第七章相关分析与回归分析

合集下载

第7章 相关分析与回归分析(含SPSS)

第7章 相关分析与回归分析(含SPSS)



四、偏相关分析
(一) 偏相关分析和偏相关系数 偏相关分析也称净相关分析,它在控制其他变量 的线性影响的条件下分析两变量间的线性相关性, 所采用的工具是偏相关系数(净相关系数)。

偏相关分析的主要用途是根据观测资料应用偏相 关分析计算偏相关系数,可以判断哪些解释变量对 被解释变量的影响较大,而选择作为必须考虑的解 释变量。这样在计算多元回归分析时,只要保留起 主要作用的解释变量,用较少的解释变量描述被解 释变量的平均变动量。
(7.7)

偏相关系数的取值范围及大小含义与相关系数相 同。
2、对样本来自的两总体是否存在显著的偏相关 进行推断。
(1)提出原假设:两总体的偏相关系数与零无显 著差异。
(2)选择检验统计量。偏相关系数的检验统计量 为 t 统计量。 (3)计算检验统计量的观测值和相伴概率 p 。
(4)给定显著性水平 ,并作出决策。如果相 伴概率值小于或等于给定的显著性水平,则拒绝 原假设;如果相伴概率值大于给定的显著性水平, 则不能拒绝原假设。

(二)偏相关系数在SPSS中的实现

1、建立或打开数据文件后,进入Analyze→ Correlate →Partial主对话框,如图7-6所示。
图7-6 偏相关分析主对话框
2、选择分析变量送入Valiables框,选择控制变
量进入Controlling for框。
3、在Test of Significance 栏中选择输出偏相
图7-7 偏相关分析的选项对话框
(1)Statistics 统计量选择项,有两个选项: ①
Means and standard deviations 复选项,要求
SPSSZero-order correlations 复选项,要求显示零阶

第7章 相关与回归分析。

第7章 相关与回归分析。

第七章相关与回归分析学习内容一、变量间的相关关系二、一元线性回归三、线性回归方程拟合优度的测定学习目标1. 掌握相关系数的含义、计算方法和应用2. 掌握一元线性回归的基本原理和参数的最小二3. 掌握回归方程的显著性检验4. 利用回归方程进行预测5. 了解可化为线性回归的曲线回归6. 用Excel 进行回归分析一、变量间的相关关系1. 变量间的关系(函数关系)1)是一一对应的确定关系。

2)设有两个变量x和y,变量y 随变量x一起变化,并完全依赖于x,当变量x 取某个数值时,y依确定的关系取相应的值,则称y 是x的函数,记为y = f (x),其中x 称为自变量,y 称为因变量。

3)各观测点落在一条线上。

4)函数关系的例子–某种商品的销售额(y)与销售量(x)之间的关系可表示为 y = p x (p 为单价)。

–圆的面积(S)与半径之间的关系可表示为S = π R2。

–企业的原材料消耗额(y)与产量x1、单位产量消耗x2、原材料价格x3间的关系可表示为y =x1 x2 x3。

单选题下面的函数关系是()A、销售人员测验成绩与销售额大小的关系B、圆周的长度决定于它的半径C、家庭的收入和消费的关系D、数学成绩与统计学成绩的关系2. 变量间的关系(相关关系)1)变量间关系不能用函数关系精确表达。

2)一个变量的取值不能由另一个变量唯一确定。

3)当变量 x 取某个值时,变量 y 的取值可能有几个。

4)各观测点分布在直线周围。

5)相关关系的例子–商品的消费量(y)与居民收入(x)之间的关系。

–商品销售额(y)与广告费支出(x)之间的关系。

–粮食亩产量(y)与施肥量(x1)、降雨量(x2)、温度 (x3)之间的关系。

–收入水平(y)与受教育程度(x)之间的关系。

–父亲身高(y)与子女身高(x)之间的关系。

3. 相关图表1)相关表:将具有相关关系的原始数据,按某一顺序平行排列在一张表上,以观察它们之间的相互关系。

2)相关图:也称为分布图或散点图,它是在平面直角坐标中把相关关系的原始数据用点描绘出来,通常以直角坐标轴的横轴代表自变量x,纵轴代表因变量y。

第七章 相关分析和线性回归分析

第七章  相关分析和线性回归分析
❖偏相关系数的取值范围及大小含 义与相关系数相同。
❖对样本来自的两总体是否存在显 著的净相关进行推断。
练习
❖ 高校科研研究.sav:高级职称的人年数 可能是共同影响课题总数和发表论文数 的变量,希望考察控制高级职称的人年 数的影响后,课题总数和发表论文数之 间的关系。
❖ 教养方式.sav:父亲对情感温暖的理解 是否成为父亲惩罚严厉以及拒绝否认的 中介变量?
线性回归分析
❖ 回归分析是一种应用极为广泛的数量分 析方法。它用于分析事物之间的统计关 系,侧重考察变量之间的数量变化规律, 并通过回归方程的形式描述和反映这种 关系,帮助人们准确把握变量受其他一 或者多个变量影响的程度,进而为控制 和预测提供两个或两个以上变量之间关系的方法。 从广义上说,相关分析包括了回归分析。严格地说, 二者有区别:
❖偏相关也称净相关,它在控制其 他变量的线性影响的条件下分析 两变量间的线性相关,所采用的 工具是偏相关系数。
❖控制变量数为1时,偏相关系数称 为一阶偏相关;当控制两个变量 时,称为二阶偏相关;当控制变 量的个数为0时,偏相关系数称为 零阶偏相关,也就是相关系数。
❖ 如果需要进行相关分析的两个变量其取值 均受到其他变量的影响,就可以利用偏相 关分析对其他变量进行控制,输出控制其 他变量影响后的相关系数。
❖相关系数
(二)散点图
❖含义 ❖简单散点图:生成一对相关变量的散
点图 ❖重叠散点图:生成多对相关变量的散
点图 ❖矩阵散点图:同时生成多对相关变量
的矩阵散点图 ❖三维散点图:生产成三个变量之间的
三维散点图
散点图的基本操作
❖简单散点图 ❖重叠散点图 ❖矩阵散点图 ❖三维散点图
练习
❖高校科研研究.sav: ❖绘制课题总数与论文数的简单散点

第七章相关与回归分析

第七章相关与回归分析

第七章 相关与回归分析一、本章学习要点(一)相关分析就是研究两个或两个以上变量之间相关程度大小以及用一定函数来表达现象相互关系的方法。

现象之间的相互关系可以分为两种,一种是函数关系,一种是相关关系。

函数关系是一种完全确定性的依存关系,相关关系是一种不完全确定的依存关系。

相关关系是相关分析的研究对象,而函数关系则是相关分析的工具。

相关按其程度不同,可分为完全相关、不完全相关和不相关。

其中不完全相关关系是相关分析的主要对象;相关按方向不同,可分为正相关和负相关;相关按其形式不同,可分为线性相关和非线性相关;相关按影响因素多少不同,可分为单相关和复相关。

(二)判断现象之间是否存在相关关系及其程度,可以根据对客观现象的定性认识作出,也可以通过编制相关表、绘制相关图的方式来作出,而最精确的方式是计算相关系数。

相关系数是测定变量之间相关密切程度和相关方向的代表性指标。

相关系数用符号“γ”表示,其特点表现在:参与相关分析的两个变量是对等的,不分自变量和因变量,因此相关系数只有一个;相关系数有正负号反映相关系数的方向,正号反映正相关,负号反映负相关;计算相关系数的两个变量都是随机变量。

