2019浙江卷 数学(解析版)

合集下载

2019年浙江省高考数学试卷(理科)答案与解析

2019年浙江省高考数学试卷(理科)答案与解析

浙江省高考数学试卷(理科)参考答案与试题解析一、选择题(共10小题,每小题5分,满分50分)1.(5分)(2009•浙江)设U=R,A={x|x>0},B={x|x>1},则A∩∁U B=()A.{x|0≤x<1} B.{x|0<x≤1}C.{x|x<0} D.{x|x>1}【考点】交、并、补集的混合运算.【专题】集合.【分析】欲求两个集合的交集,先得求集合C U B,再求它与A的交集即可.【解答】解:对于C U B={x|x≤1},因此A∩C U B={x|0<x≤1},故选B.【点评】这是一个集合的常见题,属于基础题之列.2.(5分)(2009•浙江)已知a,b是实数,则“a>0且b>0”是“a+b>0且ab>0”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【专题】简易逻辑.【分析】考虑“a>0且b>0”与“a+b>0且ab>0”的互推性.【解答】解:由a>0且b>0⇒“a+b>0且ab>0”,反过来“a+b>0且ab>0”⇒a>0且b>0,∴“a>0且b>0”⇔“a+b>0且ab>0”,即“a>0且b>0”是“a+b>0且ab>0”的充分必要条件,故选C【点评】本题考查充分性和必要性,此题考得几率比较大,但往往与其他知识结合在一起考查.3.(5分)(2009•浙江)设复数z=1+i(i是虚数单位),则+z2=()A.﹣1﹣i B.﹣1+i C.1﹣i D.1+i【考点】复数代数形式的混合运算.【专题】数系的扩充和复数.【分析】把复数z代入表达式化简整理即可.【解答】解:对于,故选D.【点评】本小题主要考查了复数的运算和复数的概念,以复数的运算为载体,直接考查了对于复数概念和性质的理解程度.4.(5分)(2009•浙江)在二项式的展开式中,含x4的项的系数是()A.﹣10 B.10 C.﹣5 D.5【考点】二项式定理.【专题】二项式定理.【分析】利用二项展开式的通项公式求出第r+1项,令x的指数为4求得.【解答】解:对于,对于10﹣3r=4,∴r=2,则x4的项的系数是C52(﹣1)2=10故选项为B【点评】二项展开式的通项是解决二项展开式的特定项问题的工具.5.(5分)(2009•浙江)在三棱柱ABC﹣A1B1C1中,各棱长相等,侧棱垂直于底面,点D 是侧面BB1C1C的中心,则AD与平面BB1C1C所成角的大小是()A.30°B.45°C.60°D.90°【考点】空间中直线与平面之间的位置关系.【专题】空间位置关系与距离.【分析】本题考查的知识点是线面夹角,由已知中侧棱垂直于底面,我们过D点做BC的垂线,垂足为E,则DE⊥底面ABC,且E为BC中点,则E为A点在平面BB1C1C上投影,则∠ADE即为所求线面夹角,解三角形即可求解.【解答】解:如图,取BC中点E,连接DE、AE、AD,依题意知三棱柱为正三棱柱,易得AE⊥平面BB1C1C,故∠ADE为AD与平面BB1C1C所成的角.设各棱长为1,则AE=,DE=,tan∠ADE=,∴∠ADE=60°.故选C【点评】求直线和平面所成的角时,应注意的问题是:(1)先判断直线和平面的位置关系.(2)当直线和平面斜交时,常用以下步骤:①构造﹣﹣作出或找到斜线与射影所成的角;②设定﹣﹣论证所作或找到的角为所求的角;③计算﹣﹣常用解三角形的方法求角;④结论﹣﹣点明斜线和平面所成的角的值.6.(5分)(2009•浙江)某程序框图如图所示,该程序运行后输出的k的值是()A.4 B.5 C.6 D.7【考点】程序框图.【专题】算法和程序框图.【分析】根据流程图所示的顺序,逐框分析程序中各变量、各语句的作用可知:该程序的作用是计算满足S=≥100的最小项数【解答】解:根据流程图所示的顺序,程序的运行过程中各变量值变化如下表:是否继续循环S K循环前/0 0第一圈是 1 1第二圈是 3 2第三圈是11 3第四圈是2059 4第五圈否∴最终输出结果k=4故答案为A【点评】根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是:①分析流程图(或伪代码),从流程图(或伪代码)中既要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模.7.(5分)(2009•浙江)设向量,满足:||=3,||=4,•=0.以,,﹣的模为边长构成三角形,则它的边与半径为1的圆的公共点个数最多为()A.3 B.4 C.5 D.6【考点】直线与圆相交的性质;向量的模;平面向量数量积的运算.【专题】平面向量及应用.【分析】先根据题设条件判断三角形为直角三角形,根据三边长求得内切圆的半径,进而看半径为1的圆内切于三角形时有三个公共点,对于圆的位置稍一右移或其他的变化,能实现4个交点的情况,进而可得出答案.【解答】解:∵向量a•b=0,∴此三角形为直角三角形,三边长分别为3,4,5,进而可知其内切圆半径为1,∵对于半径为1的圆有一个位置是正好是三角形的内切圆,此时只有三个交点,对于圆的位置稍一右移或其他的变化,能实现4个交点的情况,但5个以上的交点不能实现.故选B【点评】本题主要考查了直线与圆的位置关系.可采用数形结合结合的方法较为直观.8.(5分)(2009•浙江)已知a是实数,则函数f(x)=1+asinax的图象不可能是()A.B.C.D.【考点】正弦函数的图象.【专题】三角函数的图像与性质.【分析】函数f(x)=1+asinax的图象是一个正弦曲线型的图,其振幅为|a|,周期为,周期与振幅成反比,从这个方向观察四个图象.【解答】解:对于振幅大于1时,三角函数的周期为:,∵|a|>1,∴T<2π,而D不符合要求,它的振幅大于1,但周期反而大于了2π.对于选项A,a<1,T>2π,满足函数与图象的对应关系,故选D.【点评】由于函数的解析式中只含有一个参数,这个参数影响振幅和周期,故振幅与周期相互制约,这是本题的关键.9.(5分)(2009•浙江)过双曲线﹣=1(a>0,b>0)的右顶点A作斜率为﹣1的直线,该直线与双曲线的两条渐近线的交点分别为B、C.若=,则双曲线的离心率是()A.B.C.D.【考点】直线与圆锥曲线的综合问题;双曲线的简单性质.【专题】圆锥曲线的定义、性质与方程.【分析】分别表示出直线l和两个渐近线的交点,进而表示出和,进而根据=求得a和b的关系,进而根据c2﹣a2=b2,求得a和c的关系,则离心率可得.【解答】解:直线l:y=﹣x+a与渐近线l1:bx﹣ay=0交于B(,),l与渐近线l2:bx+ay=0交于C(,),A(a,0),∴=(﹣,),=(,﹣),∵=,∴=,b=2a,∴c2﹣a2=4a2,∴e2==5,∴e=,故选C.【点评】本题主要考查了直线与圆锥曲线的综合问题.要求学生有较高地转化数学思想的运用能力,能将已知条件转化到基本知识的运用.10.(5分)(2009•浙江)定义A﹣B={x|x∈A且x∉B},若P={1,2,3,4},Q={2,5},则Q﹣P=()A.P B.{5} C.{1,3,4} D.Q【考点】集合的包含关系判断及应用.【专题】集合.【分析】理解新的运算,根据新定义A﹣B知道,新的集合A﹣B是由所有属于A但不属于B的元素组成.【解答】解:Q﹣P是由所有属于Q但不属于P的元素组成,所以Q﹣P={5}.故选B.【点评】本题主要考查了集合的运算,是一道创新题,具有一定的新意.要求学生对新定义的A﹣B有充分的理解才能正确答.二、填空题(共7小题,每小题4分,满分28分)11.(4分)(2009•浙江)设等比数列{a n}的公比,前n项和为S n,则=15.【考点】等比数列的性质.【专题】等差数列与等比数列.【分析】先通过等比数列的求和公式,表示出S4,得知a4=a1q3,进而把a1和q代入约分化简可得到答案.【解答】解:对于,∴【点评】本题主要考查了等比数列中通项公式和求和公式的应用.属基础题.12.(4分)(2009•浙江)若某个几何体的三视图(单位:cm)如图所示,则该几何体的体积是18cm3.【考点】由三视图求面积、体积.【专题】立体几何.【分析】由图可知,图形由两个体积相同的长方体组成,求出其中一个体积即可.【解答】解:由图可知,底下的长方体底面长为3,宽为1,底面积为3×1=3,高为3,因此体积为3×3=9;上面的长方体底面是个正方形,边长为3,高为1,易知与下面的长方体体积相等,因此易得该几何体的体积为9×2=18.【点评】本题考查学生的空间想象能力,是基础题.13.(4分)(2009•浙江)若实数x,y满足不等式组,则2x+3y的最小值是4.【考点】简单线性规划.【专题】不等式的解法及应用.【分析】先由约束条件画出可行域,再求出可行域各个角点的坐标,将坐标逐一代入目标函数,验证即得答案.【解答】解:如图即为满足不等式组的可行域,由图易得:当x=2,y=0时,2x+3y=4;当x=1,y=1时,2x+3y=5;当x=4,y=4时,2x+3y=20,因此,当x=2,y=0时,2x+3y有最小值4.故答案为4【点评】在解决线性规划的小题时,我们常用“角点法”,其步骤为:①由约束条件画出可行域⇒②求出可行域各个角点的坐标⇒③将坐标逐一代入目标函数⇒④验证,求出最优解.14.(4分)(2009•浙江)某地区居民生活用电分为高峰和低谷两个时间段进行分时计价.该地区的电网销售电价表如图:高峰时间段用电价格表低谷时间段用电价格表高峰月用电量(单位:千瓦时)高峰电价(单位:元/千瓦时)低谷月用电量(单位:千瓦时)低谷电价(单位:元/千瓦时)50及以下的部分0.568 50及以下的部分0.288超过50至200的部分0.598 超过50至200的部分0.318超过200的部分0.668 超过200的部分0.388若某家庭5月份的高峰时间段用电量为200千瓦时,低谷时间段用电量为100千瓦时,则按这种计费方式该家庭本月应付的电费为148.4元(用数字作答)【考点】分段函数的解析式求法及其图象的作法.【专题】函数的性质及应用.【分析】先计算出高峰时间段用电的电费,和低谷时间段用电的电费,然后把这两个电费相加.【解答】解:高峰时间段用电的电费为50×0.568+150×0.598=28.4+89.7=118.1 (元),低谷时间段用电的电费为50×0.288+50×0.318=14.4+15.9=30.3 (元),本月的总电费为118.1+30.3=148.4 (元),故答案为:148.4.【点评】本题考查分段函数的函数值的求法,体现了分类讨论的数学思想,属于中档题.15.(4分)(2009•浙江)观察下列等式:观察下列等式:C+C=23﹣2,C+C+C=27+23,C+C+C+C=211﹣25,C+C+C+C+C=215+27,…由以上等式推测到一个一般结论:对于n∈N*,C+C+C+…+C=24n﹣1+(﹣1)n22n﹣1.【考点】二项式定理的应用.【专题】二项式定理.【分析】通过观察类比推理方法结论由二项构成,第二项前有(﹣1)n,二项指数分别为24n﹣1,22n﹣1【解答】解:结论由二项构成,第二项前有(﹣1)n,二项指数分别为24n﹣1,22n﹣1,因此对于n∈N*,C4n+11+C4n+15+C4n+19+…+C4n+14n+1=24n﹣1+(﹣1)n22n﹣1.故答案为24n﹣1+(﹣1)n22n﹣1【点评】本题考查观察、类比、归纳的能力.16.(4分)(2009•浙江)甲、乙、丙3人站到共有7级的台阶上,若每级台阶最多站2人,同一级台阶上的人不区分站的位置,则不同的站法总数是336.【考点】排列、组合及简单计数问题.【专题】排列组合.【分析】由题意知本题需要分组解决,共有两种情况,对于7个台阶上每一个只站一人,若有一个台阶有2人另一个是1人,根据分类计数原理得到结果.【解答】解:由题意知本题需要分组解决,∵对于7个台阶上每一个只站一人有A73种;若有一个台阶有2人另一个是1人共有C31A72种,∴根据分类计数原理知共有不同的站法种数是A73+C31A72=336种.故答案为:336.【点评】分类要做到不重不漏,分类后再分别对每一类进行计数,最后用分类加法计数原理求和,得到总数.分步要做到步骤完整﹣﹣完成了所有步骤,恰好完成任务.17.(4分)(2009•浙江)如图,在长方形ABCD中,AB=2,BC=1,E为DC的中点,F为线段EC(端点除外)上一动点,现将△AFD沿AF折起,使平面ABD⊥平面ABC,在平面ABD内过点D作DK⊥AB,K为垂足,设AK=t,则t的取值范围是(,1).【考点】平面与平面垂直的性质;棱锥的结构特征.【专题】空间位置关系与距离;空间角;立体几何.【分析】此题的破解可采用二个极端位置法,即对于F位于DC的中点时与随着F点到C 点时,分别求出此两个位置的t值即可得到所求的答案【解答】解:此题的破解可采用二个极端位置法,即对于F位于DC的中点时,可得t=1,随着F点到C点时,当C与F无限接近,不妨令二者重合,此时有CD=2因CB⊥AB,CB⊥DK,∴CB⊥平面ADB,即有CB⊥BD,对于CD=2,BC=1,在直角三角形CBD中,得BD=,又AD=1,AB=2,再由勾股定理可得∠BDA是直角,因此有AD⊥BD再由DK⊥AB,可得三角形ADB和三角形AKD相似,可得t=,因此t的取值的范围是(,1)故答案为(,1)【点评】考查空间图形的想象能力,及根据相关的定理对图形中的位置关系进行精准判断的能力.三、解答题(共5小题,满分72分)18.(14分)(2009•浙江)在△ABC中,角A、B、C所对应的边分别为a、b、c,且满足=,•=3.(Ⅰ)求△ABC的面积;(Ⅱ)若b+c=6,求a的值.【考点】二倍角的余弦;平面向量数量积的运算;余弦定理.【专题】解三角形.(Ⅰ)利用二倍角公式利用=求得cosA,进而求得sinA,进而根据【分析】求得bc的值,进而根据三角形面积公式求得答案.(Ⅱ)根据bc和b+c的值求得b和c,进而根据余弦定理求得a的值.【解答】解:(Ⅰ)因为,∴,又由,得bccosA=3,∴bc=5,∴(Ⅱ)对于bc=5,又b+c=6,∴b=5,c=1或b=1,c=5,由余弦定理得a2=b2+c2﹣2bccosA=20,∴【点评】本题主要考查了解三角形的问题.涉及了三角函数中的倍角公式、余弦定理和三角形面积公式等,综合性很强.19.(14分)(2009•浙江)在1,2,3…,9,这9个自然数中,任取3个数.(Ⅰ)求这3个数中,恰有一个是偶数的概率;(Ⅱ)记ξ为这三个数中两数相邻的组数,(例如:若取出的数1、2、3,则有两组相邻的数1、2和2、3,此时ξ的值是2).求随机变量ξ的分布列及其数学期望Eξ.【考点】等可能事件的概率;离散型随机变量及其分布列;离散型随机变量的期望与方差;组合及组合数公式.【专题】概率与统计.【分析】(I)由题意知本题是一个古典概型,试验发生包含的所有事件是从9个数字中选3个,而满足条件的事件是3个数恰有一个是偶数,即有一个偶数和两个奇数.根据概率公式得到结果.(2)随机变量ξ为这三个数中两数相邻的组数,则ξ的取值为0,1,2,当变量为0时表示不包含相邻的数,结合变量对应的事件写出概率和分布列,算出期望.【解答】解:(I)由题意知本题是一个古典概型,试验发生包含的所有事件是C93,而满足条件的事件是3个数恰有一个是偶数共有C41C52记“这3个数恰有一个是偶数”为事件A,∴;(II)随机变量ξ为这三个数中两数相邻的组数,则ξ的取值为0,1,2,当变量为0时表示不包含相邻的数P(ξ=0)=,P(ξ=1)=,P(ξ=2)=∴ξ的分布列为ξ0 1 2p∴ξ的数学期望为.【点评】本题考查离散型随机变量的分布列,求离散型随机变量的分布列和期望是近年来理科高考必出的一个问题,题目做起来不难,运算量也不大,只要注意解题格式就问题不大.20.(14分)(2009•浙江)如图,平面PAC⊥平面ABC,△ABC是以AC为斜边的等腰直角三角形,E,F,O分别为PA,PB,AC的中点,AC=16,PA=PC=10.(Ⅰ)设G是OC的中点,证明:FG∥平面BOE;(Ⅱ)证明:在△ABO内存在一点M,使FM⊥平面BOE,并求点M到OA,OB的距离.【考点】直线与平面平行的判定;点、线、面间的距离计算.【专题】空间位置关系与距离;空间角;空间向量及应用;立体几何.【分析】由于PAC⊥平面ABC,△ABC是以AC为斜边的等腰直角三角形,O为AC的中点,AC=16,PA=PC=10,所以PO、OB、OC是两两垂直的三条直线,因此可以考虑用空间向量解决:连接OP,以O为坐标原点,分别以OB、OC、OP所在直线为x轴,y轴,z轴,建立空间直角坐标系O﹣xyz,对于(I),只需证明向量FG与平面BOE的一个法向量垂直即可,而根据坐标,平面的一个法向量可求,从而得证;对于(II),在第一问的基础上,课设点M的坐标,利用FM⊥平面BOE求出M的坐标,而其道OA、OB的距离就是点M 横纵坐标的绝对值.【解答】证明:(I)如图,连接OP,以O为坐标原点,分别以OB、OC、OP所在直线为x 轴,y轴,z轴,建立空间直角坐标系O﹣xyz,则O(0,0,0),A(0,﹣8,0),B(8,0,0),C(0,8,0),P(0,0,6),E(0,﹣4,3),F(4,0,3),(3分)由题意得,G(0,4,0),因,因此平面BOE的法向量为,)得,又直线FG不在平面BOE内,因此有FG∥平面BOE.(6分)(II)设点M的坐标为(x0,y0,0),则,因为FM⊥平面BOE,所以有,因此有,即点M的坐标为(8分)在平面直角坐标系xoy中,△AOB的内部区域满足不等式组,经检验,点M的坐标满足上述不等式组,所以在△ABO内存在一点M,使FM⊥平面BOE,由点M的坐标得点M到OA,OB的距离为.(12分)【点评】本题考查直线与平面的平行的判定以及距离问题,建立了空间坐标系,所有问题就转化为向量的运算,使得问题简单,解决此类问题时要注意空间向量的使用.21.(15分)(2009•浙江)已知椭圆C1:(a>b>0)的右顶点A(1,0),过C1的焦点且垂直长轴的弦长为1.(Ⅰ)求椭圆C1的方程;(Ⅱ)设点P在抛物线C2:y=x2+h(h∈R)上,C2在点P处的切线与C1交于点M,N.当线段AP的中点与MN的中点的横坐标相等时,求h的最小值.【考点】圆锥曲线的综合;椭圆的标准方程.【专题】圆锥曲线的定义、性质与方程;圆锥曲线中的最值与范围问题.【分析】(I)根据题意,求出a,b的值,然后得出椭圆的方程.(II)设出M,N,P的坐标,将直线代入椭圆,联立方程组,根据△判断最值即可.【解答】解:(I)由题意得,∴,所求的椭圆方程为,(II)不妨设M(x1,y1),N(x2,y2),P(t,t2+h),则抛物线C2在点P处的切线斜率为y'|x=t=2t,直线MN的方程为y=2tx﹣t2+h,将上式代入椭圆C1的方程中,得4x2+(2tx﹣t2+h)2﹣4=0,即4(1+t2)x2﹣4t(t2﹣h)x+(t2﹣h)2﹣4=0,因为直线MN与椭圆C1有两个不同的交点,所以有△1=16[﹣t4+2(h+2)t2﹣h2+4]>0,设线段MN的中点的横坐标是x3,则,设线段PA的中点的横坐标是x4,则,由题意得x3=x4,即有t2+(1+h)t+1=0,其中的△2=(1+h)2﹣4≥0,∴h≥1或h≤﹣3;当h≤﹣3时有h+2<0,4﹣h2<0,因此不等式△1=16[﹣t4+2(h+2)t2﹣h2+4]>0不成立;因此h≥1,当h=1时代入方程t2+(1+h)t+1=0得t=﹣1,将h=1,t=﹣1代入不等式△1=16[﹣t4+2(h+2)t2﹣h2+4]>0成立,因此h的最小值为1.【点评】本题考查圆锥图象的综合利用,椭圆方程的应用,通过构造一元二次方程,利用根的判别式计算,属于中档题.22.(15分)(2009•浙江)已知函数f(x)=x3﹣(k2﹣k+1)x2+5x﹣2,g(x)=k2x2+kx+1,其中k∈R.(Ⅰ)设函数p(x)=f(x)+g(x).若p(x)在区间(0,3)上不单调,求k的取值范围;(Ⅱ)设函数是否存在k,对任意给定的非零实数x1,存在惟一的非零实数x2(x2≠x1),使得q′(x2)=q′(x1)?若存在,求k的值;若不存在,请说明理由.【考点】利用导数研究函数的单调性;函数的单调性与导数的关系.【专题】导数的综合应用.【分析】(I)因P(x)=f(x)+g(x)=x3+(k﹣1)x2+(k+5)x﹣1,先求导数:p′(x),因p(x)在区间(0,3)上不单调,得到p′(x)=0在(0,3)上有实数解,且无重根,再利用分离参数的方法得出,最后再利用导数求出此函数的值域即可;(II)先根据题意得出当k=0时不合题意,因此k≠0,下面讨论k≠0的情形,分类讨论:(ⅰ)当x1>0时,(ⅱ)当x1<0时,最后综合(ⅰ)(ⅱ)即可得出k值.【解答】解析:(I)因P(x)=f(x)+g(x)=x3+(k﹣1)x2+(k+5)x﹣1,p′(x)=3x2+2(k﹣1)x+(k+5),因p(x)在区间(0,3)上不单调,所以p′(x)=0在(0,3)上有实数解,且无重根,由p′(x)=0得k(2x+1)=﹣(3x2﹣2x+5),∴,令t=2x+1,有t∈(1,7),记,则h(t)在(1,3]上单调递减,在[3,7)上单调递增,所以有h(t)∈[6,10),于是,得k∈(﹣5,﹣2],而当k=﹣2时有p′(x)=0在(0,3)上有两个相等的实根x=1,故舍去,所以k∈(﹣5,﹣2);(II)当x<0时有q′(x)=f′(x)=3x2﹣2(k2﹣k+1)x+5;当x>0时有q′(x)=g′(x)=2k2x+k,因为当k=0时不合题意,因此k≠0,下面讨论k≠0的情形,记A=(k,+∞),B=(5,+∞)(ⅰ)当x1>0时,q′(x)在(0,+∞)上单调递增,所以要使q′(x2)=q′(x1)成立,只能x2<0且A⊆B,因此有k≥5,(ⅱ)当x1<0时,q′(x)在(﹣∞,0)上单调递减,所以要使q′(x2)=q′(x1)成立,只能x2>0且A⊆B,因此k≤5,综合(ⅰ)(ⅱ)k=5;当k=5时A=B,则∀x1<0,q′(x1)∈B=A,即∃x2>0,使得q′(x2)=q′(x1)成立,因为q′(x)在(0,+∞)上单调递增,所以x2的值是唯一的;同理,∀x1<0,即存在唯一的非零实数x2(x2≠x1),要使q′(x2)=q′(x1)成立,所以k=5满足题意.【点评】本题主要考查导函数的正负与原函数的单调性之间的关系,即当导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减,同时考查了分析与解决问题的综合能力,属于中档题.。

2019年浙江省高考数学试卷及答案(理科)

2019年浙江省高考数学试卷及答案(理科)

2019年浙江省高考数学试卷及答案(理科)第 1 页 共 11 页2019年普通高等学校招生全国统一考试(浙江卷)数学(理科)本试题卷分选择题和非选择题两部分。

全卷共5页,选择题部分1至3页,非选择题部分4至5页。

满分150分,考试时间120分钟。

请考生按规定用笔将所有试题的答案涂、写在答题纸上。

选择题部分(共50分)注意事项:1.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试卷和答题纸规定的位置上。

2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

不能答在试题卷上。

参考公式如果事件,A B 互斥 ,那么()()()P A B P A P B +=+如果事件,A B 相互独立,那么()()()P A B P A P B •=•如果事件A 在一次试验中发生的概率为P ,那么n 次独立重复试验中事件A 恰好发生k 次的概率()(1)(0,1,2,...,)k k n kn nP k C p p k n -=-=台体的体积公式121()3V h S S =+其中1S ,2S 分别表示台体的上、下面积,h 表示台体的高柱体体积公式V Sh =其中S 表示柱体的底面积,h 表示柱体的高锥体的体积公式13V Sh =其中S 表示锥体的底面积,h 表示锥体的高 球的表面积公式24S R π=球的体积公式343V R π=其中R 表示球的半径一、 选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设}4|{},4|{2<=<=x x Q x x P(A )Q P ⊆ (B )P Q ⊆(C )Q C P R ⊆(D )P C Q R ⊆2.某程序框图如图所示,若输出的S=57,则判断框内为 (A )?4>k (B )?5>k(C )?6>k(D )?7>k3.设n S 为等比数列}{n a 的前n 项和,0852=+a a ,则=25S S (A )11 (B )5(C )-8(D )-114.设20π<<x ,则“1sin 2<x x ”是“1sin <x x ”的(A )充分而不必不必要条件 (B )必要而不充分条件(C )充分必要条件 (D )既不充分也不必要条件5.对任意复数i R y x yi x z ),,(∈+=为虚数单位,则下列结论正确的是(A )y z z 2||=- (B )222y x z += (C )x z z 2||≥- (D )||||||y x z +≤6.设m l ,是两条不同的直线,α是一个平面,则下列命题正确的是 (A )若αα⊥⊂⊥l m m l 则,, (B )若αα⊥⊥m m l l 则,//,(C )若m l m l //,,//则αα⊂(D )若m l m l //,//,//则αα7.若实数y x ,满足不等式组⎪⎩⎪⎨⎧≥+-≤--≥-+,01,032,033my x y x y x 且y x +的最大值为9,则实数=m(A )-2(B )-1(C )1(D )28.设F 1,F 2分别为双曲线)0,0(12222>>=-b a by a x 的左、右焦点。

2019年浙江省高考数学(含解析版)

 2019年浙江省高考数学(含解析版)
【详解】因为双曲线的渐近线为 ,所以 ,则 ,双曲线的离心率 .
【点睛】理解概念,准确计算,是解答此类问题的基本要求.部分考生易出现理解性错误.
3.若实数 满足约束条件 ,则 的最大值是( )
A. B.1
C.10D.12
【答案】C
【解析】
【分析】
本题是简单线性规划问题的基本题型,根据“画、移、解”等步骤可得解.题目难度不大题,注重了基础知识、基本技能的考查.
【详解】方法1:由分布列得 ,则
,则当 在 内增大时, 先减小后增大.
方法2:则
故选D.
【点睛】易出现的错误有,一是数学期望、方差以及二者之间的关系掌握不熟,无从着手;二是计算能力差,不能正确得到二次函数表达式.
8.设三棱锥 的底面是正三角形,侧棱长均相等, 是棱 上的点(不含端点),记直线 与直线 所成角为 ,直线 与平面 所成角为 ,二面角 的平面角为 ,则( )
A.当 B.当
C.当 D.当
非选择题部分(共110分)
二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分
11.复数 ( 为虚数单位),则 ________.
12.已知圆 的圆心坐标是 ,半径长是 .若直线 与圆相切于点 ,则 _____, ______.
13.在二项式 的展开式中,常数项是________;系数为有理数的项的个数是_______.
C. 先增大后减小D. 先减小后增大
8.设三棱锥 底面是正三角形,侧棱长均相等, 是棱 上的点(不含端点),记直线 与直线 所成角为 ,直线 与平面 所成角为 ,二面角 的平面角为 ,则( )
A. B.
C. D.
9.已知 ,函数 ,若函数 恰有三个零点,则( )

2019年浙江省杭州市中考数学试卷(答案解析版)

2019年浙江省杭州市中考数学试卷(答案解析版)

