2007石油工程专业岩石力学第八章 井壁稳定解析

合集下载

第八章 井壁稳定

第八章 井壁稳定

易于发生井壁失稳的地区
高构造应力地区,如逆掩断层、 高构造应力地区,如逆掩断层、山前构造带或 大倾角地层 异常高孔隙压力 水敏性地层 裂缝性地层 低强度地区
垂直于地层层理钻进井眼较稳定 对裂缝性地层, 对裂缝性地层,提高钻井液密度不一定有助于防止 坍塌 崩落后的井眼比圆形井眼更稳定 构造运动剧烈地区有可能通过优化井眼方位来改善 稳定性; 稳定性; 减少井眼裸露时间是有益的 强抑制、严封堵、 强抑制、严封堵、合理密度是防塌钻井液设计的方 向 冷却钻井液有助于防塌
井眼稳定分析所需资料
区域地质构造;岩性剖面 测井资料(井径、声波、密度、自然伽玛等) 录井资料 钻井设计任务书、井史及完井地质报告 岩心、岩性、岩相、岩石物性分析资料 地层漏失试验及事故记录 其他部门的研究结果(地质、开发部门) 钻井过程中的其他测试资料
分析步骤
判断井眼失稳性质(化学、力学、疏松岩层、 塑性岩层) 了解构造背景、准确判定地应力特征; 分析岩性剖面,收集岩心、测井资料; 应用分析软件进行分析 将分析结果与钻进实际进行对比,进行必要的 修正; 结合钻井液特性、井眼轨迹进行预测,并提出 维护井眼稳定的措施。
力学方面的研究: 力学方面的研究: 岩石力学研究主要包括原地应力状态的确定、 岩石力学研究主要包括原地应力状态的确定、岩 石力学性质的测定、井眼围岩应力分析, 石力学性质的测定、井眼围岩应力分析,最终确定保 持井眼稳定的合理泥浆密度。 持井眼稳定的合理泥浆密度。 化学和力学耦合研究 泥浆化学和岩石力学耦合起来研究, 泥浆化学和岩石力学耦合起来研究,尽可能多地 搜集井眼情况资料( 搜集井眼情况资料(如井眼何时以何种方式出现复杂 情况),尽可能准确地估计岩石的性能, 情况),尽可能准确地估计岩石的性能,确定起主要 ),尽可能准确地估计岩石的性能 作用的参数有哪些。 作用的参数有哪些。

第八章-井壁稳定

第八章-井壁稳定
1 2 1 1 2 1a r2 2 f P wP p
a r2 2P w 1 2 H h 1 a r2 2 1 2 H h 1 3 r a 4 4 c2 os
1 2 1 1 2 1a r2 2 f P wP p
z v 2 H h a r 2 c2 o s 1 2 1 1 2 f P w P p
打开井眼后,井内的岩石被取走,井壁岩石失去了原有的支持,取而代之的 是泥浆静液压力,在这种新条件下,井眼应力将产生重新分布,使井壁附近 产生很高的应力集中,如果岩石强度不够大,就会出现井壁不稳定现象。
井壁失稳问题的工程分类:
缩径(out of gauge holes ): 井眼压力较小,井壁岩石发生延性流动;
这些事故的发生会严重拖延了钻井周期,明显增加钻井成本, 并给后续工作带来不利影响。严重时可使部分井眼报废甚至使整个 井眼报废。
二、井壁不稳定的原因及其研究方法
1、井壁不稳定的原因 如果井眼内的泥浆密度过低,井壁应力将超过岩石的抗剪强度 (shear strength )而产生剪切破坏(shear failure,表现为井眼坍塌 扩径或屈服缩径),此时的临界井眼压力定义为坍塌压力(collapse pressure); 如果泥浆密度过高,井壁上将产生拉伸应力,当拉伸应力 (tensile stress )大于岩石的抗拉强度(tensile strength )时,将 产生拉伸破坏( tensile failure,表现为井漏),此时的临界井眼压 力定义为破裂压力(fracture pressure )。 因此,在工程实际中,可以通过调整泥浆密度,来改变井眼附近 的应力状态(stress state ),达到稳定井眼的目的。
对于直井、均匀水平原地应力、不考虑流体渗滤和孔隙压力的情 况,井壁围岩的应力状态:

井壁稳定问题(2)

井壁稳定问题(2)

井内泥浆对泥页岩的化学作用,最终可以归结到对 井壁岩石力学性能参数、强度参数以及近井壁应力 状态的改变。泥页岩吸水一方面改变井壁岩石的力 学性能,使岩石强度降低;
另一方面产生水化膨胀,如果这种膨胀受到约束便 会产生膨胀压力,从而改变近井壁的应力状态。
井内泥浆对泥页岩的作用机制不难理解,但如何将 这种化学作用带来的力学效应加以定量化,并将其同 纯力学效应结合起来研究井壁稳定性问题,过去相当 长时间的研究中没有考虑这一问题。到目前为止,国 内外关于化学力学耦合的文献很少。从文献资料来 看,其研究方法主要表现在两个方面,即实验研究和理 论研究两方面。
岩石越来越不稳定。
2) Sv > Sh1 = Sh2 地层坍塌压力与井斜方位角无关。并且, 随着井
斜角增大, 井壁坍塌压力开始变化较小,后随井斜角 的增大, 井壁坍塌压力逐渐增大。
3) Sh1 > Sv > Sh2 根据国家地震局的水压致裂的压力测量结果表明,
在钻井深度范围内, 我国绝大多数地区处于此种应力 状态。此时, 随着井斜角的增大, 井壁坍塌压力逐渐 减小, 井壁趋于稳定。
φ= 28°, C = 18M Pa, η= 1。
3) Sh1 > S v > Sh2 原始资料: Sv = 10519M Pa, Sh1 = 11218M Pa, Sh2 = 7813M Pa,
Pp = 46103M Pa, φ=2616°, C = 23195M Pa, η= 0.4。
4) Sh1 > Sh2 > Sv 处于这种原地应力状态的现场资料极为少见, 这里给定: Sv =
研究思路:
1. 钻井液与泥页岩间的化学位差是导致水进出页岩的主要驱 动力之一。 2. 化学位差导致的水进出泥页岩改变了近井眼处孔隙压力、 页岩强度、近井眼处有效应力状态, 从而导致了井壁失稳的 发生。 3. 综合考虑钻井液与页岩相互作用时的力学与化学方面的相 互影响, 建立斜井中泥页岩井眼稳定的力学、化学耦合模型。