相关系数的取值区间是[-1,+1],不同取值有不同的含义。

当1||=γ时,x 与y 的变量为完全相关,即函数关系;当1||0<<γ时,表示x 与y 存在一定的线性相关,||γ的数值越大,越接近于1,表示相关程度越高;反之,越接近于0,相关程度越低,通常判别标准是:3.0||<γ称为微弱相关,5.0||3.0<<γ称为低度相关,8.0||5.0<<γ称为显著相关,1||8.0<<γ称为高度相关;当0||=γ时,表示y 的变化与x 无关,即不相关;当0>γ时,表示x 与y 为线性正相关,当0<γ时,表示x 与y 为线性负相关。

皮尔逊积距相关系数计算的基本公式是: ∑∑∑∑∑∑∑---==])(][)([22222y y n x x n y x xy n y x xy σσσγ 斯皮尔曼等级相关系数和肯特尔等级相关系数是测量两个等级变量(定序测度)之间相关密切程度的常用指标。

统计学第七章 相关与回归分析

统计学第七章 相关与回归分析

(四)按变量之间的相关程度分为完全相关、不完全相 关和不相关。
二、相关关系的测定
(一)定性分析,相关表,相关图 判断现象间有无相关关系是一个定性认 识问题,单纯依靠数学方法是无法解决的。 因此,进行相关分析必须以定性分析为前 提,这就要求研究人员首先必须根据有关 经济理论,专业知识,实际经验和分析研 究能力等。对被研究现象在性质上作出定 性判断。 相关表是将相关变量的观察资料,按照 其对应关系和一定顺序排列而成的表格。
Se
y
2
a y b xy n2
(7- 12)
这个公式可以直接利用前面计算回归系 数和相关系数的现成资料。以表7-1的资 料计算如下:
Se y 2 a y b xy n2 56615-30.3 731-28.36 1213 10 2 65.02 8 2.85 (万件)
2

y- y R= 1- 2 y y



ˆ 式中,y 为y的多元线性趋势值或回归估计值。
若变量间呈曲线(非直线)相关,则应
计算相关指数来测定变量间相关的密切程度。
ˆ y y y y
2 2
Ryx
( 7-7)
R
ˆ y y
由表7-4资料计算相关系数如下:
r
n xy x y n x x
2 2
n y y
2 2
2
10 1213-15.1 731
2
10 26.25-15.1 10 56615-731 1091.9 1091.9 38.49 31789 6.2 178.3 1091.9 0.988 1105.5

23第七章直线回归与相关分析

23第七章直线回归与相关分析

研究“一因一果”,即一个自变量与一 个依变量的回归分析称为一元回归分析; 研究“多因一果”,即多个自变量与一 个依变量的回归分析称为多元回归分析。 一元回归分析又分为直线回归分析与曲 线回归分析两种; 多元回归分析又分为多元线性回归分析 与多元非线性回归分析两种。
回归分析:揭示出呈因果关系的相关变 量间的联系形式,建立它们之间的回归方程, 利用所建立的回归方程,由自变量(原因)来预 测、控制依变量(结果)。
SS x ( 159.0444) 2
144.6356
249.5556 74.6670
所以
S yx
2 ˆ ( y y )
n2
74.6670 = 3.2660 (天) 92
【题一】下表为每1000 g土壤中所含NaCl 的不同克数(x),对植物单位叶面积干物质 (Y)的影响,试建立其回归方程。 土壤NaCl含量 x/g· kg-1 干重 y/mg· y bx
(7-3)式中的分子是自变量 x 的离均差与
依变量 y 的离均差的乘积和 ( x x )( y y ) ,
简称乘积和,记作 SP ,分母是自变量 x 的离 xy
均差平方和 ( x x )2,记作 SS x。
a 叫做样本回归截距,是总体回归截距α的 最小二乘估计值也是无偏估计值,是回归直线
资料如下表,建立 y 与 x 的直线回归方程。
表7-1 平均温度累积值(x)与一代三化螟盛发期(y)资料
年份 1956 1957 1958 1959 1960 1961 1962 1963 1964 累积温 x 35.5 34.1 31.7 40.3 36.8 40.2 31.7 39.2 44.2 盛发期 y 12 16 9 2 7 3 13 9 –1

第七章相关分析与回归分析

第七章相关分析与回归分析

第七章相关分析与回归分析1.企业 编号 产量(千 件)生产费用 (千元)企业编 号 产量(千 件)生产费用 (千元) 1 40 130 7 84 165 2 42 140 8 100 170 3 49 155 9 110 167 4 49 150 10 114 183 550 154 11 125 175 65516012130189试根据上表材料: (1) 绘制散点图。

(2) 计算相关系数。

(3) 配合一条直线回归方程。

解: ( 1)(2) 企业编号产量(千件)x生产费用(千元)yxy x2 y2 1 40 130 **** **** 16900 2 42 140 5880 1764 19600 3 49 155 **** **** 24025 4 49 150 **** **** 22500 5 50 154 7700 2500 23716 6 55 160 8800 3025 25600 784 165 138607056272258 100170 17000 10000 28900 911016718370 12100 278896080040200 150 100产量与生产费用散点图512x159062 -948x1938.12 88368 -9482、12 316190 -19382(3)设回归方程为? = a bxb』甞7n Z x 一(送 x)12 159062-948 1938 12y -bx =1^ -0.4423948=126.558312 12所以回归方程为$ =126.5583 0.4423x2.某县城研究居民月家庭人均生活费支出和月家庭收入的相互关系,随机抽样 10利用上表材料:(1) 绘制散点图并观察两变量之间是否存在线性关系 (2) 计算相关系数,建立回归方程。

(3) 计算估计标准误差。

(4) 测算人均收入为200时,其人均生活费应为多少元 解: ( 1)12 88368-9482_ n 瓦xy-任x)任y) n' x 2 -r x)2. n' y 2 -(' y)2 71520 78838.84-0.907271520 161712二 0.4423(2) 家庭序号月人均收入(元)x月人均生活费(元)yxy x2y21 100 85 8500 10000 72252 110 88 968012100 77443 120 90 10800 14400 81004 130 94 12220 16900 88365 140 96 13440 19600 9216 6 150 100 15000 22500 100007 160 106 16960 25600 112368 170 118 20060 28900 13924 9180 120 21600 32400 14400 10 190 124 23560 36100 15376合计14501021151820 218500 106057n' xy-C x)(' y)10 151820 -1450 1021设回归方程为bxn £ xy-(£ x)(£ y) 10 汇 151820 —1450 乂 1021 n' x 2-C x)2 n' y 2-(' y)2 _ 10 218500 -14502a-bx=1021-0.45761450=35.74810 10所以回归方程为? =35.748 0.4576x (3)、10 218500 -14502 一 10 106057 -10212费活生均人月200-C x)2 .. n'y 2-c y)2 3775038673.54= 0.97613775082500 = 0.4576月人均生活费与人均收入散点图120140160月人均收入180oo oooooo 4 2 0 8 6 4 2' y2-a' y-b' xy _ 106057-35.748 1021-0.4576 151820 目二n-2 「10-2= 3.2684(4)当x=200 时,人均生活费为:y =35.748 0.4576 200 =127.2683. 已知x、y两变量的相关系数r = 0.8 , X =20, y = 50,二y为二x的两倍,求y 对x 的回归方程。