2019年浙江省杭州市中考数学试卷一、选择题(本大题共10小题,共30.0分)1.计算下列各式,值最小的是()A. B. C. D.2.在平面直角坐标系中,点A(m,2)与点B(3,n)关于y轴对称,则()A. ,B. ,C. ,D. ,3.如图,P为圆O外一点,PA,PB分别切圆O于A,B两点,若PA=3,则PB=()A. 2B. 3C. 4D. 54.已知九年级某班30位学生种树72棵,男生每人种3棵树,女生每人种2棵树,设男生有x人,则()A. B.C. D.5.点点同学对数据26,36,46,5□,52进行统计分析,发现其中一个两位数的各位数字被黑水涂污看不到了,则计算结果与被涂污数字无关的是()A. 平均数B. 中位数C. 方差D. 标准差6.如图,在△ABC中,点D,E分别在AB和AC上,DE∥BC,M为BC边上一点(不与点B,C重合),连接AM交DE于点N,则()A.B.C.D.7.在△ABC中,若一个内角等于另外两个内角的差,则()A. 必有一个内角等于B. 必有一个内角等于C. 必有一个内角等于D. 必有一个内角等于8.已知一次函数y1=ax+b和y2=bx+a(a≠b),函数y1和y2的图象可能是()A. B.C. D.9.如图,一块矩形木板ABCD斜靠在墙边(OC⊥OB,点A,B,C,D,O在同一平面内),已知AB=a,AD=b,∠BCO=x,则点A到OC的距离等于()A.B.C.D.10.在平面直角坐标系中,已知a≠b,设函数y=(x+a)(x+b)的图象与x轴有M个交点,函数y=(ax+1)(bx+1)的图象与x轴有N个交点,则()A. 或B. 或C. 或D. 或二、填空题(本大题共6小题,共24.0分)11.因式分解:1-x2=______.12.某计算机程序第一次算得m个数据的平均数为x,第二次算得另外n个数据的平均数为y,则这m+n个数据的平均数等于______.13.如图是一个圆锥形冰淇淋外壳(不计厚度),已知其母线长为12cm,底面圆半径为3cm,则这个冰淇淋外壳的侧面积等于______cm2(结果精确到个位).14.在直角三角形ABC中,若2AB=AC,则cos C=______.15.某函数满足当自变量x=1时,函数值y=0,当自变量x=0时,函数值y=1,写出一个满足条件的函数表达式______.16.如图,把某矩形纸片ABCD沿EF,GH折叠(点E,H在AD边上,点F,G在BC边上),使点B和点C落在AD边上同一点P处,A点的对称点为A′点,D点的对称点为D′点,若∠FPG=90°,△A′EP的面积为4,△D′PH的面积为1,则矩形ABCD的面积等于______.三、解答题(本大题共7小题,共66.0分)17.化简:--1圆圆的解答如下:--1=4x-2(x+2)-(x2-4)=-x2+2x圆圆的解答正确吗?如果不正确,写出正确的答案.18.称量五筐水果的质量,若每筐以50千克为基准,超过基准部分的千克数记为正数,不足基准部分的千克数记为负数,甲组为实际称量读数,乙组为记录数据,并把所得数据整理成如下统计表和未完成的统计图(单位:千克).实际称量读数和记录数据统计表(1)补充完成乙组数据的折线统计图.(2)①甲,乙两组数据的平均数分别为甲,乙,写出甲与乙之间的等量关系.②甲,乙两组数据的方差分别为S甲2,S乙2,比较S甲2与S乙2的大小,并说明理由.19.如图,在△ABC中,AC<AB<BC.(1)已知线段AB的垂直平分线与BC边交于点P,连接AP,求证:∠APC=2∠B.(2)以点B为圆心,线段AB的长为半径画弧,与BC边交于点Q,连接AQ.若∠AQC=3∠B,求∠B的度数.20.方方驾驶小汽车匀速地从A地行驶到B地,行驶里程为480千米,设小汽车的行驶时间为t(单位:小时),行驶速度为v(单位:千米/小时),且全程速度限定为不超过120千米/小时.(1)求v关于t的函数表达式;(2)方方上午8点驾驶小汽车从A地出发.①方方需在当天12点48分至14点(含12点48分和14点)间到达B地,求小汽车行驶速度v的范围.②方方能否在当天11点30分前到达B地?说明理由.21.如图,已知正方形ABCD的边长为1,正方形CEFG的面积为S1,点E在DC边上,点G在BC的延长线上,设以线段AD和DE为邻边的矩形的面积为S2,且S1=S2.(1)求线段CE的长;(2)若点H为BC边的中点,连接HD,求证:HD=HG.22.设二次函数y=(x-x1)(x-x2)(x1,x2是实数).(1)甲求得当x=0时,y=0;当x=1时,y=0;乙求得当x=时,y=-.若甲求得的结果都正确,你认为乙求得的结果正确吗?说明理由.(2)写出二次函数图象的对称轴,并求该函数的最小值(用含x1,x2的代数式表示).(3)已知二次函数的图象经过(0,m)和(1,n)两点(m,n是实数),当0<x1<x2<1时,求证:0<mn<.23.如图,已知锐角三角形ABC内接于圆O,OD⊥BC于点D,连接OA.(1)若∠BAC=60°,①求证:OD=OA.②当OA=1时,求△ABC面积的最大值.(2)点E在线段OA上,OE=OD,连接DE,设∠ABC=m∠OED,∠ACB=n∠OED(m,n是正数),若∠ABC<∠ACB,求证:m-n+2=0.答案和解析1.【答案】A【解析】解:A.2×0+1-9=-8,B.2+0×1-9=-7C.2+0-1×9=-7D.2+0+1-9=-6,故选:A.有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.本题考查了有理数的混合运算,熟练掌握有理数的运算法则是解题的关键.2.【答案】B【解析】解:∵点A(m,2)与点B(3,n)关于y轴对称,∴m=-3,n=2.故选:B.直接利用关于y轴对称点的性质得出答案.此题主要考查了关于y轴对称点的性质,正确记忆横纵坐标的关系是解题关键.3.【答案】B【解析】解:连接OA、OB、OP,∵PA,PB分别切圆O于A,B两点,∴OA⊥PA,OB⊥PB,在Rt△AOP和Rt△BOP中,,∴Rt△AOP≌Rt△BOP(HL),∴PB=PA=3,故选:B.连接OA、OB、OP,根据切线的性质得出OA⊥PA,OB⊥PB,然后证得Rt△AOP≌Rt△BOP,即可求得PB=PA=3.本题考查了切线长定理,三角形全等的判定和性质,作出辅助线根据全等三角形是解题的关键.4.【答案】D【解析】解:设男生有x人,则女生(30-x)人,根据题意可得:3x+2(30-x)=72.故选:D.直接根据题意表示出女生人数,进而利用30位学生种树72棵,得出等式求出答案.此题主要考查了由实际问题抽象出一元一次方程,正确表示出男女生的植树棵树是解题关键.5.【答案】B【解析】解:这组数据的平均数、方差和标准差都与第4个数有关,而这组数据的中位数为46,与第4个数无关.故选:B.利用平均数、中位数、方差和标准差的定义对各选项进行判断.本题考查了标准差:样本方差的算术平方根表示样本的标准差,它也描述了数据对平均数的离散程度.也考查了中位数、平均数.6.【答案】C【解析】解:∵DN∥BM,∴△ADN∽△ABM,∴=,∵NE∥MC,∴△ANE∽△AMC,∴=,∴=.故选:C.先证明△ADN∽△ABM得到=,再证明△ANE∽△AMC得到=,则=,从而可对各选项进行判断.本题考查了相似三角形的判定与性质:三在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;灵活运用相似三角形的性质表示线段之间的关系.7.【答案】D【解析】解:∵∠A+∠B+∠C=180°,∠A=∠C-∠B,∴2∠C=180°,∴∠C=90°,∴△ABC是直角三角形,故选:D.根据三角形内角和定理得出∠A+∠B+∠C=180°,把∠C=∠A+∠B代入求出∠C即可.本题考查了三角形内角和定理的应用,能求出三角形最大角的度数是解此题的关键,注意:三角形的内角和等于180°.8.【答案】A【解析】解:A、由①可知:a>0,b>0.∴直线②经过一、二、三象限,故A正确;B、由①可知:a<0,b>0.∴直线②经过一、二、三象限,故B错误;C、由①可知:a<0,b>0.∴直线②经过一、二、四象限,交点不对,故C错误;D、由①可知:a<0,b<0,∴直线②经过二、三、四象限,故D错误.故选:A.根据直线①判断出a、b的符号,然后根据a、b的符号判断出直线②经过的象限即可,做出判断.本题主要考查的是一次函数的图象和性质,掌握一次函数的图象和性质是解题的关键.9.【答案】D【解析】解:作AE⊥OC于点E,作AF⊥OB于点F,∵四边形ABCD是矩形,∴∠ABC=90°,∵∠ABC=∠AEC,∠BCO=x,∴∠EAB=x,∴∠FBA=x,∵AB=a,AD=b,∴FO=FB+BO=a•cosx+b•sinx,故选:D.根据题意,作出合适的辅助线,然后利用锐角三角函数即可表示出点A到OC 的距离,本题得以解决.本题考查解直角三角形的应用-坡度坡角问题、矩形的性质,解答本题的关键是明确题意,利用数形结合的思想解答.10.【答案】C【解析】解:∵y=(x+a)(x+b)=x2+(a+b)x+1,∴△=(a+b)2-4ab=(a-b)2>0,∴函数y=(x+a)(x+b)的图象与x轴有2个交点,∴M=2,∵函数y=(ax+1)(bx+1)=abx2+(a+b)x+1,∴当ab≠0时,△=(a+b)2-4ab=(a-b)2>0,函数y=(ax+1)(bx+1)的图象与x轴有2个交点,即N=2,此时M=N;当ab=0时,不妨令a=0,∵a≠b,∴b≠0,函数y=(ax+1)(bx+1)=bx+1为一次函数,与x轴有一个交点,即N=1,此时M=N+1;综上可知,M=N或M=N+1.故选:C.先把两个函数化成一般形式,若为二次函数,再计算根的判别式,从而确定图象与x轴的交点个数,若一次函数,则与x轴只有一个交点,据此解答.本题主要考查一次函数与二次函数与x轴的交点问题,关键是根据根的判别式的取值确定抛物线与x轴的交点个数,二次项系数为字母的代数式时,要根据系数是否为0,确定它是什么函数,进而确定与x轴的交点个数.11.【答案】(1-x)(1+x)【解析】解:∵1-x2=(1-x)(1+x),故答案为:(1-x)(1+x).根据平方差公式可以将题目中的式子进行因式分解.本题考查因式分解-运用公式法,解题的关键是明确平方差公式,会运用平方差公式进行因式分解.12.【答案】【解析】解:∵某计算机程序第一次算得m个数据的平均数为x,第二次算得另外n个数据的平均数为y,则这m+n个数据的平均数等于:.故答案为:.直接利用已知表示出两组数据的总和,进而求出平均数.此题主要考查了加权平均数,正确得出两组数据的总和是解题关键.13.【答案】113【解析】解:这个冰淇淋外壳的侧面积=×2π×3×12=36π≈113(cm2).故答案为113.利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算.本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.14.【答案】或【解析】解:若∠B=90°,设AB=x,则AC=2x,所以BC==x,所以cosC===;若∠A=90°,设AB=x,则AC=2x,所以BC==x,所以cosC===;综上所述,cosC的值为或.故答案为或.讨论:若∠B=90°,设AB=x,则AC=2x,利用勾股定理计算出BC=x,然后根据余弦的定义求cosC的值;若∠A=90°,设AB=x,则AC=2x,利用勾股定理计算出BC=x,然后根据余弦的定义求cosC的值.本题考查了锐角三角函数的定义:熟练掌握锐角三角函数的定义,灵活运用它们进行几何计算.15.【答案】y=-x+1【解析】解:设该函数的解析式为y=kx+b,∵函数满足当自变量x=1时,函数值y=0,当自变量x=0时,函数值y=1,∴解得:,所以函数的解析式为y=-x+1,故答案为:y=-x+1.根据题意写出一个一次函数即可.本题考查了各种函数的性质,题目中x、y均可以取0,故不能是反比例函数.16.【答案】2(5+3)【解析】解:∵四边形ABC是矩形,∴AB=CD,AD=BC,设AB=CD=x,由翻折可知:PA′=AB=x,PD′=CD=x,∵△A′EP的面积为4,△D′PH的面积为1,∴A′E=4D′H,设D′H=a,则A′E=4a,∵△A′EP∽△D′PH,∴=,∴=,∴x2=4a2,∴x=2a或-2a(舍弃),∴PA′=PD′=2a,∵•a•2a=1,∴a=1,∴x=2,∴AB=CD=2,PE==2,PH==,∴AD=4+2++1=5+3,∴矩形ABCD的面积=2(5+3).故答案为2(5+3)设AB=CD=x,由翻折可知:PA′=AB=x,PD′=CD=x,因为△A′EP的面积为4,△D′PH的面积为1,推出A′E=4D′H,设D′H=a,则A′E=4a,由△A′EP∽△D′PH,推出=,推出=,可得x=2a,再利用三角形的面积公式求出a即可解决问题.本题考查翻折变换,矩形的性质,勾股定理,相似三角形的判定和性质等知识,解题的关键是学会利用参数解决问题,属于中考填空题中的压轴题.17.【答案】解:圆圆的解答错误,正确解法:--1=--===-.【解析】直接将分式进行通分,进而化简得出答案.此题主要考查了分式的加减运算,正确进行通分运算是解题关键.18.【答案】解:(1)乙组数据的折线统计图如图所示:(2)①甲=50+乙.②S甲2=S乙2.理由:∵S甲2=[(48-50)2+(52-50)2+(47-50)2+(49-50)2+(54-50)2]=6.8.S乙2=[(-2-0)2+(2-0)2+(-3-0)2+(-1-0)2+(4-0)2]=6.8,∴S甲2=S乙2.【解析】(1)利用描点法画出折线图即可.(2)利用方差公式计算即可判断.本题考查折线统计图,算术平均数,方差等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.19.【答案】解:(1)证明:∵线段AB的垂直平分线与BC边交于点P,∴PA=PB,∴∠B=∠BAP,∵∠APC=∠B+∠BAP,∴∠APC=2∠B;(2)根据题意可知BA=BQ,∴∠BAQ=∠BQA,∵∠AQC=3∠B,∠AQC=∠B+∠BAQ,∴∠BQA=2∠B,∵∠BAQ+∠BQA+∠B=180°,∴5∠B=180°,∴∠B=36°.【解析】(1)根据线段垂直平分线的性质可知PA=PB,根据等腰三角形的性质可得∠B=∠BAP,根据三角形的外角性质即可证得APC=2∠B;(2)根据题意可知BA=BQ,根据等腰三角形的性质可得∠BAQ=∠BQA,再根据三角形的内角和公式即可解答.本题主要考查了等腰三角形的性质、垂直平分线的性质以及三角形的外角性质,难度适中.20.【答案】解:(1)∵vt=480,且全程速度限定为不超过120千米/小时,∴v关于t的函数表达式为:v=,(0≤t≤4).(2)①8点至12点48分时间长为小时,8点至14点时间长为6小时将t=6代入v=得v=80;将t=代入v=得v=100.∴小汽车行驶速度v的范围为:80≤v≤100.②方方不能在当天11点30分前到达B地.理由如下:8点至11点30分时间长为小时,将t=代入v=得v=>120千米/小时,超速了.故方方不能在当天11点30分前到达B地.【解析】(1)由速度乘以时间等于路程,变形即可得速度等于路程比时间,从而得解;(2)①8点至12点48分时间长为小时,8点至14点时间长为6小时,将它们分别代入v关于t的函数表达式,即可得小汽车行驶的速度范围;②8点至11点30分时间长为小时,将其代入v关于t的函数表达式,可得速度大于120千米/时,从而得答案.本题是反比例函数在行程问题中的应用,根据时间速度和路程的关系可以求解,本题属于中档题.21.【答案】解:(1)设正方形CEFG的边长为a,∵正方形ABCD的边长为1,∴DE=1-a,∵S1=S2,∴a2=1×(1-a),解得,(舍去),,即线段CE的长是;(2)证明:∵点H为BC边的中点,BC=1,∴CH=0.5,∴DH=.=,∵CH=0.5,CG=,∴HG=,∴HD=HG.【解析】(1)设出正方形CEFG的边长,然后根据S1=S2,即可求得线段CE的长;(2)根据(1)中的结果可以题目中的条件,可以分别计算出HD和HG的长,即可证明结论成立.本题考查正方形的性质、矩形的性质,解答本题的关键是明确题意,利用数形结合的思想解答.22.【答案】解:(1)当x=0时,y=0;当x=1时,y=0;∴二次函数经过点(0,0),(1,0),∴x1=0,x2=1,∴y═x(x-1)=x2-x,当x=时,y=-,∴乙说点的不对;(2)对称轴为x=,当x=时,y=-是函数的最小值;(3)二次函数的图象经过(0,m)和(1,n)两点,∴m=x1x2,n=1-x1-x2+x1x2,∴mn=[-][-]∵0<x1<x2<1,∴0≤-≤,0≤-≤,∴0<mn<.【解析】(1)将(0,0),(1,0)代入y=(x-x1)(x-x2)求出函数解析式即可求解;(2)对称轴为x=,当x=时,y=-是函数的最小值;(3)将已知两点代入求出m=x1x2,n=1-x1-x2+x1x2,再表示出mn=[-][-],由已知0<x1<x2<1,可求出0≤-≤,0≤-≤,即可求解.本题考查二次函数的性质;函数最值的求法;熟练掌握二次函数的性质,能够将mn准确的用x1和x2表示出来是解题的关键.23.【答案】解:(1)①连接OB、OC,则∠BOD=BOC=∠BAC=60°,∴∠OBC=30°,∴OD=OB=OA;②∵BC长度为定值,∴△ABC面积的最大值,要求BC边上的高最大,当AD过点O时,AD最大,即:AD=AO+OD=,△ABC面积的最大值=×BC×AD=×2OB sin60°×=;(2)如图2,连接OC,设:∠OED=x,则∠ABC=mx,∠ACB=nx,则∠BAC=180°-∠ABC-∠ACB=180°-mx-nx=∠BOC=∠DOC,∵∠AOC=2∠ABC=2mx,∴∠AOD=∠COD+∠AOC=180°-mx-nx+2mx=180°+mx-nx,∵OE=OD,∴∠AOD=180°-2x,即:180°+mx-nx=180°-2x,化简得:m-n+2=0.【解析】(1)①连接OB、OC,则∠BOD=BOC=∠BAC=60°,即可求解;②BC长度为定值,△ABC面积的最大值,要求BC边上的高最大,即可求解;(2)∠BAC=180°-∠ABC-∠ACB=180°-mx-nx=∠BOC=∠DOC,而∠AOD=∠COD+∠AOC=180°-mx-nx+2mx=180°+mx-nx,即可求解.本题为圆的综合运用题,涉及到解直角三角形、三角形内角和公式,其中(2),∠AOD=∠COD+∠AOC是本题容易忽视的地方,本题难度适中.。

小学数学2019浙江省小学五年级下学期期末测试卷1(解析版)

小学数学2019浙江省小学五年级下学期期末测试卷1(解析版)

小学数学2019浙江省小学五年级下学期期末测试卷1答题时间:120分钟日期____________班级____________姓名____________一、判断题(每小题3分,共10题,共30分)1任何一个非0自然数的因数至少有两个.()2因为33,36,39,63,66,69,93,156这些数都能被3整除,所以个位上是3,6,9的数一定能被3整除.()3分数的分母越大,它的分数单位就越大.()4所有的偶数都是合数.()5最小的质数是1.()6一个正方体的棱长扩大为原来的4倍,它的体积就扩大为原来的64倍.()7710的分子乘2,分母加上10后,分数值不变.()8假分数的分子都比分母大.()9一个西瓜,吃掉了23,还剩43.()10当a等于()时,17a的积是质数.二、填空题(每小题3分,共12题,共36分)11712的分数单位是________,再加上________个这样的分数单位就得到单位“1”.12在43,54,67这三个数中,最大的数是________,最小的数是________.13把4米长的绳子平均分成5段,每段长是全长的________,每段长________米.14在27、37、41、58、61、73、83、95、这些数中,奇数有________;偶数有________;质数有________;合数有________.15()2791560()÷===________5÷.16有15盒饼干,其中的14盒质量相同另有一盒少了几块,如果能用天平称,至少________次保证可以找出这盒饼干?17 8.04立方分米=________升=________毫升. 7.5升=________立方分米=________立方厘米.18 3个棱长是2cm 的小正方体拼成一个长方体,长方体的表面积比3个小正方体表面积的和少________平方厘米.19 用木料做一个长5厘米,宽和高都是4厘米的长方体,至少需要________立方厘米的木料.如果要在长方体木块的表面涂一层油漆,涂油漆的面积是________平方厘米.20 一个正方体的表面积是150平方分米,它的体积是________立方分米.21 时钟从下午3时到晚上9时,时针沿顺时针方向旋转了________度.22 48的质因数是________.三、计算题(共3题,共23分)23 (3分) 直接写得数:5616-= 1214-= 710310+= 134-= 12510-= 1319-=24 (12分) 计算下面各题,能简算的要简算 45(1115310)++ 384758++66(3425)-- 4157941529+-+.25 (8分) 解方程5312x x -= 3734x += 79427x -= 51238x -=.四、解答题(共8题,共28分)26 (0分)计算如图长方体的总棱长、表面积和体积:(单位:厘米)27 (4分)李明用一根1m长的铁丝围成一个三角形,量得三角形的一边是14m,另一边是38m,第三边长是多少米?它是一个什么三角形?28 (4分)一个长方体食品盒,长10厘米,宽6厘米,高12厘米,如果围着它贴一圈商标纸,这圈商标纸至少有多少平方厘米?29 (4分)一块长方形铁皮(如图),从四个角各切掉一个边长为3cm的正方形,然后做成盒子.这个盒子用了多少铁皮?它的容积有多少?30 (4分)小红和爸爸现在的年龄的和是34岁,3年后爸爸比小红大24岁.今年小红和爸爸和多少岁?31 (4分)学校要粉刷新教室.已知教室长8米,宽6米,高3米,扣除门窗的面积是211.4m.如果每平方米需要花4元涂料费,粉刷这个教室需要花费多少元?32 (4分)光明小学六年级植树214棵,比五年级植树的3倍还多7棵,五年级植树多少棵?33 (4分)一种小汽车上的油箱,里面长5dm,宽4dm,高2dm,这个油箱可以装汽油多少升?五、选择题(每小题3分,共4题,共12分)34一个两位数个位数字既是偶数又是质数,十位数字既不是质数又不是合数,则这个两位数是()A.32B.16C.1235一个合数的因数有()A.无数个B.2个C.三个或三个以上36下面各数中,既是奇数又是合数的是()A.13B.36C.1537在分数512、7125、735中,能化成有限小数的有()个.A.1B.2C.3答案解析一、判断题(每小题3分,共10题,共30分)1【答案】⨯【解析】自然数1的因数只有1个.2【答案】⨯【解析】如13,29、46这些数,个位数是3、6、9,但它们不能被3整除;所以个位上是3,6,9的数一定能被3整除说法错误.3【答案】⨯【解析】分数的分母越大,表示把单位“1”平均分成的份数越多,每一份反而越小,所以分数单位也就越小.4【答案】⨯【解析】偶数是能被2整除的数,合数是除了1和它本身以外还有别的约数,2只有1和它本身两个约数,2是偶数但不是合数.5【答案】⨯【解析】根据质因数的意义,质数只有1和它本身两个因数,因为1的因数只有1,所以1既不是质数也不是合数.最小的质数是2.因此,最小的质数是1,此说法错误.6【答案】√【解析】因为正方体的体积是:V a a a=⨯⨯,所以当正方体的棱长扩大为原来的4倍,它的体积就扩大为原来的44464⨯⨯=倍.7【答案】√【解析】原分数分子乘2,扩大了2倍;原分数分母是10,现在分数的分母是101020+=,扩大2倍,分子分母扩大的倍数相同,分数值不变.所以710的分子乘2,分母加上10后,分数值不变说法正确.8【答案】⨯【解析】假分数的分子等于或大于分母,并不是都比分母大.9【答案】⨯【解析】21 133 -=还剩下13,不是剩下43,原题说法错误.10【答案】A【解析】要17a是一个质数只有1a=时才成立,否则17a的因数就会有17,1和a这三个数.二、填空题(每小题3分,共12题,共36分)11【答案】112;5【解析】(1)712的分数单位是112.(2)7511212-=,再加上5个这样的分数单位就得到单位“1”.12【答案】43;67【解析】41133=, 51144=, 所以11611347>>,答:在43,54,67这三个数中,最大的数是43,最小的数是67.13【答案】 15;45【解析】 每段是全长的:1155÷=,每段的长为:14455⨯=(米).14【答案】 27、37、41、61、73、83、95;58;37、41、61、73、83;27、58、95 【解析】 在27、37、41、58、61、73、83、95、这些数中, 奇数有27、37、41、61、73、83、95; 偶数有58;质数有37、41、61、73、83; 合数有27、58、95. 15【答案】 36;45;3【解析】 3627915356045÷===÷16【答案】 3【解析】 15(5,5,5),其中任意两组放在天平上称,可找出质量轻的一组,再把5分成(2,2,1),然后再把两个一组的放在天平上称,如平衡,则1个1组的是质量轻的,需要2次.如不平衡,可再把2分成(1,1),再放在天平上称,可找出质量轻的,则需要3次. 所以至少3次保证可能找出这盒饼干. 答:至少3次保证可能找出这盒饼干. 17【答案】 8.04;8040;7.5;7500【解析】 (1)8.04立方分米8.04=升8040=毫升; (2)7.5升7.5=立方分米7500=立方厘米. 18【答案】 16【解析】 22416⨯⨯=(平方厘米),答:长方体的表面积比3个小正方体表面积的和少16平方厘米. 19【答案】 80;112【解析】 544⨯⨯80=(立方厘米); 544442⨯⨯+⨯⨯112=(平方厘米);答:至少需要80立方厘米的木料;涂油漆的面积是112平方厘米. 20【答案】 125【解析】 正方体的一个面的面积是:150625÷=(平方分米), 因为5525⨯=,所以正方体的棱长是5分米, 所以体积是:555125⨯⨯=(立方分米), 答:它的体积是125立方分米. 21【答案】 180【解析】 从下午3时到晚上9时,时针沿顺时针方向旋转了一个平角. 22【答案】 2,3,2,2,2【解析】 因为,4823222=⨯⨯⨯⨯, 所以,48的质因数是2、3、2、2、2.三、计算题(共3题,共23分)23【答案】 40;-2;1020;-33;-498;-6【解析】 561640-= 12142-=- 7103101020+= 13433-=- 12510498-=- 13196-=- 24【答案】 1470;143;57;108【解析】 (1)45(1115310)++451115310=++1160310=+1470= (2)384758++8558=+143= (3)66(3425)--669=-57=(4)4157941529+-+(415415)(7929)=-++0108=+108= 25【答案】 6;-3;-348;550 【解析】 (1)5312x x -= 212x =22122x ÷=÷ 6x =;(2)3734x += 37373437x +-=- 3x =-;(3)79427x -= 79427x x x -+=+ 79427x =+79427427427x -=+- 348x =-;(4)51238x -=51251238512x -+=+ 550x =.四、解答题(共8题,共28分)26【答案】 52厘米;108平方厘米;72立方厘米 【解析】 (634)4++⨯134=⨯52=(厘米);(636434)2⨯+⨯+⨯⨯(182412)2=++⨯542=⨯108=(平方厘米);63472⨯⨯=(立方厘米);答:这个长方体的棱长总和是52厘米、表面积是108平方厘米、体积是72立方厘米. 27【答案】 38米;等腰三角形【解析】 1331488--=(米),因为有两条边的长度相等,所以此三角形是等腰三角形.答:第三条边长38米;按边分它是一个等腰三角形.28【答案】 384平方厘米【解析】 (1012612)2⨯+⨯⨯(12072)2=+⨯1922=⨯384=(平方厘米);答:这圈商标纸至少有384平方厘米. 29【答案】 510平方厘米;900立方厘米【解析】 (1)2621334⨯-⨯⨯54636=-510=(平方厘米);(2)(2632)(2132)3-⨯⨯-⨯⨯(266)(216)3=-⨯-⨯20153=⨯⨯900=(立方厘米); 答:这个盒子用了510平方厘米铁皮;它的容积是900立方厘米. 30【答案】 5岁;29岁【解析】 (3424)2+÷582=÷29=(岁)34295-=(岁)答:今年小红5岁,爸爸29岁.31【答案】 482.4元【解析】 6863283211.4⨯+⨯⨯+⨯⨯-48364811.4=++-120.6=(平方米) 120.64482.4⨯=(元)答:粉刷这个教室需要花费482.4元. 32【答案】 69棵【解析】 设五年级植树x 棵,由题意得, 37214x +=, 3207x =, 69x =.答:五年级植树69棵. 33【答案】 40升【解析】 1升1=立方分米 54240⨯⨯=(立方分米) 40立方分米40=升答:这个油箱可以装汽油40升.五、选择题(每小题3分,共4题,共12分)34【答案】 C【解析】 十位数字既不是质数又不是合数,说明十位数字是1, 个位数字既是偶数又是质数,说明个位数字是2, 所以此数是:12.35【答案】 C【解析】 一个合数有3个或3个以上的因数.36【答案】 C【解析】 根据奇数与合数的定义,可知15不能被2整除故是奇数,而它的因数有:1、3、5、15, 四个因数,故是合数.因此,15既是奇数也是合数. 37【答案】 B【解析】 512是最简分数,分母中含有质因数2、3,所以不能化成有限小数;---- 11 ---- 7125是最简分数,分母中只有质因数5,这个分数能化成有限小数; 71355 ,15中只有质因数5,这个分数能化成有限小数.。

浙江省宁波市北仑区2019-2020学年七年级下学期期末数学试卷 (解析版)

浙江省宁波市北仑区2019-2020学年七年级下学期期末数学试卷 (解析版)

