力的分解
力的分解

力的分解一、力的分解1、定义:求一个已知力的分力的过程叫做力的分解,力在分解时,一个力只能分解成几个性质相同的力,即力的分解不改变力的性质。
2、力的分解依据:遵循平行四边形定则。
二、力的分解原则1、力的分解如果没有什么限制条件,那么一个力可以有无数组分力代替。
2、将力分解时,需要遵循以下原则:①按实际效果分解②按实际需要进行分解③方便原则:正交分解3、正交分解:将力沿着两个相互垂直的方向分解,叫做力的正交分解。
①坐标系的建立原则:在静力学中,以少分解力和容易分解力为原则。
在动力学中,以加速度方向和垂直于加速度方向为坐标轴建系。
4、求解分力的其他方法:①直角三角形法②相似三角形法的方向③动态矢量三角形法:已知合力F的大小和方向及一个分力F1已知合力F的方向及一个分力F的大小和方向1的大小已知合力F的大小及一个分力F1三、典型例题1、将一个力F分解为两个力F1和F2,那么下列说法中错误的是( )A.F是物体实际受到的力 B.F1和F2不是物体实际受到的力C.物体同时受到F1、F2和F三个力的作用 D.F1和F2共同作用的效果与F相同2、重力为G的物体静止在倾角为θ的斜面上,将重力G分解为垂直斜面向下的力F2和平行斜面向下的力F1,那么( )A.F2就是物体对斜面的压力 B.物体对斜面的正压力方向与F2方向相同C.F1就是物体受到的静摩擦力 D.物体受到重力、斜面对物体的支持力、静摩擦力、F1和F2共五个力的作用3、如下图所示,一名骑独轮车的杂技演员在空中钢索上表演,如果演员和独轮车的总质量为80kg,两侧的钢索互成120°夹角,则每根钢索所受拉力大小为( )A.400N B.600N C.800N D.1 600N4、如下图所示,已知力F和一个分力F1的方向的夹角为θ,则另一个分力F2的最小值为____________.5、下列说法中正确的是()A.一个2 N的力可分解为7 N和4 N的两个分力B.一个2 N的力可分解为9 N和9 N的两个分力C.一个6 N的力可分解为4 N和3 N的两个分力D.一个8 N的力可分解为4 N和3 N的两个分力6、将一个大小为10 N的力分解为两个分力,如果已知其中的一个分力的大小为15 N,则另一个分力的大小可能是()A. 5 NB. 10 NC. 15 ND. 20 N7、物体静止于光滑水平面上,力F作用于物体上的O点,现要使合力沿着OO′方向,如图所示,则必须同时再加一个力F′,如F和F′均在同一水平面上,则这个力的最小值为( )A.F cosθB.F sinθC.FtanθD.Fcotθ4.如图所示,质量为10 kg的物体在水平面上向右运动,此时物体还受到一个向左、大小为20 N的水平推力,物体与水平面之间的动摩擦因数为0.2,则物体水平方向受的合力是()A.20 N,水平向左B.20 N,水平向左C.40 N,水平向左D.0.4 N,水平向左5. 一个重为20N的物体置于光滑的水平面上,当用一个F=5N的力竖直向上拉该物体时,如图所示,物体受到的合力为()A. 15NB. 25NC. 20ND. 0N6、如图所示,物体M在斜向右下方的推力F作用下,在水平地面上恰好做匀速运动,则推力F和物体M 受到的摩擦力的合力方向是()A. 竖直向下B. 竖直向上C. 斜向下偏左D. 斜向下偏右7、如图所示,一物块置于水平地面上。
力的分解 课件

球对 A 点的压力为 F2=F′2=mg/cos60°=200 N,方向由 O 指向 A.
[答案] 100 2 N,方向垂直墙壁向右 200 N,方向由 O 指向 A
要点三 正交分解法求合力 把力沿两个互相垂直的方向进行分解的方法叫做正交分解
实例
分析 质量为 m 的物体静止在斜面上,其重 力产生两个效果:一是使物体具有沿 斜面下滑趋势的分力 F1,二是使物体 压紧斜面的分力 F2.F1=mgsinα,F2 =mgcosα
实例
分析 质量为 m 的光滑小球被竖直挡板挡住 而静止于斜面上时,其重力产生两个 效果:一是使球压紧板的分力 F1,二 是 使 球 压 紧 斜 面 的 分 力 F2.F1 = mgtanα,F2=cmosgα
(1)建立坐标系之前,要对物体进行受力分析,画出各力的 示意图,一般各力的作用点都移到物体的重心上.
(2)建立坐标系的原则:使尽量多的力落在坐标轴上,尽量 减少分解力的个数.
(3)如果 F 合=0,则 Fx=0,Fy=0.
如图所示,力 F1、F2、F3、F4 在同一平面内构成共点力, 其中 F1=20 N、F2=20 N、F3=20 2 N、F4=20 3 N,各力 之间的夹角在图中已标出,求这四个共点力的合力大小和方向.
【规范解答】 本题采用图示法和三角形知识进行分析,以 F 的末端为圆心,用分力 F1 的大小为半径作圆.
(1)若 F1<Fsinα,圆与 F2 不相交,则无解,如图(a)所示. (2)若 F1=Fsinα,圆与 F2 相切,即只有一解,如图(b)所示. (3)若 F>F1>Fsinα,圆与 F2 有两个交点,可得两个三角形, 应有两个解,如图(c)所示.
力的分解