岩石力学与井壁稳定

岩石力学与井壁稳定
•泥浆密度高
•剪切破碎带,使得泥浆更易渗入井壁
•r
•泥浆密度过大 :地层剪切破坏 产生大量径向微 裂缝形成剪切破 碎带(造成泥浆 的大量侵入使井 壁失稳)

•安全泥浆密度的计算方法
•地应力
•给定的泥浆密度
•井周应力应变
•本构模型
•提高泥浆密度
•失稳
•破坏准则 •稳定
•结束
以孔隙弹塑性力学为基础的均质地层井壁稳定性分析理 论和计算方法基本成熟
•胶结连结:矿物颗粒通过胶结物连结在一起
-碎屑岩

•1、岩石的组构特征
3)岩石的构造
•岩石的构造:岩石的构造是指岩石组成成分在
空间上相互排列及所占的位置。
•岩浆岩的构造:块状构造、流纹状构造、气孔
状构造、杏仁状构造
岩石的组构特征给出岩石力学的定性 •沉性积质岩,的从构而造保:障层理我构们造的研究不出现方 •变向质性岩的的错构误造:片理构造

3、岩石的变形破坏规律
岩石的变形和应力受时间因素的影响。在外部条件 不变的情况下,岩石的应力或应变随时间变化的现 象叫流变。
•岩石变形规律的研究就是要建立应力-应变 关系,为求解应力状态提供基础

3、岩石的变形破坏规律
•岩石试样的破坏形式

劈裂破坏

剪切破坏

延性破坏
•岩石破坏规律的研究就是要建立应力作用 下岩石是否稳定的标准
2)岩石的结构
•微结构面:存在于矿物颗粒内部或矿物颗粒间
的软弱面或缺陷,包括矿物解理、晶格缺陷、粒 间空隙、微裂隙、微层理及片理面、片麻理面等
•① 降低岩石强度 •② 导致岩石力学性质各向异性

•1、岩石的组构特征

井壁稳定分析

井壁稳定分析

地层孔隙压力预测2.1 孔隙压力的预测方法地层孔隙压力是指岩石孔隙流体所具有的压力。

作为一个地质参数,孔隙压力在油气勘探、钻井工程及油气开发中占有十分重要的地位。

就钻井工程而言,孔隙压力是实现快速、安全、经济、合理钻进的一个必不可少的重要参数,因此准确的预测孔隙压力非常重要。

地层孔隙压力评价的方法很多,我们采用了国家“863”攻关项目“海洋探查与资源开发技术”中“精确的地层压力预测和监测技术”专题的研究成果,以测井资料为基础,采用高精度的地层压力预测和检测方法,进行地层孔隙压力预测计算。

在岩性和地层水变化不大的地层剖面中,正常压实地层的特点是,随着地层深度的增加,上覆岩层载荷增加,泥页岩的压实程度增大,导致地层孔隙度减小,岩石密度增大。

泥页岩的压实程度直接反应地层孔隙压力的变化。

而在目前的测井系列中,有多种测井方法都能较好地反应地层孔隙压力。

在本研究中,选用了资料来源最广、经济方便的声波时差法。

2.1.1 声波时差法解释原理声波测井测量的是弹性波在地层中的传播时间。

声波时差主要反映岩性、压实程度和孔隙度。

除了含气层的声波时差显示高值或出现周波跳跃外,它受井径、温度及地层水矿化度变化的影响比其它测井方法小得多。

所以用它评价和计算地层孔隙压力比较有效。

对岩性已知、地层水性质变化不大的地质剖面,声波时差与孔隙度之间成正比关系。

在正常压实的地层中可导出相似公式:CH 0e Δt Δt =将上式变换可得:B AH Δt +=logt ∆─深度为H 处的地层声波时差,ft s /μ;0t ∆─深度为0处的地层声波时差,ft s /μ;A 、B 、C 为系数,其中A <0,C <0。

该式即为压实地层声波时差正常趋势线公式,从式中可以直观地看出:t ∆log 与H 成线性关系,斜率是 A (A <0 ),在半对数曲线上,正常压实地层的t ∆对数值随深度呈线性减少。

如出现异常高压,t ∆散点会明显偏离正常趋势线。

[实用参考]钻井地质力学环境描述及井壁稳定技术

[实用参考]钻井地质力学环境描述及井壁稳定技术






– 非线弹性模型
– 多孔弹性介质模型
p
Drained test Undrained test p
对于排水实验,静水应力与体积应变的关系如下:
p K fr v
对于非排水实验,静水应力与体积应变的关系为:
C p p p K fr v M
C pp 有效应力定义: p M
v=(m-p)/K
基本概念:

塑性变形
外力去除后,变形不能恢复
•屈服函数
F(,H)<0 弹性变形
F(,H)=0 塑性变形
•应变硬化
•扩容 随着塑性应变的增加,体积增大的现象。
• 典型岩石的变形特征和破坏特性
– 常温常压下岩石的力学性质 Miller将单轴压缩应力应变曲线分为六类: 弹性变形 弹-塑性变形 塑-弹性变形 塑-弹-塑性变形 塑-弹-塑性变形 弹-塑-蠕变
z zx zy
3 y yz yx
2 x xz xy 1 1 > 2 > 3
– 偏应力和八面体应力
应力可分解为偏应力和静水应力分量 平均应力(或静水应力) m= I1/3 偏应力 Sij=ij-ij m
• 静力平衡方程
z y x y
y
y y
dy
x yx zx X 0 x y z y xy zy Y 0 y x z z xz yz Z 0 z x y
• Mohr’s stress circle
1 1 1 2 1 2 cos 2 2 2 1 1 2 sin 2 2
二、钻井地质力学环境描述
(一)弹性力学基础