2019-2020学年浙江省宁波市北仑区七年级第二学期期末数学试卷一、选择题1.世界上最小、最轻的昆虫是膜翅目缨小蜂科的一种卵蜂,其质量仅有0.000005克,用科学记数法表示0.000005,正确的是()A.5×10﹣6B.5×10﹣5C.5×106D.5×1052.下列运算中,正确的是()A.(3cd)3=9c3d3B.(﹣3a3)2=﹣9a5C.[(﹣a)3]4=﹣a12D.(﹣a)•(a2)3=﹣a73.下列多项式能用公式法分解因式的是()A.4x2+(﹣y)2B.﹣4x2﹣y2C.x2+2xy﹣y2D.x+1+4.若分式的值为0,则a的值为()A.4和﹣4B.4C.﹣4D.4和05.若(x﹣1)(x+3)=x2+mx+n,那么m,n的值分别是()A.m=1,n=3B.m=4,n=5C.m=2,n=﹣3D.m=﹣2,n=3 6.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x匹,小马有y匹,那么可列方程组为()A.B.C.D.7.如图所示,下列说法中,错误的是()A.∠A与∠EDC是同位角B.∠A与∠C是同旁内角C.∠A与∠ADC是同旁内角D.∠A与∠ABF是内错角8.当a为何值时,方程组的解,x、y的值互为相反数()A.a=﹣8B.a=8C.a=10D.a=﹣109.把一张对边互相平行的纸条按如图所示折叠,EF是折痕,若∠EFB=34°,则下列结论不正确的是()A.∠C′EF=34°B.∠AEC=146°C.∠BGE=68°D.∠BFD=112°10.任何一个正整数n都可以进行这样的分解:n=s×t(s,t是正整数,且s≤t),如果p ×q在n的所有分解中两因数之差的绝对值最小,我们就称p×q是n的最优分解,并规定:F(n)=.例如24可以分解成1×24,2×12,3×8,4×6这四种,这时就有F (24)==.给出下列关于F(n)的说法:①F(6)=;②F(16)=1;③F (n2﹣n)=1﹣;④若n是一个完全平方数,F(n)=1.其中说法正确的个数是()A.1B.2C.3D.4二、填空题(本题共8小题,每小题4分,共32分)11.(﹣2)0×()﹣1=.12.如图所示,直线a∥b,如果∠1=45°,那么∠2的度数是.13.已知3x﹣2y﹣3=0,求23x÷22y=.14.若分式方程=4﹣无解,则a的值为.15.多项式是完全平方式,则m=.16.若方程组的解是,请求出方程组中m,n的值,m=,n=.17.若|a﹣1|+(ab﹣2)2=0,则++…+=.18.如图,把四张大小相同的长方形卡片(如图①)按图2、图③两种方式放在一个底面为长方形(长比宽多5cm)的盒底上,底面未被卡片覆盖的部分用阴影表示,若记图②中阴影部分的周长为C1,图3中阴影部分的周长为C2,那么C1比C2大cm.三、解答题(本题共8小题,19、20.、21、22、23年题8分,24、25题12分,26题14分,共78分)19.(1)计算:(3x2)3•(﹣2x4)÷(﹣9x7);(2)因式分解:﹣2m3+24m2﹣72m.20.先化简,然后从﹣2≤x≤2的范围内选取一个合适的整数作为x 的值代入求值.21.解方程或方程组:(1);(2)+=.22.某社区积极响应正在开展的“文明城市创建工作”,组织甲、乙两个志愿工程队对社区的一些区域进行绿化改造.已知甲工程队每小时能完成的绿化面积是乙工程队每小时能完成的绿化面积的2倍,并且甲工程队完成300m2的绿化面积比乙工程队完成200m2的绿化面积少用2h.求乙工程队每小时能完成多少平方米的绿化面积?23.对于二次三项式a2+6a+9,可以用公式法将它分解成(a+3)2的形式,但对于二次三项式a2+6a+8,就不能直接应用完全平方式了,我们可以在二次三项式中先加上一项9,使其成为完全平方式,再减去9这项,使整个式子的值保持不变,于是有:a2+6a+8=a2+6a+9﹣9+8=(a+3)2﹣1=[(a+3)+1][(a+3)﹣1]=(a+4)(a+2)请仿照上面的做法,将下列各式因式分解:(1)x2﹣6x﹣16;(2)x2+2ax﹣3a2.24.两个边长分别为a和b的正方形如图放置(图1),其未叠合部分(阴影)面积为S1;若再在图1中大正方形的右下角摆放一个边长为b的小正方形(如图2),两个小正方形叠合部分(阴影)面积为S2.(1)用含a,b的代数式分别表示S1、S2;(2)若a+b=10,ab=20,求S1+S2的值;(3)当S1+S2=30时,求出图3中阴影部分的面积S3.25.阅读下列材料,然后解答后面的问题.我们知道方程2x+3y=12有无数组解,但在实际生活中我们往往只需求出其正整数解.例:由2x+3y=12得y==4﹣x(x,y为正整数).∴则有0<x<6,又∵y=4﹣x为正整数,∴x为正整数.由2与3互质,可知x为3的倍数,从而x=3,代入y=4﹣x=2.∴2x+3y=12的正整数解为.问题:(1)请你写出方程3x+y=7的一组正整数解:.(2)若为自然数,则满足条件的x值有.A.2个B.3个C.4个D.5个(3)为了开展“阳光体育”活动,某班计划购买甲、乙两种体育用品(每种体育用品至少购买1件),其中甲种体育用品每件20元,乙种体育用品每件30元,共用去180元,问有几种购买方案.26.宁波正着力打造“三江六岸”景观带,计划在甬江两岸设置两座可以旋转的射灯.如图1,灯A射线从AM开始顺时针旋转至AN便立即回转,灯B射线从BP开始顺时针旋转至BQ便立即回转,两灯不停交叉照射.若灯A转动的速度是2度/秒,灯B转动的速度是1度/秒,假定甬江两岸是平行的,即PQ∥MN,且∠BAM:∠BAN=2:1.(1)填空:∠BAN=°;(2)若灯B射线先转动30s,灯A射线才开始转动,在灯B射线到达BQ之前,灯A 转动几秒,两灯的光束互相平行?(3)如图2,若两灯同时转动,在灯A射线到达AN之前,假设射出的光束交于点C,过点C作∠ACD交PQ于点D,且∠ACD=120°,请探究:在转动过程中,∠BAC与∠BCD之间的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请说明理由.参考答案一、选择题(本题共10小题,每小题4分,共40分)1.世界上最小、最轻的昆虫是膜翅目缨小蜂科的一种卵蜂,其质量仅有0.000005克,用科学记数法表示0.000005,正确的是()A.5×10﹣6B.5×10﹣5C.5×106D.5×105【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解:0.000005=5×10﹣6,故选:A.2.下列运算中,正确的是()A.(3cd)3=9c3d3B.(﹣3a3)2=﹣9a5C.[(﹣a)3]4=﹣a12D.(﹣a)•(a2)3=﹣a7【分析】选项A、B、C根据积的乘方运算法则计算即可判断,选项D根据同底数幂的乘法法则以及幂的乘方运算法则计算即可判断.积的乘方,等于每个因式乘方的积,即(ab)n=a n b n;同底数幂相乘,底数不变,指数相加,即a m•a n=a m+n;幂的乘方,底数不变,指数相乘,即(a m)n=a mn.解:A.(3cd)3=27c3d3,故本选项不合题意;B.(﹣3a3)2=9a6,故本选项不合题意;C.[(﹣a)3]4=a12,故本选项不合题意;D.(﹣a)•(a2)3=(﹣a)•a6=﹣a7,故本选项符合题意.故选:D.3.下列多项式能用公式法分解因式的是()A.4x2+(﹣y)2B.﹣4x2﹣y2C.x2+2xy﹣y2D.x+1+【分析】利用平方差公式及完全平方公式判断即可.解:多项式能用公式法分解因式的是x+1+=(1+)2,故选:D.4.若分式的值为0,则a的值为()A.4和﹣4B.4C.﹣4D.4和0【分析】分式值为零的条件是分子等于零且分母不等于零.解:∵分式的值为0,∴,解得,∴a的值为﹣4,故选:C.5.若(x﹣1)(x+3)=x2+mx+n,那么m,n的值分别是()A.m=1,n=3B.m=4,n=5C.m=2,n=﹣3D.m=﹣2,n=3【分析】运用多项式与多项式相乘的法则将等式左边展开,通过比较左右两边的对应项系数,将问题转化为关于m,n的方程来确定m,n的值.解:∵(x﹣1)(x+3)=x2+2x﹣3=x2+mx+n,∴m=2,n=﹣3.故选:C.6.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x匹,小马有y匹,那么可列方程组为()A.B.C.D.【分析】设大马有x匹,小马有y匹,根据题意可得等量关系:①大马数+小马数=100;②大马拉瓦数+小马拉瓦数=100,根据等量关系列出方程组即可.解:设大马有x匹,小马有y匹,由题意得:,故选:C.7.如图所示,下列说法中,错误的是()A.∠A与∠EDC是同位角B.∠A与∠C是同旁内角C.∠A与∠ADC是同旁内角D.∠A与∠ABF是内错角【分析】两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角.两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的两旁,则这样一对角叫做内错角.两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁内角.解:A.∠A与∠EDC是同位角,本选项正确;B.∠A与∠C不是同旁内角,本选项错误;C.∠A与∠ADC是同旁内角,本选项正确;D.∠A与∠ABF是内错角,本选项正确;故选:B.8.当a为何值时,方程组的解,x、y的值互为相反数()A.a=﹣8B.a=8C.a=10D.a=﹣10【分析】①﹣②×2得出﹣x﹣19y=36,得出方程组,求出x、y的值,再把x=2,y=﹣2代入①求出a即可.解:当x、y互为相反数时,x+y=0,∵,∴①﹣②×2得:﹣x﹣19y=36,解方程组得:,把x=2,y=﹣2代入①得:6+10=2a,解得:a=8,故选:B.9.把一张对边互相平行的纸条按如图所示折叠,EF是折痕,若∠EFB=34°,则下列结论不正确的是()A.∠C′EF=34°B.∠AEC=146°C.∠BGE=68°D.∠BFD=112°【分析】根据平行线的性质以及翻折不变性,分别求出∠C′EF;∠AEC;∠BGE;∠BFD即可判断.解:A、∵∠EFB=34°,AC′∥BD′,∴∠EFB=∠FEC′=∠FEG=34°,故正确,不符合题意;B、由折叠可得∠C′EG=68°,则∠AEC=180°﹣∠C′EG=112°,故错误,符合题意;C、∵∠BGE=∠C′EG=68°,故正确,不符合题意;D、∵EC∥DF,∴∠BFD=∠BGC=∠AEC=112°,故正确,不符合题意.故选:B.10.任何一个正整数n都可以进行这样的分解:n=s×t(s,t是正整数,且s≤t),如果p ×q在n的所有分解中两因数之差的绝对值最小,我们就称p×q是n的最优分解,并规定:F(n)=.例如24可以分解成1×24,2×12,3×8,4×6这四种,这时就有F (24)==.给出下列关于F(n)的说法:①F(6)=;②F(16)=1;③F (n2﹣n)=1﹣;④若n是一个完全平方数,F(n)=1.其中说法正确的个数是()A.1B.2C.3D.4【分析】根据最优分解的定义,分别求出6、16、n2﹣n以及完全平方数n,然后对各小题求解即可作出判断.解:①∵6=1×6=2×3,∴F(6)=,故本小题正确;②∵16=1×16=2×8=4×4,∴F(16)==1,故本小题正确;③∵n2﹣n=n(n﹣1),∴F(n2﹣n)==1﹣,故本小题正确;④∵n是一个完全平方数,∴n分解成两个完全相同的数时,差的绝对值最小,∴F(n)=1,故本小题正确.综上所述,说法正确的个数是4.故选:D.二、填空题(本题共8小题,每小题4分,共32分)11.(﹣2)0×()﹣1=2.【分析】利用零指数幂的运算法则、负整数指数幂的运算法则计算即可.解:(﹣2)0×()﹣1=1×2=2.故答案为:2.12.如图所示,直线a∥b,如果∠1=45°,那么∠2的度数是45°.【分析】要求∠2的度数,只需根据平行线的性质求得其对顶角的度数.解:∵a∥b,∴∠3=∠1=45°.∴∠2=∠3=45°.故答案为:45°.13.已知3x﹣2y﹣3=0,求23x÷22y=8.【分析】把3x﹣2y﹣3=0变形为3x﹣2y=3,再根据同底数幂的除法法则计算即可.解:由3x﹣2y﹣3=0得3x﹣2y=3,∴23x÷22y=23x﹣2y=23=8.故答案为:8.14.若分式方程=4﹣无解,则a的值为﹣2.【分析】根据题意得出方程无解时x的值,代入得出a的值.解:去分母得:a=4(x+2)﹣2,整理得:x=,分式方程无解,则=﹣2,则a=﹣2.故答案为:﹣2.15.多项式是完全平方式,则m=±1.【分析】根据完全平方公式得到=(x±1)2,然后再根据完全平方公式把右边展开即可得到m的值.解:根据题意得=(x±1)2,而(x±1)2=x2±x+1,所以m=±1.故答案为±1.16.若方程组的解是,请求出方程组中m,n的值,m= 6.5,n=﹣1.【分析】我们可以把m+5,n+3看成一个整体,设m+5=x,n+3=y,很快可以得到,进而可得答案.解:由题意得:,解得:,故答案为:6.5;﹣1.17.若|a﹣1|+(ab﹣2)2=0,则++…+=.【分析】先由|a﹣1|+(ab﹣2)2=0,利用非负数的性质得出a、b的值,代入原式后,再利用=﹣裂项求和可得.解:∵|a﹣1|+(ab﹣2)2=0,∴a﹣1=0且ab﹣2=0,解得a=1,b=2,则原式=++……+=1﹣+﹣+…+﹣=1﹣=,故答案为:.18.如图,把四张大小相同的长方形卡片(如图①)按图2、图③两种方式放在一个底面为长方形(长比宽多5cm)的盒底上,底面未被卡片覆盖的部分用阴影表示,若记图②中阴影部分的周长为C1,图3中阴影部分的周长为C2,那么C1比C2大10cm.【分析】此题要先设小长方形的长为acm,宽为bcm,再结合图形分别得出图形②的阴影周长和图形③的阴影周长,比较后即可求出答案.解:设小长方形的长为acm,宽为bcm,大长方形的宽为xcm,长为(x+5)cm,∴②阴影周长为:2(x+5+x)=4x+10,∴③下面的周长为:2(x﹣2b+x+5﹣2b),上面的总周长为:2(x+5﹣a+x﹣a),∴总周长为:2(x﹣2b+x+5﹣2b)+2(x+5﹣a+x﹣a)=4(x+5)+4x﹣4(a+2b),又∵a+2b=x+5,∴4(x+5)+4x﹣4(a+2b)=4x,∴C2﹣C3=4x+10﹣4x=10(cm),故答案为10.三、解答题(本题共8小题,19、20.、21、22、23年题8分,24、25题12分,26题14分,共78分)19.(1)计算:(3x2)3•(﹣2x4)÷(﹣9x7);(2)因式分解:﹣2m3+24m2﹣72m.【分析】(1)根据幂的运算性质进行计算便可;(2)先提取公因式,再按照完全平方公式分解.解:(1)原式=27x6•(﹣2x4)÷(﹣9x7)=﹣54x10÷(﹣9x7)=6x3;(2)原式=﹣2m(m2﹣12m+36)=﹣2m(m﹣6)2.20.先化简,然后从﹣2≤x≤2的范围内选取一个合适的整数作为x 的值代入求值.【分析】首先对分式进行化简、把除法转化为乘法、在进行混合运算,把分式转化为最简分式,然后确定x的整数值,把合适的值代入求值,x的值不可使分式的分母为零.【解答】原式==.x满足﹣2≤x≤2且为整数,若使分式有意义,x只能取0,﹣2.∴当x=0时,原式=(或:当x=﹣2时,原式=).21.解方程或方程组:(1);(2)+=.【分析】(1)方程组整理后,利用加减消元法求出解即可;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解:(1)方程组整理得:,①×2+②得:11x=22,解得:x=2,把x=2代入①得:y=3,则方程组的解为;(2)去分母得:3x+3﹣4x=x﹣1,解得:x=2,经检验x=2是分式方程的解.22.某社区积极响应正在开展的“文明城市创建工作”,组织甲、乙两个志愿工程队对社区的一些区域进行绿化改造.已知甲工程队每小时能完成的绿化面积是乙工程队每小时能完成的绿化面积的2倍,并且甲工程队完成300m2的绿化面积比乙工程队完成200m2的绿化面积少用2h.求乙工程队每小时能完成多少平方米的绿化面积?【分析】设乙工程队每小时能完成x平方米的绿化面积,则甲工程队每小时能完成2x 平方米的绿化面积,根据工作时间=总工作量÷工作效率结合甲工程队完成300平方米的绿化面积比乙工程队完成200平方米的绿化面积少用2h,即可得出关于x的分式方程,解之经检验后即可得出结论.解:设乙工程队每小时能完成x平方米的绿化面积,则甲工程队每小时能完成2x平方米的绿化面积,根据题意得:=﹣2,解得:x=25,经检验,x=25是分式方程的解.答:乙工程队每小时能完成25平方米的绿化面积.23.对于二次三项式a2+6a+9,可以用公式法将它分解成(a+3)2的形式,但对于二次三项式a2+6a+8,就不能直接应用完全平方式了,我们可以在二次三项式中先加上一项9,使其成为完全平方式,再减去9这项,使整个式子的值保持不变,于是有:a2+6a+8=a2+6a+9﹣9+8=(a+3)2﹣1=[(a+3)+1][(a+3)﹣1]=(a+4)(a+2)请仿照上面的做法,将下列各式因式分解:(1)x2﹣6x﹣16;(2)x2+2ax﹣3a2.【分析】根据完全平方公式的结构特征是两数的平方和加上或减去它们乘积的2倍,因此对一些不完全符合完全平方公式的代数式,可在保证代数式不变的情况下通过加项或减项的方法配成完全平方公式,据此解答即可.解:(1)x2﹣6x﹣16=x2﹣6x+9﹣9﹣16=(x﹣3)2﹣25=(x﹣3+5)(x﹣3﹣5)=(x+2)(x﹣8);(2)x2+2ax﹣3a2=x2+2ax+a2﹣a2﹣3a2=(x+a)2﹣(2a)2=(x+a+2a)(x+a﹣2a)=(x+3a)(x﹣a).24.两个边长分别为a和b的正方形如图放置(图1),其未叠合部分(阴影)面积为S1;若再在图1中大正方形的右下角摆放一个边长为b的小正方形(如图2),两个小正方形叠合部分(阴影)面积为S2.(1)用含a,b的代数式分别表示S1、S2;(2)若a+b=10,ab=20,求S1+S2的值;(3)当S1+S2=30时,求出图3中阴影部分的面积S3.【分析】(1)根据正方形的面积之间的关系,即可用含a、b的代数式分别表示S1、S2;(2)根据S1+S2=a2﹣b2+2b2﹣ab=a2+b2﹣ab,将a+b=10,ab=20代入进行计算即可;(3)根据S3=(a2+b2﹣ab),S1+S2=a2+b2﹣ab=30,即可得到阴影部分的面积S3.解:(1)由图可得,S1=a2﹣b2,S2=a2﹣a(a﹣b)﹣b(a﹣b)﹣b(a﹣b)=2b2﹣ab;(2)S1+S2=a2﹣b2+2b2﹣ab=a2+b2﹣ab,∵a+b=10,ab=20,∴S1+S2=a2+b2﹣ab=(a+b)2﹣3ab=100﹣3×20=40;(3)由图可得,S3=a2+b2﹣b(a+b)﹣a2=(a2+b2﹣ab),∵S1+S2=a2+b2﹣ab=30,∴S3=×30=15.25.阅读下列材料,然后解答后面的问题.我们知道方程2x+3y=12有无数组解,但在实际生活中我们往往只需求出其正整数解.例:由2x+3y=12得y==4﹣x(x,y为正整数).∴则有0<x<6,又∵y=4﹣x为正整数,∴x为正整数.由2与3互质,可知x为3的倍数,从而x=3,代入y=4﹣x=2.∴2x+3y=12的正整数解为.问题:(1)请你写出方程3x+y=7的一组正整数解:或(只要写出其中的一组即可).(2)若为自然数,则满足条件的x值有B.A.2个B.3个C.4个D.5个(3)为了开展“阳光体育”活动,某班计划购买甲、乙两种体育用品(每种体育用品至少购买1件),其中甲种体育用品每件20元,乙种体育用品每件30元,共用去180元,问有几种购买方案.【分析】(1)求方程3x+y=7的正整数解,可给定x一个正整数值,计算y的值,如果y的值也是正整数,那么就是原方程的一组正整数解.(2)参照例题的解题思路进行解答;(3)设购买甲种体育用品x件,购买乙种体育用品y件,根据“甲种体育用品每件20元,乙种体育用品每件30元,共用去180元”列出方程,并解答.解:(1)由3x+y=7,得y=7﹣3x(x、y为正整数).则当x=1时,y=4;当x=2时,y=1.故方程的正整数解是或(只要写出其中的一组即可);(2)同样,若为自然数,则有:0<x﹣2≤9,即2<x≤11.当x=3时,=9;当x=5时,=3;当x=11时,=1.即满足条件x的值有3个,故选:B.(3)设购买甲种体育用品x件,购买乙种体育用品y件,依题意得:20x+30y=180,2x+3y=18,y=6﹣x,∵x,y是正整数,当x=3时,y=4.当x=6时,y=2.故有两种购买方案:①购买甲种体育用品3件,购买乙种体育用品4件;②购买甲种体育用品6件,购买乙种体育用品2件.故答案为:或(只要写出其中的一组即可);B.26.宁波正着力打造“三江六岸”景观带,计划在甬江两岸设置两座可以旋转的射灯.如图1,灯A射线从AM开始顺时针旋转至AN便立即回转,灯B射线从BP开始顺时针旋转至BQ便立即回转,两灯不停交叉照射.若灯A转动的速度是2度/秒,灯B转动的速度是1度/秒,假定甬江两岸是平行的,即PQ∥MN,且∠BAM:∠BAN=2:1.(1)填空:∠BAN=60°;(2)若灯B射线先转动30s,灯A射线才开始转动,在灯B射线到达BQ之前,灯A 转动几秒,两灯的光束互相平行?(3)如图2,若两灯同时转动,在灯A射线到达AN之前,假设射出的光束交于点C,过点C作∠ACD交PQ于点D,且∠ACD=120°,请探究:在转动过程中,∠BAC与∠BCD之间的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请说明理由.【分析】(1)根据∠BAM+∠BAN=180°,∠BAM:∠BAN=2:1,即可得到∠BAN 的度数;(2)设A灯转动t秒,两灯的光束互相平行,分两种情况进行讨论:当0<t<90时,根据2t=1•(30+t),可得t=30;当90<t<150时,根据1•(30+t)+(2t﹣180)=180,可得t=110;(3)设灯A射线转动时间为t秒,根据∠BAC=2t﹣120°,∠BCD=120°﹣∠BCD=t﹣60°,即可得出∠BAC:∠BCD=2:1,据此可得∠BAC和∠BCD关系不会变化.解:(1)∵∠BAM+∠BAN=180°,∠BAM:∠BAN=2:1,∴∠BAN=180°×=60°,故答案为:60;(2)设A灯转动t秒,两灯的光束互相平行,①当0<t<90时,如图1,∵PQ∥MN,∴∠PBD=∠BDA,∵AC∥BD,∴∠CAM=∠BDA,∴∠CAM=∠PBD∴2t=1•(30+t),解得t=30;②当90<t<150时,如图2,∵PQ∥MN,∴∠PBD+∠BDA=180°,∵AC∥BD,∴∠CAN=∠BDA∴∠PBD+∠CAN=180°∴1•(30+t)+(2t﹣180)=180,解得t=110,综上所述,当t=30秒或110秒时,两灯的光束互相平行;(3)∠BAC和∠BCD关系不会变化.理由:设灯A射线转动时间为t秒,∵∠CAN=180°﹣2t,∴∠BAC=60°﹣(180°﹣2t)=2t﹣120°,又∵∠ABC=120°﹣t,∴∠BCA=180°﹣∠ABC﹣∠BAC=180°﹣t,而∠ACD=120°,∴∠BCD=120°﹣∠BCA=120°﹣(180°﹣t)=t﹣60°,∴∠BAC:∠BCD=2:1,即∠BAC=2∠BCD,∴∠BAC和∠BCD关系不会变化.。

2019年高考浙江卷数学(附参考答案和详解)

2019年高考浙江卷数学(附参考答案和详解)

绝密★启用前2019年普通高等学校招生全国统一考试(浙江卷)数学总分:150分考试时间:120分钟★祝考试顺利★注意事项:1、本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证条形码粘贴在答题卡的指定位置。

用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。

2、选择题的作答:选出每小题答案后,用2B 铅笔将答题卡上对应题目的答案标号涂黑。

写在试题卷、草稿纸、答题卡上的非答题区域均无效。

3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内,写在试题卷、草稿纸、答题卡上的非答题区域均无效。

4、考试结束后,将本试卷和答题卡一并上交。

第I 卷一、选择题:本题共10小题,每小题4分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知全集{}1,0,1,2,3U =-,集合{}0,1,2A =,{}1,0,1B =-,则()U A B =I ð( ) A.{}1-B.{}0,1C.{}1,2,3-D.{}1,0,1,3-2.渐近线方程为0x y ±=的双曲线的离心率是( )B.1D.23.若实数x ,y 满足约束条件340,340,0,x y x y x y -+≥⎧⎪--≤⎨⎪+≥⎩则32z x y =+的最大值是( )A.1-B.1C.10D.124.祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V Sh =柱体,其中S 是柱体的底面积,h 是柱体的高.若某柱体的三视图如图所示(单位:cm ),则该柱体的体积(单位:3cm )是( )A.158B.162C.182D.3245.若0a >,0b >,则“4a b +≤”是“4ab ≤”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件6.在同一直角坐标系中,函数1x y a =,1log 2a y x ⎛⎫=+⎪⎝⎭(0a >,且1a ≠)的图象可能是( ) A. B.C. D.7.设01a <<,则随机变量X 的分布列是01111333X a P则当a 在()0,1内增大时( ) A.()D X 增大 B.()D X 减小C.()D X 先增大后减小D.()D X 先减小后增大8.设三棱锥V ABC -的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点),记直线PB 与直线AC 所成的角为α,直线PB 与平面ABC 所成的角为β,二面角P AC B --的平面角为γ,则( ) A.βγ<,αγ<B.βα<,βγ<C.βα<,γα<D.αβ<,γβ<9.已知,a b ∈R ,函数()()32,0111,032x x f x x a x ax x <⎧⎪=⎨-++≥⎪⎩,若函数()y f x ax b =--恰有3个零点,则( ) A.1a <-,0b < B.1a <-,0b >C.1a >-,0b <D.1a >-,0b >10.设,a b ∈R ,数列{}n a 满足1a a =,21n na ab +=+,*n ∈N ,则( ) A.当12b =时,1010a > B.当14b =时,1010a >C.当2b =-时,1010a >D.当4b =-时,1010a >第Ⅱ卷(共110分)二、填空题:本题共7小题,多空题每题6分,单空题每题4分。

2019学年浙江普通高校招生学业水平考试数学试卷【含答案及解析】

2019学年浙江普通高校招生学业水平考试数学试卷【含答案及解析】

2019学年浙江普通高校招生学业水平考试数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、选择题1. 已知集合,,若,则()A.3______________B.4___________C.5______________D.62. 直线的倾斜角是()A. ______________B. _________C.D.3. 函数的定义域为()A. ______________B. ____________________C.______________ D.4. 若点在角的终边上,则()A. B. ________ C. D.5. 在平面直角坐标系中,动点的坐标满足方程,则点的轨迹经过()A.第一、二象限B.第二、三象限C.第三、四象限D.第一、四象限6. 不等式组表示的平面区域(阴影部分)是()7. 在空间中,下列命题正确的是()A.经过三个点有且只有一个平面B.经过一个点和一条直线有且只有一个平面C.经过一个点且与一条直线平行的平面有且只有一个D.经过一个点且与一条直线垂直的平面有且只有一个8. 已知向量,,则“ ”是“ ”的()A.充分不必要条件B.必要不充分条件C.充要条件______________________________________D.既不充分也不必要条件9. 函数是()A.偶函数且最小正周期为B.奇函数且最小正周期为C.偶函数且最小正周期为___________________________________D.奇函数且最小正周期为10. 设等差数列的前项和为,若,,则()A.12___________B.14______________C.16___________________D.1811. 某几何体的三视图如图所示(单位:cm),则该几何体的体积是()A. ___________B. ________C. _________D.12. 设向量,,,,,若,则的最小值是()A. B. C. D.13. 如图,设为圆锥的底面直径,为母线,点在底面圆周上,若,,则二面角大小的正切值是()A. ______________B. ______________C.D.14. 设函数,,其中为自然对数的底数,则()A. 对于任意实数恒有______________B.存在正实数使得C.对于任意实数恒有______________D.存在正实数使得15. 设双曲线的左、右焦点分别为,,以为圆心,为半径的圆与双曲线在第一、二象限内依次交于,两点,若,则该双曲线的离心率是()A. ________B.C. _________D.216. 函数按照下述方法定义:当时,;当时,,方程的所有实数根之和是()A.8_________B.13_________C.18______________D.2517. 设实数,,满足:,,则下列不等式中不成立的是()A. ______________________________________B. ____________________C. ______________________________________D.18. 如图,在四面体中,,,,点,,,分别在棱,,,上,若直线,都平行于平面,则四边形面积的最大值是()A. B. C. ________ D.二、填空题19. 已知抛物线过点,则 ______,准线方程是______.20. 设数列的前项和为,若,,则_______.21. 在中,,,,若点满足,则 ______.22. 函数设,若其定义域内不存在实数,使得,则的取值范围是_____.三、解答题23. 在中,内角,,所对的边分别为,,,已知,其中为锐角.(1)求角的大小;(2),,求边的长.24. 设,为椭圆的左、右焦点,动点的坐标为,过点的直线与椭圆交于,两点.(3)求,的坐标;(4)若直线,,的斜率之和为0,求的所有整数值.25. 设函数的定义域为,其中 .(1)当时,写出函数的单调区间(不要求证明);(2)若对于任意的,均有成立,求实数的取值范围.参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第20题【答案】第21题【答案】第22题【答案】第23题【答案】第24题【答案】第25题【答案】。

2019年浙江省高考理科数学试卷及答案解析(word版)

2019年浙江省高考理科数学试卷及答案解析(word版)