第三章 第5节
第37页
金版教程 · 人教版物理 · 必修1
课前新知预习 课堂师生共研 课后提升考能
A.N1始终减小,N2始终增大 B.N1始终减小,N2始终减小 C.N1先增大后减小,N2始终减小 D.N1先增大后减小,N2先减小后增大
第三章 第5节
第38页
金版教程 · 人教版物理 · 必修1
课前新知预习 课堂师生共研 课后提升考能
(三)完美答案(20 N<F2<40 N) (四)解后总结规律方法 应用三角形定则分析力的分解问题中解的个数 对于将一个力分解,讨论解的个数的问题,借助三角形定 则比借助平行四边形定则更方便,即看代表合力及分力的有向 线段能否按要求构成三角形,以及能构成三角形的个数,从而 说明解的情况.
第三章 第5节
第11页
金版教程 · 人教版物理 · 必修1
课前新知预习 课堂师生共研 课后提升考能
(1)运算时遵循三角形定则的物理量一定是矢量.(
)
(2)由于矢量的方向用正负表示,故具有正负值的物理量一 定是矢量.( ) )
(3)矢量与标量的本质区别是它们的运算方法不同.(
第三章 第5节
第12页
金版教程 · 人教版物理 · 必修1
第三章 第5节
第16页
金版教程 · 人教版物理 · 必修1
课前新知预习 课堂师生共研 课后提升考能
2.一个力有唯一解的条件
第三章 第5节
第17页
金版教程 · 人教版物理 · 必修1
课前新知预习 课堂师生共研 课后提升考能
第三章 第5节
第18页
金版教程 · 人教版物理 · 必修1
课前新知预习 课堂师生共研 课后提升考能
课前新知预习 课堂师生共研 课后提升考能
力的分解

因此,球对斜面的压力 FN1 和对挡板的压力 FN2 大小分别为 G 20 FN1=F1= = N=25 N,方向垂直斜面向下; cos θ cos 37° FN2=F2=Gtan θ=20× tan37°N=15 N,方向垂直挡板向左。
[答案] 挡板向左
25 N,方向垂直斜面向下
15 N,方向垂直
【答案】
一个作用效果是水平拉指头,另一
个作用效果是压铅笔使之扎手心.
空中索道,是尽量直好呢,还是让它 稍松弛?如果你是工程技术人员,应怎样 设计?
尽管力的分解没有确定的结果,但在解决 具体的物理问题时,一般都按力的作用效果来 分解.
F1
F2
G
所以,我们可以由力的作用效果来确定分 力的方向.
放在水平面上的物体受到一个斜向上的拉力F 的作用,该力与水平方向夹角为θ,将力F分解.
如果没有其它限制,对于同一条对角线,可以作 出无数个不同的平行四边形.
4.分解依据 依据平行四边形定则,如果没有限制,同一个力可以 分解为 无数 对大小、方向不同的分力。实际问题中,应把 力向实际作用效果方向来分解。
请你亲自做一做:
取一根细线,将细线的一端系在右手中指上, 另一端系上一个重物.用一枝铅笔的尾部顶在 细线上的某一点,使细线的上段保持水平、下 段竖直向下.铅笔的尖端置于右手掌心(如右图 所示).你能感觉到重物竖直向下拉细线的力产 生了哪两个作用效果吗?
[特别提醒]
正交分解法不一定按力的实际效果来
分解,而是根据需要为了简化问题在两个相互垂直的方 向上分解,它是处理力的合成和分解的复杂问题的一种 简便方法。
在同一平面内共点的四个力F1、F2、F3、F4的大小依次
为19 N、40 N、30 N和15 N,方向如图所示,求它们的合力。
力的分解原则和方法