物理知识应用实践之钻井井壁稳定性的力学分析

物理知识应用实践之钻井井壁稳定性的力学分析
代生活和生产是相脱 节的。 如何打破基础物理 “ 无用 ”的错误偏 见? 作者针对我校石 油类专 业学 生就业 主要 面 向油 田各 个领 域 的特
其 中,p 为上覆岩层竖直方 向的平均密度 [ k g / m 2 ]. g 为重力加
速度 [ m / s ]. H为井深 [ m] 。该 微 元 在 水平 面 内 的受 力 如 图 2
知识和经验 , 通过运行各种钻井设备 ,实施相应 的技术工艺 ,用钻头 在地层中形成一个规则 的井眼的过程 ,它包含有一 系列的钻井措施 和
工艺。但 是 ,钻井工程是隐蔽性很强 的地下工程 ,施工 过程中所产生 的很多问题都是不可见 的。例如 ,井壁 的稳定性 问题就是限制钻井 速 度的重要瓶颈之一。井壁如何保持稳定 ,以往 总是从岩石的化学性 质
企 业 管 理
物理知识应用实践之钻井井壁稳定性的力学分析
陈 枫 ( 山东胜利职业学院

山东
东营 2 5 7 0 0 0 )
要 :井壁稳定问题是 限制钻 井速度的重要瓶 颈之一 ,为 了给钻 井现场施 工提 供强有 力的理论 基础 ,通过物理方 法,利 用柱 面坐标 ,建
立了竖直 圆柱井筒围岩力学模型 ,得到 了简化条件 下的井下岩石受 力表达式 ,指 出由于井下围岩 压力 占主导 地位 ,对造成 井壁岩石 失效的判 断
确定地层原始地应力 ,然后计算出钻井过程 形成井眼后 ,周 围地层 岩
! !
: 一
( 3 )
石的应力分布公式 ,结合地层岩石 的强度性 质数据就可确定理 论上岩 石状态被破坏 的压力 ,从而确定保持井壁稳定所需 的外 力范围 ( 主要 是钻井液液柱压力 ,可计算 出钻 井液密度 ) ,当钻井过程 中井壁 四周 地层岩石所受应力超过了岩石的强度时 , 表现 为井壁失稳 ;当岩石井 壁 四周地层所受应力小于岩石的强 度时, 表现为井壁稳定 。 国外 已有文献对从井壁围岩的力学特性出发 ,讨论井壁 稳定性的 论述很 多,主要有 四个模 型。1 )基 于线弹性 理论 ,通 过库伦一摩尔

谈谈定向井井壁稳定问题

谈谈定向井井壁稳定问题

谈谈定向井井壁稳定问题从岩石力学、地球物理测井、工程录井、环空水力学和钻井液化学等方面分析定向井井壁稳定问题,以实现对钻井液性能、井身结构及其它工程参数的优化设计。

标签:定向井岩石应力;地层压力;地层破裂压力液柱压力数学模型引言导致井眼出现失稳问题的因素包括天然的原因和人为的原因。

在天然的原因方面包括:地质构造类型和原地应力,孔隙度渗透性及孔除中的流体压力等;在人为的原因方面包括:钻井液的性能,泥页岩化学作用的强弱,钻柱对井壁的摩擦和碰撞等。

导致井眼失稳的最根本因素就是在形成井眼的过程中,井眼四周的应力场、化学力出现了变化,导致井壁应力集中的问题,致使井内钻液的压强不可以和底层的地应力重新建立起平衡的关系。

如果井内的钻井液液柱比坍塌的压力还要低的时候,井壁的岩石就会被破坏,这时候的塑性岩石会对井中产生塑性的流动,最后出现缩径的问题,而脆性的岩石就可能会发生坍塌的问题,导致井径的增大,如果当钻井液的液柱压力要比破裂时压力还要高的情况下,井壁内四周的岩石就会被拉伸导致出现井漏的问题。

此外,钻井液的密度最好是让井内的液柱和地层孔隙的压力能够互相平衡。

一、井壁应力分布因为上覆岩层的压力不能很好的和井轴重合,原来的水平地应力也就不能和井轴正交,所以井眼四周的岩石在切向正应力与法相正应力的共同作用之下处在三维应力的情况之下。