2019年普通高等学校招生全国统一考试(浙江卷)数学(理科)一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出 的四个选项中,只有一项是符合题目要求的.(1)设全集{}2|≥∈=x N x U ,集合{}5|2≥∈=x N x A , 则=A C U ( )A. ∅B. }2{C. }5{D. }5,2{(2)已知是虚数单位,R b a ∈,,则“1==b a ”是“i bi a 2)(2=+”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充分必要条件 D. 既不充分也不必要条件(3)某几何体的三视图(单位:cm )如图所示,则此几何体的 表面积是 A. 902cm B. 1292cm C. 1322cm D. 1382cm4.为了得到函数 x x y 3cos 3sin +=的图像,可以将函数x y 3sin 2=的图像( )A.向右平移4π个单位 B.向左平移4π个单位 C.向右平移12π个单位 D.向左平移12π个单位5.在46)1()1(y x ++的展开式中,记nmy x 项的系数为),(n m f ,则=+++)3,0(2,1()1,2()0,3(f f f f ) ( )A.45B.60C.120D. 2106.已知函数则且,3)3()2()1(0,)(23≤-=-=-≤+++=f f f c bx ax x x f ( )A.3≤cB.63≤<cC.96≤<cD. 9>c7.在同意直角坐标系中,函数x x g x x x f a a log )(),0()(=≥=的图像可能是( )8.记,max{,},x x y x y y x y ≥⎧=⎨<⎩,,min{,},y x yx y x x y≥⎧=⎨<⎩,设,a b 为平面向量,则( )A.min{||,||}min{||,||}a b a b a b +-≤B.min{||,||}min{||,||}a b a b a b +-≥C.2222min{||,||}||||a b a b a b +-≥+ D.2222min{||,||}||||a b a b a b +-≤+9.已知甲盒中仅有1个球且为红球,乙盒中有m 个红球和n 个篮球 ()3,3m n ≥≥,从乙盒中随机抽取()1,2i i =个球放入甲盒中.(a )放入个球后,甲盒中含有红球的个数记为()1,2ii ξ=;(b )放入个球后,从甲盒中取1个球是红球的概率记为 ()1,2i p i =. 则A.()()1212,p p E E ξξ><B.()()1212,p p E E ξξ<>C.()()1212,p p E E ξξ>>D.()()1212,p p E E ξξ<< 10.设函数21)(x x f =,),(2)(22x x x f -=|2sin |31)(3x x f π=,99,,2,1,0,99==i ia i ,记|)()(||)()(||)()(|98991201a f a f a f a f a f a f I k k k k k k k -++-+-= ,.3,2,1=k 则A.321I I I <<B. 312I I I <<C. 231I I I <<D. 123I I I << 二、填空题:本大题共7小题,每小题4分,共28分.11.若某程序框图如图所示,当输入50时,则该程序运算后输出的 结果是________.12.随机变量ξ的取值为0,1,2,若()105P ξ==,()1E ξ=,则()D ξ=________. 13.当实数x ,y 满足240,10,1,x y x y x +-≤⎧⎪--≤⎨⎪≥⎩时, 14ax y ≤+≤恒成立,则实数a 的取值范围是________.14.在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有_____种(用数字作答).15.设函数()⎪⎩⎪⎨⎧≥-<+=0,0,22x x x x x x f 若()()2≤a f f ,则实数a 的取值范围是______16.设直线)0(03≠=+-m m y x 与双曲线12222=-by a x (0a b >>)两条渐近线分别交于点B A ,,若点)0,(m P 满足PB PA =,则该双曲线的离心率是__________17、如图,某人在垂直于水平地面的墙面前的点处进行射击训练. 已知点到墙面的距离为,某目标点沿墙面的射击线移动,此人为了准确瞄准目标点,需计算由点观察点的仰角的大小.若则的最大值19(本题满分14分)已知数列{}n a 和{}n b 满足()()*∈=N n a a a nb n 221 . 若{}na 为 等比数列,且.6,2231b b a +==(1)求n a 与n b ; (2)设()*∈-=N n b a c nn n 11。

浙江杭州2019中考试题数学卷(解析版)

浙江杭州2019中考试题数学卷(解析版)

一、选择题1. =( )A .2B .3C .4D .5 【答案】B【解析】试题分析:算术平方根的概念:一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 叫做a 的算术平方根.依此即可求解考点:算术平方根2.如图,已知直线a ∥b ∥c ,直线m 交直线a ,b ,c 于点A ,B ,C ,直线n 交直线a ,b ,c 于点D ,E ,F ,若21 BC AB ,则EFDE =( )A .B .C .32 D .1 【答案】B考点:平行线分线段成比例3.下列选项中,如图所示的圆柱的三视图画法正确的是( )A .B .C .D .【答案】A【解析】试题分析:根据从正面看到的图叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图,可得答案.该圆柱体的主视图、俯视图均为矩形,左视图为圆,考点:简单几何体的三视图4.如图是某市2016年四月每日的最低气温(℃)的统计图,则在四月份每日的最低气温这组数据中,中位数和众数分别是()A .14℃,14℃B .15℃,15℃C .14℃,15℃D .15℃,14℃【答案】A【解析】考点:(1)、众数;(2)、条形统计图;(3)、中位数5.下列各式变形中,正确的是( )A .x 2•x 3=x 6B .=|x| C .(x 2﹣)÷x=x ﹣1 D .x 2﹣x+1=(x ﹣)2+41 【答案】B【解析】试题分析:直接利用二次根式的性质以及同底数幂的乘法运算法则和分式的混合运算法则分别化简求出答案.A 、x 2•x 3=x 5,故此选项错误;B 、=|x|,正确;C 、(x 2﹣)÷x=x ﹣,故此选项错误;D 、x 2﹣x+1=(x ﹣)2+,故此选项错误;考点:(1)、二次根式的性质与化简;(2)、同底数幂的乘法;(3)、多项式乘多项式;(4)、分式的混合运算6.已知甲煤场有煤518吨,乙煤场有煤106吨,为了使甲煤场存煤是乙煤场的2倍,需要从甲煤场运煤到乙煤场,设从甲煤场运煤x 吨到乙煤场,则可列方程为( )A .518=2B .518﹣x=2×106C .518﹣x=2D .518+x=2 【答案】C【解析】试题分析:设从甲煤场运煤x 吨到乙煤场,根据题意列出方程解答即可.设从甲煤场运煤x 吨到乙煤场,可得:518﹣x=2,考点:由实际问题抽象出一元一次方程7.设函数y=x k(k ≠0,x >0)的图象如图所示,若z=y1,则z 关于x 的函数图象可能为( )A.B.C.D.【答案】D【解析】考点:反比例函数的图象8.如图,已知AC是⊙O的直径,点B在圆周上(不与A、C重合),点D在AC的延长线上,连接BD交⊙O于点E,若∠AOB=3∠ADB,则()A.DE=EB B.2DE=EB C.3DE=DO D.DE=OB【答案】D【解析】考点:圆周角定理9.已知直角三角形纸片的两条直角边长分别为m和n(m<n),过锐角顶点把该纸片剪成两个三角形,若这两个三角形都为等腰三角形,则()A.m2+2mn+n2=0 B.m2﹣2mn+n2=0 C.m2+2mn﹣n2=0 D.m2﹣2mn﹣n2=0【答案】C【解析】试题分析:如图,根据等腰三角形的性质和勾股定理可得m2+m2=(n﹣m)2,整理即可求解m2+m2=(n﹣m)2, 2m2=n2﹣2mn+m2, m2+2mn﹣n2=0.考点:(1)、等腰直角三角形;(2)、等腰三角形的性质10.设a,b是实数,定义@的一种运算如下:a@b=(a+b)2﹣(a﹣b)2,则下列结论:①若a@b=0,则a=0或b=0②a@(b+c)=a@b+a@c③不存在实数a,b,满足a@b=a2+5b2④设a,b是矩形的长和宽,若矩形的周长固定,则当a=b时,a@b最大.其中正确的是()A.②③④B.①③④C.①②④D.①②③【答案】C【解析】试题分析:根据新定义可以计算出啊各个小题中的结论是否成立,从而可以判断各个小题中的说法是否正确,从而可以得到哪个选项是正确的.考点:(1)、因式分解的应用;(2)、整式的混合运算;(3)、二次函数的最值二、填空题(每题4分)11.tan60°= .【答案】【解析】试题分析:根据特殊角的三角函数值直接得出答案即可考点:特殊角的三角函数值12.已知一包糖果共有5种颜色(糖果只有颜色差别),如图是这包糖果分布百分比的统计图,在这包糖果中任意取一粒,则取出糖果的颜色为绿色或棕色的概率是 .【答案】21 【解析】试题分析:先求出棕色所占的百分比,再根据概率公式列式计算即可得解.棕色所占的百分比为:1﹣20%﹣15%﹣30%﹣15%=1﹣80%=20%, 所以,P (绿色或棕色)=30%+20%=50%=21. 考点: (1)、概率公式;(2)、扇形统计图13.若整式x 2+ky 2(k 为不等于零的常数)能在有理数范围内因式分解,则k 的值可以是 (写出一个即可).【答案】-1【解析】试题分析:令k=﹣1,使其能利用平方差公式分解即可.令k=﹣1,整式为x2﹣y2=(x+y)(x ﹣y),考点:因式分解-运用公式法14.在菱形ABCD中,∠A=30°,在同一平面内,以对角线BD为底边作顶角为120°的等腰三角形BDE,则∠EBC的度数为.【答案】105°或45°【解析】考点:(1)、菱形的性质;(2)、等腰三角形的性质15.在平面直角坐标系中,已知A(2,3),B(0,1),C(3,1),若线段AC与BD互相平分,则点D关于坐标原点的对称点的坐标为.【答案】(﹣5,﹣3)【解析】试题分析:直接利用平行四边形的性质得出D点坐标,进而利用关于原点对称点的性质得出答案.如图所示:∵A(2,3),B(0,1),C(3,1),线段AC与BD互相平分,∴D点坐标为:(5,3),∴点D关于坐标原点的对称点的坐标为:(﹣5,﹣3).考点:(1)、关于原点对称的点的坐标;(2)、平行四边形的判定与性质16.已知关于x 的方程=m 的解满足(0<n <3),若y >1,则m 的取值范围是 . 【答案】52<m <32 【解析】考点:(1)、分式方程的解;(2)、二元一次方程组的解;(3)、解一元一次不等式三、解答题17.计算6÷(﹣3121 ),方方同学的计算过程如下,原式=6÷(-21)+6÷31=﹣12+18=6.请你判断方方的计算过程是否正确,若不正确,请你写出正确的计算过程.【答案】-36【解析】试题分析:根据有理数的混合运算顺序,先算括号里面的,再根据除法法则进行计算即可 试题解析:方方的计算过程不正确,正确的计算过程是:原式=6÷(﹣21+)=6÷(﹣)=6×(﹣6)=﹣36. 考点:有理数的除法18.某汽车厂去年每个季度汽车销售数量(辆)占当季汽车产量(辆)百分比的统计图如图所示.根据统计图回答下列问题:(1)若第一季度的汽车销售量为2100辆,求该季的汽车产量;(2)圆圆同学说:“因为第二,第三这两个季度汽车销售数量占当季汽车产量是从75%降到50%,所以第二季度的汽车产量一定高于第三季度的汽车产量”,你觉得圆圆说的对吗?为什么?【答案】(1)、3000辆;(2)、说法不对,理由见解析【解析】考点:折线统计图19.如图,在△ABC中,点D,E分别在边AB,AC上,∠AED=∠B,射线AG分别交线段DE,BC于点F,G,且.(1)求证:△ADF∽△ACG;(2)若,求的值.【答案】(1)、证明过程见解析;(2)、1.【解析】考点:相似三角形的判定与性质20.把一个足球垂直水平地面向上踢,时间为t (秒)时该足球距离地面的高度h (米)适用公式h=20t ﹣5t 2(0≤t ≤4).(1)当t=3时,求足球距离地面的高度;(2)当足球距离地面的高度为10米时,求t ;(3)若存在实数t 1,t 2(t 1≠t 2)当t=t 1或t 2时,足球距离地面的高度都为m (米),求m 的取值范围.【答案】(1)、15米;(2)、t=2+2或t=2-2;(3)、0≤m <20【解析】试题分析:(1)、将t=3代入解析式可得;(2)、根据h=10可得关于t 的一元二次方程,解方程即可;(3)、由题意可得方程20t ﹣t 2=m 的两个不相等的实数根,由根的判别式即可得m 的范围.试题解析:(1)、当t=3时,h=20t ﹣5t 2=20×3﹣5×9=15(米),∴当t=3时,足球距离地面的高度为15米;(2)、∵h=10, ∴20t ﹣5t 2=10,即t 2﹣4t+2=0, 解得:t=2+2或t=2﹣2, 故经过2+2或2﹣2时,足球距离地面的高度为10米;(3)、∵m ≥0,由题意得t 1,t 2是方程20t ﹣5t 2=m 的两个不相等的实数根,∴b 2﹣4ac=202﹣20m >0, ∴m <20, 故m 的取值范围是0≤m <20.考点:(1)、一元二次方程的应用;(2)、二次函数的应用21.如图,已知四边形ABCD 和四边形DEFG 为正方形,点E 在线段DE 上,点A ,D ,G 在同一直线上,且AD=3,DE=1,连接AC ,CG , AE ,并延长AE 交CG 于点H .(1)求sin ∠EAC 的值.(2)求线段AH 的长.【答案】(1)、55;(2)、1056 【解析】考点:(1)、正方形的性质;(2)、全等三角形的判定与性质;(3)、解直角三角形22.已知函数y1=ax2+bx,y2=ax+b(ab≠0).在同一平面直角坐标系中.(1)若函数y1的图象过点(﹣1,0),函数y2的图象过点(1,2),求a,b的值.(2)若函数y2的图象经过y1的顶点.①求证:2a+b=0;②当1<x<时,比较y1,y2的大小.【答案】(1)、a=1,b=1;(2)、①、证明过程见解析;②、当a>0时,y1<y2;当a<0时,y1>y2.【解析】试题解析:(1)、由题意得:,解得:,故a=1,b=1.(2)、①、∵y1=ax2+bx=a,∴函数y1的顶点为(﹣,﹣),∵函数y2的图象经过y1的顶点,∴﹣=a(﹣)+b,即b=﹣,∵ab≠0,∴﹣b=2a,∴2a+b=0.②、∵b=﹣2a,∴y1=ax2﹣2ax=ax(x﹣2),y2=ax﹣2a,∴y1﹣y2=a(x﹣2)(x﹣1).∵1<x<,∴x﹣2<0,x﹣1>0,(x﹣2)(x﹣1)<0.当a>0时,a(x﹣2)(x﹣1)<0,y1<y2;当a<0时,a(x﹣1)(x﹣1)>0,y1>y2.考点:二次函数综合题23.在线段AB的同侧作射线AM和BN,若∠MAB与∠NBA的平分线分别交射线BN,AM于点E,F,AE和BF交于点P.如图,点点同学发现当射线AM,BN交于点C;且∠ACB=60°时,有以下两个结论:①∠APB=120°;②AF+BE=AB.那么,当AM∥BN时:(1)点点发现的结论还成立吗?若成立,请给予证明;若不成立,请求出∠APB的度数,写出AF,BE,AB长度之间的等量关系,并给予证明;(2)设点Q为线段AE上一点,QB=5,若AF+BE=16,四边形ABEF的面积为32,求AQ 的长.【答案】(1)、∠APB=90°,AF+BE=2AB;理由见解析;(2)、AQ=43﹣3或43+3【解析】(2)、如图1,过点F作FG⊥AB于G,∵AF=BE,AF∥BE,∴四边形ABEF是平行四边形,∵AF+BE=16,∴AB=AF=BE=8,∵323=8×FG,∴FG=43,在Rt△FAG中,AF=8,∴∠FAG=60°,当点G在线段AB上时,∠FAB=60°,当点G在线段BA延长线时,∠FAB=120°,①如图2,当∠FAB=60°时,∠PAB=30°,∴PB=4,PA=43,∵BQ=5,∠BPA=90°,∴PQ=3,∴AQ=43﹣3或AQ=43+3.考点:四边形综合题。

2019年浙江杭州中考数学试题(解析版)

2019年浙江杭州中考数学试题(解析版)

{来源}2019年德州中考数学{适用范围:3.九年级}{标题}2019年杭州市中考数学试卷考试时间:120分钟满分:120分{题型:1-选择题}一、选择题(本大题有10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个符合题目要求){题目}1.(2019年杭州)计算下列各式,值最小的是()A.2×0+1﹣9B.2+0×1﹣9C.2+0﹣1×9D.2+0+1﹣9{答案}A{解析}本题考查了有理数的混合运算,有理数混合运算顺序为:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先算括号内的运算.计算得:2×0+1﹣9=﹣8,2+0×1﹣9=﹣7,2+0﹣1×9=﹣7,2+0+1﹣9=﹣6,比较可知-8最小,因此本题选A.{分值}3{章节:[1-1-4-1]有理数的乘法}{考点:有理数的乘法法则}{类别:常考题}{难度:1-最简单}{题目}2.(2019年杭州)在平面直角坐标系中,点A(m,2)与点B(3,n)关于y轴对称,则()A.m=3,n=2B.m=﹣3,n=2C.m=2,n=3D.m=﹣2,n=﹣3{答案}B{解析}本题考查了关于坐标轴对称的点的坐标的关系,A,B关于y轴对称,则横坐标互为相反数,纵坐标相同.∵点A(m,2)与点B(3,n)关于y轴对称,∴m=﹣3,n=2.因此本题选B.{分值}3{章节:[1-13-1-1]轴对称}{考点:坐标与图形的性质}{类别:常考题}{难度:1-最简单}{题目}3.(2019年杭州)如图,P为⊙O外一点,P A,PB分别切⊙O于A,B两点,若P A=3,则PB=()A.2B.3C.4D.5{答案}B{解析}本题考查了切线长定理.因为P A和PB与⊙O相切,所以根据切线长定理可知P A=PB=3,因此本题选B.{分值}3{章节:[1-24-2-2]直线和圆的位置关系} {考点:切线长定理} {类别:常考题} {难度:1-最简单}{题目}4.(2019年杭州)已知九年级某班30位学生种树72棵,男生每人种3棵树,女生每人种2棵树,设男生有x 人,则( ) A .2x +3(72﹣x )=30 B .3x +2(72﹣x )=30 C .2x +3(30﹣x )=72 D .3x +2(30﹣x )=72 {答案}D{解析}本题考查了列一元一次方程解应用题,设男生x 人,则女生有(30-x )人,由题意得:3x +2(30﹣x )=72,因此本题选D . {分值}3{章节:[1-3-3]实际问题与一元一次方程} {考点:一元一次方程的应用(工程问题)} {类别:常考题} {难度:1-最简单}{题目}5.(2019年杭州)点点同学对数据26,36,36,46,5■,52进行统计分析,发现其中一个两位数被墨水涂污看不到了,则计算结果与被涂污数字无关的是( )A .平均数B .中位数C .方差D .标准差 {答案}B{解析}本题考查了平均数、中位数、方差、标准差的概念,因为将6个数从小到大排列后,被涂的数总是排在第5或第6的位置,最中间两个数始终是36、46,故其中位数不变,始终是41,因此本题选B . {分值}3{章节:[1-20-2-1]方差} {考点:标准差}{考点:统计量的选择} {类别:常考题} {难度:2-简单}{题目}6.(2019年杭州)如图,在△ABC 中,点D ,E 分别在AB 和AC 上,DE ∥BC ,M 为BC 边上一点(不与点B ,C 重合),连接AM 交DE 于点N ,则( ) A .ADAN ANAE B .BDMN MNCE C .DNNE BMMC D .DNNEMCBM{答案}C{解析}本题考查了相似三角形的判定与性质,∵DE ∥BC ,∴△ADN ∽△ABM ,△ANE ∽△AMCE N MD CBA∴DN AN BM AM ,ANNE AM MC ,∴DNNEBM MC,因此本题选C . {分值}3{章节:[1-27-1-1]相似三角形的判定} {考点:由平行判定相似} {类别:常考题} {难度:3-中等难度}{题目}7.(2019年杭州)在△ABC 中,若一个内角等于另外两个内角的差,则( ) A .必有一个内角等于30° B .必有一个内角等于45° C .必有一个内角等于60° D .必有一个内角等于90° {答案}D{解析}本题考查了三角形的内角和,不妨设在△ABC 中,有∠A =∠C ﹣∠B ,所以∠C =∠A +∠B ,根据三角形内角和定理得∠A +∠B +∠C =180°,∴2∠C =180°,∴∠C =90°,∴△ABC 是直角三角形,因此本题选D . {分值}3{章节:[1-11-2]与三角形有关的角} {考点:三角形内角和定理} {类别:常考题} {难度:2-简单}{题目}8.(2019年杭州)已知一次函数y 1=ax +b 和y 2=bx +a (a ≠b ),函数y 1和y 2的图象可能是( )A .B .C .D . {答案}A{解析}本题考查了一次函数图象象限分布与系数的关系,从增减性以及直线与y 轴的交点位置来进行判断比较快捷,可列表分析如下:{分值}3{章节:[1-19-2-2]一次函数} {考点:一次函数的图象} {类别:常考题} {难度:3-中等难度}{题目}9.(2019年杭州)如图,一块矩形木板ABCD斜靠在墙边(OC⊥OB,点A,B,C,D,O 在同一平面内).已知AB=a,AD=b,∠BCO=x,则点A到OC的距离等于()A.asinx+bsinx B.acosx+bcosx C.asinx+bcosx D.acosx+bsinx{答案}D{解析}本题考查了锐角三角函数的简单实际应用,过点A作AE⊥OB于点E,在矩形ABCD中,且AB=a,AD=BC=b,∵∠COB=∠ABC=90°,∴∠ABE+∠OBC=∠BCO+∠OBC=90°,∴∠ABE=∠BCO=x,∴sinOBxBC=,cosBExAB=,∴sinOB b x=,cosBE a x=,所以点A到OC的距离OE=BE+OB=acosx+bsinx,因此本题选D.{分值}3{章节:[1-28-3]锐角三角函数}{考点:余弦}{类别:常考题}{难度:3-中等难度}{题目}10.(2019年杭州)在平面直角坐标系中,已知a≠b,设函数y=(x+a)(x+b)的图象与x 轴有M个交点,函数y=(ax+1)(bx+1)的图象与x轴有N个交点,则()A.M=N﹣1或M=N+1B.M=N﹣1或M=N+2C.M=N或M=N+1D.M=N或M=N﹣1{答案}C{解析}本题考查了二次函数、一次函数图象与x轴交点的求解,当y=(x+a)(x+b)=0时,x=-a 或x=-b,∵a≠b,∴函数y=(x+a)(x+b)的图象与x轴有两个交点(-a,0)、(-b,0),∴M=2.当ab≠0时,同法可得函数y=(ax+1)(bx+1)的图象与x轴有两个交点(-1a,0)、(-1b,0),此时N=2,故M=N=2;当ab=0时,∵a≠b,∴a与b只能有一个为0,不能同时为0,此时函数为一次函数,其图象与x轴有唯一的交点(-1a,0)或(-1b,0),此时N=1,故M=N+1.综上可知,M=N或M=N+1.因此本题选C.{分值}3{章节:[1-22-2]二次函数与一元二次方程}{考点:抛物线与一元二次方程的关系} }{类别:常考题} {类别:易错题} {难度:3-中等难度}{题型:2-填空题}二、填空题(本大题有6小题,每小题4分,共24分) {题目}11.(2019年杭州)因式分解:1﹣x 2= . {答案}(1﹣x )(1+x ){解析}本题考查了利用平方差公式进行因式分解,1﹣x 2=12﹣x 2=(1﹣x )(1+x ),因此本题答案为:(1﹣x )(1+x ). {分值}4{章节:[1-14-3]因式分解} {考点:因式分解-平方差} {类别:常考题} {难度:1-最简单}{题目}12.(2019年杭州)某计算机程序第一次算得m 个数据的平均数为x ,第二次算得另外n 个数据的平均数为y ,则这m +n 个数据的平均数等于 . {答案}mx nym n++{解析}本题考查了加权平均数,平均数等于总和除以个数,所以平均数mx nym n+=+,因此本题答案为:mx nym n++.{分值}4{章节:[1-20-1-1]平均数}{考点:加权平均数(频数为权重)} {类别:常考题} {难度:2-简单}{题目}13.(2019年杭州)如图是一个圆锥形冰淇淋外壳(不计厚度),已知其母线长为12cm ,底面圆半径为3cm ,则这个冰淇淋外壳的侧面积等于 cm 2(结果精确到个位).{答案}113{解析}本题考查了圆锥的侧面积的计算,圆锥的侧面展开图为扇形,这个扇形的弧长等于圆锥底面的周长,半径等于圆锥的母线长.设圆锥的底面半径为r ,母线长为l ,则其侧面积3123636 3.14113.04113S rl πππ==⨯⨯==⨯=≈侧,因此本题答案为113.{分值}4{章节:[1-24-4]弧长和扇形面积}{考点:圆锥侧面展开图}{类别:常考题}{难度:2-简单}{题目}14.(2019年杭州)在直角三角形ABC中,若2AB=AC,则cosC=.{答案{解析}本题考查了锐角的余弦值的计算,如图所示,分两种情况讨论,AC可以是直角边,也可以是斜边. ①当AC是斜边,设AB=x,则AC=2x,则BC,则cosBCCAC===②当AC是直角边,设AB=x,则AC=2x,则BCx,则cosACCBC====综上,cos C={分值}4{章节:[1-28-3]锐角三角函数}{考点:余弦}{类别:常考题}{类别:易错题}{难度:3-中等难度}{题目}15.(2019年杭州)某函数满足当自变量x=1时,函数值y=0;当自变量x=0时,函数值y =1.写出一个满足条件的函数表达式.{答案}y=﹣x+1,或y=x2-2x+1,或y=-x2+1,或y=-x3+1,y=-x4+1,1y x=-等等(答案不限,合理即可).{解析}本题考查了根据条件列函数关系式,由于x、y可以取0,所以三种常见函数中不能取反比例3x2x函数,只能取一次函数或二次函数.①若取一次函数,可设其解析式为设该函数的解析式为y =kx +b , 由题知01k b b +=⎧⎨=⎩,解得11k b =-⎧⎨=⎩,所以函数的解析式为y =﹣x +1;②若取二次函数,可设其解析式为y =ax 2+bx +c ,由题知01a b c c ++=⎧⎨=⎩,可得11b ac =--⎧⎨=⎩,比如取a =1,则b =-2,函数为y =x 2-2x +1;取a =-1,则b =0,函数为y =-x 2+1等等;③若取其它函数,还可以是y =-x 3+1,y =-x 4+1,1y x =-等等.因此本题答案为:y =﹣x +1,或y =x 2-2x +1,或y =-x 2+1,或y =-x 3+1,y =-x 4+1,1y x =-等等(答案不限,合理即可).{分值}4{章节:[1-22-1-4]二次函数y =ax 2+bx +c 的图象和性质} {考点:其他二次函数综合题} {类别:发现探究} {难度:3-中等难度}{题目}16.(2019年杭州)如图,把某矩形纸片ABCD 沿EF ,GH 折叠(点E ,H 在AD 边上,点F ,G 在BC 边上),使点B 和点C 落在AD 边上同一点P 处,A 点的对称点为A ′点,D 点的对称点为D ′点.若∠FPG =90°,△A ′EP 的面积为4,△D ′PH 的面积为1,则矩形ABCD 的面积等于 .{答案}{解析}本题考查了矩形的折叠问题,涉及相似三角形的判定与性质,在矩形ABCD 中,设AB =x ,由折叠知P A ′=AB =x ,PD ′=CD =x ,A ′E =AE ,D ′H =DH ,∠A ′=∠A =90°,∠D ′=∠D =90°,∠A ′PF =∠B =90°,∠D ′PG =∠C =90°,∵∠FPG =90°,∴∠FPG+∠D ′PG =180°,∴D ′、P 、F 三点共线.∵△A ′EP 的面积为4,△D ′PH 的面积为1,∴12A ′E ·x =4,12D ′H ·x =1,∴A ′E =4D ′H ,设D ′H =a ,则A ′E =4a .由折叠知A 'E ∥PF ,∴∠A 'EP =∠D 'PH ,又∵∠A '=∠D '=90°,∴△A 'EP ∽△D 'PH ,∴''''A E A P D P D H =,∴4a xx a=,∴x =2a ,∴P A ′=PD ′=2a , ∵12•a •2a =1,∴a =1(负值舍去),∴x =2,∴AB =CD =2,,A ′E =AE =4,D ′H =DH =1,∴=AD ==∴矩形ABCD 的面积=2×(因此本题答案为:{分值}4{章节:[1-27-1-1]相似三角形的判定} {考点:相似三角形的判定(两角相等)} {考点:矩形的性质} {考点:折叠问题} {类别:发现探究} {类别:常考题} {难度:4-较高难度}{题型:4-解答题}三、解答题(本大题有7个小题,共66分) {题目}17.(2019年杭州)(本题满分6分)化简:242142x x x .圆圆的解答如下: 2224214224422x x x x x x x x圆圆的解答正确吗?如果不正确,写出正确的解答.{解析}本题考查了异分母分式的加减运算,异分母分式相加减,先通分,再加减.而圆圆的做法丢失了分母,改变了原来式子的值,所以圆圆的做法是错误的. {答案}解:圆圆的解答不正确.正确解答如下:原式242(2)4(2)(2)(2)(2)(2)(2)x x x x x x x x x +-=--+-+-+-24(24)(4)(2)(2)x x x x x -+--=+-(2)(2)(2)x x x x --=+-2xx =-+. {分值}6{章节:[1-15-2-2]分式的加减} {难度:2-简单}{类别:常考题}{类别:易错题}{类别:新定义} {考点:两个分式的加减}{题目}18.(2019年杭州)(本题满分8分)称重五筐水果的质量,若每筐以50千克为基准,超过基准部分的千克数记为正数,不足基准部分的千克数记为负数.甲组为实际称重读数,乙组为记录数据,并把所得数据整理成如下统计表和未完成的统计图(单位:千克).(1)补充完整乙组数据的折线统计图;(2)①甲、乙两组数据的平均数分别为x 甲、x 乙,写出x 甲与x 乙之间的等量关系;②甲、乙两组数据的平均数分别为2S 甲、2S 乙,比较2S 甲与2S 乙的大小,并说明理由.{解析}本题考查了统计表、折线统计图、平均数和方差,第(1)问先描点再连线即可,画出来的图形应该与前图一致;第(2)问根据平均数的简化计算公式'x x a =+容易得到结果;第(3)问根据方差的公式计算即可. {答案}解:(1)补全折线统计图,如图所示.(2)①50x x =+甲乙. ②22S S =甲乙,理由如下:因为2222221[(2)(2)(3)(1)(4)]5S x x x x x =--+-+--+--+-乙乙乙乙乙乙 实际称重读数和记录数据统计表4-1-32-2544947524854321乙组甲组数据序号222221[(4850)(5250)(4750)(4950)(5450)]5x x x x x =--+--+--+--+--乙乙乙乙乙 222221[(48)(52)(47)(49)(54)]5x x x x x =-+-+-+-+-甲甲甲甲甲 2S =甲,所以22S S =甲乙. {分值}{章节:[1-20-2-1]方差} {难度:3-中等难度} {类别:常考题} {考点:方差的性质}{题目}19.(2019年杭州)(本题满分8分)如图,在△ABC 中,AC <AB <BC .(1)已知线段AB 的垂直平分线与BC 边交于点P ,连接AP ,求证:∠APC =2∠B .(2)以点B 为圆心,线段AB 的长为半径画弧,与BC 边交于点Q ,连接AQ .若∠AQC =3∠B ,求∠B 的度数.(第19题(1)) (第19题(2)){解析}本题考查了线段的垂直平分线的性质和等腰三角形的性质.第(1)问现根据垂直平分线条件证出P A =PB ,在利用等边对等角及三角形外角的性质可证;第(2)问根据作图得出AB =BQ ,从而得到相等的角,列方程即可求解. {答案}解:(1)证明:∵点P 在AB 的垂直平分线上,∴P A =PB ,∴∠P AB =∠B ,∵∠APC =∠P AB +∠B ,∴∠APC =2∠B ;(2)根据题意,得BQ =BA ,∠BAQ =∠BQA ,设∠B =x ,则∠AQC =∠B +∠BAQ =3x ,∴∠BAQ =∠BQA =2x ,在△ABQ 中,x +2x +2x =180°, 解得x =36°,∴∠B =36°. {分值}8{章节:[1-13-2-1]等腰三角形} {难度:3-中等难度} {类别:常考题} {考点:等边对等角}{题目}20.(2019年杭州)(本题满分10分)方方驾驶小汽车匀速地从A 地行驶到B 地,行驶里程为480千米,设小汽车的行驶时间为t (单位:小时),行驶速度为v (单位:千米/小时),且全程速度限定为不超过120千米/小时. (1)求v 关于t 的函数表达式;(2)方方上午8点驾驶小汽车从A 地出发.①方方需在当天12点48分至14点(含12点48分和14点)间到达B 地,求小汽车行驶速度v 的范围;②方方能否在当天11点30分前到达B 地?说明理由.{解析}本题考查了反比例函数的实际应用问题.第(1)问根据题意直接列式即可;第(2)问第一小问利用极端值可以确定速度的范围;第二小问可以用两种方法:一是时间相同比速度,二是速度相同比时间.{答案}解: (1)根据题意,得480vt =,所以480v t=,因为4800>,所以当120v ≤时,4t ≥, 综上,v 关于t 的函数表达式为480(4)v t t=≥; (2)①根据题意,得4.86t ≤≤,当t =4.8时,v =10;当t =6时,v =8. ∴小汽车行驶速度v 的范围是80100v ≤≤; ②方方不能在11点30分前到达B 地.理由如下: 法一:若方方要在11点30分前到达B 地,则 3.5t <, 所以4801203.5v >>,所以方方不能在11点30分前到达B 地; 法二:方方按最快的速度行驶,那么v =120,当v =120时,可得t =480120=4,8+4=12,∴方方最早也要12点才能到达,不能在当天11点30分前到达B 地. {分值}10{章节:[1-26-2]实际问题与反比例函数} {难度:3-中等难度} {类别:常考题}{考点:生活中的反比例函数的应用}{题目}21.(2019年杭州)(本题满分10分)如图,已知正方形ABCD 的边长为1,正方形CEFG 的面积为S 1,点E 在DC 边上,点G 在BC 的延长线上,设以线段AD 和DE 为邻边的矩形的面积为S 2,且S 1=S 2.(1)求线段CE 的长;(2)若点H 为BC 边的中点,连接HD ,求证:HD =HG .{解析}本题考查了在正方形条件下列一元二次方程解决问题.第(1)问设小正方形边长为未知数,根据S 1=S 2即可列方程求解;第(2)问在第一问的基础上利用勾股定理计算即可. {答案}解:(1)在正方形ABCD 和正方形CEFG 中,AD =BC =CD =1,∠BCD =90°.设CE =x (0<x <1),则DE =1-x ,因为S 1=S 2,所以x 2=1-x ,解得x 1x 2,∴CEGFE H DCBA(2)因为点H 为BC 边的中点,所以CH =12,所以HD ,因为CG =CE H ,C ,G在同一直线上,所以HG =HC +CG =12,所以HD =HG .{分值}10{章节:[1-21-4]实际问题与一元二次方程} {难度:3-中等难度} {类别:常考题}{考点:一元二次方程的应用—面积问题} {考点:正方形的性质}{题目}22.(2019年杭州)(本题满分12分)设二次函数y =(x ﹣x 1)(x ﹣x 2)(x 1,x 2是实数). (1)甲求得当x =0时,y =0;当x =1时,y =0;乙求得当x=12时,y=12-.若甲求得的结果都正确,你认为乙求得的结果正确吗?说明理由.(2)写出二次函数图象的对称轴,并求该函数的最小值(用含x 1,x 2的代数式表示). (3)已知二次函数的图象经过(0,m )和(1,n )两点(m ,n 是实数),当0<x 1<x 2<1时,求证:0<mn <116. {解析}本题考查了二次函数的有关性质,重点考查了二次函数与一元二次方程的关系.第(1)问根据甲的结果求出函数解析式,再通过代入比较判断乙的结果是否正确;第(2)问注意不能再利用(1)的结论,而是要用含x 1,x 2的代数式来进行计算,算的时候抓住抛物线的轴对称性就比较方便了;第(3)问需要先用含x 1,x 2的代数式来表示出m 、n 以及mn ,然后再通过配方法变形来证出结论,难度 较大. {答案}解:(1)乙求得的结果不正确,理由如下:根据题意,知图象经过点(0,0),(1,0),所以(1)y x x =-,当12x =时,1111(1)2242y =⨯-=-≠-,所以乙求得的结果不正确. (2)函数图象的对称轴为122x x x +=,当122x x x +=时,设函数有最小值M ,则212121212()224x x x x x x M x x ++-⎛⎫⎛⎫=--=- ⎪⎪⎝⎭⎝⎭;(3)因为12()()y x x x x =--, 所以12m x x =,12(1)(1)n x x =--,所以2212121122(1)(1)()()mn x x x x x x x x =--=-- 22121111[()][()]2424x x =--+⋅--+因为1201x x <<<,并结合函数(1)y x x =-的图象,所以211110()244x <--+≤,221110()244x <--+≤所以1016mn <≤,因为12x x ≠,所以1016mn <<.{分值}12{章节:[1-22-2]二次函数与一元二次方程} {难度:5-高难度} {类别:高度原创}{考点:抛物线与一元二次方程的关系}{题目}23.(2019年杭州)(本题满分12分)如图,已知锐角三角形ABC 内接于⊙O ,OD ⊥BC 于点D ,连接OA .(1)若∠BAC =60°, ①求证:OD =12OA . ②当OA =1时,求△ABC 面积的最大值. (2)点E 在线段OA 上,OE =OD .连接DE ,设∠ABC =m ∠OED ,∠ACB =n ∠OED (m ,n 是正数),若∠ABC <∠ACB ,求证:m ﹣n +2=0.{解析}本题考查了垂径定理,圆周角、圆心角、弧的关系等相关圆的知识.(1)①连接OB 、OC ,将OD 与OA 的关系探究转化为OD 与OB (或OC )的关系来进行探究即可;②BC 长度为定值,要使△ABC 面积取得最大值,就要要求BC 边上的高最大,即可求解;(2)设∠OED =x ,则∠BAC =180°﹣∠ABC ﹣∠ACB =180°﹣mx ﹣nx=12∠BOC =∠DOC ,而∠AOD =∠COD +∠AOC =180°﹣mx ﹣nx +2mx =180°+mx ﹣nx ,即可求解. {答案}解:(1)①证明:如图1,连接OB ,OC ,因为OB =OC ,OD ⊥BC , 所以∠BOD =12∠BOC =12×2∠BAC =60°,∵cos ∠BOD =OD OB =12,所以OD =12OB =12OA ;②作AF ⊥BC ,垂足为点F ,所以AF ≤AD ≤AO +OD =32,等号当点A ,O ,D 在同一直线上时取到由①知,BC =2BD ,所以△ABC 的面积113222BC AF =⋅≤=,即△ABC(2)如图2,连接OC ,设∠OED =x ,则∠ABC =mx ,∠ACB =nx , 则∠BAC =180°﹣∠ABC ﹣∠ACB =180°﹣mx ﹣nx=12∠BOC =∠DOC , ∵∠AOC =2∠ABC =2mx ,∴∠AOD =∠COD +∠AOC =180°﹣mx ﹣nx +2mx =180°+mx ﹣nx , ∵OE =OD ,∴∠AOD =180°﹣2x ,即:180°+mx ﹣nx =180°﹣2x , 化简即可得:m ﹣n +2=0. {分值}12{章节:[1-24-1-4]圆周角} {难度:5-高难度} {类别:高度原创} {考点:垂径定理}{考点:圆心角、弧、弦的关系} {考点:圆周角定理}。