统计学 第 七 章 相关与回归分析

统计学 第 七 章 相关与回归分析
3. 利用所求的关系式,根据一个或几个变量 的取值来预测或控制另一个特定变量的取 值,并给出这种预测或控制的精确程度
(一)回归分析与相关分析的关系
回归分析与相关分析是研究现象 之间相互关系的两种基本方法。
区别:
1、相关分析研究两个变量之间相关的 方向和相关的密切程度。但是相关分析不 能指出两变量相互关系的具体形式,也无 法从一个变量的变化来推测另一个变量的 变化关系。
2、按研究变量多少分为单相关和 复相关
单相关即一元相关,亦称简单相 关,是指一个因变量与一个自变量 之间的依存关系。复相关又称多元 相关,是指一个因变量与两个或两 个以上自变量之间的复杂依存关系。
3、按相关形式分为线性相关和非 线性相关
从相关图上观察:观察的样本点的 分布近似表现为直线形式,即观察点近 似地分布于一直线的两边,则称此种相 关为直线相关或线性相关。如果这些样 本点近似地表现为一条曲线,则称这种 相关为曲线相关或非线性相关(curved relationship).
不确定性的统计关系 —相关关系
Y= f(X)+ε (ε为随机变量)
在这种关系中,变量之间的关系值 是随机的,当一个(或几个)变量的值 确定以后,另一变量的值虽然与它(们) 有关,但却不能完全确定。然而,它们
之间又遵循一定的统计规律。
相关关系的例子
▪ 商品的消费量(y)与居民收入(x)
之间的关系
▪ 商品销售额(y)与广告费支出(x)
▲相关系数只反映变量间的线性相关程度,不 能说明非线性相关关系。
▲相关系数不能确定变量的因果关系,也不能 说明相关关系具体接近于哪条直线。
例题1: 经验表明:商场利润额与 其销售额之间存在相关关系。下表为 某市12家百货公司的销售额与利润额 统计表,试计算其相关系数。

第七章相关与回归分析

第七章相关与回归分析
x
函数关系
(几个例子)

某种商品的销售额 y 与销售量 x 之间的关系 可表示为 y = px (p 为单价)
圆的面积S与半径R之间的关系可表示为 S=R2 企业的原材料消耗额y与产量x1 、单位产量 消耗x2 、原材料价格x3之间的关系可表示为 y = x1 x2 x3


相关关系
(correlation)
1. 是一一对应的确定关系 2. 设有两个变量 x 和 y ,变量 y 随变量 x 一起变化,并完 y 全依赖于 x ,当变量 x 取某 个数值时, y 依确定的关系 取相应的值,则称 y 是 x 的 函数,记为 y = f (x),其中 x 称为自变量,y 称为因变量 3. 各观测点落在一条线上
二.相关关系的种类 1、按相关的程度划分 完全相关 不完全相关 不相关 正相关 负相关 线性相关 非线性相关 单相关 4、按影响因素的多少划分 复相关 3、按相关的形式划分
2、按相关的方向划分
散点图
(scatter diagram)








第七章 相关与回归分析
教学目的与要求 掌握相关关系的含义,以及相关关系与 函数关系的区别,了解相关分析的内容,掌 握相关关系的判别方法和类型,理解回归分 析的实质,熟悉回归分析与相关分析的区别 与联系,掌握一元线性回归分析方法和应用
本章主要内容 第一节 相关分析 第二节 回归分析
第一节
相关分析
客观存在的各种现象之间的相互联系,都可以 表现为一定的数量关系,研究现象之间的数量关系 ,则是回归分析和相关分析的宗旨。现象之间的相 互联系,在许多情况下,表现为一定的因果关系, 将这些现象数量化,则成为变量,其中起着影响作 用的变量称为自变量,受自变量影响而发生变动的 变量称为因变量。 现象之间的相互关系,可以概括为两种不同的类 型,即函数关系和相关关系。

统计学 第七章 相关与回归分析

统计学 第七章 相关与回归分析

数 值 说 明
完全负相关
无线性相关
完全正相关
-1.0
-0.5
0
+0.5
正相关程度增加
+1.0
r
负相关程度增加
通常:当相关系数的绝对值: 通常:当相关系数的绝对值: 小于0.3 小于0.3时,表示不相关或微弱相关 0.3时 介于0.3 0.5, 介于0.3至0.5,表示低度相关 0.3至 介于0.5 0.8,表示显著(中度) 介于0.5至0.8,表示显著(中度)相 0.5至 关 大于0.8Lxx Lyy
r=
n ∑ xy − ∑ x ⋅ ∑ y n ∑ x 2 − (∑ x ) 2 ⋅ n ∑ y 2 − (∑ y ) 2
r=
∑ ( x − x )( y − y) ∑ ( x − x )2 ∑ ( y − y)
2
( x − x )( y − y) = ∑ xy − 1 ∑ x ∑ y ∑ n
第二节
定性分析
相关分析的方法
是依据研究者的理论知识和实践经 验,对客观现象之间是否存在相关 关系,以及何种关系作出判断。 关系,以及何种关系作出判断。 在定性分析的基础上,通过编制相 在定性分析的基础上, 关表、绘制相关图、计算相关系数 等方法, 等方法,来判断现象之间相关的方 向、形态及密切程度。 形态及密切程度。
xy
( y − y) 2 ∑
σ xσ y
3.相关系数的其他公式 相关系数的其他公式
• (1)积差法公式: )积差法公式: • • (2)积差法简化式: )积差法简化式: r= • • (3)简捷公式: )简捷公式: •
∑ ( x − x)( y − y) r=
nσ xσ y
∑ ( x − x )( y − y ) ∑ (x − x) ⋅ ∑ ( y − y)

生物统计学:第七章 直线回归与相关分析

生物统计学:第七章  直线回归与相关分析

特别要指出的是:利用直线回归方程进行预 测或控制时,一般只适用于原来研究的范围,不 能随意把范围扩大,因为在研究的范围内两变量 是直线关系,这并不能保证在这研究范围之外仍 然是直线关系。若需要扩大预测和控制范围,则 要有充分的理论依据或进一步的实验依据。利用 直线回归方程进行预测或控制,一般只能内插, 不要轻易外延。
(三)、相关系数的显著性检验
统计学家已根据相关系数r显著性t检验法计算出了 临界r值并列出了表格。 所以可以直接采用查表法对相 关系数r进行显著性检验。
先根据自由度 n-2 查临界 r 值 ( 附表8 ), 得 r0.05(n2) ,r0.01(n2)。若|r|< r0.05(n2),P>0.05,则相 关系数r不显著,在r的右上方标记“ns”;若 r0.05(n2) ≤|r|< r0.01(n2) ,0.01<P≤0.05,则相关系数 r 显 著,在r的右上方标记“*”;若|r|≥ r0.01(n2) ,P ≤ 0.01, 则相关系数 r 极显著,在 r 的右上方标记 “**”。
第七章 直线回归与相关分析
在试验研究中常常要研究两个变量间的关系。 如:人的身高与体重、作物种植密度与产量、食品价格与需
求量的关系等。 两个关系 依存关系:依变量Y随自变量X变化而变化。
—— 回归分析 互依关系:依变量Y与自变量X间的彼此关系.
—— 相关分析
一 直线回归
(一)、直线回归方程的建立 对于两个相关变量x和y,如果通过试验或调查 获得它们的n对观测值: (x1,y1),(x2,y2),……,(xn,yn) 为了直观地看出x和y间的变化趋势,可将每一 对观测值在平面直角坐标系描点,作出散点图。
y)2 y)2
SPxy 2 SSxSS y
SPxy SS x