不仅正压力作用在井轴垂直平面井壁四周的岩石,剪应力也作用在井轴垂直平面与岩石之上,它们都严重的影响着井壁岩石的形态,对井壁岩石有破坏作用。

二、井壁岩石破坏准则当前许多人为拉伸断裂的机制操纵着地层的压裂情况,也就是说,如果当一个有效的主应力的大小能够与岩石拉伸的强度值相同时就会发生底层破裂的情况。

三、岩石强度参数的确定为了能够对全井段进行连续预测,仅凭室内岩心试验是不够的。

而要充分利用相关的间接资料,其中最完整的莫过于测井资料。

因此,将测井资料的处理与岩心试验结合起来,确定所需要的地层参数。

页岩气储层岩石力学特性及井壁稳定性分析

页岩气储层岩石力学特性及井壁稳定性分析

页岩气储层岩石力学特性及井壁稳定性分析页岩气是一种非常有前景的能源资源,其储层岩石力学特性和井壁稳定性对于开发和生产页岩气十分重要。

本文将详细分析页岩气储层岩石力学特性和井壁稳定性,并探讨其影响因素和解决方法。

1. 页岩气储层岩石力学特性页岩气储层岩石具有以下几个主要的力学特性:1.1 低渗透性:由于页岩中孔隙度低、连通性差,储层渗透率低,导致气体难以流通和开采。

1.2 脆性:页岩岩石易于破裂和碎裂,在压力作用下容易萌生裂缝,但裂缝的扩展能力有限,对气体渗透性的改善作用有限。

1.3 维持力弱:页岩岩石强度较低,常常呈现脆性破裂,难以在高温高压环境下维持稳定。

1.4 孔隙结构复杂:页岩储层的孔隙结构相对于传统储层来说较复杂,主要包括纳米孔隙和裂缝孔隙,这对储层渗流特性和岩石力学性质产生影响。

2. 井壁稳定性分析井壁稳定性是指井壁在钻井和生产过程中不发生塌陷、裂缝和滑移等现象的能力。

页岩气储层的井壁稳定性主要受到以下几个因素的影响:2.1 初始地应力:页岩气储层通常位于深部地层,初始地应力较高。

高差异性地应力使得井壁容易发生塌陷和滑移。

2.2 井壁液压:钻井液和地层流体与井壁之间的相互作用会改变井壁的力学性质,进而影响井壁稳定性。

2.3 复杂的页岩岩石力学特性:页岩岩石具有复杂的力学特性,对井壁稳定性的影响也较大。

岩石破碎、断裂和固结都会导致井壁的变形和破坏。

2.4 井壁支撑能力:井壁支撑材料的选择和加固对于井壁稳定性至关重要。

针对这些影响因素,可以采取以下措施来提高页岩气储层的井壁稳定性:1. 优化钻井液:选择适当的液相比重、粘度和有效抑制剂,减小与地层的相容性差异,降低井壁液压引起的问题。

2. 加强井壁支撑:选择适当的井壁支撑材料,如钢夹心井壁、钢网井壁等,提高井壁的强度和稳定性。

3. 预防井壁塌陷:通过合理的斜井设计、优化固井技术和有效的井壁支撑材料,减少井壁塌陷的风险。

4. 精确控制钻井参数:合理控制钻井参数,如钻井液性质、钻进速度和饱和度等,减少对井壁的损害。

井壁稳定性解析课件

井壁稳定性解析课件

max
P 3 H
h
[ (1 2 ) 1
](P Pp )
min
P 3 h
H
[ (1 2 ) 1
](P Pp )
70 60 50 40 30 20 10
0
90
180
270
360
50 45 40 35 30 25 20 15 10
5 0
0
90
180
270
360
井周地层应力状态
Pt
3 H
h
2C K K2 1
K2
1 P
Pf 3 h H P St
K ctg(45 )
2
注意各符号表示的物理意义。
定向井井周地层应力状态
3 z1
β
z
y
o
r
γ
θ
x
α
1
β
y1 α
2
x1
东营组地层斜井井壁稳定性分析
最大水平地应力方位: 井壁坍塌风险最高
坍塌压力随井 斜方位的变化
监测裂缝扩展和关井后的压 力,准确确定最小主应力
volume
(after Gaarenstroom et al., 1993)
典型的水力压裂试验曲线
破裂漏失 出现剪切 裂缝
停泵
裂缝重张
井口压力
裂缝闭合
时间
利用水力压裂试验数据计算地应力:
地层破裂压力(Pf):地层破裂产生流体漏失时的井底压力 裂缝延伸压力(Pr):使一个已存在的裂缝延伸扩展时的井底 压力
地应力
给定的泥浆密度
井周应力应变
本构模型
提高泥浆密度
失稳
破坏准则 稳定
结束
以孔隙弹塑性力学为基础的均质地层井壁稳定性分析理 论和计算方法基本成熟

[工学]第八章 直井井壁稳定性分析讲课用

[工学]第八章 直井井壁稳定性分析讲课用

第八章井壁稳定性研究第一章概论第二章井壁稳定性研究的基本原理第一章概论•井壁稳定研究的意义•井壁失稳的表现形式•影响井壁稳定的基本因素•井壁稳定的研究现状•井壁稳定研究的主要内容一、井壁稳定研究的意义1、提高钻井成功率2、确保井眼按设计要求,按时、保质地完成¾钻穿和钻达设计要求的所有目的层,钻达到设计井深和层位¾按时完成钻井完井任务¾井身质量好,满足各种测试要求¾钻井成本合理3、有助于取全、取准所要求的各种资料;4、减小和防止油层损害,以利于发现和评价油气层•基本概念¾原地应力¾有效应力•力学本构方程•井周应力分布•主应力•井壁稳定性判别模型•“安全”泥浆密度范围•井壁稳定性分析的参数获取•井壁稳定性分析软件介绍二、力学本构方程•力的平衡方程•几何方程•应力-应变关系三、井周应力分布•地层均质、各向同性和线-弹性;•当远场孔隙压力恒定。

•当r=r w 时,得到井壁应力:其中:r w :井半径P wf :泥浆柱压力r :径向距离/)(2/0/242)(2/242)(2)(//=+−==−−−=−−−−+==∞∞∞∞∞∞∞∞∞∞∞rw rz yZxZrw z rw r xyy x ZZ rw Z wf xyyxyxrw wfrw r Cos Sin Sin Cos P Sin Cos P τθτθτττθµτθσσµσσθτθσσσσσσθθθβσβσσβσβσβσασ2221222212)(Cos Sin Sin Sin Cos Cos H H yv H H x +=++=∞∞ασβσβσασ222212)(Cos Sin Cos Sin v H H zz++=∞)()()(12222112H H yZ v H H xzH H xyCos Sin Sin Sin Cos Sin Cos Cos Sin Cos σσββατσβσβσαατσσββατ−=−+=−=∞∞∞五、井壁稳定性判别模型•Mohr-coulomb准则•Druck-Prager准则•非线性Pariseau准则•Hoek-Brown准则由井壁3个主应力分量的有效应力表达式,可以得到以下3种可能的关系:(I )e 3σ<e 1σ<e2σ(II)e 1σ<e 3σ<e 2σ(III) e 3σ<e 2σ<e1σ对应的Mohr -Coulomb 表达式:e 2σ=C 0+ e 3σtg φe 1σ=C 0+ e 3σtg φe 2σ=C 0+ e 1σtg φ六、钻井合理泥浆密度的确定1、裸眼井段的三个压力剖面——地层破裂压力P破——地层压力P地——地层坍塌压力P坍2、裸眼井段钻井的安全压力(泥浆密度)窗口:P泥——泥浆柱压力若:P泥>P破则:井漏P泥<P地则:井喷P泥<P坍则:井塌安全压力(密度)窗口:ΔPP 破>P 泥>P 地(P 地>P 坍)P 破>P 泥>P 坍(P 坍>P 地)ΔP —安全压力窗口¾ΔP愈大,则钻井愈易¾ΔP愈小,则钻井愈难¾若ΔP =P破-P地(P地>P坍)则较易¾若ΔP =P破-P坍(P坍>P地)则较难¾PP坍由地层的原地应力、地层岩体的力学破、性质、强度、地层倾角、井斜、方位……因素所确定。