2019浙江省温州市中考数学试题(解析版)2

2019浙江省温州市中考数学试题(解析版)2

2019年浙江省温州市中考数学试卷一、选择题(本题有10小题,每小题4分,共40分,每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.(4分)计算:(﹣3)×5的结果是()A.﹣15B.15C.﹣2D.22.(4分)太阳距离银河系中心约为250 000 000 000 000 000公里,其中数据250 000 000 000 000 000用科学记数法表示为()A.0.25×1018B.2.5×1017C.25×1016D.2.5×1016 3.(4分)某露天舞台如图所示,它的俯视图是()A.B.C.D.4.(4分)在同一副扑克牌中抽取2张“方块”,3张”梅花”,1张“红桃”.将这6张牌背面朝上,从中任意抽取1张,是“红桃”的概率为()A.B.C.D.5.(4分)对温州某社区居民最爱吃的鱼类进行问卷调查后(每人选一种),绘制成如图所示统计图.已知选择鲳鱼的有40人,那么选择黄鱼的有()A.20人B.40人C.60人D.80人6.(4分)验光师测得一组关于近视眼镜的度数y(度)与镜片焦距x(米)的对应数据如下表,根据表中数据,可得y关于x的函数表达式为()近视眼镜的度2002504005001000数y(度)0.500.400.250.200.10镜片焦距x(米)A.y =B.y =C.y =D.y =7.(4分)若扇形的圆心角为90°,半径为6,则该扇形的弧长为()A .πB.2πC.3πD.6π8.(4分)某简易房示意图如图所示,它是一个轴对称图形,则坡屋顶上弦杆AB的长为()A .米B .米C .米D .米9.(4分)已知二次函数y=x2﹣4x+2,关于该函数在﹣1≤x≤3的取值范围内,下列说法正确的是()A.有最大值﹣1,有最小值﹣2B.有最大值0,有最小值﹣1C.有最大值7,有最小值﹣1D.有最大值7,有最小值﹣210.(4分)如图,在矩形ABCD中,E为AB中点,以BE为边作正方形BEFG,边EF交CD于点H,在边BE上取点M使BM=BC,作MN∥BG交CD于点L,交FG于点N,欧几里得在《几何原本》中利用该图解释了(a+b)(a﹣b)=a2﹣b2,现以点F为圆心,FE为半径作圆弧交线段DH于点P,连结EP,记△EPH的面积为S1,图中阴影部分的面积为S2.若点A,L,G 在同一直线上,则的值为()A.B.C.D.二、填空题(本题有6小题,每小题5分,共30分)11.(5分)分解因式:m2+4m+4=.12.(5分)不等式组的解为.13.(5分)某校学生“汉字听写”大赛成绩的频数直方图(每一组含前一个边界值,不含后一个边界值)如图所示,其中成绩为“优良”(80分及以上)的学生有人.14.(5分)如图,⊙O分别切∠BAC的两边AB,AC于点E,F,点P在优弧()上,若∠BAC=66°,则∠EPF等于度.15.(5分)三个形状大小相同的菱形按如图所示方式摆放,已知∠AOB=∠AOE=90°,菱形的较短对角线长为2cm.若点C落在AH的延长线上,则△ABE的周长为cm.16.(5分)图1是一种折叠式晾衣架.晾衣时,该晾衣架左右晾衣臂张开后示意图如图2所示,两支脚OC=OD=10分米,展开角∠COD=60°,晾衣臂OA=OB=10分米,晾衣臂支架HG=FE=6分米,且HO=FO=4分米.当∠AOC=90°时,点A离地面的距离AM为分米;当OB从水平状态旋转到OB'(在CO延长线上)时,点E绕点F随之旋转至OB'上的点E'处,则B'E'﹣BE为分米.三、解答题(本题有8小题,共80分,解答需写出必要的文字说明、演算步骤或证明过程)17.(10分)计算:(1)|﹣6|﹣+(1﹣)0﹣(﹣3).(2)﹣.18.(8分)如图,在△ABC中,AD是BC边上的中线,E是AB边上一点,过点C作CF ∥AB交ED的延长线于点F.(1)求证:△BDE≌△CDF.(2)当AD⊥BC,AE=1,CF=2时,求AC的长.19.(8分)车间有20名工人,某一天他们生产的零件个数统计如下表.车间20名工人某一天生产的零件个数统计表生产零件的个数(个)91011121315161920工人人数(人)116422211(1)求这一天20名工人生产零件的平均个数.(2)为了提高大多数工人的积极性,管理者准备实行“每天定额生产,超产有奖”的措施.如果你是管理者,从平均数、中位数、众数的角度进行分析,你将如何确定这个“定额”?20.(8分)如图,在7×5的方格纸ABCD中,请按要求画图,且所画格点三角形与格点四边形的顶点均不与点A,B,C,D重合.(1)在图1中画一个格点△EFG,使点E,F,G分别落在边AB,BC,CD上,且∠EFG =90°.(2)在图2中画一个格点四边形MNPQ,使点M,N,P,Q分别落在边AB,BC,CD,DA上,且MP=NQ.21.(10分)如图,在平面直角坐标系中,二次函数y=﹣x2+2x+6的图象交x轴于点A,B(点A在点B的左侧)(1)求点A,B的坐标,并根据该函数图象写出y≥0时x的取值范围.(2)把点B向上平移m个单位得点B1.若点B1向左平移n个单位,将与该二次函数图象上的点B2重合;若点B1向左平移(n+6)个单位,将与该二次函数图象上的点B2重合.已知m>0,n>0,求m,n的值.22.(10分)如图,在△ABC中,∠BAC=90°,点E在BC边上,且CA=CE,过A,C,E三点的⊙O交AB于另一点F,作直径AD,连结DE并延长交AB于点G,连结CD,CF.(1)求证:四边形DCFG是平行四边形.(2)当BE=4,CD=AB时,求⊙O的直径长.23.(12分)某旅行团32人在景区A游玩,他们由成人、少年和儿童组成.已知儿童10人,成人比少年多12人.(1)求该旅行团中成人与少年分别是多少人?(2)因时间充裕,该团准备让成人和少年(至少各1名)带领10名儿童去另一景区B 游玩.景区B的门票价格为100元/张,成人全票,少年8折,儿童6折,一名成人可以免费携带一名儿童.①若由成人8人和少年5人带队,则所需门票的总费用是多少元?②若剩余经费只有1200元可用于购票,在不超额的前提下,最多可以安排成人和少年共多少人带队?求所有满足条件的方案,并指出哪种方案购票费用最少.24.(14分)如图,在平面直角坐标系中,直线y=﹣x+4分别交x轴、y轴于点B,C,正方形AOCD的顶点D在第二象限内,E是BC中点,OF⊥DE于点F,连结OE.动点P在AO上从点A向终点O匀速运动,同时,动点Q在直线BC上从某一点Q1向终点Q2匀速运动,它们同时到达终点.(1)求点B的坐标和OE的长(2)设点Q2为(m,n),当=tan∠EOF时,求点Q2的坐标.(3)根据(2)的条件,当点P运动到AO中点时,点Q恰好与点C重合.①延长AD交直线BC于点Q3,当点Q在线段Q2Q3上时,设Q3Q=s,AP=t,求s关于t的函数表达式.②当PQ与△OEF的一边平行时,求所有满足条件的AP的长.2019年浙江省温州市中考数学试卷参考答案与试题解析一、选择题(本题有10小题,每小题4分,共40分,每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.(4分)计算:(﹣3)×5的结果是()A.﹣15B.15C.﹣2D.2【分析】根据正数与负数相乘的法则得(﹣3)×5=﹣15;【解答】解:(﹣3)×5=﹣15;故选:A.【点评】本题考查有理数的乘法;熟练掌握正数与负数的乘法法则是解题的关键.2.(4分)太阳距离银河系中心约为250 000 000 000 000 000公里,其中数据250 000 000 000 000 000用科学记数法表示为()A.0.25×1018B.2.5×1017C.25×1016D.2.5×1016【分析】利用科学记数法的表示形式进行解答即可【解答】解:科学记数法表示:250 000 000 000 000 000=2.5×1017故选:B.【点评】本题主要考查科学记数法,科学记数法是指把一个数表示成a×10的n次幂的形式(1≤a<10,n为正整数.)3.(4分)某露天舞台如图所示,它的俯视图是()A.B.C.D.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答】解:它的俯视图是:故选:B.【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.4.(4分)在同一副扑克牌中抽取2张“方块”,3张”梅花”,1张“红桃”.将这6张牌背面朝上,从中任意抽取1张,是“红桃”的概率为()A.B.C.D.【分析】直接利用概率公式计算可得.【解答】解:从中任意抽取1张,是“红桃”的概率为,故选:A.【点评】本题主要考查概率公式,随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.5.(4分)对温州某社区居民最爱吃的鱼类进行问卷调查后(每人选一种),绘制成如图所示统计图.已知选择鲳鱼的有40人,那么选择黄鱼的有()A.20人B.40人C.60人D.80人【分析】扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.【解答】解:鱼类总数:40÷20%=200(人),选择黄鱼的:200×40%=80(人),故选:D.【点评】本题考查的是扇形统计图.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键;扇形统计图直接反映部分占总体的百分比大小.6.(4分)验光师测得一组关于近视眼镜的度数y(度)与镜片焦距x(米)的对应数据如下表,根据表中数据,可得y关于x的函数表达式为()2002504005001000近视眼镜的度数y(度)0.500.400.250.200.10镜片焦距x(米)A.y =B.y =C.y =D.y =【分析】直接利用已知数据可得xy=100,进而得出答案.【解答】解:由表格中数据可得:xy=100,故y关于x的函数表达式为:y =.故选:A.【点评】此题主要考查了反比例函数的应用,正确得出函数关系式是解题关键.7.(4分)若扇形的圆心角为90°,半径为6,则该扇形的弧长为()A .πB.2πC.3πD.6π【分析】根据弧长公式计算.【解答】解:该扇形的弧长==3π.故选:C.【点评】本题考查了弧长的计算:弧长公式:l =(弧长为l,圆心角度数为n,圆的半径为R).8.(4分)某简易房示意图如图所示,它是一个轴对称图形,则坡屋顶上弦杆AB的长为()A .米B .米C .米D .米【分析】根据题意作出合适的辅助线,然后利用锐角三角函数即可表示出AB的长.【解答】解:作AD⊥BC于点D,则BD=0.3=,∵cosα=,∴sinα=,解得,AB=米,故选:B.【点评】本题考查解直角三角形的应用、轴对称图形,解答本题的关键是明确题意,利用数形结合的思想解答.9.(4分)已知二次函数y=x2﹣4x+2,关于该函数在﹣1≤x≤3的取值范围内,下列说法正确的是()A.有最大值﹣1,有最小值﹣2B.有最大值0,有最小值﹣1C.有最大值7,有最小值﹣1D.有最大值7,有最小值﹣2【分析】把函数解析式整理成顶点式解析式的形式,然后根据二次函数的最值问题解答.【解答】解:∵y=x2﹣4x+2=(x﹣2)2﹣2,∴在﹣1≤x≤3的取值范围内,当x=2时,有最小值﹣2,当x=﹣1时,有最大值为y=9﹣2=7.故选:D.【点评】本题考查了二次函数的最值问题,把函数解析式转化为顶点式形式是解题的关键.10.(4分)如图,在矩形ABCD中,E为AB中点,以BE为边作正方形BEFG,边EF交CD于点H,在边BE上取点M使BM=BC,作MN∥BG交CD于点L,交FG于点N,欧几里得在《几何原本》中利用该图解释了(a+b)(a﹣b)=a2﹣b2,现以点F为圆心,FE为半径作圆弧交线段DH于点P,连结EP,记△EPH的面积为S1,图中阴影部分的面积为S2.若点A,L,G在同一直线上,则的值为()A.B.C.D.【分析】如图,连接ALGL,PF.利用相似三角形的性质求出a与b的关系,再求出面积比即可.【解答】解:如图,连接ALGL,PF.由题意:S矩形AMLD=S阴=a2﹣b2,PH=,∵点A,L,G在同一直线上,AM∥GN,∴△AML∽△GNL,∴=,∴=,整理得a=3b,∴===,故选:C.【点评】本题源于欧几里得《几何原本》中对(a+b)(a﹣b)=a2﹣b2的探究记载.图形简单,结合了教材中平方差证明的图形进行编制.巧妙之处在于构造的三角形一边与矩形的一边等长,解题的关键是利用相似三角形的性质求出a与b的关系,进而解决问题.二、填空题(本题有6小题,每小题5分,共30分)11.(5分)分解因式:m2+4m+4=(m+2)2.【分析】直接利用完全平方公式分解因式得出答案.【解答】解:原式=(m+2)2.故答案为:(m+2)2.【点评】此题主要考查了公式法分解因式,正确应用完全平方公式是解题关键.12.(5分)不等式组的解为1<x≤9.【分析】分别求出各不等式的解集,再求出其公共解集即可.【解答】解:,由①得,x>1,由②得,x≤9,故此不等式组的解集为:1<x≤9.故答案为:1<x≤9.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.13.(5分)某校学生“汉字听写”大赛成绩的频数直方图(每一组含前一个边界值,不含后一个边界值)如图所示,其中成绩为“优良”(80分及以上)的学生有90人.【分析】根据题意和直方图中的数据可以求得成绩为“优良”(80分及以上)的学生人数,本题得以解决.【解答】解:由直方图可得,成绩为“优良”(80分及以上)的学生有:60+30=90(人),故答案为:90.【点评】本题考查频数分布直方图,解答本题的关键是明确题意,利用数形结合的思想解答.14.(5分)如图,⊙O分别切∠BAC的两边AB,AC于点E,F,点P在优弧()上,若∠BAC=66°,则∠EPF等于57度.【分析】连接OE,OF,由切线的性质可得OE⊥AB,OF⊥AC,由四边形内角和定理可求∠EOF=114°,即可求∠EPF的度数.【解答】解:连接OE,OF∵⊙O分别切∠BAC的两边AB,AC于点E,F∴OE⊥AB,OF⊥AC又∵∠BAC=66°∴∠EOF=114°∵∠EOF=2∠EPF∴∠EPF=57°故答案为:57°【点评】本题考查了切线的性质,圆周角定理,四边形内角和定理,熟练运用切线的性质是本题的关键.15.(5分)三个形状大小相同的菱形按如图所示方式摆放,已知∠AOB=∠AOE=90°,菱形的较短对角线长为2cm.若点C落在AH的延长线上,则△ABE的周长为12+8 cm.【分析】连接IC,连接CH交OI于K,则A,H,C在同一直线上,CI=2,根据△COH 是等腰直角三角形,即可得到∠CKO=90°,即CK⊥IO,设CK=OK=x,则CO=IO =x,IK=x﹣x,根据勾股定理即可得出x2=2+,再根据S菱形BCOI=IO×CK=IC ×BO,即可得出BO=2+2,进而得到△ABE的周长.【解答】解:如图所示,连接IC,连接CH交OI于K,则A,H,C在同一直线上,CI =2,∵三个菱形全等,∴CO=HO,∠AOH=∠BOC,又∵∠AOB=∠AOH+∠BOH=90°,∴∠COH=∠BOC+∠BOH=90°,即△COH是等腰直角三角形,∴∠HCO=∠CHO=45°=∠HOG=∠COK,∴∠CKO=90°,即CK⊥IO,设CK=OK=x,则CO=IO=x,IK=x﹣x,∵Rt△CIK中,(x﹣x)2+x2=22,解得x2=2+,又∵S菱形BCOI=IO×CK=IC×BO,∴x2=×2×BO,∴BO=2+2,∴BE=2BO=4+4,AB=AE=BO=4+2,∴△ABE的周长=4+4+2(4+2)=12+8,故答案为:12+8.【点评】本题主要考查了菱形的性质,解题时注意:菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;菱形的面积等于两条对角线长的乘积的一半.16.(5分)图1是一种折叠式晾衣架.晾衣时,该晾衣架左右晾衣臂张开后示意图如图2所示,两支脚OC=OD=10分米,展开角∠COD=60°,晾衣臂OA=OB=10分米,晾衣臂支架HG=FE=6分米,且HO=FO=4分米.当∠AOC=90°时,点A离地面的距离AM为(5+5)分米;当OB从水平状态旋转到OB'(在CO延长线上)时,点E绕点F随之旋转至OB'上的点E'处,则B'E'﹣BE为4分米.【分析】如图,作OP⊥CD于P,OQ⊥AM于Q,FK⊥OB于K,FJ⊥OC于J.解直角三角形求出MQ,AQ即可求出AM,再分别求出BE,B′E′即可.【解答】解:如图,作OP⊥CD于P,OQ⊥AM于Q,FK⊥OB于K,FJ⊥OC于J.∵AM⊥CD,∴∠QMP=∠MPO=∠OQM=90°,∴四边形OQMP是矩形,∴QM=OP,∵OC=OD=10,∠COD=60°,∴△COD是等边三角形,∵OP⊥CD,∴∠COP=∠COD=30°,∴QM=OP=OC•cos30°=5(分米),∵∠AOC=∠QOP=90°,∴∠AOQ=∠COP=30°,∴AQ=OA=5(分米),∴AM=AQ+MQ=5+5.∵OB∥CD,∴∠BOD=∠ODC=60°在Rt△OFK中,KO=OF•cos60°=2(分米),FK=OF•sin60°=2(分米),在Rt△PKE中,EK==2(分米)∴BE=10﹣2﹣2=(8﹣2)(分米),在Rt△OFJ中,OJ=OF•cos60°=2(分米),FJ=2(分米),在Rt△FJE′中,E′J==2,∴B′E′=10﹣(2﹣2)=12﹣2,∴B′E′﹣BE=4.故答案为5+5,4.【点评】本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.三、解答题(本题有8小题,共80分,解答需写出必要的文字说明、演算步骤或证明过程)17.(10分)计算:(1)|﹣6|﹣+(1﹣)0﹣(﹣3).(2)﹣.【分析】(1)直接利用绝对值的性质以及零指数幂的性质分别化简得出答案;(2)直接利用分式的加减运算法则计算得出答案.【解答】解:(1)原式=6﹣3+1+3=7;(2)原式===.【点评】此题主要考查了分式的加减运算,正确掌握相关运算法则是解题关键.18.(8分)如图,在△ABC中,AD是BC边上的中线,E是AB边上一点,过点C作CF ∥AB交ED的延长线于点F.(1)求证:△BDE≌△CDF.(2)当AD⊥BC,AE=1,CF=2时,求AC的长.【分析】(1)根据平行线的性质得到∠B=∠FCD,∠BED=∠F,由AD是BC边上的中线,得到BD=CD,于是得到结论;(2)根据全等三角形的性质得到BE=CF=2,求得AB=AE+BE=1+2=3,于是得到结论.【解答】(1)证明:∵CF∥AB,∴∠B=∠FCD,∠BED=∠F,∵AD是BC边上的中线,∴BD=CD,∴△BDE≌△CDF(AAS);(2)解:∵△BDE≌△CDF,∴BE=CF=2,∴AB=AE+BE=1+2=3,∵AD⊥BC,BD=CD,∴AC=AB=3.【点评】本题考查了全等三角形的判定和性质,平行线的性质,熟练掌握全等三角形的判定和性质是解题的关键.19.(8分)车间有20名工人,某一天他们生产的零件个数统计如下表.车间20名工人某一天生产的零件个数统计表生产零件的个数(个)91011121315161920工人人数(人)116422211(1)求这一天20名工人生产零件的平均个数.(2)为了提高大多数工人的积极性,管理者准备实行“每天定额生产,超产有奖”的措施.如果你是管理者,从平均数、中位数、众数的角度进行分析,你将如何确定这个“定额”?【分析】(1)根据加权平均数的定义求解可得;(2)根据众数和中位数的定义求解,再分别从平均数、中位数和众数的角度,讨论达标人数和获奖人数情况,从而得出结论.【解答】解:(1)=×(9×1+10×1+11×6+12×4+13×2+15×2+16×2+19×1+20×1)=13(个);答:这一天20名工人生产零件的平均个数为13个;(2)中位数为=12(个),众数为11个,当定额为13个时,有8人达标,6人获奖,不利于提高工人的积极性;当定额为12个时,有12人达标,6人获奖,不利于提高大多数工人的积极性;当定额为11个时,有18人达标,12人获奖,有利于提高大多数工人的积极性;∴定额为11个时,有利于提高大多数工人的积极性.【点评】此题考查了平均数、众数、中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错;众数是一组数据中出现次数最多的数.20.(8分)如图,在7×5的方格纸ABCD中,请按要求画图,且所画格点三角形与格点四边形的顶点均不与点A,B,C,D重合.(1)在图1中画一个格点△EFG,使点E,F,G分别落在边AB,BC,CD上,且∠EFG =90°.(2)在图2中画一个格点四边形MNPQ,使点M,N,P,Q分别落在边AB,BC,CD,DA上,且MP=NQ.【分析】(1)利用数形结合的思想构造全等三角形或等腰直角三角形解决问题即可.(2)如图3中,构造矩形即可解决问题.如图4中,构造MP=NQ=5即可.【解答】解:(1)满足条件的△EFG,如图1,2所示.(2)满足条件的四边形MNPQ如图所示.【点评】本题考查作图﹣应用与设计,勾股定理,全等三角形的判定和性质等知识,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.21.(10分)如图,在平面直角坐标系中,二次函数y=﹣x2+2x+6的图象交x轴于点A,B(点A在点B的左侧)(1)求点A,B的坐标,并根据该函数图象写出y≥0时x的取值范围.(2)把点B向上平移m个单位得点B1.若点B1向左平移n个单位,将与该二次函数图象上的点B2重合;若点B1向左平移(n+6)个单位,将与该二次函数图象上的点B2重合.已知m>0,n>0,求m,n的值.【分析】(1)把y=0代入二次函数的解析式中,求得一元二次方程的解便可得A、B两点的坐标,再根据函数图象不在x轴下方的x的取值范围得y≥0时x的取值范围;(2)根据题意写出B1,B2的坐标,再由对称轴方程列出n的方程,求得n,进而求得m 的值.【解答】解:(1)令y=0,则﹣,解得,x1=﹣2,x2=6,∴A(﹣2,0),B(6,0),由函数图象得,当y≥0时,﹣2≤x≤6;(2)由题意得,B1(6﹣n,m),B2(﹣n,m),函数图象的对称轴为直线,∵点B1,B2在二次函数图象上且纵坐标相同,∴,∴n=1,∴,∴m,n的值分别为,1.【点评】本题主要考查了二次函数的图象与性质,求函数与坐标轴的交点坐标,由函数图象求出不等式的解集,平移的性质,难度不大,关键是正确运用函数的性质解题.22.(10分)如图,在△ABC中,∠BAC=90°,点E在BC边上,且CA=CE,过A,C,E三点的⊙O交AB于另一点F,作直径AD,连结DE并延长交AB于点G,连结CD,CF.(1)求证:四边形DCFG是平行四边形.(2)当BE=4,CD=AB时,求⊙O的直径长.【分析】(1)连接AE,由∠BAC=90°,得到CF是⊙O的直径,根据圆周角定理得到∠AED=90°,即GD⊥AE,推出CF∥DG,推出AB∥CD,于是得到结论;(2)设CD=3x,AB=8x,得到CD=FG=3x,于是得到AF=CD=3x,求得BG=8x ﹣3x﹣3x=2x,求得BC=6+4=10,根据勾股定理得到AB==8=8x,求得x =1,在Rt△ACF中,根据勾股定理即可得到结论.【解答】(1)证明:连接AE,∵∠BAC=90°,∴CF是⊙O的直径,∵AC=EC,∴CF⊥AE,∵AD是⊙O的直径,∴∠AED=90°,即GD⊥AE,∴CF∥DG,∵AD是⊙O的直径,∴∠ACD=90°,∴∠ACD+∠BAC=180°,∴AB∥CD,∴四边形DCFG是平行四边形;(2)解:由CD=AB,设CD=3x,AB=8x,∴CD=FG=3x,∵∠AOF=∠COD,∴AF=CD=3x,∴BG=8x﹣3x﹣3x=2x,∵GE∥CF,∴,∵BE=4,∴AC=CE=6,∴BC=6+4=10,∴AB==8=8x,∴x=1,在Rt△ACF中,AF=10,AC=6,∴CF==3,即⊙O的直径长为3.【点评】本题考查了三角形的外接圆与外心,平行四边形的判定和性质,勾股定理,圆周角定理,熟练掌握平行四边形的判定定理是解题的关键.23.(12分)某旅行团32人在景区A游玩,他们由成人、少年和儿童组成.已知儿童10人,成人比少年多12人.(1)求该旅行团中成人与少年分别是多少人?(2)因时间充裕,该团准备让成人和少年(至少各1名)带领10名儿童去另一景区B 游玩.景区B的门票价格为100元/张,成人全票,少年8折,儿童6折,一名成人可以免费携带一名儿童.①若由成人8人和少年5人带队,则所需门票的总费用是多少元?②若剩余经费只有1200元可用于购票,在不超额的前提下,最多可以安排成人和少年共多少人带队?求所有满足条件的方案,并指出哪种方案购票费用最少.【分析】(1)根据题意可以列出相应的方程组,本题得以解决;(2)①根据题意可以求得由成人8人和少年5人带队,所需门票的总费用;②利用分类讨论的方法可以求得相应的方案以及花费,再比较花费多少即可解答本题.【解答】解:(1)设成人有x人,少年y人,,解得,,答:该旅行团中成人与少年分别是17人、5人;(2)①由题意可得,由成人8人和少年5人带队,则所需门票的总费用是:100×8+5×100×0.8+(10﹣8)×100×0.6=1320(元),答:由成人8人和少年5人带队,则所需门票的总费用是1320元;②设可以安排成人a人,少年b人带队,则1≤a≤17,1≤b≤5,当10≤a≤17时,若a=10,则费用为100×10+100×b×0.8≤1200,得b≤2.5,∴b的最大值是2,此时a+b=12,费用为1160元;若a=11,则费用为100×11+100×b×0.8≤1200,得b≤,∴b的最大值是1,此时a+b=12,费用为1180元;若a≥12,100a≥1200,即成人门票至少是1200元,不合题意,舍去;当1≤a<10时,若a=9,则费用为100×9+100b×0.8+100×1×0.6≤1200,得b≤3,∴b的最大值是3,a+b=12,费用为1200元;若a=8,则费用为100×8+100b×0.8+100×2×0.6≤1200,得b≤3.5,∴b的最大值是3,a+b=11<12,不合题意,舍去;同理,当a<8时,a+b<12,不合题意,舍去;综上所述,最多安排成人和少年12人带队,有三个方案:成人10人,少年2人;成人11人,少年1人;成人9人,少年3人;其中成人10人,少年2人时购票费用最少.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和分类讨论的数学思想解答.24.(14分)如图,在平面直角坐标系中,直线y=﹣x+4分别交x轴、y轴于点B,C,正方形AOCD的顶点D在第二象限内,E是BC中点,OF⊥DE于点F,连结OE.动点P在AO上从点A向终点O匀速运动,同时,动点Q在直线BC上从某一点Q1向终点Q2匀速运动,它们同时到达终点.(1)求点B的坐标和OE的长(2)设点Q2为(m,n),当=tan∠EOF时,求点Q2的坐标.(3)根据(2)的条件,当点P运动到AO中点时,点Q恰好与点C重合.①延长AD交直线BC于点Q3,当点Q在线段Q2Q3上时,设Q3Q=s,AP=t,求s关于t的函数表达式.②当PQ与△OEF的一边平行时,求所有满足条件的AP的长.【分析】(1)令y=0,可得B的坐标,利用勾股定理可得BC的长;(2)如图1,作辅助线,证明△CDN∽△MEN,得CN=MN=1,计算EN的长,根据面积法可得OF的长,利用勾股定理得OF的长,由=tan∠EOF和n=﹣m+4,可得结论;(3)①先设s关于t成一次函数关系,设s=kt+b,根据当点P运动到AO中点时,点Q 恰好与点C重合,得t=2时,CD=4,DQ3=2,s=2,根据Q3(﹣4,6),Q2(6,1),可得t=4时,s=5,利用待定系数法可得s关于t的函数表达式;②分三种情况:(i)当PQ∥OE时,如图2,根据cos∠QBH====,表示BH的长,根据AB=12,列方程可得t的值;(ii)当PQ∥OF时,如图3,根据tan∠HPQ=tan∠CDN=,列方程为2t﹣2=,可得t的值.(iii)由图形可知PQ不可能与EF平行.【解答】解:(1)令y=0,则﹣x+4=0,∴x=8,∴B(8,0),∵C(0,4),∴OC=4,OB=8,在Rt△BOC中,BC==4;(2)如图1,作EM⊥OC于M,则EM∥CD,∵E是BC的中点∴M是OC的中点∴EM=OB=4,OE=BC=2∵∠CDN=∠NEM,∠CND=∠MNE∴△CDN∽△MEN,∴=1,∴CN=MN=1,∴EN==,∵S△ONE=EN•OF=ON•EM,∴OF==,由勾股定理得:EF===,∴tan∠EOF===,∴==,∵n=﹣m+4,∴m=6,n=1,∴Q2(6,1);(3)①∵动点P、Q同时作匀速直线运动,∴s关于t成一次函数关系,设s=kt+b,∵当点P运动到AO中点时,点Q恰好与点C重合,∴t=2时,CD=4,DQ3=2,∴s=Q3C==2,∵Q3(﹣4,6),Q2(6,1),∴t=4时,s==5,将或代入得,解得:,∴s=﹣,②(i)当PQ∥OE时,如图2,∠QPB=∠EOB=∠OBE,作QH⊥x轴于点H,则PH=BH=PB,Rt△ABQ3中,AQ3=6,AB=4+8=12,∴BQ3==6,∵BQ=6﹣s=6﹣t+=7﹣t,∵cos∠QBH====,∴BH=14﹣3t,∴PB=28﹣6t,∴t+28﹣6t=12,t=;(ii)当PQ∥OF时,如图3,过点Q作QG⊥AQ3于点G,过点P作PH⊥GQ于点H,由△Q3QG∽△CBO得:Q3G:QG:Q3Q=1:2:,∵Q3Q=s=t﹣,∴Q3G=t﹣1,GQ=3t﹣2,∴PH=AG=AQ3﹣Q3G=6﹣(t﹣1)=7﹣t,∴QH=QG﹣AP=3t﹣2﹣t=2t﹣2,∵∠HPQ=∠CDN,∴tan∠HPQ=tan∠CDN=,∴2t﹣2=,t=,(iii)由图形可知PQ不可能与EF平行,综上,当PQ与△OEF的一边平行时,AP的长为或.【点评】此题是一次函数的综合题,主要考查了:用待定系数法求一次函数关系式,三角形相似的性质和判定,三角函数的定义,勾股定理,正方形的性质等知识,并注意运用分类讨论和数形结合的思想解决问题.小课堂:如何培养自主学习能力?自主学习是与传统的接受学习相对应的一种现代化学习方式。