第七章相关分析

第七章相关分析

y 实际值;
y n
c 2
估计值;
自由度。例
Syx
y2aybxy
n2
Syx越小 观测值离回归直线越近,回归直线代表性越大; Syx越大 观测值离回归直线越远,回归直线代表性越小; Syx=0 所有相关点都落在回归直线上,估计结果完全准确。
2.判定系数R2——用来度量回归直线与样本 观察值拟合优劣的程度。
3)从中可以解出:
b

nxy x y nx2 (x)2
a y bx
这样就得到了直线回归方程: yc abx
举例
回归方程 链接开篇案例
回归方程的评价
回归直线或曲线是用来代表变量之间关系的一般水平。根 据回归线推测的因变量显然与实际值有差异,这种差异大小说 明推算的准确性以及回归线代表性的大小。
Q (y a b)2 xm,i分n 别求一阶偏导:
Q 0 a
Q 0 b
Q a2 (yab)x (1 )0 Q b2 [y ( a b)x (x)]0
整理得到二元一次方程:
yn ab x x y a x b x 2
一、相关表和相关图
相关表:是指将相关变量的数值,按标志值的大小 顺序一一对应而平行排列起来的统计表。
例(续前例1)
相关图:在平面直角坐标系中,以横轴表示变量X,纵轴
相关图 表示变量Y,将相关变量的资料数值在坐标图
例(续前例2)
中表示出来(能较直观地看出两个变量之间相 关关系的粗略形式),也称散点图、散布图。
y
回归线 ·· ·······
x
常用的评价回归方程的指标有:估计标准误差 和判定系数
1.估计标准误差——因变量实际值(观测值)y和估计值

第七章 直线回归与相关分析

第七章 直线回归与相关分析
最小二乘估计法 设回归直线方程为:
ˆ a bx y
(6-2)
其中, a 是α的估计值,b是β的估计值。
主 页退 出 上一张 下一张
建立 样本线性回归方程的方法 最小二乘法
实际观察值与样本回归线上
的点的距离的平方和最小
y


n
i1
yi yi
n 2 i i 1
函数关系 有精确的数学表达式 (确定性的关系) 直线回归分析 一元回归分析 变量间的关系 因果关系 曲线回归分析 (回归分析) 多元线性回归分析 多元回归分析 相关关系 多元非线性回归分析 (非确定性的关系) 简单相关分析—— 直线相关分析 平行关系 复相关分析 (相关分析) 多元相关分析 偏相关分析


2
(x,y) y=a+bx y-y y-y y
ˆ y) 2 (y y ˆ ) 2 2 (y ˆ y)(y y ˆ) (y
ˆ y )( y y ˆ ) b( x x )( y y ) b( x x ) (y bSPxy b 2 SS x ( SP SP 2 ) SP ( ) SS x 0 SS x SS x
多因一果,多元回归分析 多个自变量与一个依变量的回归分析,分为 多元线性回归分析与多元非线性回归分析两种。
回归分析的任务: 揭示出呈因果关系的相关变量间的联系形 式,建立它们之间的回归方程,利用所建立的 回归方程,由自变量(原因)来预测、控制依 变量(结果)。 回归分析主要包括: 找出回归方程;检验回归方程是否显著; 通过回归方程来预测或控制另一变量。
2
a、b应使回归估计值与实际观测值的误差平方和最小,即:
ˆ )2 ( y a bx) 2 最小 Q (y y

统计学原理第七章_相关分析

统计学原理第七章_相关分析

各类相关关系的表现形态图
三、相关分析与回归分析
• (一)相关分析 • 是用一个指标(相关系数)来表明现象 之间相互依存的密切程度。 • (二)回归分析 • 是根据相关关系的具体形态,选择一个 合适的数学模型,来近似地表达变量之 间的平均变化关系。(高度相关)
• (三)相关分析与回归分析的联系
• 1. 它们有具有共同的研究对象。
n
(x x )(y y ) n
σx
(x x )
n
2

(x x ) n
(y y ) n
1
1
2
σy
(y y )
n
2

2
再代入到原公式中,得:
r σ
2 xy
σx y σ

( x x ) ( y y ) ( x x ) ( y y )
2
·· ·②
销售收入 (百万元)
40 30 20 10 0 0 20 40 60 80 100
广告费(万元)
钢材消费量与国民收入
2500
2000
1500
钢材消费量(万吨)
1000
500
0
(相关图)
0
500
1000
1500
2000
2500
3000
国民收入(亿元)
例子
表1 某企业产量与生产费用的关系
企业编号 1 2 3 4 5 6 7 8
量,哪个是因变量,变量都是随机的。
• 2. 回归分析是对具有相关关系的变量间
的数量联系进行测定,必须事先确定变
量的类型。通常因变量是随机的,自变
量可以是随机的,也可以是非随机的。
第二节 简单线性相关分析