钻井过程中井壁稳定分析与对策

钻井过程中井壁稳定分析与对策

钻井过程中井壁稳定分析与对策钻井过程中井壁稳定分析与对策当前,我国油田开发力度加大,逐步向深层、深海区块延伸,水平井、大位移井等特殊井身结构钻井应用增多,井壁坍塌等井下事故也相应增加,极易在钻井中出现井壁缩径、坍塌、地层压裂等情况,坍塌机理比较复杂,很难预防,影响钻井井下安全和钻井持续性。

因此,有必要对井壁稳定性进行分析,有针对性的提出提升井壁稳定性的对策措施。

1 钻井过程中井壁稳定性1.1钻井井壁稳定性较差和坍塌地层特征在钻井中,钻遇泥页岩、砂岩、砾岩、煤层、岩浆岩、灰岩等都可能发生井壁坍塌,但90%以上的坍塌发生在泥页岩地层,缩径一般在盐膏层、浅层泥岩和渗透性较高的砂岩发生。

坍塌可能在各种岩性和粘土矿物含量地层中发生,但坍塌严重地层大多具有以下特征:发育有层理清晰的裂缝或破碎性较强的岩性地层;泥页岩特别是孔隙压力异常地层;地应力较强、倾角大易发生井斜地层;厚度较大泥页岩地层;高含水砂岩、泥岩地层等。

1.2井壁稳定性影响因素井壁稳定性较差原因是钻井液和钻具在地层中作用,压力超过井壁岩层承受强度,以及钻井液与井壁地层岩石矿物发生物理化学作用,加大坍塌压力、降低破裂压力等引起井壁失稳。

一是力学因素。

地层钻开前岩层受上覆压力、水平地应力和孔隙压力作用,压力均衡,钻开后钻井液对井壁压力替代了钻开岩层对井壁岩层的支撑,破坏了压力平衡状态,使周围地应力需要重新分布,在地应力超过井壁周围岩层承受强度后会发生剪切破坏,脆性地层会发生井壁坍塌,塑性地层会发生塑性变形(缩径)。

钻井中井壁被剪切破坏临界井眼压力称为坍塌压力,该状态下钻井液密度为坍塌压力当量钻井液密度。

地应力因素上,井壁坍塌以最小地应力为方向,坍塌压力随地应力及地应力非均匀系数增大而增大。

地层强度因素,地层坍塌压力与井壁周边地层的强度系数和内摩擦角呈反比。

孔隙压力因素,地层坍塌和破裂压力与孔隙压力呈正比,但破裂压力增速比坍塌压力小,随着孔隙压力加大,钻井液密度安全范围逐步变小。

井壁稳定力学模型中坐标及应力分量变换分析

井壁稳定力学模型中坐标及应力分量变换分析

(2)再将坐标系 ( x1 , y1 , z1 ) 以坐标轴 y1 为轴,按右手定则旋转角 ,变为 ( x, y, z ) 坐标系。
为井斜角, 指的是定向井井眼轴线与铅垂线的夹角。 旋转后, 坐标系 ( x, y, z ) 单位基矢量 e x 在
坐标系 ( x1 , y1 , z1 ) 各坐标轴的投影分别为 l1 cos 、 m1 0 、 n1 sin , e y 在各坐标轴的投影
Tx xx l yx m zx n Ty xy l yy m zy n (6) Tz xz l yz m zz n
1 坐标及应力变换基本原理
1.1 CauChy 公式(斜截面应力公式)
设 O 为受力物体内任意一点,且已知该点的一组六 个独立应力分量 x 、 y 、 z 、 xy 、 yz 、 zx 。为了求过 我们在 O 点处截 O 点外法线为 n 的任意斜截面上的应力, 取一个微小的四面体单元,建立 ( x, y, z ) 坐标系,其基矢 量为 {e x , e y , e z } ,如图 1。 假定不计四面体 OABC 的体力,且斜截面外法线 n 的 方向余弦分别记为
( x, y , z ) 的单位基矢量为 {ex , ey , e z } 。
设 ex 在旧坐标系下各坐标轴的投影(即三个方向余弦)分别为 l1 , m1 , n1 , ey 在旧坐标系下 各坐标轴的投影为 l2 , m2 , n2 , ez 在旧坐标系下各坐标轴的投影为 l3 , m3 , n3 ,则新、旧坐标系单 位基矢量具有如下关系[1,2]: l1 m1 n1 ex ex m2 n2 y l2 e e y (10) e z l3 m3 n3 ez 上式中, l1 , m1 , n1 , l2 , m2 , n2 和 l3 , m3 , n3 所组成的矩阵为坐标变换矩阵。 将新坐标系中的三个之平面( Oxy, Oyz , Oxz )分别看作旧坐标系中的斜面,再利用 CauChy 公式即可推导出新就坐标系下中应力分量的变换关系。下面本文将根据上述的变换原理对坐 标变换及应力分量变换进行推导。

浅析石油钻井任意井眼的井壁稳定性

浅析石油钻井任意井眼的井壁稳定性

浅析石油钻井任意井眼的井壁稳定性发布时间:2022-12-06T08:14:47.895Z 来源:《科学与技术》2022年第15期第8月作者:应磊[导读] 石油资源为我国社会建设和经济发展提供了可靠的能源支持应磊胜利石油工程有限公司黄河钻井总公司山东东营 257000摘要:石油资源为我国社会建设和经济发展提供了可靠的能源支持,随着石油资源应用领域的不断增多,石油资源出现了严重短缺的情况。