2019年浙江省杭州市中考数学试卷(答案解析版)

2019年浙江省杭州市中考数学试卷(答案解析版)

2019年浙江省杭州市中考数学试卷(答案解析版)2019年浙江省杭州市中考数学试卷⼀、选择题(本⼤题共10⼩题,共30.0分)1.计算下列各式,值最⼩的是()A. B. C. D.2.在平⾯直⾓坐标系中,点A(m,2)与点B(3,n)关于y轴对称,则()A. ,B. ,C. ,D. ,3.如图,P为圆O外⼀点,PA,PB分别切圆O于A,B两点,若PA=3,则PB=()A. 2B. 3C. 4D. 54.已知九年级某班30位学⽣种树72棵,男⽣每⼈种3棵树,⼥⽣每⼈种2棵树,设男⽣有x⼈,则()A. B.C. D.5.点点同学对数据26,36,46,5□,52进⾏统计分析,发现其中⼀个两位数的各位数字被⿊⽔涂污看不到了,则计算结果与被涂污数字⽆关的是()A. 平均数B. 中位数C. ⽅差D. 标准差6.如图,在△ABC中,点D,E分别在AB和AC上,DE∥BC,M为BC边上⼀点(不与点B,C重合),连接AM交DE于点N,则()A.B.C.D.7.在△ABC中,若⼀个内⾓等于另外两个内⾓的差,则()A. 必有⼀个内⾓等于B. 必有⼀个内⾓等于C. 必有⼀个内⾓等于D. 必有⼀个内⾓等于8.已知⼀次函数y1=ax+b和y2=bx+a(a≠b),函数y1和y2的图象可能是()A. B.C. D.9.如图,⼀块矩形⽊板ABCD斜靠在墙边(OC⊥OB,点A,B,C,D,O在同⼀平⾯内),已知AB=a,AD=b,∠BCO=x,则点A到OC的距离等于()A.B.C.D.10.在平⾯直⾓坐标系中,已知a≠b,设函数y=(x+a)(x+b)的图象与x轴有M个交点,函数y=(ax+1)(bx+1)的图象与x轴有N个交点,则()A. 或B. 或C. 或D. 或⼆、填空题(本⼤题共6⼩题,共24.0分)11.因式分解:1-x2=______.12.某计算机程序第⼀次算得m个数据的平均数为x,第⼆次算得另外n个数据的平均数为y,则这m+n个数据的平均数等于______.13.如图是⼀个圆锥形冰淇淋外壳(不计厚度),已知其母线长为12cm,底⾯圆半径为3cm,则这个冰淇淋外壳的侧⾯积等于______cm2(结果精确到个位).14.在直⾓三⾓形ABC中,若2AB=AC,则cos C=______.15.某函数满⾜当⾃变量x=1时,函数值y=0,当⾃变量x=0时,函数值y=1,写出⼀个满⾜条件的函数表达式______.16.如图,把某矩形纸⽚ABCD沿EF,GH折叠(点E,H在AD边上,点F,G在BC边上),使点B和点C落在AD边上同⼀点P处,A点的对称点为A′点,D点的对称点为D′点,若∠FPG=90°,△A′EP的⾯积为4,△D′PH的⾯积为1,则矩形ABCD的⾯积等于______.三、解答题(本⼤题共7⼩题,共66.0分)17.化简:--1圆圆的解答如下:--1=4x-2(x+2)-(x2-4)=-x2+2x圆圆的解答正确吗?如果不正确,写出正确的答案.18.称量五筐⽔果的质量,若每筐以50千克为基准,超过基准部分的千克数记为正数,不⾜基准部分的千克数记为负数,甲组为实际称量读数,⼄组为记录数据,并把所得数据整理成如下统计表和未完成的统计图(单位:千克).实际称量读数和记录数据统计表(1)补充完成⼄组数据的折线统计图.(2)①甲,⼄两组数据的平均数分别为甲,⼄,写出甲与⼄之间的等量关系.②甲,⼄两组数据的⽅差分别为S甲2,S⼄2,⽐较S甲2与S⼄2的⼤⼩,并说明理由.19.如图,在△ABC中,AC<AB<BC.(1)已知线段AB的垂直平分线与BC边交于点P,连接AP,求证:∠APC=2∠B.(2)以点B为圆⼼,线段AB的长为半径画弧,与BC边交于点Q,连接AQ.若∠AQC=3∠B,求∠B的度数.20.⽅⽅驾驶⼩汽车匀速地从A地⾏驶到B地,⾏驶⾥程为480千⽶,设⼩汽车的⾏驶时间为t(单位:⼩时),⾏驶速度为v(单位:千⽶/⼩时),且全程速度限定为不超过120千⽶/⼩时.(1)求v关于t的函数表达式;(2)⽅⽅上午8点驾驶⼩汽车从A地出发.①⽅⽅需在当天12点48分⾄14点(含12点48分和14点)间到达B地,求⼩汽车⾏驶速度v的范围.②⽅⽅能否在当天11点30分前到达B地?说明理由.21.如图,已知正⽅形ABCD的边长为1,正⽅形CEFG的⾯积为S1,点E在DC边上,点G在BC的延长线上,设以线段AD和DE为邻边的矩形的⾯积为S2,且S1=S2.(1)求线段CE的长;(2)若点H为BC边的中点,连接HD,求证:HD=HG.22.设⼆次函数y=(x-x1)(x-x2)(x1,x2是实数).(1)甲求得当x=0时,y=0;当x=1时,y=0;⼄求得当x=时,y=-.若甲求得的结果都正确,你认为⼄求得的结果正确吗?说明理由.(2)写出⼆次函数图象的对称轴,并求该函数的最⼩值(⽤含x1,x2的代数式表⽰).(3)已知⼆次函数的图象经过(0,m)和(1,n)两点(m,n是实数),当0<x1<x2<1时,求证:0<mn<.23.如图,已知锐⾓三⾓形ABC内接于圆O,OD⊥BC于点D,连接OA.(1)若∠BAC=60°,①求证:OD=OA.②当OA=1时,求△ABC⾯积的最⼤值.(2)点E在线段OA上,OE=OD,连接DE,设∠ABC=m∠OED,∠ACB=n∠OED(m,n是正数),若∠ABC<∠ACB,求证:m-n+2=0.答案和解析1.【答案】A【解析】解:A.2×0+1-9=-8,B.2+0×1-9=-7C.2+0-1×9=-7D.2+0+1-9=-6,故选:A.有理数混合运算顺序:先算乘⽅,再算乘除,最后算加减;同级运算,应按从左到右的顺序进⾏计算;如果有括号,要先做括号内的运算.本题考查了有理数的混合运算,熟练掌握有理数的运算法则是解题的关键.2.【答案】B解:∵点A(m,2)与点B(3,n)关于y轴对称,∴m=-3,n=2.故选:B.直接利⽤关于y轴对称点的性质得出答案.此题主要考查了关于y轴对称点的性质,正确记忆横纵坐标的关系是解题关键.3.【答案】B【解析】解:连接OA、OB、OP,∵PA,PB分别切圆O于A,B两点,∴OA⊥PA,OB⊥PB,在Rt△AOP和Rt△BOP中,,∴Rt△AOP≌Rt△BOP(HL),∴PB=PA=3,故选:B.连接OA、OB、OP,根据切线的性质得出OA⊥PA,OB⊥PB,然后证得Rt△AOP≌Rt△BOP,即可求得PB=PA=3.本题考查了切线长定理,三⾓形全等的判定和性质,作出辅助线根据全等三⾓形是解题的关键.4.【答案】D【解析】解:设男⽣有x⼈,则⼥⽣(30-x)⼈,根据题意可得:3x+2(30-x)=72.故选:D.直接根据题意表⽰出⼥⽣⼈数,进⽽利⽤30位学⽣种树72棵,得出等式求出答案.此题主要考查了由实际问题抽象出⼀元⼀次⽅程,正确表⽰出男⼥⽣的植树棵树是解题关键.5.【答案】B【解析】解:这组数据的平均数、⽅差和标准差都与第4个数有关,⽽这组数据的中位数为46,与第4个数⽆关.故选:B.利⽤平均数、中位数、⽅差和标准差的定义对各选项进⾏判断.本题考查了标准差:样本⽅差的算术平⽅根表⽰样本的标准差,它也描述了数据对平均数的离散程度.也考查了中位数、平均数.6.【答案】C解:∵DN∥BM,∴△ADN∽△ABM,∴=,∵NE∥MC,∴△ANE∽△AMC,∴=,∴=.故选:C.先证明△ADN∽△ABM得到=,再证明△ANE∽△AMC得到=,则=,从⽽可对各选项进⾏判断.本题考查了相似三⾓形的判定与性质:三在判定两个三⾓形相似时,应注意利⽤图形中已有的公共⾓、公共边等隐含条件,以充分发挥基本图形的作⽤,寻找相似三⾓形的⼀般⽅法是通过作平⾏线构造相似三⾓形;灵活运⽤相似三⾓形的性质表⽰线段之间的关系.7.【答案】D【解析】解:∵∠A+∠B+∠C=180°,∠A=∠C-∠B,∴2∠C=180°,∴∠C=90°,∴△ABC是直⾓三⾓形,故选:D.根据三⾓形内⾓和定理得出∠A+∠B+∠C=180°,把∠C=∠A+∠B代⼊求出∠C即可.本题考查了三⾓形内⾓和定理的应⽤,能求出三⾓形最⼤⾓的度数是解此题的关键,注意:三⾓形的内⾓和等于180°.8.【答案】A【解析】解:A、由①可知:a>0,b>0.∴直线②经过⼀、⼆、三象限,故A正确;B、由①可知:a<0,b>0.∴直线②经过⼀、⼆、三象限,故B错误;C、由①可知:a<0,b>0.∴直线②经过⼀、⼆、四象限,交点不对,故C错误;D、由①可知:a<0,b<0,∴直线②经过⼆、三、四象限,故D错误.故选:A.根据直线①判断出a、b的符号,然后根据a、b的符号判断出直线②经过的象限即可,做出判断.本题主要考查的是⼀次函数的图象和性质,掌握⼀次函数的图象和性质是解题的关键.9.【答案】D【解析】解:作AE⊥OC于点E,作AF⊥OB于点F,∵四边形ABCD是矩形,∴∠ABC=90°,∵∠ABC=∠AEC,∠BCO=x,∴∠EAB=x,∴∠FBA=x,∵AB=a,AD=b,∴FO=FB+BO=a?cosx+b?sinx,故选:D.根据题意,作出合适的辅助线,然后利⽤锐⾓三⾓函数即可表⽰出点A到OC 的距离,本题得以解决.本题考查解直⾓三⾓形的应⽤-坡度坡⾓问题、矩形的性质,解答本题的关键是明确题意,利⽤数形结合的思想解答.10.【答案】C【解析】解:∵y=(x+a)(x+b)=x2+(a+b)x+1,∴△=(a+b)2-4ab=(a-b)2>0,∴函数y=(x+a)(x+b)的图象与x轴有2个交点,∴M=2,∵函数y=(ax+1)(bx+1)=abx2+(a+b)x+1,∴当ab≠0时,△=(a+b)2-4ab=(a-b)2>0,函数y=(ax+1)(bx+1)的图象与x轴有2个交点,即N=2,此时M=N;当ab=0时,不妨令a=0,∵a≠b,∴b≠0,函数y=(ax+1)(bx+1)=bx+1为⼀次函数,与x轴有⼀个交点,即N=1,此时M=N+1;综上可知,M=N或M=N+1.故选:C.先把两个函数化成⼀般形式,若为⼆次函数,再计算根的判别式,从⽽确定图象与x轴的交点个数,若⼀次函数,则与x轴只有⼀个交点,据此解答.本题主要考查⼀次函数与⼆次函数与x轴的交点问题,关键是根据根的判别式的取值确定抛物线与x轴的交点个数,⼆次项系数为字母的代数式时,要根据系数是否为0,确定它是什么函数,进⽽确定与x轴的交点个数.11.【答案】(1-x)(1+x)【解析】解:∵1-x2=(1-x)(1+x),故答案为:(1-x)(1+x).根据平⽅差公式可以将题⽬中的式⼦进⾏因式分解.本题考查因式分解-运⽤公式法,解题的关键是明确平⽅差公式,会运⽤平⽅差公式进⾏因式分解.12.【答案】【解析】解:∵某计算机程序第⼀次算得m个数据的平均数为x,第⼆次算得另外n个数据的平均数为y,则这m+n个数据的平均数等于:.故答案为:.直接利⽤已知表⽰出两组数据的总和,进⽽求出平均数.此题主要考查了加权平均数,正确得出两组数据的总和是解题关键.13.【答案】113【解析】解:这个冰淇淋外壳的侧⾯积=×2π×3×12=36π≈113(cm2).故答案为113.利⽤圆锥的侧⾯展开图为⼀扇形,这个扇形的弧长等于圆锥底⾯的周长,扇形的半径等于圆锥的母线长和扇形的⾯积公式计算.本题考查了圆锥的计算:圆锥的侧⾯展开图为⼀扇形,这个扇形的弧长等于圆锥底⾯的周长,扇形的半径等于圆锥的母线长.14.【答案】或【解析】解:若∠B=90°,设AB=x,则AC=2x,所以BC==x,所以cosC===;若∠A=90°,设AB=x,则AC=2x,所以BC==x,所以cosC===;综上所述,cosC的值为或.故答案为或.讨论:若∠B=90°,设AB=x,则AC=2x,利⽤勾股定理计算出BC=x,然后根据余弦的定义求cosC的值;若∠A=90°,设AB=x,则AC=2x,利⽤勾股定理计算出BC=x,然后根据余弦的定义求cosC的值.本题考查了锐⾓三⾓函数的定义:熟练掌握锐⾓三⾓函数的定义,灵活运⽤它们进⾏⼏何计算.15.【答案】y=-x+1【解析】解:设该函数的解析式为y=kx+b,∵函数满⾜当⾃变量x=1时,函数值y=0,当⾃变量x=0时,函数值y=1,∴解得:,所以函数的解析式为y=-x+1,故答案为:y=-x+1.根据题意写出⼀个⼀次函数即可.本题考查了各种函数的性质,题⽬中x、y均可以取0,故不能是反⽐例函数.16.【答案】2(5+3)【解析】解:∵四边形ABC是矩形,∴AB=CD,AD=BC,设AB=CD=x,由翻折可知:PA′=AB=x,PD′=CD=x,∵△A′EP的⾯积为4,△D′PH的⾯积为1,∴A′E=4D′H,设D′H=a,则A′E=4a,∵△A′EP∽△D′PH,∴=,∴=,∴x2=4a2,∴x=2a或-2a(舍弃),∴PA′=PD′=2a,∴a=1,∴x=2,∴AB=CD=2,PE==2,PH==,∴AD=4+2++1=5+3,∴矩形ABCD的⾯积=2(5+3).故答案为2(5+3)设AB=CD=x,由翻折可知:PA′=AB=x,PD′=CD=x,因为△A′EP的⾯积为4,△D′PH的⾯积为1,推出A′E=4D′H,设D′H=a,则A′E=4a,由△A′EP∽△D′PH,推出=,推出=,可得x=2a,再利⽤三⾓形的⾯积公式求出a即可解决问题.本题考查翻折变换,矩形的性质,勾股定理,相似三⾓形的判定和性质等知识,解题的关键是学会利⽤参数解决问题,属于中考填空题中的压轴题.17.【答案】解:圆圆的解答错误,正确解法:--1=--===-.【解析】直接将分式进⾏通分,进⽽化简得出答案.此题主要考查了分式的加减运算,正确进⾏通分运算是解题关键.18.【答案】解:(1)⼄组数据的折线统计图如图所⽰:(2)①甲=50+⼄.理由:∵S甲2=[(48-50)2+(52-50)2+(47-50)2+(49-50)2+(54-50)2]=6.8.S⼄2=[(-2-0)2+(2-0)2+(-3-0)2+(-1-0)2+(4-0)2]=6.8,∴S甲2=S⼄2.【解析】(1)利⽤描点法画出折线图即可.(2)利⽤⽅差公式计算即可判断.本题考查折线统计图,算术平均数,⽅差等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.19.【答案】解:(1)证明:∵线段AB的垂直平分线与BC边交于点P,∴PA=PB,∴∠B=∠BAP,∵∠APC=∠B+∠BAP,∴∠APC=2∠B;(2)根据题意可知BA=BQ,∴∠BAQ=∠BQA,∵∠AQC=3∠B,∠AQC=∠B+∠BAQ,∴∠BQA=2∠B,∵∠BAQ+∠BQA+∠B=180°,∴5∠B=180°,∴∠B=36°.【解析】(1)根据线段垂直平分线的性质可知PA=PB,根据等腰三⾓形的性质可得∠B=∠BAP,根据三⾓形的外⾓性质即可证得APC=2∠B;(2)根据题意可知BA=BQ,根据等腰三⾓形的性质可得∠BAQ=∠BQA,再根据三⾓形的内⾓和公式即可解答.本题主要考查了等腰三⾓形的性质、垂直平分线的性质以及三⾓形的外⾓性质,难度适中.20.【答案】解:(1)∵vt=480,且全程速度限定为不超过120千⽶/⼩时,∴v关于t的函数表达式为:v=,(0≤t≤4).(2)①8点⾄12点48分时间长为⼩时,8点⾄14点时间长为6⼩时将t=6代⼊v=得v=80;将t=代⼊v=得v=100.∴⼩汽车⾏驶速度v的范围为:80≤v≤100.②⽅⽅不能在当天11点30分前到达B地.理由如下:8点⾄11点30分时间长为⼩时,将t=代⼊v=得v=>120千⽶/⼩时,超速了.故⽅⽅不能在当天11点30分前到达B地.【解析】(1)由速度乘以时间等于路程,变形即可得速度等于路程⽐时间,从⽽得解;(2)①8点⾄12点48分时间长为⼩时,8点⾄14点时间长为6⼩时,将它们分别代⼊v关于t的函数表达式,即可得⼩汽车⾏驶的速度范围;②8点⾄11点30分时间长为⼩时,将其代⼊v关于t的函数表达式,可得速度⼤于120千⽶/时,从⽽得答案.本题是反⽐例函数在⾏程问题中的应⽤,根据时间速度和路程的关系可以求解,本题属于中档题.21.【答案】解:(1)设正⽅形CEFG的边长为a,∵正⽅形ABCD的边长为1,∴DE=1-a,∵S1=S2,∴a2=1×(1-a),解得,(舍去),,即线段CE的长是;(2)证明:∵点H为BC边的中点,BC=1,∴CH=0.5,∴DH=.=,∵CH=0.5,CG=,∴HG=,∴HD=HG.【解析】(1)设出正⽅形CEFG的边长,然后根据S1=S2,即可求得线段CE的长;(2)根据(1)中的结果可以题⽬中的条件,可以分别计算出HD和HG的长,即可证明结论成⽴.本题考查正⽅形的性质、矩形的性质,解答本题的关键是明确题意,利⽤数形结合的思想解答.22.【答案】解:(1)当x=0时,y=0;当x=1时,y=0;∴⼆次函数经过点(0,0),(1,0),∴x1=0,x2=1,∴y═x(x-1)=x2-x,当x=时,y=-,∴⼄说点的不对;(2)对称轴为x=,当x=时,y=-是函数的最⼩值;(3)⼆次函数的图象经过(0,m)和(1,n)两点,∴m=x1x2,n=1-x1-x2+x1x2,∴mn=[-][-]∵0<x1<x2<1,∴0≤-≤,0≤-≤,∴0<mn<.【解析】(1)将(0,0),(1,0)代⼊y=(x-x1)(x-x2)求出函数解析式即可求解;(2)对称轴为x=,当x=时,y=-是函数的最⼩值;(3)将已知两点代⼊求出m=x1x2,n=1-x1-x2+x1x2,再表⽰出mn=[-][-],由已知0<x1<x2<1,可求出0≤-≤,0≤-≤,即可求解.本题考查⼆次函数的性质;函数最值的求法;熟练掌握⼆次函数的性质,能够将mn准确的⽤x1和x2表⽰出来是解题的关键.23.【答案】解:(1)①连接OB、OC,则∠BOD=BOC=∠BAC=60°,∴∠OBC=30°,∴OD=OB=OA;②∵BC长度为定值,∴△ABC⾯积的最⼤值,要求BC边上的⾼最⼤,当AD过点O时,AD最⼤,即:AD=AO+OD=,△ABC⾯积的最⼤值=×BC×AD=×2OB sin60°×=;(2)如图2,连接OC,设:∠OED=x,则∠ABC=mx,∠ACB=nx,则∠BAC=180°-∠ABC-∠ACB=180°-mx-nx=∠BOC=∠DOC,∵∠AOC=2∠ABC=2mx,∴∠AOD=∠COD+∠AOC=180°-mx-nx+2mx=180°+mx-nx,∵OE=OD,∴∠AOD=180°-2x,即:180°+mx-nx=180°-2x,化简得:m-n+2=0.【解析】(1)①连接OB、OC,则∠BOD=BOC=∠BAC=60°,即可求解;②BC长度为定值,△ABC⾯积的最⼤值,要求BC边上的⾼最⼤,即可求解;(2)∠BAC=180°-∠ABC-∠ACB=180°-mx-nx=∠BOC=∠DOC,⽽∠AOD=∠COD+∠AOC=180°-mx-nx+2mx=180°+mx-nx,即可求解.本题为圆的综合运⽤题,涉及到解直⾓三⾓形、三⾓形内⾓和公式,其中(2),∠AOD=∠COD+∠AOC是本题容易忽视的地⽅,本题难度适中.。