统计学课后习题答案第七章相关分析与回归分析

统计学课后习题答案第七章相关分析与回归分析

统计学课后习题答案第七章相关分析与回归分析第七章相关分析与回归分析⼀、单项选择题1.相关分析是研究变量之间的A.数量关系B.变动关系C.因果关系D.相互关系的密切程度2.在相关分析中要求相关的两个变量A.都是随机变量B.⾃变量是随机变量C.都不是随机变量D.因变量是随机变量3.下列现象之间的关系哪⼀个属于相关关系?A.播种量与粮⾷收获量之间关系B.圆半径与圆周长之间关系C.圆半径与圆⾯积之间关系D.单位产品成本与总成本之间关系4.正相关的特点是A.两个变量之间的变化⽅向相反B.两个变量⼀增⼀减C.两个变量之间的变化⽅向⼀致D.两个变量⼀减⼀增5.相关关系的主要特点是两个变量之间A.存在着确定的依存关系B.存在着不完全确定的关系C.存在着严重的依存关系D.存在着严格的对应关系6.当⾃变量变化时, 因变量也相应地随之等量变化,则两个变量之间存在着A.直线相关关系B.负相关关系C.曲线相关关系D.正相关关系7.当变量X值增加时,变量Y值都随之下降,则变量X和Y之间存A.正相关关系B.直线相关关系C.负相关关系D.曲线相关关系8.当变量X值增加时,变量Y值都随之增加,则变量X和Y之间存在着A.直线相关关系B.负相关关系C.曲线相关关系D.正相关关系9.判定现象之间相关关系密切程度的最主要⽅法是A.对现象进⾏定性分析B.计算相关系数C.编制相关表D.绘制相关图10.相关分析对资料的要求是A.⾃变量不是随机的,因变量是随机的B.两个变量均不是随机的C.⾃变量是随机的,因变量不是随机的D.两个变量均为随机的11.相关系数A.既适⽤于直线相关,⼜适⽤于曲线相关B.只适⽤于直线相关C.既不适⽤于直线相关,⼜不适⽤于曲线相关D.只适⽤于曲线相关12.两个变量之间的相关关系称为A.单相关B.复相关C.不相关D.负相关13.相关系数的取值范围是A.-1≤r≤1B.-1≤r≤0C.0≤r≤114.两变量之间相关程度越强,则相关系数A.愈趋近于1B.愈趋近于0C.愈⼤于1D.愈⼩于115.两变量之间相关程度越弱,则相关系数A.愈趋近于1B.愈趋近于0C.愈⼤于1D.愈⼩于116.相关系数越接近于-1,表明两变量间A.没有相关关系B.有曲线相关关系C.负相关关系越强D.负相关关系越弱17.当相关系数r=0时,A.现象之间完全⽆关B.相关程度较⼩B.现象之间完全相关 D.⽆直线相关关系18.假设产品产量与产品单位成本之间的相关系数为-0.89,则说明这两个变量之间存在A.⾼度相关B.中度相关C.低度相关D.显著相关19.从变量之间相关的⽅向看可分为A.正相关与负相关B.直线相关和曲线相关C.单相关与复相关D.完全相关和⽆相关20.从变量之间相关的表现形式看可分为A.正相关与负相关B.直线相关和曲线相关C.单相关与复相关D.完全相关和⽆相关21.物价上涨,销售量下降,则物价与销售量之间属于A.⽆相关B.负相关C.正相关D.⽆法判断22.配合回归直线最合理的⽅法是A.随⼿画线法B.半数平均法C.最⼩平⽅法D.指数平滑法23.在回归直线⽅程y=a+bx中b表⽰A.当x增加⼀个单位时,y增加a的数量B.当y增加⼀个单位时,x增加b的数量C.当x增加⼀个单位时,y的平均增加量D.当y增加⼀个单位时, x的平均增加量24.计算估计标准误差的依据是A.因变量的数列B.因变量的总变差C.因变量的回归变差D.因变量的剩余变差25.估计标准误差是反映A.平均数代表性的指标B.相关关系程度的指标C.回归直线的代表性指标D.序时平均数代表性指标26.在回归分析中,要求对应的两个变量A.都是随机变量B.不是对等关系C.是对等关系D.都不是随机变量27.年劳动⽣产率(千元)和⼯⼈⼯资(元)之间存在回归⽅程y=10+70x,这意味着年劳动⽣产率每提⾼⼀千元时,⼯⼈⼯资平均A.增加70元B.减少70元C.增加80元D.减少80元28.设某种产品产量为1000件时,其⽣产成本为30000元,其中固定成本6000元,则总⽣产成本对产量的⼀元线性回归⽅程为:A.y=6+0.24xB.y=6000+24xC.y=24000+6xD.y=24+6000x29.⽤来反映因变量估计值代表性⾼低的指标称作A.相关系数B.回归参数C.剩余变差D.估计标准误差⼆、多项选择题1.下列现象之间属于相关关系的有A.家庭收⼊与消费⽀出之间的关系B.农作物收获量与施肥量之间的关系C.圆的⾯积与圆的半径之间的关系D.⾝⾼与体重之间的关系E.年龄与⾎压之间的关系2.直线相关分析的特点是A.相关系数有正负号B.两个变量是对等关系C.只有⼀个相关系数D.因变量是随机变量E.两个变量均是随机变量3.从变量之间相互关系的表现形式看,相关关系可分为A.正相关B.负相关C.直线相关D.曲线相关E.单相关和复相关4.如果变量x与y之间没有线性相关关系,则A.相关系数r=0B.相关系数r=1C.估计标准误差等于0D.估计标准误差等于1E.回归系数b=05.设单位产品成本(元)对产量(件)的⼀元线性回归⽅程为y=85-5.6x,则A.单位成本与产量之间存在着负相关B.单位成本与产量之间存在着正相关C.产量每增加1千件,单位成本平均增加5.6元D.产量为1千件时,单位成本为79.4元E.产量每增加1千件,单位成本平均减少5.6元6.根据变量之间相关关系的密切程度划分,可分为A.不相关B.完全相关C.不完全相关D.线性相关E.⾮线性相关7.判断现象之间有⽆相关关系的⽅法有A.对现象作定性分析B.编制相关表C.绘制相关图D.计算相关系数E.计算估计标准误差 8.当现象之间完全相关的,相关系数为A.0B.-1C.1D.0.5E.-0.5 9.相关系数r =0说明两个变量之间是A.可能完全不相关B.可能是曲线相关C.肯定不线性相关D.肯定不曲线相关E.⾼度曲线相关10.下列现象属于正相关的有A.家庭收⼊愈多,其消费⽀出也愈多B.流通费⽤率随商品销售额的增加⽽减少C.产量随⽣产⽤固定资产价值减少⽽减少D.⽣产单位产品耗⽤⼯时,随劳动⽣产率的提⾼⽽减少E.⼯⼈劳动⽣产率越⾼,则创造的产值就越多 11.直线回归分析的特点有A.存在两个回归⽅程B.回归系数有正负值C.两个变量不对等关系D.⾃变量是给定的,因变量是随机的E.利⽤⼀个回归⽅程,两个变量可以相互计算 12.直线回归⽅程中的两个变量A.都是随机变量B.都是给定的变量C.必须确定哪个是⾃变量,哪个是因变量D.⼀个是随机变量,另⼀个是给定变量E.⼀个是⾃变量,另⼀个是因变量13.从现象间相互关系的⽅向划分,相关关系可以分为A.直线相关B.曲线相关C.正相关D.负相关E.单相关 14.估计标准误差是A.说明平均数代表性的指标B.说明回归直线代表性指标C.因变量估计值可靠程度指标D.指标值愈⼩,表明估计值愈可靠E.指标值愈⼤,表明估计值愈可靠 15.下列公式哪些是计算相关系数的公式16.⽤最⼩平⽅法配合的回归直线,必须满⾜以下条件A.∑(y-y c )=最⼩值B.∑(y-y c )=0C.∑(y-y c )2=最⼩值D.∑(y-y c )2=0E.∑(y-y c )2=最⼤值 17.⽅程y c =a+bx222222)()(.)()())((...))((.y y n x x n yx xy n r E y y x x y y x x r D L L L r C L L L r B n y y x x r A xx xy xyyy xx xy y x ∑-∑?∑-∑∑?∑-∑=-∑?-∑--∑===--∑=σσA.这是⼀个直线回归⽅程B.这是⼀个以X为⾃变量的回归⽅程C.其中a是估计的初始值D.其中b是回归系数E.y c是估计值18.直线回归⽅程y c=a+bx中的回归系数bA.能表明两变量间的变动程度B.不能表明两变量间的变动程度C.能说明两变量间的变动⽅向D.其数值⼤⼩不受计量单位的影响E. 其数值⼤⼩受计量单位的影响19.相关系数与回归系数存在以下关系A.回归系数⼤于零则相关系数⼤于零B.回归系数⼩于零则相关系数⼩于零C.回归系数等于零则相关系数等于零D.回归系数⼤于零则相关系数⼩于零E.回归系数⼩于零则相关系数⼤于零20.配合直线回归⽅程的⽬的是为了A.确定两个变量之间的变动关系B.⽤因变量推算⾃变量C.⽤⾃变量推算因变量D.两个变量相互推算E.确定两个变量之间的相关程度21.若两个变量x和y之间的相关系数r=1,则A.观察值和理论值的离差不存在B.y的所有理论值同它的平均值⼀致C.x和y是函数关系D.x与y不相关E.x与y是完全正相关22.直线相关分析与直线回归分析的区别在于A.相关分析中两个变量都是随机的;⽽回归分析中⾃变量是给定的数值,因变量是随机的B.回归分析中两个变量都是随机的;⽽相关分析中⾃变量是给定的数值,因变量是随机的C.相关系数有正负号;⽽回归系数只能取正值D.相关分析中的两个变量是对等关系;⽽回归分析中的两个变量不是对等关系E.相关分析中根据两个变量只能计算出⼀个相关系数;⽽回归分析中根据两个变量只能计算出⼀个回归系数三、填空题1.研究现象之间相关关系称作相关分析。