在这种情况下,就需要加强对石油资源的开采,而石油钻井技术的持续发展有效地提升了石油资源开采的效率,特别是加强石油钻井不同井眼井壁稳定性技术的不断发展、提高,对于石油钻井技术整体水平的良性发展有着重要的影响,同时也关系到石油钻井施工井下安全和生产时效的提升。

关键词:石油钻井;任意井眼;井壁;稳定性随着我国工业化进程的不断加快,对石油资源的需要量不断的增多,石油钻井施工受到了更多的重视,石油钻井施工会受到地质环形、岩性变化、特殊地层等多种因素的影响,钻井施工的难度不断加大,不利于石油钻井工程项目整体施工质量的提升。

基于此,应进一步对石油钻井任意井壁的稳定性进行深入的研究,对现有的钻井施工技术进行合理的升级和优化,从而提升石油钻井技术水平,为石油钻井安全和提速提效提供可靠的技术保障。

一、完善石油钻井任意井眼井壁稳定性的要点分析(一)根据钻井顺序,严格执行钻井技术操作要点对于石油钻井工程来说,在钻井施工开展前应制定统一的钻井规划,确保全国各个区域石油钻井工作的顺利有效开展,特别是需要对石油钻井工作实施的顺序进行统一规定。

石油钻井施工人员应对钻井结构的调整和石油整体布局情况进行详细的掌握,并制定完善的施工方案,对石油钻井各项工作的高效开展提供有效的监督和指导。

同时还需要对石油钻井工作进行科学合理的部署,对石油钻井施工技术人员的专业能力和操作水平等进行详细的规范,从根本上提升石油钻井不同井眼井壁的稳定性。

另外,石油企业应对突出重点石油密集区域进行科学的选择,对石油钻井布局实施合理的调控和指导,深入发掘全国范围内具有潜力的石油资源,利用专业的石油钻井施工技术,提升石油资源开采的质量和效率。

08井壁稳定性1_PPT课件

08井壁稳定性1_PPT课件

20
8.3 斜井的井壁稳定分析
思路:
应力状态 强度条件
建立计算方法模型
➢选取坐标系(1、2、3)分别与 主地应力σ 1, σ2, σ3方 向一致
➢建立直角坐标系(x、y、z)和柱 坐标(r、θ、z),其中oz轴对应 于井轴,ox和oy位于与井轴垂直 的平面之中
21
8.3 斜井的井壁稳定分析
建立转换关系
1.7
sita=15
sita=30
sita=45
1.15
1.5
sita=60
sita=75
sita=90
1.1
1.3
0
15
30
45
60
75
90
0
15
30
45
60
75
90
井斜角(度)
井斜角(度)
33
8.5 思考题
1. 简述井壁失稳的原因。 2. 简述井壁失稳的危害。 3. 写出库仑-摩尔强度准则的表达式,并简述各个参数
8.2直井的井壁稳定分析
图8-1 井壁围岩的应力分析
8
8.2直井的井壁稳定分析 依据线弹性、小变形应力叠加原理对井眼
受力进行分解
9
8.2直井的井壁稳定分析
由钻井液柱压力P引起的应力
R2 r r2 P
R2 r2 P
10
8.2直井的井壁稳定分析 钻井液渗流效应
(1 2) (r2 R2 )
这些因素是不可改变的,我们只能准确地认识确定它们。
(2)岩石的综合性质因素 岩石的强度和变形特征、孔隙度、含水量、粘土含量、组成
和压实情况等。
(3)钻井液因素 钻井液的综合性质、化学组成、连续相的性质、内部相的

钻井地质力学环境描述及井壁稳定技术

钻井地质力学环境描述及井壁稳定技术

• Griffith 断裂准则
1 3
裂纹尖端周向应力:
b2m m 2y2 xy
d b 0 d
d 0 d
Griffith断裂准则
1 3 2 8 t1 3 0 (1 33 0 ) 3 t 1 3 3 0
小结: 1。强度是描述工程结构是否失稳的参数。 2。根据分析目的不同应选用不同的破坏准则。 如:破裂压力分析、水力压裂裂缝传播、井壁稳 定等。 3。一般岩石的弹性屈服点不同于破坏点。
(2)与页岩相关的工程问题
膨胀特性、内在缺陷和邻近油藏是页岩产生问题的主 要因素。
z
1 E
z
x y
xy
1 G
xy
yz
1 G
yz
zx
1 G
zx
– 非线弹性模型
– 多孔弹性介质模型
p Drained test
Undrained test
p
对于排水实验,静水应力与体积应变的关系如下:
p Kfrv
对于非排水实验,静水应力与体积应变的关系为:
p
C Mpp
Kfrv
不考虑应力历史的作用或结构的变化。
v gz
h
1
z
一般地层=0.25,水平地应力比上覆岩层压力为1/3; 盐膏层=0.5,水平地应力等于上覆岩层压力
上覆岩层压力随井深的变化
上覆岩层压力v(Mpa)
40
80
0
1000 井深/m
2000
3000
v=0.027h
• 构造应力 现今构造应力,如板块运动、断层活动; 现今岩石力学性质; 沉积历史 温度和孔隙压力
f= 0+fn
n f
0为内聚力;f内摩擦系数。

7_井壁稳定

7_井壁稳定

第一亚类:易膨胀强分散泥岩
地层特点: 此类泥岩以蒙皂石或伊蒙无序间层为主, 其相对含量为30~95%; 易膨胀,膨胀率20~30%; 分散性能与地质年代和井深有关,对于东 部第三系地层,通常井深小于2600m的泥 岩,属于强分散,回收率小于10%; 阳离子交换容量中至高,一般12~ 22mmol/100g土。
第二亚类:不易膨胀强分散的砂岩与 泥岩互层
(3)井壁不稳定原因: 此类地层以砂岩、粉砂岩为主,易分散, 渗透性好,极易形成虚厚泥饼,摩擦系 数高,故易发生粘卡事故; 个别层段机械钻速过高,造成环空钻屑 浓度过高;、 环空返速低,井眼净化不好。
第二亚类:不易膨胀强分散的砂岩与 泥岩互层
(二)井壁不稳定地层分类
建立以地层潜在井壁不稳定因素和 地层特性等为主要依据的井壁不稳定地 层分类方法,对各种岩性井壁不稳定地 层进行分类,并对各类地层提出针对性 强、实用性好的稳定井壁技术对策。
1.建立井壁不稳定地层分类的目 的