浙江省嘉兴市2019年中考数学试卷(含解析)

浙江省嘉兴市2019年中考数学试卷(含解析)

浙江省嘉兴市2019年中考数学试卷(解析版)一、选择题(本题有10小题,每题3分,共30分.请选出各题中唯一的正确选项,不选、多选、错选,均不得分)1.(3分)﹣2019的相反数是()A.2019 B.﹣2019 C.D.﹣【分析】根据相反数的意义,直接可得结论.【解答】解:因为a的相反数是﹣a,所以﹣2019的相反数是2019.故选:A.【点评】本题考查了相反数的意义.理解a的相反数是﹣a,是解决本题的关键.2.(3分)2019年1月3日10时26分,“嫦娥四号”探测器飞行约380000千米,实现人类探测器首次在月球背面软着陆.数据380000用科学记数法表示为()A.38×104B.3.8×104C.3.8×105D.0.38×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:380000=3.8×105故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)如图是由四个相同的小正方形组成的立体图形,它的俯视图为()A.B.C.D.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答】解:从上面看易得第一层有1个正方形,第二层有2个正方形,如图所示:故选:B.【点评】本题考查了三视图的知识,俯视图是从物体的正面看得到的视图.4.(3分)2019年5月26日第5届中国国际大数据产业博览会召开.某市在五届数博会上的产业签约金额的折线统计图如图.下列说法正确的是()A.签约金额逐年增加B.与上年相比,2019年的签约金额的增长量最多C.签约金额的年增长速度最快的是2016年D.2018年的签约金额比2017年降低了22.98%【分析】两条折线图一一判断即可.【解答】解:A、错误.签约金额2017,2018年是下降的.B、错误.与上年相比,2016年的签约金额的增长量最多.C、正确.D、错误.下降了:≈9.3%.故选:C.【点评】本题考查折线统计图,解题的关键是理解题意读懂图象信息,属于中考常考题型.5.(3分)如图是一个2×2的方阵,其中每行、每列的两数和相等,则a可以是()A.tan60°B.﹣1 C.0 D.12019【分析】直接利用零指数幂的性质以及绝对值的性质和立方根的性质分别化简得出答案.【解答】解:由题意可得:a+|﹣2|=+20,则a+2=3,解得:a=1,故a可以是12019.故选:D.【点评】此题主要考查了实数运算,正确化简各数是解题关键.6.(3分)已知四个实数a,b,c,d,若a>b,c>d,则()A.a+c>b+d B.a﹣c>b﹣d C.ac>bd D.>【分析】直接利用等式的基本性质分别化简得出答案.【解答】解:∵a>b,c>d,∴a+c>b+d.故选:A.【点评】此题主要考查了等式的性质,正确掌握等式的基本性质是解题关键.7.(3分)如图,已知⊙O上三点A,B,C,半径OC=1,∠ABC=30°,切线P A交OC延长线于点P,则P A的长为()A.2 B.C.D.【分析】连接OA,根据圆周角定理求出∠AOP,根据切线的性质求出∠OAP=90°,解直角三角形求出AP即可.【解答】解:连接OA,∵∠ABC=30°,∴∠AOC=2∠ABC=60°,∵过点A作⊙O的切线交OC的延长线于点P,∴∠OAP=90°,∵OA=OC=1,∴AP=OAtan60°=1×=,故选:B.【点评】本题考查了切线的性质和圆周角定理、解直角三角形等知识点,能熟记切线的性质是解此题的关键,注意:圆的切线垂直于过切点的半径.8.(3分)中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马二匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹x两,牛每头y两,根据题意可列方程组为()A.B.C.D.【分析】直接利用“马四匹、牛六头,共价四十八两(我国古代货币单位);马二匹、牛五头,共价三十八两”,分别得出方程得出答案.【解答】解:设马每匹x两,牛每头y两,根据题意可列方程组为:.故选:D.【点评】此题主要考查了二元一次方程组的应用,正确得出等式是解题关键.9.(3分)如图,在直角坐标系中,已知菱形OABC的顶点A(1,2),B(3,3).作菱形OABC关于y轴的对称图形OA'B'C',再作图形OA'B'C'关于点O的中心对称图形OA″B″C″,则点C的对应点C″的坐标是()A.(2,﹣1)B.(1,﹣2)C.(﹣2,1)D.(﹣2,﹣1)【分析】根据题意可以写出点C的坐标,然后根据与y轴对称和与原点对称的点的特点即可得到点C″的坐标,本题得以解决.【解答】解:∵点C的坐标为(2,1),∴点C′的坐标为(﹣2,1),∴点C″的坐标的坐标为(2,﹣1),故选:A.【点评】本题考查旋转变化、轴对称变化,解答本题的关键是明确题意,利用数形结合的思想解答.10.(3分)小飞研究二次函数y=﹣(x﹣m)2﹣m+1(m为常数)性质时如下结论:①这个函数图象的顶点始终在直线y=﹣x+1上;②存在一个m的值,使得函数图象的顶点与x轴的两个交点构成等腰直角三角形;③点A(x1,y1)与点B(x2,y2)在函数图象上,若x1<x2,x1+x2>2m,则y1<y2;④当﹣1<x<2时,y随x的增大而增大,则m的取值范围为m≥2.其中错误结论的序号是()A.①B.②C.③D.④【分析】根据函数解析式,结合函数图象的顶点坐标、对称轴以及增减性依次对4个结论作出判断即可.【解答】解:二次函数y=﹣(x﹣m)2﹣m+1(m为常数)①∵顶点坐标为(m,﹣m+1)且当x=m时,y=﹣m+1∴这个函数图象的顶点始终在直线y=﹣x+1上故结论①正确;②假设存在一个m的值,使得函数图象的顶点与x轴的两个交点构成等腰直角三角形令y=0,得﹣(x﹣m)2﹣m+1=0,其中m≤1解得:x=m﹣,x=m+∵顶点坐标为(m,﹣m+1),且顶点与x轴的两个交点构成等腰直角三角形∴|﹣m+1|=|m﹣(m﹣)|解得:m=0或1∴存在m=0或1,使得函数图象的顶点与x轴的两个交点构成等腰直角三角形故结论②正确;③∵x1+x2>2m∴∵二次函数y=﹣(x﹣m)2﹣m+1(m为常数)的对称轴为直线x=m∴点A离对称轴的距离小于点B离对称轴的距离∵x1<x2,且﹣1<0∴y1>y2故结论③错误;④当﹣1<x<2时,y随x的增大而增大,且﹣1<0∴m的取值范围为m≥2.故结论④正确.故选:C.【点评】本题主要考查了二次函数图象与二次函数的系数的关系,是一道综合性比较强的题目,需要利用数形结合思想解决本题.二、填空题(共6小题,每小题4分,满分24分)11.(4分)分解因式:x2﹣5x=x(x﹣5).【分析】直接提取公因式x分解因式即可.【解答】解:x2﹣5x=x(x﹣5).故答案为:x(x﹣5).【点评】此题考查的是提取公因式分解因式,关键是找出公因式.12.(4分)从甲、乙、丙三人中任选两人参加“青年志愿者”活动,甲被选中的概率为.【分析】画出树状图,共有6个等可能的结果,甲被选中的结果有4个,由概率公式即可得出结果.【解答】解:树状图如图所示:共有6个等可能的结果,甲被选中的结果有4个,∴甲被选中的概率为=;故答案为:.【点评】本题考查了树状图法求概率以及概率公式;画出树状图是解题的关键.13.(4分)数轴上有两个实数a,b,且a>0,b<0,a+b<0,则四个数a,b,﹣a,﹣b 的大小关系为b<﹣a<a<﹣b(用“<”号连接).【分析】根据两个负数比较大小,其绝对值大的反而小和负数都小于0,即可得出答案.【解答】解:∵a>0,b<0,a+b<0,∴|b|>a,∴﹣b>a,b<﹣a,∴四个数a,b,﹣a,﹣b的大小关系为b<﹣a<a<﹣b.故答案为:b<﹣a<a<﹣b【点评】本题考查了有理数的大小比较,掌握有理数的大小比较法则是:正数都大于0,负数都小于0,正数大于一切负数,两个负数比较大小,其绝对值大的反而小是本题的关键.14.(4分)如图,在⊙O中,弦AB=1,点C在AB上移动,连结OC,过点C作CD⊥OC交⊙O于点D,则CD的最大值为.【分析】连接OD,如图,利用勾股定理得到CD,利用垂线段最短得到当OC⊥AB时,OC最小,根据勾股定理求出OC,代入求出即可.【解答】解:连接OD,如图,∵CD⊥OC,∴∠COD=90°,∴CD==,当OC的值最小时,CD的值最大,而OC⊥AB时,OC最小,此时OC=,∴CD的最大值为=AB=1=,故答案为:.【点评】本题考查了垂线段最短,勾股定理和垂径定理等知识点,能求出点C的位置是解此题的关键.15.(4分)在x2+±4x+4=0的括号中添加一个关于x的一次项,使方程有两个相等的实数根.【分析】要使方程有两个相等的实数根,即△=0,则利用根的判别式即可求得一次项的系数即可.【解答】解:要使方程有两个相等的实数根,则△=b2﹣4ac=b2﹣16=0得b=±4故一次项为±4x故答案为±4x【点评】此题主要考查一元二次方程的根的判别式,利用一元二次方程根的判别式(△=b2﹣4ac)可以判断方程的根的情况:一元二次方程的根与根的判别式有如下关系:①当△>0时,方程有两个不相等的实数根;②当△=0 时,方程有两个相等的实数根;③当△<0 时,方程无实数根,但有2个共轭复根.上述结论反过来也成立.16.(4分)如图,一副含30°和45°角的三角板ABC和EDF拼合在个平面上,边AC与EF 重合,AC=12cm.当点E从点A出发沿AC方向滑动时,点F同时从点C出发沿射线BC方向滑动.当点E从点A滑动到点C时,点D运动的路径长为(24﹣12)cm;连接BD,则△ABD的面积最大值为(24+36﹣12)cm2.【分析】过点D'作D'N⊥AC于点N,作D'M⊥BC于点M,由直角三角形的性质可得BC =4cm,AB=8cm,ED=DF=6cm,由“AAS”可证△D'NE'≌△D'MF',可得D'N =D'M,即点D'在射线CD上移动,且当E'D'⊥AC时,DD'值最大,则可求点D运动的路径长,由三角形面积公式可求S△AD'B=BC×AC+×AC×D'N﹣×BC×D'M=24+(12﹣4)×D'N,则E'D'⊥AC时,S△AD'B有最大值.【解答】解:∵AC=12cm,∠A=30°,∠DEF=45°∴BC=4cm,AB=8cm,ED=DF=6cm如图,当点E沿AC方向下滑时,得△E'D'F',过点D'作D'N⊥AC于点N,作D'M⊥BC 于点M∴∠MD'N=90°,且∠E'D'F'=90°∴∠E'D'N=∠F'D'M,且∠D'NE'=∠D'MF'=90°,E'D'=D'F'∴△D'NE'≌△D'MF'(AAS)∴D'N=D'M,且D'N⊥AC,D'M⊥CM∴CD'平分∠ACM即点E沿AC方向下滑时,点D'在射线CD上移动,∴当E'D'⊥AC时,DD'值最大,最大值=ED﹣CD=(12﹣6)cm∴当点E从点A滑动到点C时,点D运动的路径长=2×(12﹣6)=(24﹣12)cm如图,连接BD',AD',∵S△AD'B=S△ABC+S△AD'C﹣S△BD'C∴S△AD'B=BC×AC+×AC×D'N﹣×BC×D'M=24+(12﹣4)×D'N当E'D'⊥AC时,S△AD'B有最大值,∴S△AD'B最大值=24+(12﹣4)×6=(24+36﹣12)cm2.故答案为:(24﹣12),(24+36﹣12)【点评】本题考查了轨迹,全等三角形的判定和性质,等腰直角三角形的性质,角平分线的性质,三角形面积公式等知识,确定点D的运动轨迹是本题的关键.三、解答题(本题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分)友情提示:做解答题,别忘了写出必要的过程;作图(包括添加辅助线)最后必须用黑色字迹的签字笔或钢笔将线条描黑.17.(6分)小明解答“先化简,再求值:+,其中x=+1.”的过程如图.请指出解答过程中错误步骤的序号,并写出正确的解答过程.【分析】1【解答】解:1【点评】本题考查的是分式的化简求值,掌握异分母分式的减法法则是解题的关键.18.(6分)如图,在矩形ABCD中,点E,F在对角线B D.请添加一个条件,使得结论“AE =CF”成立,并加以证明.【分析】根据SAS即可证明△ABE≌△CDF可得AE=CF.【解答】解:添加的条件是BE=DF(答案不唯一).证明:∵四边形ABCD是矩形,∴AB∥CD,AB=CD,∴∠ABD=∠BDC,又∵BE=DF(添加),∴△ABE≌△CDF(SAS),∴AE=CF.【点评】本题考查矩形的性质、全等三角形的判定和性质等知识,解题的关键是熟练掌握全等三角形的判定方法,属于中考常考题型.19.(6分)如图,在直角坐标系中,已知点B(4,0),等边三角形OAB的顶点A在反比例函数y=的图象上.(1)求反比例函数的表达式.(2)把△OAB向右平移a个单位长度,对应得到△O'A'B'当这个函数图象经过△O'A'B'一边的中点时,求a的值.【分析】(1)过点A作AC⊥OB于点C,根据等边三角形的性质得出点A坐标,用待定系数法求得反比例函数的解析式即可;(2)分两种情况讨论:①反比例函数图象过AB的中点;②反比例函数图象过AO的中点.分别过中点作x轴的垂线,再根据30°角所对的直角边是斜边的一半得出中点的纵坐标,代入反比例函数的解析式得出中点坐标,再根据平移的法则得出a的值即可.【解答】解:(1)过点A作AC⊥OB于点C,∵△OAB是等边三角形,∴∠AOB=60°,OC=OB,∵B(4,0),∴OB=OA=4,∴OC=2,AC=2.把点A(2,2)代入y=,得k=4.∴反比例函数的解析式为y=;(2)分两种情况讨论:①点D是A′B′的中点,过点D作DE⊥x轴于点E.由题意得A′B′=4,∠A′B′E=60°,在Rt△DEB′中,B′D=2,DE=,B′E=1.∴O′E=3,把y=代入y=,得x=4,∴OE=4,∴a=OO′=1;②如图3,点F是A′O′的中点,过点F作FH⊥x轴于点H.由题意得A′O′=4,∠A′O′B′=60°,在Rt△FO′H中,FH=,O′H=1.把y=代入y=,得x=4,∴OH=4,∴a=OO′=3,综上所述,a的值为1或3.【点评】本题考查了用待定系数法求反比例函数的解析式,掌握直角三角形、等边三角形的性质以及分类讨论思想是解题的关键.20.(8分)在6×6的方格纸中,点A,B,C都在格点上,按要求画图:(1)在图1中找一个格点D,使以点A,B,C,D为顶点的四边形是平行四边形.(2)在图2中仅用无刻度的直尺,把线段AB三等分(保留画图痕迹,不写画法).【分析】(1)由勾股定理得:CD=AB=CD'=,BD=AC=BD''=,AD'=BC=AD''=;画出图形即可;(2)根据平行线分线段成比例定理画出图形即可.【解答】解:(1)由勾股定理得:CD=AB=CD'=,BD=AC=BD''=,AD'=BC=AD''=;画出图形如图1所示;(2)如图2所示.【点评】本题考查了平行四边形的判定与性质、勾股定理、平行线分线段成比例定理;熟练掌握勾股定理好平行线分线段成比例定理是解题的关键.21.(8分)在推进嘉兴市城乡生活垃圾分类的行动中,某社区为了了解居民掌握垃圾分类知识的情况进行调查.其中A、B两小区分别有500名居民参加了测试,社区从中各随机抽取50名居民成绩进行整理得到部分信息:【信息一】A小区50名居民成绩的频数直方图如图(每一组含前一个边界值,不含后一个边界值):【信息二】上图中,从左往右第四组的成绩如下:75 75 79 79 79 79 80 8081 82 82 83 83 84 84 84 【信息三】A、B两小区各50名居民成绩的平均数、中位数、众数、优秀率(80分及以上为优秀)、方差等数据如下(部分空缺):小区平均数中位数众数优秀率方差A75.1 7579 40% 277B75.1 77 76 45% 211根据以上信息,回答下列问题:(1)求A小区50名居民成绩的中位数.(2)请估计A小区500名居民成绩能超过平均数的人数.(3)请尽量从多个角度,选择合适的统计量分析A,B两小区参加测试的居民掌握垃圾分类知识的情况.【分析】(1)因为有50名居民,所以中位数落在第四组,中位数为75;(2)A小区500名居民成绩能超过平均数的人数:500×=240(人);(3)从平均数看,两个小区居民对垃圾分类知识掌握情况的平均水平相同;从方差看,B小区居民对垃圾分类知识掌握的情况比A小区稳定;从中位数看,B小区至少有一半的居民成绩高于平均数.【解答】解:(1)因为有50名居民,所以中位数落在第四组,中位数为75,故答案为75;(2)500×=240(人),答:A小区500名居民成绩能超过平均数的人数240人;(3)从平均数看,两个小区居民对垃圾分类知识掌握情况的平均水平相同;从方差看,B小区居民对垃圾分类知识掌握的情况比A小区稳定;从中位数看,B小区至少有一半的居民成绩高于平均数.【点评】本题考查的是条形统计图.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.22.(10分)某挖掘机的底座高AB=0.8米,动臂BC=1.2米,CD=1.5米,BC与CD的固定夹角∠BCD=140°.初始位置如图1,斗杆顶点D与铲斗顶点E所在直线DE垂直地面AM于点E,测得∠CDE=70°(示意图2).工作时如图3,动臂BC会绕点B转动,当点A,B,C在同一直线时,斗杆顶点D升至最高点(示意图4).(1)求挖掘机在初始位置时动臂BC与AB的夹角∠ABC的度数.(2)问斗杆顶点D的最高点比初始位置高了多少米(精确到0.1米)?(参考数据:sin50°≈0.77,cos50°≈0.64,sin70°≈0.94,cos70°≈0.34, 1.73)【分析】(1)过点C作CG⊥AM于点G,证明AB∥CG∥DE,再根据平行线的性质求得结果;(2)过点C作CP⊥DE于点P,过点B作BQ⊥DE于点Q,交CG于点N,如图2,通过解直角三角形求得DE,过点D作DH⊥AM于点H,过点C作CK⊥DH于点K,如图3,通过解直角三角形求得求得DH,最后便可求得结果.【解答】解:(1)过点C作CG⊥AM于点G,如图1,∵AB⊥AM,DE⊥AM,∴AB∥CG∥DE,∴∠DCG=180°﹣∠CDE=110°,∴BCG=∠BCD﹣∠GCD=30°,∴∠ABC=180°﹣∠BCG=150°;(2)过点C作CP⊥DE于点P,过点B作BQ⊥DE于点Q,交CG于点N,如图2,在Rt△CPD中,DP=CP×cos70°≈0.51(米),在Rt△BCN中,CN=BC×cos30°≈1.04(米),所以,DE=DP+PQ+QE=DP+CN+AB=2.35(米),如图3,过点D作DH⊥AM于点H,过点C作CK⊥DH于点K,在Rt△CKD中,DK=CD×cos50°≈1.16(米),所以,DH=DK+KH=3.16(米),所以,DH﹣DE=0.8(米),所以,斗杆顶点D的最高点比初始位置高了0.8米.【点评】此题主要考查了解直角三角形的应用,充分体现了数学与实际生活的密切联系,解题的关键是正确构造直角三角形.23.(10分)小波在复习时,遇到一个课本上的问题,温故后进行了操作、推理与拓展.(1)温故:如图1,在△ABC中,AD⊥BC于点D,正方形PQMN的边QM在BC上,顶点P,N分别在AB,AC上,若BC=6,AD=4,求正方形PQMN的边长.(2)操作:能画出这类正方形吗?小波按数学家波利亚在《怎样解题》中的方法进行操作:如图2,任意画△ABC,在AB上任取一点P',画正方形P'Q'M'N',使Q',M'在BC 边上,N'在△ABC内,连结BN'并延长交AC于点N,画NM⊥BC于点M,NP⊥NM交AB于点P,PQ⊥BC于点Q,得到四边形PPQMN.小波把线段BN称为“波利亚线”.(3)推理:证明图2中的四边形PQMN是正方形.(4)拓展:在(2)的条件下,在射线BN上截取NE=NM,连结EQ,EM(如图3).当tan∠NBM=时,猜想∠QEM的度数,并尝试证明.请帮助小波解决“温故”、“推理”、“拓展”中的问题.【分析】(1)理由相似三角形的性质构建方程即可解决问题.(2)根据题意画出图形即可.(3)首先证明四边形PQMN是矩形,再证明MN=PN即可.(4)证明△BQE∽△BEM,推出∠BEQ=∠BME,由∠BME+∠EMN=90°,可得∠BEQ+∠NEM=90°,即可解决问题.【解答】(1)解:如图1中,∵PN∥BC,∴△APN∽△ABC,∴=,即=,解得PN=.(2)能画出这样的正方形,如图2中,正方形PNMQ即为所求.(3)证明:如图2中,由画图可知:∠QMN=∠PQM=∠NPQ=∠BM′N′=90°,∴四边形PNMQ是矩形,MN∥M′N′,∴△BN′M′∽△BNM,∴=,同理可得:=,∴=,∵M′N′=P′N′,∴MN=PN,∴四边形PQMN是正方形.(4)解:如图3中,结论:∠QEM=90°.理由:由tan∠NBM==,可以假设MN=3k,BM=4k,则BN=5k,BQ=k,BE =2k,∴==,==,∴=,∵∠QBE=∠EBM,∴△BQE∽△BEM,∴∠BEQ=∠BME,∵NE=NM,∴∠NEM=∠NME,∵∠BME+∠EMN=90°,∴∠BEQ+∠NEM=90°,∴∠QEM=90°.【点评】本题属于四边形综合题,考查了正方形的性质和判定,相似三角形的判定和性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考压轴题.24.(12分)某农作物的生长率p与温度t(℃)有如下关系:如图1,当10≤t≤25时可近似用函数p=t﹣刻画;当25≤t≤37时可近似用函数p=﹣(t﹣h)2+0.4刻画.(1)求h的值.(2)按照经验,该作物提前上市的天数m(天)与生长率p满足函数关系:生长率p0.2 0.25 0.3 0.35 提前上市的天数m(天)0 5 10 15①请运用已学的知识,求m关于p的函数表达式;②请用含t的代数式表示m.(3)天气寒冷,大棚加温可改变农作物生长速度.在(2)的条件下,原计划大棚恒温20℃时,每天的成本为200元,该作物30天后上市时,根据市场调查:每提前一天上市售出(一次售完),销售额可增加600元.因此给大棚继续加温,加温后每天成本w(元)与大棚温度t(℃)之间的关系如图2.问提前上市多少天时增加的利润最大?并求这个最大利润(农作物上市售出后大棚暂停使用).【分析】(1)把(25,0.3)代入p=﹣(t﹣h)2+0.4,解方程即可得到结论;(2)①由表格可知,m是p的一次函数,于是得到m=100p﹣20;②当10≤t≤25时,p=t﹣,求得m=100(t﹣)﹣20=2t﹣40;当25≤t≤37时,根据题意即可得到m=100[﹣(t﹣h)2+0.4]﹣20=﹣(t﹣29)2+20;(3)(Ⅰ)当20≤t≤25时,(Ⅱ)当25≤t≤37时,w=300,根据二次函数的性质即可得到结论.【解答】解:(1)把(25,0.3)代入p=﹣(t﹣h)2+0.4得,0.3=﹣(25﹣h)2+0.4,解得:h=29或h=21,∵h>25,∴h=29;(2)①由表格可知,m是p的一次函数,∴m=100p﹣20;②当10≤t≤25时,p=t﹣,∴m=100(t﹣)﹣20=2t﹣40;当25≤t≤37时,p=﹣(t﹣h)2+0.4,∴m=100[﹣(t﹣h)2+0.4]﹣20=﹣(t﹣29)2+20;(3)(Ⅰ)当20≤t≤25时,由(20,200),(25,300),得w=20t﹣200,∴增加利润为600m+[200×30﹣w(30﹣m)]﹣40t2﹣600t﹣4000,∴当t=25时,增加的利润的最大值为6000元;(Ⅱ)当25≤t≤37时,w=300,增加的利润为600m+[200×30﹣w(30﹣m)]=900×(﹣)×(t﹣29)2+15000=﹣(t﹣29)2+15000;∴当t=29时,增加的利润最大值为15000元,综上所述,当t=29时,提前上市20天,增加的利润最大值为15000元.【点评】本题考查二次函数的实际应用,借助二次函数解决实际问题,此题涉及数据较多,认真审题很关键.二次函数的最值问题要利用性质来解,注意自变量的取值范围.。

2019年高考浙江卷数学真题试题(word版,含答案与解析)

2019年高考浙江卷数学真题试题(word版,含答案与解析)

2019年高考数学真题试卷(浙江卷)原卷+解析一、选择题:本大题共10小题,每小题4分,共40分。

1.(2019•浙江)已知全集U={-1,0,1,2,3},集合A={0,1,2},B={-1,0,1},则=()A. {-1}B. {0,1}C. {-1,2,3}D. {-1,0,1,3}【答案】 A【考点】交、并、补集的混合运算【解析】【解答】解:,所以={-1}.故答案为:A.【分析】根据集合的补写出即可得到.2.(2019•浙江)渐近线方程为x±y=0的双曲线的离心率是()A. B. 1 C. D. 2【答案】 C【考点】双曲线的简单性质【解析】【解答】解:根据双曲线的渐近线方程,得,所以离心率e= .故答案为:C.【分析】根据双曲线的渐近线方程,得到,即可求出离心率e.3.(2019•浙江)若实数x,y满足约束条件,则z=3x+2y的最大值是()A. -1B. 1C. 10D. 12【答案】 C【考点】简单线性规划的应用【解析】【解答】作出可行域和目标函数相应的直线,平移该直线,可知当过(2,2)时,目标函数取最大值10.故答案为:C.【分析】作出可行域和目标函数相应的直线,平移该直线,即可求出相应的最大值.4.(2019•浙江)祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V柱体=sh,其中s是柱体的底面积,h是柱体的高。

若某柱体的三视图如图所示,则该柱体的体积是()A. 158B. 162C. 182D. 32【答案】 B【考点】由三视图求面积、体积【解析】【解答】根据三视图,确定几何体为五棱柱,其底面积,所以体积V=27 .故答案为:B.【分析】根据三视图确定几何体的结构特征,根据祖暅原理,即可求出相应的体积.5.(2019•浙江)若a>0,b>0,则“a+b≤4“是“ab≤4”的()A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】 A【考点】必要条件、充分条件与充要条件的判断【解析】【解答】作出直线y=4-x和函数的图象,结合图象的关系,可确定“a+b≤4“是“ab≤4”的充分不必要条件.故答案为:A.【分析】作出函数的图象,结合图象确定充分必要性即可.6.(2019•浙江)在同一直角坐标系中,函数y= ,y=log a(x+ ),(a>0且a≠0)的图像可能是()A B C D【答案】 D【考点】函数的图象【解析】【解答】当a>1时,y= 的底数大于0小于1,故过(0,1)单调递减;y=log a(x+ )过(,0)单调递增,没有符合条件的图象;当0<a<1时,y= 的底数大于1,故过(0,1)单调递增;y=log a(x+ )过(,0)单调递减;故答案为:D.【分析】对a的取值分类讨论,结合指数函数和对数函数的特点,确定函数的图象即可.7.(2019•浙江)设0<a<1随机变量X的分布列是X 0 a 1P则当a在(0,1)内增大时()A. D(X)增大B. D(X)减小C. D(X)先增大后减小D. D(X)先减小后增大【答案】 D【考点】离散型随机变量的期望与方差【解析】【解答】解:E(X)= ,,根据二次函数的单调性,可知D(X)先减小后增大;故答案为:D.【分析】根据期望的公式求出E(X),结合方差的计算公式及二次函数的性质即可确定D(X)先减小后增大.8.(2019•浙江)设三棱锥V-ABC的底面是正三角形,侧棱长均相等,P是棱VA上的点,(不含端点),记直线PB与直线AC所成角为α.直线PB与平面ABC所成角为β.二面角P-AC-B的平面角为γ。

2019年浙江省丽水市中考数学试卷及答案解析

2019年浙江省丽水市中考数学试卷及答案解析
16.(4 分)图 2,图 3 是某公共汽车双开门的俯视示意图,ME、EF、FN 是门轴的滑动轨 道,∠E=∠F=90°,两门 AB、CD 的门轴 A、B、C、D 都在滑动轨道上,两门关闭时 (图 2),A、D 分别在 E、F 处,门缝忽略不计(即 B、C 重合);两门同时开启,A、 D 分别沿 E→M,F→N 的方向匀速滑动,带动 B、C 滑动:B 到达 E 时,C 恰好到达 F, 此时两门完全开启,已知 AB=50cm,CD=40cm. (1)如图 3,当∠ABE=30°时,BC= cm. (2)在(1)的基础上,当 A 向 M 方向继续滑动 15cm 时,四边形 ABCD 的面积为 cm2 .
三、解答题(本题有 8 小题,共 66 分,各小题都必须写出解答过程。) 17.(6 分)计算:|﹣3|﹣2tan60°+ +( )﹣1.
第 3 页(共 19 页)
18.(6 分)解方程组 19.(6 分)某校根据课程设置要求,开设了数学类拓展性课程,为了解学生最喜欢的课程
内容,随机抽取了部分学生进行问卷调查(每人必须且只选其中一项),并将统计结果 绘制成如下统计图(不完整).请根据图中信息回答问题:
A.2
B.
C.
D.
10.(3 分)将一张正方形纸片按如图步骤,通过折叠得到图④,再沿虚线剪去一个角,展 开铺平后得到图⑤,其中 FM,GN 是折痕.若正方形 EFGH 与五边形 MCNGF 的面积相 等,则 的值是( )
A.
B. ﹣1
C.
D.
二、填空题(本题有 6 小题,每小题 4 分,共 24 分) 11.(4 分)不等式 3x﹣6≤9 的解是 . 12.(4 分)数据 3,4,10,7,6 的中位数是 . 13.(4 分)当 x=1,y=﹣ 时,代数式 x2+2xy+y2 的值是 .