第7章 直线回归与相关分析

第7章 直线回归与相关分析

y y ( x x)
y x
总体资料直线回 归的数学模型
总体回归截踞
总体回归系数 随机误差
y ( x x)
总体回归截踞 总体回归系数 随机误差
α:它是y的本底水平,即x对y没有任何作用时,y的数量 表现。 βx:它描述了因变量y的取值改变中,由y与自变量x的线 性关系所引起的部分,即可以由x直接估计的部分。 误差:它描述了因变量y的取值改变由x以外的可能与y有 关的随机和非随机因素共同引起的部分,即不能由 x直接 估计的部分。
ˆ y) ( y y ˆ) ( y y) ( y
2 2
2
回归平方和 U
离回归平方和 Q
ss
y
U Q
ˆ y ) 2 [ y b ( x x ) y ]2 U (y b 2 ( x x) b 2 ss x bsp ( sp ) 2
2 sy /x
2

sy / x SSx
回归系数的标准误
b 2 b t ( ) 2 sb sb
2
2 2 2
2
sb
sy / x SSx
b SSx b t 2 2 s y / x / SSx sy / x
2
U b
2
ss bsp
x
(sp)
2
ss
x
U t F Q /(n 2)
相关关系
X身高
Y体重
在大量测量各种身高人群的体重时会发现,虽然在同样身高 下,体重并不完全一样。但在每一身高下,都有一个确定的 体重分布与之相对应;
X体重
Y身高
在大量测量各种体重人群的身高时会发现,虽然在同样体重 下,身高并不完全一样。但在每一体重下,都有一个确定的 身高分布与之相对应;

统计学第7章相关与回归分析PPT课件

统计学第7章相关与回归分析PPT课件
预测GDP增长
利用回归分析,基于历史GDP数据和其他经济指标,预测未来GDP 的增长趋势。
预测通货膨胀率
通过分析通货膨胀率与货币供应量、利率等经济指标的关系,利用回 归分析预测未来通货膨胀率的变化。
市场研究
消费者行为研究
通过回归分析研究消费者购买决策的影响因素, 如价格、品牌、广告等。
市场细分
利用回归分析对市场进行细分,识别不同消费者 群体的特征和需求。
线性回归模型假设因变量和自变量之间 存在一种线性关系,即当一个自变量增 加时,因变量也以一种可预测的方式增
加或减少。
参数估计
参数估计是用样本数据来估计线性回 归模型的参数β0, β1, ..., βp。
最小二乘法的结果是通过解线性方程 组得到的,该方程组包含n个方程(n 是样本数量)和p+1个未知数(p是 自变量的数量,加上截距项)。
回归模型的评估
残差分析
分析残差与自变量之间的关系, 判断模型的拟合程度和是否存在
异常值。
R方值
用于衡量模型解释因变量变异的 比例,值越接近于1表示模型拟
合越好。
F检验和t检验
用于检验回归系数是否显著,判 断自变量对因变量的影响是否显
著。
05 回归分析的应用
经济预测
预测股票市场走势
通过分析历史股票数据,利用回归分析建立模型,预测未来股票价 格的走势。
回归模型的评估是通过各种统计 量来检验模型的拟合优度和预测 能力。
诊断检验(如Durbin Watson检 验)可用于检查残差是否存在自 相关或其他异常值。
03 非线性回归分析
非线性回归模型
线性回归模型的局限性
线性回归模型假设因变量和自变量之间的关系是线性的,但在实 际应用中,这种关系可能并非总是成立。