为了获取在钻井工程中稳定井壁的主动 权 提高探井钻井速度和成功率 为各油气田进行区块钻井液标准设计 和新区探井钻井液设计提供依据 降低探井处理井下复杂情况的时间 降低钻井成本
(3)井壁不稳定发生原因:
(3)井壁不稳定发生原因:




组成泥页岩的不同粘土矿物水化时所产生的膨胀 量与膨胀压力不相同,在地层内部形成内应力, 加剧泥页岩破裂; 泥页岩中的层理与裂隙(钻井液滤液侵入的通道) 是发生井塌的祸根,井塌的严重程度取决于泥岩 层理、裂隙发育程度; 环空钻井液返速过高,形成紊流冲刷井壁; 不合理钻井工程措施,如起下钻过快形成过高的 抽吸压力,环空返速过高,冲刷井壁等。

井眼安全--井壁稳定

井眼安全--井壁稳定

(2)缩径现象 当发生缩径时,由于井径小于钻头直径,会 出项扭矩增大、上提遇卡,下放遇阻,严重 时发生卡钻。 缩径根据产生的原因,地层、地区采用适合 有针对性措施。 例如:划眼、增大滤失量、降低滤失量、提 高密度等。 (3)压裂现象 当钻井液液柱压力大于地层破裂压力,就会 压裂地层,产生井漏。井漏引起液柱压力降 低,易引起井涌及井塌等事故复杂。
(2)活度和半透膜对泥页岩水化的影响 石油勘探院、石油大学等单位通过研究也 得出钻井过程中,钻井液的滤液向页岩中扩 散的动力是钻井液与页岩间的水化学势之差。 影响它的主要因素是钻井液液柱压力与孔隙 压力之差及钻井液水活度与页岩水活度之比。 只有存在较高效率的半透膜时,钻井液与页 岩的水活度差才能在较长的时间内控制水的 迁移。
向钻井液中加入有机硅防塌剂,有机 硅在泥页岩表面迅速展开,形成薄膜。 在一定温度下,有机硅中的 -Si-OH 基易 和粘土表面的-Si-OH基缩合失水,形成Si-O-Si键,在粘土表面产生一种很强的 化学吸附作用,使粘土发生润湿反转, 从而使泥页岩的水化得到控制。
(5)沥青类防塌剂
国内外使用天然沥青和各种化学改性沥青产品稳 定井壁已有多年的历史。沥青粉的主要作用机理是 在钻遇页岩之前,往钻井液中加入该种物质,当钻 遇到页岩时,若沥青的软化点与地层温度相匹配, 在钻井液液柱压力与地层孔隙压力之间的压差作用 下,沥青产品会发生塑性流动,挤入页岩孔隙、裂 缝和层面,封堵地层层理与裂隙,提高对裂缝的粘 结力,在井壁处形成良好的内、外泥饼,外泥饼与 地层之间有一层致密的保护膜,使外泥饼难以冲刷 掉,阻止水进入地层,起到稳定井壁的作用。
•作用机理主要是“浊点效应”——温度在浊点以下时,该 产品溶于水,在浊点以上表现为“亲油疏水而又分散于 水”---。 •浊点在30-50℃之间,在钻井液中可始终保持“亲油疏水分 散于水”的状态,可吸附于钻屑及粘土颗粒表面,抑制其水 化分散与膨胀---; •同类产品对比,优势突出---。