2019年浙江省中考数学测试试卷附解析

2019年浙江省中考数学测试试卷附解析

2019年浙江省中考数学测试试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.二次函数y =2(x -1)2+1先向左平移l 个单位,再向上平移1个单位后得解析式为 y =2x 2+bx +c ,则b, c 分别为( )A .-8, 0B .-8, 2C . 0, 2D .0, 02.如图,分别以三角形三边为直径向外作三个半圆,如果较小的两个半圆面积之和等于较 大的半圆面积,则这个三角形为 ( )A .锐角三角形或钝角三角形B .钝角三角形C .锐角三角形D .直角三角形3.若二次函数2y ax bx c =++的图象的对称轴是y 轴,则必须有( )A . b 2 =4acB .b=c=0C .b=2aD . b=04.“上升数”是一个数中右边数字比左边数字大的自然数(如:34,568,2469等),任取一个两位数,是“上升数”的概率是( )A .21B .52C .53D .187 5.如图,在△ABC 中,∠B = 90°,DE ∥AC ,交AB 边于点 D ,交BC 边于点E. 若∠C = 30°,则∠1 等于( )A .40°B .50°C .60°D .70°6.要使分式2143x x -+的值为 0,则x 的值应为( ) A .1 B .-1 C .34- D .1±7.甲、乙、丙三个同学排成一排拍照,则甲排在中间的概率是( )A .16B .14C .13D .128.如图,点E 在BC 上,ED 丄AC 于F ,交BA 的延长线于D ,已知∠D =30°,∠C =20°,则∠B 的度数是( )A .20°B .30°C .40°D .50° 9. 如图所示,将△ABC 沿着XY 方向平移一定的距离就得到△MNL ,则下列结论中正确的是( )①AM ∥BN ;②AM=BN ;③BC=ML ;④∠ACB=∠MNLA .1个B .2个C .3个D .4个 10.下列图形能比较大小的是 ( )A .直线与线段B .直线与射线C .两条线段D .射线与线段 11.下列物体的形状,类似于圆柱的个数是( )①篮球②书本③标枪头④罐头 ⑤水管A .1个B .2个C .3个D .4个 二、填空题12.已知sinA =23,则cosA = . 13.反比例函数x m y 12--=(m 为常数)的图像如图所示,则m 的取值范围是________. 14.写出一个开口向下,对称轴是直线 x=3,且与y 轴交点是(0,一2)的抛物线的解析 式: .15. 如图所示,一滑梯 AB 的坡比为 3:4,若滑梯 AB 的长为 lO cm ,则滑梯的顶端离地面的距离 BC= m.16.在如图中添加小正方形,使该图形经过折叠后能围成一个四棱柱. 不同的添法共有 种.17. 在二元一次方程4314x y -=中,若x ,y 互为相反数,则 x = .18.三角形中线将三角形的 平分.19.如图,将△ABC 沿CA 方向平移CA 长,得△EFA ,若△ABC 的面积为3cm 2,则四边形BCEF 的面积是__________cm 2.20.一个立方体的体积是125cm 3,则它的棱长是 cm . 三、解答题21.在△ABC 中,∠A =105°,∠B = 45°,AB = 2,求 AC 的长.22.如图,点P为⊙O的直径EF 延长线上一点,PA交⊙O于点 B.A,PC 交⊙O于点 D.C 两点,∠1=∠2,求证:PB=PD.23.如图,在□ABCD中,BF⊥AD于F,BE⊥CD于E,若∠A=60°,AF=3cm,CE=2cm,求□ABCD的周长.24.如图所示,□ABCD中,AE,CF分别平分∠BAD,∠DCB.求证:AFCE是平行四边形.25.在□ABCD中,AE,AF分别是BC,CD边上的高,AF与BC交于点G,AE=2 cm,AF=5 cm,∠EAF=30°,求□ABCD各内角的度数和AB,AD的长.26.为配合新课程的实施,某市举行了“应用与创新”知识竞赛,共有l万名学生参加了这次竞赛(满分l00分,得分全是整数).为了解本次竞赛成绩情况,从中随机抽取500名学生的竞赛成绩进行了统计,整理见下表:组别分组频数149.5~59.560259.5~69.5120369.5~79.5180479.5~89.5130089.5~99.5b合计a请解答下列问题:(1)上表中a= ,b= .(2)被抽取的学生成绩的中位数落在第小组内.(3)若成绩在90分以上(含90分)的学生获一等奖,则全市获一等奖的人数大约为人.27.如图,适当地改变方格图中的平行四边形的部分位置,并保持面积不变,先使其成为矩形,再将矩形向下平移 3个格后,继续改变其中某些部分的位置并保持面积不变,使其成为菱形. 说明在变化过程中所运用的图形变换.28.已知方程21|28|(5)02x x y a -+--=.(1)当0y >时,求a 的取值范围;(2)当0y <时,求a 的取值范围.29.在下图中,将图中的小船沿箭头方向平移6格,作出平移后的图形.30.用简便方法计算:(1)12114()()(1)(1)(1)23435-⨯-⨯-⨯-⨯- (2 ) (-5.25 )×(-4.73 )-4.73 ×(-19.75)-25×(-5.27).【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.D3.D4.B5.C6.D.7.C8.C9.B10.C11.B二、填空题12. 53 13. 21-<m 14. 2(3)7y x =--+(答案不唯一).15.616.417.2, -218.面积19.920.5三、解答题21.如图,过A 作 AH ⊥BC 于H ,∵∠B= 45°, AB= 2,AH=BH=2,∠HAC=60°, ∠C=30°,∴222AC AH ==22.过点O 作OH ⊥AB ,OG ⊥CD ,垂足分别为 H 、G .∴∠OHP=∠OGP=90°, ∵∠1=∠2,OP=OP ,∴Rt △OHP ≌Rt △OGP(AAS),∴PH= PG ,OH= OG , ∵OH ⊥AB ,OG ⊥CD ,∴AB= CD ,BH= DG ,∴PB=PD .23.□ABCD的周长为20cm24.证明AE∥CF即可25.30°,150°,30°,l50°,AB=4 cm, AD=10cm 26.(1)500,10;(2)3;(3)20027.图略28.(1)a<20;(2)a>2029.略30.(1)35(2)250。

2019年浙江省高考理科数学试卷及答案解析(可编辑修改word版)

2019年浙江省高考理科数学试卷及答案解析(可编辑修改word版)

⇒ f(3,0)+f(2,1)+f(1,2)+f(0,3) = 20+15* 4+6*6+1* 4 =120.选C.
6.已知函数 f (x) x3 ax2 bx c,且0 f (1) f (2) f (3) 3,则( )
A. c 3
B. 3 c 6
【答案】D
【解析】
y = sin 3x+cos 3x = 2 sin(3x+ π ) = 4
C. {5}
D. {2,5}
【答案】B 【解析】
U ={2,3,4}, A ={3,,4},∴ Cu A ={2},选B.
(2)已知 i 是虚数单位, a, b R ,则“ a b 1 ”是“ (a bi)2 2i ”的( )
A. 充分不必要条件
B. 必要不充分条件
C. 充分必要条件
D. 既不充分也不必要条件
(3)某几何体的三视图(单位:cm)如图所示,则此几何体的表面积是
A. 90 cm2
B. 129 cm2
C. 132 cm2
D. 138 cm2
【答案】D
【解析】
几何体下底面面积S下 = 3* 4*3= 36,上底面面积S上 = 6* 4+3*5 = 39. 前后面面积S前后 = 3* 4*3= 36.右面面积S右 = 3*6 =18.左面面积S左 = 3*3= 9. ∴ 几何体表面面积S = S下 + S上 + S前后 + S右 + S右 =138。选D.
4
12
12
5.在 (1 x)6 (1 y)4 的展开式中,记 xm yn 项的系数为 f (m, n) ,则 f (3,0) f (2,1) f (1,2) f (0,3)

2019年高考数学浙江卷含答案解析

2019年高考数学浙江卷含答案解析

徐老师第1页2019年普通高等学校招生全国统一考试(浙江省)数学本试题卷分选择题和非选择题两部分.满分150,考试时间120分钟.参考公式:若事件A ,B 互斥,则()()()P A B P A P B +=+若事件A ,B 相互独立,则()()()P AB P A P B =若事件A 在一次试验中发生的概率是P ,则n 次独立重复试验中事件A 恰好发生k 次的概率()C (1)(0,1,2,,)k k n kn n P k p p k n -=-=台体的体积公式121()3V S S h =++,其中12,S S 分别表示台体的上、下底面积,h 表示台体的高柱体的体积公式V Sh =,其中S 表示柱体的底面积,h 表示柱体的高锥体的体积公式13V Sh =,其中S 表示锥体的底面积,h 表示锥体的高球的表面积公式24S R =π球的体积公式343V R =π,其中R 表示球的半径选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集{}1,0,1,2,3U =-,集合{}0,1,2A =,{}1,0,1B =-,则()U A B =I ð()A .{}1-B .{}0,1C .{}1,2,3-D .{}1,0,1,3-2.渐近线方程为x ±y =0的双曲线的离心率是()A.2B .1CD .2第2页3.若实数x ,y 满足约束条件3403400x y x y x y -+≥⎧⎪--≤⎨⎪+≥⎩,则z =3x +2y 的最大值是()A .1-B .1C .10D .124.祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V Sh =柱体,其中S 是柱体的底面积,h是柱体的高.若某柱体的三视图如图所示(单位:cm ),则该柱体的体积(单位:3cm )是()A .158B .162C .182D .3245.若0a >,0b >,则“4a b +≤”是“4ab ≤”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件6.在同一直角坐标系中,函数1x y a =,1(2log ay x =+(0a >,且1a ≠)的图象可能是()A BCD7.设01a <<,则随机变量X 的分布列是X 0a1P131313则当a 在(0,1)内增大时,()徐老师第3页A .D X ()增大B .D X ()减小C .D X ()先增大后减小D .D X ()先减小后增大8.设三棱锥V –ABC 的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点).记直线PB 与直线AC 所成的角为α,直线PB 与平面ABC 所成的角为β,二面角––P AC B 的平面角为γ,则()A .βγ<,αγ<B .βα<,βγ<C .βα<,γα<D .αβ<,γβ<9.已知,a b ∈R ,函数32,0()11(1),032x x f x x a x ax x <⎧⎪=⎨-++≥⎪⎩.若函数()y f x ax b =--恰有3个零点,则()A .–1a <,0b <B .–1a <,0b >C .–1a >,0b <D .–1a >,0b >10.设a ,b ∈R ,数列{}n a 满足1a a =,21n n a a b +=+,n *∈N ,则()A .当12b =时,1010a >B .当14b =时,1010a >C .当–2b =时,1010a >D .当–4b =时,1010a >非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.11.复数11iz =+(i 为虚数单位),则||z =________.12.已知圆C 的圆心坐标是(0,)m ,半径长是r .若直线230x y -+=与圆C 相切于点(2,1)A --,则m =________,r =________.13.在二项式9)x +的展开式中,常数项是________,系数为有理数的项的个数是________.14.在ABC △中,90ABC ∠=︒,4AB =,3BC =,点D 在线段AC 上,若45BDC ∠=︒,则BD =________,cos ABD ∠=________.15.已知椭圆22195x y +=的左焦点为F ,点P 在椭圆上且在x 轴的上方,若线段PF 的中点在以原点O 为圆心,OF 为半径的圆上,则直线PF 的斜率是________.第4页16.已知a ∈R ,函数3()f x ax x =-,若存在t ∈R ,使得2|(2)()|3f t f t +-≤,则实数a 的最大值是________.17.已知正方形ABCD 的边长为1,当每个(1,2,3,4,5,6)i i λ=取遍1±时,123456||AB BC CD DA AC BD λλλλλλ+++++uuu r uuu r uuu r uuu r uuu r uuu r的最小值是________,最大值是________.三、解答题:本大题共5小题,共74分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年普通高等学校招生全国统一考试(浙江卷)数学参考公式:选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集{}1,0,1,2,3U =-,集合{}0,1,2A =,{}101B =-,,,则U A B =I ð( )A. {}1-B. {}0,1C. {}1,2,3-D. {}1,0,1,3-【答案】A 【解析】 【分析】本题借根据交集、补集的定义可得.容易题,注重了基础知识、基本计算能力的考查.【详解】={1,3}U C A -,则(){1}U C A B =-I 【点睛】易于理解集补集的概念、交集概念有误2.渐近线方程为0x y ±=的双曲线的离心率是( )A. B. 1C.D. 2【答案】C 【解析】 【分析】本题根据双曲线的渐近线方程可求得1a b ==,进一步可得离心率.容易题,注重了双曲线基础知识、基本计算能力的考查.【详解】因为双曲线的渐近线为0x y ±=,所以==1a b,则c =,双曲线的离心率ce a==【点睛】理解概念,准确计算,是解答此类问题的基本要求.部分考生易出现理解性错误.3.若实数,x y 满足约束条件3403400x y x y x y -+≥⎧⎪--≤⎨⎪+≥⎩,则32z x y =+的最大值是( )A. 1-B. 1C. 10D. 12【答案】C 【解析】 【分析】本题是简单线性规划问题的基本题型,根据“画、移、解”等步骤可得解.题目难度不大题,注重了基础知识、基本技能的考查.【详解】在平面直角坐标系内画出题中的不等式组表示的平面区域为以(-1,1),(1,-1),(2,2)为顶点的三角形区域(包含边界),由图易得当目标函数=3+2z x y 经过平面区域的点(2,2)时,=3+2z x y 取最大值max 322210z =⨯+⨯=.【点睛】解答此类问题,要求作图要准确,观察要仔细.往往由于由于作图欠准确而影响答案的准确程度,也有可能在解方程组的过程中出错.4.祖暅是我国南北朝时代的伟大科学家.他提出的“幂势既同,则积不容易”称为祖暅原理,利用该原理可以得到柱体体积公式V Sh =柱体,其中S 是柱体的底面积,h 是柱体的高,若某柱体的三视图如图所示,则该柱体的体积是( )A. 158B. 162C. 182D. 32【答案】B 【解析】 【分析】本题首先根据三视图,还原得到几何体—棱柱,根据题目给定的数据,计算几何体的体积.常规题目.难度不大,注重了基础知识、视图用图能力、基本计算能力的考查.【详解】由三视图得该棱柱的高为6,底面可以看作是由两个直角梯形组合而成的,其中一个上底为4,下底为6,高为3,另一个的上底为2,下底为6,高为3,则该棱柱的体积为264633616222++⎛⎫⨯+⨯⨯=⎪⎝⎭. 【点睛】易错点有二,一是不能正确还原几何体;二是计算体积有误.为避免出错,应注重多观察、细心算. 5.若0,0ab >>,则“4a b +≤”是 “4ab ≤”的( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】A 【解析】 【分析】本题根据基本不等式,结合选项,判断得出充分性成立,利用“特殊值法”,通过特取,a b 的值,推出矛盾,确定必要性不成立.题目有一定难度,注重重要知识、基础知识、逻辑推理能力的考查.【详解】当0, 0a >b >时,2a b ab +≥,则当4a b +≤时,有24ab a b ≤+≤,解得4ab ≤,充分性成立;当=1, =4a b 时,满足4ab ≤,但此时=5>4a+b ,必要性不成立,综上所述,“4a b +≤”是“4ab ≤”的充分不必要条件.【点睛】易出现的错误有,一是基本不等式掌握不熟,导致判断失误;二是不能灵活的应用“赋值法”,通过特取,a b 的值,从假设情况下推出合理结果或矛盾结果.6.在同一直角坐标系中,函数11,log (02a x y y x a a ⎛⎫==+> ⎪⎝⎭且0)a ≠的图象可能是( ) A. B.C. D.【答案】D 【解析】 【分析】本题通过讨论a 的不同取值情况,分别讨论本题指数函数、对数函数的图象和,结合选项,判断得出正确结论.题目不难,注重重要知识、基础知识、逻辑推理能力的考查.【详解】当01a <<时,函数xy a =过定点(0,1)且单调递减,则函数1x y a=过定点(0,1)且单调递增,函数1log 2a y x ⎛⎫=+⎪⎝⎭过定点1(,0)2且单调递减,D 选项符合;当1a >时,函数x y a =过定点(0,1)且单调递增,则函数1xy a =过定点(0,1)且单调递减,函数1log 2a y x ⎛⎫=+ ⎪⎝⎭过定点1(,02)且单调递增,各选项均不符合.综上,选D.【点睛】易出现的错误有,一是指数函数、对数函数的图象和性质掌握不熟,导致判断失误;二是不能通过讨论a 的不同取值范围,认识函数的单调性.7.设01a <<,则随机变量X 的分布列是:则当a 在()0,1内增大时( ) A. ()D X 增大 B. ()D X 减小C. ()D X 先增大后减小D. ()D X 先减小后增大【答案】D 【解析】 【分析】 研究方差随a 变化增大或减小规律,常用方法就是将方差用参数a 表示,应用函数知识求解.本题根据方差与期望的关系,将方差表示为a 的二次函数,二测函数的图象和性质解题.题目有一定综合性,注重重要知识、基础知识、运算求解能力的考查. 【详解】方法1:由分布列得1()3aE X +=,则 2222111111211()01333333926a a a D X a a +++⎛⎫⎛⎫⎛⎫⎛⎫=-⨯+-⨯+-⨯=-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,则当a 在(0,1)内增大时,()D X 先减小后增大.方法2:则()222221(1)222213()()03399924a a a a D X E X E X a ⎡⎤+-+⎛⎫=-=++-==-+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦ 故选D.【点睛】易出现的错误有,一是数学期望、方差以及二者之间的关系掌握不熟,无从着手;二是计算能力差,不能正确得到二次函数表达式.8.设三棱锥V ABC -的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点),记直线PB 与直线AC 所成角为α,直线PB 与平面ABC 所成角为β,二面角P AC B --的平面角为γ,则( )A. ,βγαγ<<B.,βαβγ<<C.,βαγα<< D. ,αβγβ<<【答案】B 【解析】 【分析】本题以三棱锥为载体,综合考查异面直线所成的角、直线与平面所成的角、二面角的概念,以及各种角的计算.解答的基本方法是通过明确各种角,应用三角函数知识求解,而后比较大小.而充分利用图形特征,则可事倍功半.【详解】方法1:如图G 为AC 中点,V 在底面ABC 的投影为O ,则P 在底面投影D 在线段AO 上,过D 作DE 垂直AE ,易得//PE VG ,过P 作//PF AC 交VG 于F ,过D 作//DH AC ,交BG 于H ,则,,BPF PBD PED α=∠β=∠γ=∠,则cos cos PF EG DH BDPB PB PB PBα===<=β,即αβ>,tan tan PD PDED BDγ=>=β,即y >β,综上所述,答案为B.方法2:由最小角定理βα<,记V AB C --的平面角为γ'(显然γ'=γ)由最大角定理β<γ'=γ,故选B.法2:(特殊位置)取V ABC -为正四面体,P 为VA 中点,易得cos sin ,sin sin 6633α=⇒α=β=γ=,故选B. 【点睛】常规解法下易出现的错误有,不能正确作图得出各种角.未能想到利用“特殊位置法”,寻求简便解法.9.已知,a b R ∈,函数32,0()11(1),032x x f x x a x ax x <⎧⎪=⎨-++≥⎪⎩,若函数()y f x ax b =--恰有三个零点,则( ) A. 1,0a b <-< B. 1,0a b <-> C. 1,0a b >-> D. 1,0a b >-<【答案】C 【解析】 【分析】当0x <时,()(1)y f x ax b x ax b a x b =--=--=--最多一个零点;当0x …时,32321111()(1)(1)3232y f x ax b x a x ax ax b x a x b =--=-++--=-+-,利用导数研究函数的单调性,根据单调性画函数草图,根据草图可得.【详解】当0x <时,()(1)0y f x ax b x ax b a x b =--=--=--=,得1bx a=-;()y f x ax b =--最多一个零点;当0x …时,32321111()(1)(1)3232y f x ax b x a x ax ax b x a x b =--=-++--=-+-, 2(1)y x a x '=-+,当10a +…,即1a -…时,0y '…,()y f x ax b =--在[0,)+∞上递增,()y f x ax b =--最多一个零点.不合题意;当10a +>,即1a <-时,令0y '>得[1x a ∈+,)+∞,函数递增,令0y '<得[0x ∈,1)a +,函数递减;函数最多有2个零点;根据题意函数()y f x ax b =--恰有3个零点⇔函数()y f x ax b =--在(,0)-∞上有一个零点,在[0,)+∞上有2个零点,如右图:∴01b a <-且3211(1)(1)(1)032b a a a b ->⎧⎪⎨+-++-<⎪⎩, 解得0b <,10a ->,31(1)6b a >-+. 故选:C .【点睛】遇到此类问题,不少考生会一筹莫展.由于方程中涉及,a b 两个参数,故按“一元化”想法,逐步分类讨论,这一过程中有可能分类不全面、不彻底..10.设,a b R ∈,数列{}n a 中,21,n n n a a a a b +==+,N n *∈ ,则( )A. 当101,102b a => B. 当101,104b a => C. 当102,10b a =-> D. 当104,10b a =->【答案】A 【解析】 【分析】本题综合性较强,注重重要知识、基础知识、运算求解能力、分类讨论思想的考查.本题从确定不动点出发,通过研究选项得解.【详解】选项B:不动点满足221142x x x⎛⎫-+=-=⎪⎝⎭时,如图,若1110,,22na a a⎛⎫=∈<⎪⎝⎭,排除如图,若a不动点12则12na=选项C:不动点满足22192024x x x⎛⎫--=--=⎪⎝⎭,不动点为ax12-,令2a=,则210na=<,排除选项D:不动点满足221174024x x x⎛⎫--=--=⎪⎝⎭,不动点17122x=±,令17122a=±,则171102na=<,排除.选项A:证明:当12b=时,2222132431113117,,12224216a a a a a a=+≥=+≥=+≥≥,处理一:可依次迭代到10a;处理二:当4n≥时,221112n n na a a+=+≥≥,则117117171161616log2log log2nn n na a a-++>⇒>则12117(4)16nna n-+⎛⎫≥≥⎪⎝⎭,则626410217164646311114710161616216a⨯⎛⎫⎛⎫≥=+=++⨯+⋯⋯>++>⎪ ⎪⎝⎭⎝⎭.故选A【点睛】遇到此类问题,不少考生会一筹莫展.利用函数方程思想,通过研究函数的不动点,进一步讨论a的可能取值,利用“排除法”求解.非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分11.复数11z i=+(i 为虚数单位),则||z =________.【答案】2【解析】 【分析】本题先计算z ,而后求其模.或直接利用模的性质计算. 容易题,注重基础知识、运算求解能力的考查.【详解】1|||1|2z i ===+. 【点睛】本题考查了复数模的运算,属于简单题.12.已知圆C 的圆心坐标是(0,)m ,半径长是r .若直线230x y -+=与圆相切于点(2,1)A --,则m =_____,r =______.【答案】 (1). 2m =- (2). r =【解析】 【分析】本题主要考查圆的方程、直线与圆的位置关系.首先通过确定直线AC 的斜率,进一步得到其方程,将(0,)m 代入后求得m ,计算得解.【详解】可知11:1(2)22AC k AC y x =-⇒+=-+,把(0,)m 代入得2m =-,此时||r AC ===【点睛】:解答直线与圆的位置关系问题,往往要借助于数与形的结合,特别是要注意应用圆的几何性质.13.在二项式9)x 的展开式中,常数项是________;系数为有理数的项的个数是_______.【答案】 (1). (2). 5 【解析】 【分析】本题主要考查二项式定理、二项展开式的通项公式、二项式系数,属于常规题目.从写出二项展开式的通项入手,根据要求,考察x 的幂指数,使问题得解.【详解】9(2)x +的通项为919(2)(0,1,29)rr r r T C x r -+==L 可得常数项为0919(2)162T C ==,因系数为有理数,1,3,5,7,9r =,有246810T , T , T , T , T 共5个项【点睛】此类问题解法比较明确,首要的是要准确记忆通项公式,特别是“幂指数”不能记混,其次,计算要细心,确保结果正确.14.在V ABC 中,90ABC ∠=︒,4AB =,3BC =,点D 在线段AC 上,若45BDC ∠=︒,则BD =____;cos ABD ∠=________.【答案】 (1). 1225 (2). 7210【解析】 【分析】本题主要考查解三角形问题,即正弦定理、三角恒等变换、数形结合思想及函数方程思想.通过引入CD x =,在BDC ∆、ABD ∆中应用正弦定理,建立方程,进而得解.. 【详解】在ABD ∆中,正弦定理有:sin sin AB BD ADB BAC =∠∠,而34,4AB ADB π=∠=,22AC AB BC 5=+=,34sin ,cos 55BC AB BAC BAC AC AC ∠==∠==,所以122BD =. 72cos cos()coscos sinsin 4410ABD BDC BAC BAC BAC ππ∠=∠-∠=∠+∠=【点睛】解答解三角形问题,要注意充分利用图形特征.15.已知椭圆22195x y+=的左焦点为F,点P在椭圆上且在x轴的上方,若线段PF的中点在以原点O为圆心,OF为半径的圆上,则直线PF的斜率是_______.【答案】15【解析】【分析】结合图形可以发现,利用三角形中位线定理,将线段长度用坐标表示考点圆的方程,与椭圆方程联立可进一步求解.利用焦半径及三角形中位线定理,则更为简洁.【详解】方法1:由题意可知||=|2OF OM|=c=,由中位线定理可得12||4PF OM==,设(,)P x y可得22(2)16x y-+=,联立方程22195x y+=可解得321,22x x=-=(舍),点P在椭圆上且在x轴的上方,求得315,2P⎛⎫-⎪⎪⎝⎭,所以1521512PFk==方法2:焦半径公式应用解析1:由题意可知|2OF|=|OM|=c=,由中位线定理可得12||4PF OM==,即342p pa ex x-=⇒=-求得315,2P ⎛⎫-⎪ ⎪⎝⎭,所以1521512PF k ==.【点睛】本题主要考查椭圆的标准方程、椭圆的几何性质、直线与圆的位置关系,利用数形结合思想,是解答解析几何问题的重要途径.16.已知a R ∈,函数3()f x ax x =-,若存在t R ∈,使得2|(2)()|3f t f t +-≤,则实数a 的最大值是____. 【答案】max 43a = 【解析】 【分析】本题主要考查含参绝对值不等式、函数方程思想及数形结合思想,属于能力型考题.从研究()2(2)()23642f t f t a t t +-=++-入手,令2364[1,)m t t =++∈+∞,从而使问题加以转化,通过绘制函数图象,观察得解.【详解】使得()()222(2)()2(2)(2))223642f t f t a t t t t a t t +-=•++++-=++-,使得令2364[1,)m t t =++∈+∞,则原不等式转化为存在11,|1|3m am ≥-≤,由折线函数,如图只需113a -≤,即43a ≤,即a 的最大值是43【点睛】对于函数不等式问题,需充分利用转化与化归思想、数形结合思想.17.已知正方形ABCD 的边长为1,当每个(1,2,3,4,5,6)i i λ=取遍±1时,123456||AB BC CD DA AC BD λλλλλλ+++++u u u r u u u r u u u r u u u r u u u r u u u r的最小值是________;最大值是_______.【答案】 (1). 0 (2). 25【解析】 【分析】本题主要考查平面向量的应用,题目难度较大.从引入“基向量”入手,简化模的表现形式,利用转化与化归思想将问题逐步简化. 【详解】()()12345613562456AB BC CD DA AC BD AB AD λ+λ+λ+λ+λ+λ=λ-λ+λ-λ+λ-λ+λ+λu u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v要使123456AB BC CD DA AC BD λ+λ+λ+λ+λ+λu u u v u u u v u u u v u u u v u u u v u u u v的最小,只需要135562460λ-λ+λ-λ=λ-λ+λ+λ=,此时只需要取1234561,1,1,1,1,1λ=λ=-λ=λ=λ=λ= 此时123456min0AB BC CD DA AC BDλ+λ+λ+λ+λ+λ=u u u v u u u v u u u v u u u v u u u v u u u v等号成立当且仅当1356,,λ-λλ-λ均非负或者均非正,并且2456,,λ-λλ+λ均非负或者均非正。

相关文档
最新文档