了许多其 他方法无法解决的关键技术问题; PEO在国 内的纺织、航空等行业也有一些尝试性的 应用。因此,PEO已成为目前国际、国内 材料表面工程技术领域的研究热点之一。
基本工艺
• 将待处理的材料浸入特定的电解液中作电极, 另有一个金属电极作其对电极。在两极之间施 加电压,将作用区域由普通阳极氧化的法拉第 区域引入到高压放电区域,同时伴随有弧光产 生,此时电极在热化学、等离子体化学和电化 学过程的共同作用下生成陶瓷膜层。
• 腐蚀防护膜层:化学设备、建筑、泵部件 • 耐磨膜层:纺织机械、发动机部件、管道 • 电防护膜层:电子、化工设备、能源工业 • 装饰膜层:仪器仪表、土木工程 • 光学膜层:精密仪器 • 功能性膜层:催化、医疗设备、医用材料
展望
• 1)探索新的基材微弧氧化前处理工艺,以 提高膜层的结合力为目标;
• 2)探索新的电解液添加剂,以增强膜的自 身能力为目标;
• 3)研制体积更小,更加智能化的电源设备, 降低能耗;
• 4)探索新的膜层后处理工艺,使得微弧氧 化膜层能与其他防护方法相结合为性能更 加优良的复合膜层。
等离子体氧化技术简介
林立 140620030
介绍
• 等离子体,是由部分电子被剥夺后的原子及原子 团被电离后产生的正负离子组成的离子化气体状 物质。
它广泛存在于宇宙中,常被 视为是除去固、液、气外, 物质存在的第四态。
等离子体氧化
• 等离子体电解氧化 , (Plasma Electrolytic Oxidation,PEO) 又称微弧放电氧化 、 (Microarc Discharge Oxidation,MDO) 微弧氧化(Microarc Oxidation,MAO)
• 通过电解液与相应电参数的组合,在铝、 镁、钛及其合金表面依靠弧光放电产生的 瞬时高温高压作用,生长出以基体金属氧 化物为主的陶瓷膜层。
特点
• 可在轻金属(Al、Mg. Ti等)材料表面原位生 长出耐蚀、耐磨的氧化陶瓷膜。该技术处 理所得氧化膜与金属基体间的结合力强, 膜厚范围较宽且可控,形成的复合材料具 有高硬度、耐腐蚀、耐磨损、抗热震等优 异性能。
等离子体氧化实验装置
影 响 因 素
分类
优点
• 1)反应在溶液进行,只要是溶液可及的地 方都能形成膜层;
• 2)电解液及反应过程都没有害物质; • 3)硬度高,耐磨性好; • 4)能够经受高低温的变化; • 5)绝缘性能优良; • 6)膜层光洁度好且易于着色,适用于装饰
涂层; • 7)成本低,操作简单,便于大规模生产。
• 阳极氧化:表面生成一层很薄的绝缘氧化膜;
• 火花放电:当电压达到临界击穿电压时,氧化膜 被击穿来自百度文库式样表面出现无数的白色火花;
• 微弧阶段:随着外加电压和膜厚的增加,表面出 现异动的较大红色弧电,同时存在大量细小的白 色火花;
• 熄弧阶段:红色弧电开始稀疏,在固定位置连续 放电,也称为弧放电阶段。