6_井壁稳定

6_井壁稳定

井段 盆地 地区 层位
泥岩中粘土矿物相对含量,%
成岩 阶段 m
回收 率
I/S 76 73
I 7 20
K 13 4
C 4 3
间层比, S% 72 65
%
4.99 71
NmEs 大港 Es
659-2682 2747-2901
早 成 岩 晚 成 岩
Es
NmEs Es 高尚 堡 Es Es J J
2914-3877
泥岩中粘土矿物相对含量,%
回收 率
I/ S 0 8
I
K
C
间 层 比 , S%
%
N-E E E J 塔里 木 轮南 J J T
480-2590 3318-3518 3552-4142 4250-4400 4405-4586 4586-4647 4735-4991 晚成 岩 早成 岩
64 66 41 48 29 42 45
100
120
20
40
60
80
0
1760 2010 2171 2244 2665 2840 2891 2940 2990 3059 3118 3199 3263 3490 3553 3667 3784 4017 4152 4706
黄骅凹陷高尚堡地区井深与泥岩回收率、I/S等 关系曲线
I/S,% 井深,m 间层比,S% 回收率,%
• • • • • • •
二、地层组构特性、理化性能 和稳定井壁评价方法
(一)地层组构特性和理化性能分析方法 研究井壁失稳的原因及技术对策必须搞清井壁不 稳定地层的组构特性和理化性能,常用的分析 方法有以下几种: 1.肉眼观察 通过肉眼观察可以掌握地层的层理、裂隙和镜面 擦痕发育情况,地层倾角大小,地层软硬程度 及遇水后膨胀、分散和强度定性变化情况。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(2)岩石的综合性质,岩石的强度(rock strength )和变形
(deformation )特征等、孔隙度(porosity )、含水量、粘土含量 (clay content )、组成和压实情况等。
(3)钻井液(drilling fluid )的综合性质,化学组成、连续
相的性质、内部相的组成和类型、与连续相有关的添加剂类型、泥
pressure);
如果泥浆密度过高,井壁上将产生拉伸应力,当拉伸应力 (tensile stress )大于岩石的抗拉强度(tensile strength )时,将
产生拉伸破坏( tensile failure,表现为井漏),此时的临界井眼压
力定义为破裂压力(fracture pressure )。 因此,在工程实际中,可以通过调整泥浆密度,来改变井眼附近
3、井壁失稳的原因
通过以上分析,可以发现,影响井壁稳定的因素概括起来可分为
四大类: (1)地质力学因素,原地应力状态(in site stress state )、
地层孔隙压力(formation pore pressure ) 、原地温度、地质构造特
征(geological structural feature)等。这些因素是不可改变的,只 能准确地确定它们。
4、井壁稳定的研究方法
井壁稳定性(borehole stability )的研究方法目前主要有
三种:一是泥浆化学研究,二是岩石力学研究,三是化学和力学 藕合起来研究。
泥浆化学方面研究:
从泥浆化学方面研究井壁稳定,主要研究泥页岩水化膨胀的 机理,寻找抑制泥页岩水化膨胀(hydrate expansion )的化学
浆体系的维护等。特别是对于泥页岩和泥质胶结的砂岩,钻井液对 它们的物理力学性质的影响非常的大。 (4)其它工程因素,包括打开井眼的时间、裸眼长度、井身 结构参数(井深、井斜角、方位角azimuth angle )、压力激动和 抽吸(surge and swab pressure) 等。
这些因素和参数之间相互作用、相互影响,使井壁稳定问题变
得非常复杂。
易于发生井壁失稳的地区
高构造应力地区,如逆掩断层、山
前构造带或大倾角地层 异常高孔隙压力 水敏性地层 裂缝性地层 低强度地区
垂直于地层层理钻进井眼较稳定 对裂缝性地层,提高钻井液密度
不一定有助于防止坍塌 崩落后的井眼比圆形井眼更稳定 构造运动剧烈地区有可能通过优 化井眼方位来改善稳定性; 减少井眼裸露时间是有益的 强抑制、严封堵、合理密度是防 塌钻井液设计的方向 冷却钻井液有助于防塌
pressure )的共同作用,处于平衡状态。
打开井眼后,井内的岩石被取走,井壁岩石失去了原有的支持,取而代之的
是泥浆静液压力,在这种新条件下,井眼应力将产生重新分布,使井壁附近
产生很高的应力集中,如果岩石强度不够大,就会出现井壁不稳定现象。
井壁失稳问题的工程分类:
缩径(out of gauge holes ): 井眼压力较小,井壁岩石发生延性流动;
井漏(lost circulation ):
井眼压力大于地层破裂压力;
井塌(borehole collapse ):
井眼压力小于地层破裂压力,
同时容易发生井喷(blowout )事故。
井壁失稳问题的工程现象:
起下钻遇阻,甚至卡钻 大钩负荷加大
划眼
扭矩加大
循环时返出岩屑棱角分明
测井井径扩大
第八章
第一节
井 壁 稳 定
井壁失稳的原因及危害
在石油钻井中,井眼稳定(borehole stability )问题是世界范围内普
遍存在的问题。每年由此造成的直径经济损失达数亿美元之巨。因此 国内外许多研究机构都在致力于此项研究。
在钻井之前,深埋在地下的岩层受到上覆岩层压力( overburden
pressure) 、最大水平地应力(maximu horizontal in site stress )、最小 水 平 地 应 力 (minimum horizontal in site stress ) 和 孔 隙 压 力 (pore
等。
这些事故的发生会严重拖延了钻井周期,明显增加钻井成本, 并给后续工作带来不利影响。严重时可使部分井眼报废甚至使整个 井眼报废。
二、井壁不稳定的原因及其研究方法
1、井壁不稳定的原因
如果井眼内的泥浆密度过低,井壁应力将超过岩的抗剪强度
(shear strength )而产生剪切破坏(shear failure,表现为井眼坍 塌扩径或屈服缩径),此时的临界井眼压力定义为坍塌压力(collapse
添加剂和泥浆体系,最大限度地减少钻井液对地层的负面影响。
力学方面的研究: 岩石力学研究主要包括原地应力状态(in site stress state )的确定、岩石力学性质(rock mechanical character)的测定、井眼围岩应力(stresses around borehole )分析,最终确定保持井眼稳定的合理泥浆密度 (mud weight )。 化学和力学藕合研究 泥浆化学和岩石力学藕合起来研究,尽可能多地搜集井 眼情况资料(如井眼何时以何种方式出现复杂情况),尽可 能准确地估计岩石的性能,确定起主要作用的参数有哪些。
这种破坏通常发生在脆性岩石中,但对于弱胶结地层由于冲蚀作用 也可能出现井眼扩大; 另一种是延性破坏,导致缩径,发生在软泥岩、砂岩、岩盐等 地层,在工程上遇到这种现象要不断地划眼,否则会出现卡钻现象。 拉伸破坏或水力压裂会导致井漏,严重时可造成井喷。 实际上井壁稳定与否最终都表现在井眼围岩的应力状态。如果 井壁应力超过强度包线,井壁就要破坏;否则井壁就是稳定的。
的应力状态(stress state ),达到稳定井眼的目的。
2、井壁失稳与岩石破坏类型的关系
井壁失稳 (unstable borehole) 时岩石的破坏类型主要有两种:
拉伸破坏(tensile failure)、剪切破坏(shear failure )。 剪切破坏又分为两种类型:
一种是脆性破坏,导致井眼扩大,这会给固井、测井带来问题。
一、井壁不稳定的危害
在我国各大油田的长期勘探开发过程中,井壁不稳定问题一直
比较突出。如环渤海湾地区主要表现为馆陶、明化镇组泥页岩地层 的水化膨胀,造成缩径卡钻事故;东营底、沙河街、孔店组泥页岩
地层的剥落掉块,造成井径扩大(out of gauge hole )、坍塌卡钻
(stuck drill pipe ) 、电测质量低下、固井不合格等工程事故; 一些特殊层位如:生物灰岩、裂隙性玄武岩、软弱砂岩的井塌井漏
相关文档
最新文档