统计学课后习题答案第七章相关分析与回归分析

统计学课后习题答案第七章相关分析与回归分析

第七章相关分析与回归分析一、单项选择题1.相关分析是研究变量之间的A.数量关系B.变动关系C.因果关系D.相互关系的密切程度2.在相关分析中要求相关的两个变量A.都是随机变量B.自变量是随机变量C.都不是随机变量D.因变量是随机变量3.下列现象之间的关系哪一个属于相关关系A.播种量与粮食收获量之间关系B.圆半径与圆周长之间关系C.圆半径与圆面积之间关系D.单位产品成本与总成本之间关系4.正相关的特点是A.两个变量之间的变化方向相反B.两个变量一增一减C.两个变量之间的变化方向一致D.两个变量一减一增5.相关关系的主要特点是两个变量之间A.存在着确定的依存关系B.存在着不完全确定的关系C.存在着严重的依存关系D.存在着严格的对应关系6.当自变量变化时, 因变量也相应地随之等量变化,则两个变量之间存在着A.直线相关关系B.负相关关系C.曲线相关关系D.正相关关系7.当变量X值增加时,变量Y值都随之下降,则变量X和Y之间存在着A.正相关关系B.直线相关关系C.负相关关系D.曲线相关关系8.当变量X值增加时,变量Y值都随之增加,则变量X和Y之间存在着A.直线相关关系B.负相关关系C.曲线相关关系D.正相关关系9.判定现象之间相关关系密切程度的最主要方法是A.对现象进行定性分析B.计算相关系数C.编制相关表D.绘制相关图10.相关分析对资料的要求是A.自变量不是随机的,因变量是随机的B.两个变量均不是随机的C.自变量是随机的,因变量不是随机的D.两个变量均为随机的11.相关系数A.既适用于直线相关,又适用于曲线相关B.只适用于直线相关C.既不适用于直线相关,又不适用于曲线相关D.只适用于曲线相关12.两个变量之间的相关关系称为A.单相关B.复相关C.不相关D.负相关13.相关系数的取值范围是≤r≤1 ≤r≤0≤r≤1 D. r=014.两变量之间相关程度越强,则相关系数A.愈趋近于1B.愈趋近于0C.愈大于1D.愈小于115.两变量之间相关程度越弱,则相关系数A.愈趋近于1B.愈趋近于0C.愈大于1D.愈小于116.相关系数越接近于-1,表明两变量间A.没有相关关系B.有曲线相关关系C.负相关关系越强D.负相关关系越弱17.当相关系数r=0时,A.现象之间完全无关B.相关程度较小B.现象之间完全相关 D.无直线相关关系18.假设产品产量与产品单位成本之间的相关系数为,则说明这两个变量之间存在A.高度相关B.中度相关C.低度相关D.显着相关19.从变量之间相关的方向看可分为A.正相关与负相关B.直线相关和曲线相关C.单相关与复相关D.完全相关和无相关20.从变量之间相关的表现形式看可分为A.正相关与负相关B.直线相关和曲线相关C.单相关与复相关D.完全相关和无相关21.物价上涨,销售量下降,则物价与销售量之间属于A.无相关B.负相关C.正相关D.无法判断22.配合回归直线最合理的方法是A.随手画线法B.半数平均法C.最小平方法D.指数平滑法23.在回归直线方程y=a+bx中b表示A.当x增加一个单位时,y增加a的数量B.当y增加一个单位时,x增加b的数量C.当x增加一个单位时,y的平均增加量D.当y增加一个单位时, x的平均增加量24.计算估计标准误差的依据是A.因变量的数列B.因变量的总变差C.因变量的回归变差D.因变量的剩余变差25.估计标准误差是反映A.平均数代表性的指标B.相关关系程度的指标C.回归直线的代表性指标D.序时平均数代表性指标26.在回归分析中,要求对应的两个变量A.都是随机变量B.不是对等关系C.是对等关系D.都不是随机变量27.年劳动生产率(千元)和工人工资(元)之间存在回归方程y=10+70x,这意味着年劳动生产率每提高一千元时,工人工资平均A.增加70元B.减少70元C.增加80元D.减少80元28.设某种产品产量为1000件时,其生产成本为30000元,其中固定成本6000元,则总生产成本对产量的一元线性回归方程为:=6+ =6000+24x=24000+6x =24+6000x29.用来反映因变量估计值代表性高低的指标称作A.相关系数B.回归参数C.剩余变差D.估计标准误差二、多项选择题1.下列现象之间属于相关关系的有A.家庭收入与消费支出之间的关系B.农作物收获量与施肥量之间的关系C.圆的面积与圆的半径之间的关系D.身高与体重之间的关系E.年龄与血压之间的关系2.直线相关分析的特点是A.相关系数有正负号B.两个变量是对等关系C.只有一个相关系数D.因变量是随机变量E.两个变量均是随机变量3.从变量之间相互关系的表现形式看,相关关系可分为A.正相关B.负相关C.直线相关D.曲线相关E.单相关和复相关4.如果变量x与y之间没有线性相关关系,则A.相关系数r=0B.相关系数r=1C.估计标准误差等于0D.估计标准误差等于1E.回归系数b=05.设单位产品成本(元)对产量(件)的一元线性回归方程为y=,则A.单位成本与产量之间存在着负相关B.单位成本与产量之间存在着正相关C.产量每增加1千件,单位成本平均增加元D.产量为1千件时,单位成本为元E.产量每增加1千件,单位成本平均减少元6.根据变量之间相关关系的密切程度划分,可分为A.不相关B.完全相关C.不完全相关D.线性相关E.非线性相关7.判断现象之间有无相关关系的方法有A.对现象作定性分析B.编制相关表C.绘制相关图D.计算相关系数E.计算估计标准误差8.当现象之间完全相关的,相关系数为B.-1 E.-9.相关系数r =0说明两个变量之间是A.可能完全不相关B.可能是曲线相关C.肯定不线性相关D.肯定不曲线相关E.高度曲线相关10.下列现象属于正相关的有A.家庭收入愈多,其消费支出也愈多B.流通费用率随商品销售额的增加而减少C.产量随生产用固定资产价值减少而减少D.生产单位产品耗用工时,随劳动生产率的提高而减少E.工人劳动生产率越高,则创造的产值就越多11.直线回归分析的特点有A.存在两个回归方程B.回归系数有正负值C.两个变量不对等关系D.自变量是给定的,因变量是随机的E.利用一个回归方程,两个变量可以相互计算12.直线回归方程中的两个变量A.都是随机变量B.都是给定的变量C.必须确定哪个是自变量,哪个是因变量D.一个是随机变量,另一个是给定变量E.一个是自变量,另一个是因变量13.从现象间相互关系的方向划分,相关关系可以分为A.直线相关B.曲线相关C.正相关D.负相关E.单相关14.估计标准误差是A.说明平均数代表性的指标B.说明回归直线代表性指标C.因变量估计值可靠程度指标D.指标值愈小,表明估计值愈可靠E.指标值愈大,表明估计值愈可靠15.下列公式哪些是计算相关系数的公式16.用最小平方法配合的回归直线,必须满足以下条件A.?(y-y c )=最小值B.?(y-y c )=0C.?(y-y c )2=最小值D.?(y-y c )2=0E.?(y-y c )2=最大值17.方程y c =a+bx222222)()(.)()())((...))((.y y n x x n y x xy n r E y y x x y y x x r D L L L r C L L L r B n y y x x r A xx xy xy yy xx xy yx ∑-∑⋅∑-∑∑⋅∑-∑=-∑⋅-∑--∑===--∑=σσA.这是一个直线回归方程B.这是一个以X为自变量的回归方程C.其中a是估计的初始值D.其中b是回归系数是估计值18.直线回归方程y c=a+bx中的回归系数bA.能表明两变量间的变动程度B.不能表明两变量间的变动程度C.能说明两变量间的变动方向D.其数值大小不受计量单位的影响E. 其数值大小受计量单位的影响19.相关系数与回归系数存在以下关系A.回归系数大于零则相关系数大于零B.回归系数小于零则相关系数小于零C.回归系数等于零则相关系数等于零D.回归系数大于零则相关系数小于零E.回归系数小于零则相关系数大于零20.配合直线回归方程的目的是为了A.确定两个变量之间的变动关系B.用因变量推算自变量C.用自变量推算因变量D.两个变量相互推算E.确定两个变量之间的相关程度21.若两个变量x和y之间的相关系数r=1,则A.观察值和理论值的离差不存在的所有理论值同它的平均值一致和y是函数关系与y不相关与y是完全正相关22.直线相关分析与直线回归分析的区别在于A.相关分析中两个变量都是随机的;而回归分析中自变量是给定的数值,因变量是随机的B.回归分析中两个变量都是随机的;而相关分析中自变量是给定的数值,因变量是随机的C.相关系数有正负号;而回归系数只能取正值D.相关分析中的两个变量是对等关系;而回归分析中的两个变量不是对等关系E.相关分析中根据两个变量只能计算出一个相关系数;而回归分析中根据两个变量只能计算出一个回归系数三、填空题1.研究现象之间相关关系称作相关分析。

第七章 相关与回归分析

第七章  相关与回归分析

总体一元线性 回归方程:
Yˆ EY X
以样本统计量估计总体参数
(估计的回归方程)
样本一元线性回归方程: yˆ a bx
(一元线性回归方程)
截距 斜率(回归系数)
截距a 表示在没有自变量x的影响时,其它各 种因素对因变量y的平均影响;回归系数b 表
明自变量x每变动一个单位,因变量y平均变 动b个单位。
n x2 x2 n y2 ( y)2
1637887 916 625
0.9757
16 55086 9162 16 26175 6252
r 2 0.97572 0.9520
第七章 回归分析与相关分析
第七章 相关与回归分析
STAT
★ 第一节 相关分析概述 ★ 第二节 一元线性回归分析
第七章 回归分析与相关分析
yˆ a bx是理论模型,表明x与y变量 之间的平均变动关系,而变量y的实际
值应为yi (a bxi ) i yˆ i
X对y的线性影响而形 成的系统部分,反映两 变量的平均变动关系, 即本质特征。
随机干扰:各种偶然 因素、观察误差和其 他被忽视因素的影响
体重(Y)
75 70 65 60 55 50 45 40
b
n xy x y
n x2 x2
16 37887 916 625 16 55086 9162
0.7961
a y bx 625 0.7961 916 6.5142
16
16
即线性回归方程为:
yˆ 6.5142 0.7961x
计算结果表明,在其他条件不变时,能源消耗 量每增加一个单位(十万吨),工业总产值将 增加0.7961个单位(亿元)。
函数关系 相关关系

统计学导论 科学出版社 第七章 相关与回归分析

统计学导论  科学出版社 第七章 相关与回归分析


对于 n 组实际观察数据(yi ; xi1,,xi2 , , xip ),(i=1,2,…,n),多元线性回归模型可 表示为
{
y1 = 0 1 x11 2 x12 px1p 1 y2= 0 1 x21 2 x22 px2p 2 …… yn= 0 1 xn1 2 xn2 pxnp n
x 1766.293
y 1379.13
(x x)
2
4670769.25
( y y ) 2741904.99 ( x x )( y y) 3447388.39
2
要求:(1)计算相关系数r; (2)配合简单线性回归方程
(3)估计人均生活费收入为2000元时的商品支出额
表明Y的期望值是X的线性函数
反映了除 X和 Y之间的线性关系之外的随机因素对Y的 影响 是不能由X和Y之间的线性关系所解释的变异性
• 总体回归直线(回归方程) :E (Yt ) 1 2 X t
• 方程的图示是一条直线,因此也称为直 线回归方程 • 1是回归直线在 y 轴上的截距,是当 x=0 时 y 的期望值 • 2是直线的斜率,称为回归系数,表示 当 x 每变动一个单位时,y 的平均变动 值
样本回归函数
(概念要点)
样本回归线
ˆ ˆ ˆ Yt 1 2 X t
样本回归函数
ˆ ˆ Yt 1 2 X t et
最小二乘法
1. 使因变量的观察值与估计值之间的离差平方和 达到最小来求得回归系数。即
垐 ) ( y y ) 2 e2 最小 Q( 1 , 2 i ˆ i
年份
1981 1982 1983 1984 1985 1986 1987
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

相关分析旨在测度变量之间的密切程度 ,它所使用的测度工具就是相关系数;
而回归分析侧重于考察变量之间的数量 变化规律,其所使用的数学工具就是配 合回归模型。
回归分析可分为 线性回归分析(一元、二元、多元) 非线性回归分析
(二)与相关分析的区别与联系
1.区别
(1)两变量之间的关系
相关分析所研究的两个变量是对等关系 ;
(三)待定参数的确定方法
样本回归模型:
移项整理:
e Y ˆ ˆ X Y Yˆ i 1,2, Yi ˆ0 ˆ1Xi ei i 1,2, (2.3) i i 0 1i i i
普通最小二乘法确定ˆ0和ˆ1的原则
是使残差平方和 ei2最小。
19
推导:
ei Yi ˆ0 ˆ1Xi Yi Yˆi i 1,2,
第七章 相关分析与回归分析
第一节 相关分析的意义和种 类
一、相关关系的概念和特点
函数关系是指现象间存在的严格依存的 、确定的关系
相关关系是指客观现象之间存在的非确 定的相互依存关系
相关关系的特点:
1.现象之间确实存在着数量上的依存关 系
2.现象之间数量上的关系不是确定的
二、相关关系的种类
4
10
3.0 100 9.00 30
5
40
8.1 1600 65.61 324
6
70
16.3 4900 265.69 1141
7
60
12.3 3600 151.29 738
8
30
6.2 900 38.44 186
9
30
6.6 900 43.56 198
10
70
16.8 4900 282.24 1176
方向
第二节 相关关系的判断
定性分析:对事物的质的规定性的认识 和分析。
一、表格法
表格法是根据两个相关变量,即自变量 X与因变量Y的对应关系的数值编制而成 的数据表,一般称为相关表。通过相关 表可以初步看出个变量之间的相关关系 ,同时相关表还是绘制相关图和计算相 关系数的基础
(一)简单相关表
合计
500
110.8
2940 1465.0 00
6549
第三节 回归分析与一元线性回 归
(一)回归分析的概念与相关分析的关 系
1.概念
回归分析是在相关分析的基础上,考察 变量之间的数量变化规律,并通过一定 的数学表达式描述它们之间的关系,进 而确定一个或几个变量的变化对另一个 特定变量的影响程度
设:Q(ˆ0, ˆ1) ei2
min Q min ei2 (Yi ˆ0 ˆ1Xi )2
偏导数为0,极值存在。
20
推导: min Q min ei2 (Yi ˆ0 ˆ1Xi )2
nˆ0 ˆ1 Xi Yi ˆ0 Xi ˆ1 Xi2 XiYi
回归分析对资料的要求是,自变量是可 以控制的变量(给定的变量),因变量 的随机变量
2.联系 (1)相关分析是回归分析的基础和前
提 (2)回归分析是相关分析的深入和继

二、一元线性回归模型 (一)概念 一元线性回归模型是根据两个变量的成
对数据,配合直线方程式,再根据自变 量的变动值,来推算因变量的估计值的 一种统计分析方法。
yˆ a bx
(二)拟合条件
1.两变量间确实存在显著的相关关系:
通过计算两者之间的相关系数值,看是否达到 显著相关要求
2.两变量间确实存在着直线相关关系:
散点图,看是否近似于直线
3.应根据最小平方法(最小二乘法)的原理拟 合一元线性方程:实际值和理论值的离差的代 数和等于零,说明回归直线上所有的理论值是 所有实际值的平均值;实际值和理论值的离差 的平方和最小,说明所拟合的回归直线与各相 关点的距离比任何其他直线与相关点的距离都 小。
编制方法是:先将自变量的值按照从小 到大的顺序排列出来,然后将因变量的 值对应列上而编排成的表格
(二)分组相关表
1.单变量分组表:依据自变量分组,并 列出其出现的次数和因变量变量值的统 计表。
2.双变量分组表:对两种有关变量都分 组,交叉排列,并列出其各组间的共同 次数。
二、图示法 以横轴表示自变量,纵轴表示因变量
0.5~0.8:显著相关
0.8以上:高度相关
(二)相关系数的计算
r
2 xy
x y
(x x)(y y) / n
(x x)2 / n (y y)2 / n
1.协方差的作用
(1)显示x与y是正相关还是负相关
(2)显示x与y的相关程度大小
2.标准差的作用
(1)协方差是名数,不同现象的变异 情况不同,相关程度不能直接加以比较 。标准化结果使协方差化为不名数,相 关系数可以比较不同现象相关程度的高 低
(2)将变量离差标准化,使相关系数 的绝对值不超过1,即|r|≤1
r
n xy x y
n x2 ( x)2 n y2 ( y)2
表7-4
序号
销售额(万元 )x
利润率(% )y
Байду номын сангаас
x2
y2
xy
1
60
12.6 3600 158.76 756
2
50
10.4 2500 108.16 520
3
80
18.5 6400 342.25 1480
1.根据相关关系的方向划分,相关关系 可分为正相关和负相关
2.根据自变量的多少划分,相关关系可 分为单相关和复相关
3.根据相关的形式不同划分,可分为线 性相关和非线性相关
4.根据相关关系的程度划分,可分为不 相关、完全相关和不完全相关
三、相关分析的主要内容
1.确定现象之间有无关系 2.确定相关关系的表现形式 3.测定相关关系的密切程度和
回归分析所研究的两个变量不是对等关 系,必须根据研究目的确定其中的自变 量和因变量
(2)对于变量x与y来说,相关分析只 能计算出一个反映变量间相关密切程度 的相关系数,计算中改变x与y的地位对 结果无影响;回归分析可以根据研究目
(3)相关分析对资料的要求是,两变 量都是随机的,或者其中一个是随机的 ;
,标出每对变量值的坐标点(散布点) 强正(负)相关 弱正(负)相关 非线性相关 不相关
三、相关系数
(一)意义
相关系数是在直线相关条件下,说明两 个现象之间相关关系密切程度的统计分 析指标。通常用r表示。
-1≤r≤1
|r|在0.3以下:无直线相关
以上:有直线相关
0.3~0.5:低度直线相关
相关文档
最新文档