力的分解原则和方法力的分解原则是物理学中的一种基本概念,用于将一个力分解为多个力的合力。
力的分解可以将复杂的力系统简化为更容易处理的问题,是物理学和工程学中常用的方法之一。
力的分解方法主要有平行力分解法和正交力分解法两种。
1.平行力分解法平行力分解法是将一个力分解为平行于特定方向的多个力的合力。
这种方法适用于力矩问题和多体系统问题的求解。
其基本原理是利用平行四边形法则或三角法则将力分解为多个平行的力,然后再计算这些力的合力。
例如,一个斜向上的力F可以被分解为平行于水平方向的力F_x和平行于竖直方向的力F_y。
使用三角法则可以得到F_x = F*cosθ和F_y = F*sinθ。
其中,θ是力F与水平方向的夹角。
2.正交力分解法正交力分解法是将一个力分解为垂直于特定方向的多个力的合力。
这种方法适用于斜面问题和斜坡上物体的自由体图分析。
其基本原理是将力分解为正交或垂直的两个力,一个是垂直于斜面或斜坡的力,另一个是平行于斜面或斜坡的力。
例如,一个斜向上的力F可以被分解为垂直于斜面的力F_n和平行于斜面的力F_t。
使用三角法则可以得到F_n = F*sinθ和F_t =F*cosθ。
其中,θ是力F与斜面的夹角。
力的分解原则还包括力的矢量分解和力的标量分解。
1.力的矢量分解力的矢量分解是将一个力矢量分解为不同方向上的分力矢量的和。
这种方法可以应用于三维空间中力的分解问题。
对于一个力矢量F,可以分解为x轴、y轴和z轴上的分力矢量F_x、F_y和F_z。
例如,一个力矢量F = F_xi + F_yj + F_zk可以分解为F_xi、F_yj和F_zk三个分力矢量的和。
其中,i、j和k是x、y和z轴上的单位矢量。
2.力的标量分解力的标量分解是将一个力分解为标量的和。
这种方法适用于只需要考虑力的大小而不考虑方向时的问题。
对于一个力F,可以分解为x 轴、y轴和z轴上的分力F_x、F_y和F_z。
例如,一个力F可以分解为F_x + F_y + F_z。
力的分解 课件

37°=0.6,cos 37°=0.8)。
解析 如图甲建立直角坐标系,把各个力分解到两个坐标轴上,并
求出x轴和y轴上的合力Fx和Fy,有
Fx=F1+F2cos 37°-F3cos 37°=27 N
Fy=F2sin 37°+F3sin 37°-F4=27 N
因此,如图乙所示,合力
F= 2 + 2 ≈38.2 N,tan φ= =1
即合力的大小约为38.2 N,方向与F1方向成45°斜向上。
答案 合力的大小约为38.2 N,方向与F1方向成45°斜向上
坐标轴的选取技巧
1.原则:尽量少分解力或将容易分解的力分解,并且尽量不要分解
未知力。
2.应用正交分解法时,常按以下方法建立坐标轴。
(1)研究水平面上的物体时,通常沿水平方向和竖直方向建立坐标
轴。
(2)研究斜面上的物体时,通常沿斜面方向和垂直斜面方向建立坐
标轴。
(3)研究物体在杆(或绳)的作用下转动时,通常沿杆(或绳)方向和
垂直杆(或绳)的方向建立坐标轴。
mg
α,F2= α
(2)按研究问题的需要分解
实
例
产生效果分析
质量为 m 的光滑小球被悬线挂靠在竖直墙壁上,当研
究球对墙壁和绳的作用时,可如图分解重力,F1=mgtan
mg
α,F2=
α
A、B 两点位于同一平面上,质量为 m 的物体被长度相
等的 AO、BO 两线拉住,当研究物体对绳的作用时,可
方向向左压紧铅笔。
知识归纳
1.力分解的思路流程
确定分解的力
第三节 力的分解

第三节力的分解【知识点的认识】1.力的分解(1)力的分解定义:已知一个力求它的分力的过程叫力的分解.(2)力的分解法则:满足平行四边形定则.2.分解力的方法(1)按实际作用效果分解力分解的步骤:①分析力的作用效果②据力的作用效果定分力的方向;(画两个分力的方向)③用平行四边形定则定分力的大小;④据数学知识求分力的大小和方向(2)正交分解法:将一个力(矢量)分解成互相垂直的两个分力(分矢量),即在直角坐标系中将一个力(矢量)沿着两轴方向分解,如果图中F分解成F x和F y,它们之间的关系为:Fx=F•cosφ,①Fy=F•sinφ,②F=,③tanφ=,④正交分解法是研究矢量常见而有用的方法,应用时要明确两点,①x轴、y轴的方位可以任意选择,不会影响研究的结果,但若方位选择的合理,则解题较为方便:②正交分解后,F x在y轴上无作用效果,F y在x轴上无作用效果,因此F x和F y不能再分解.(3)图解法:根据平行四边形定则,利用邻边及其夹角跟对角线长短的关系分析力的大小变化情况的方法,通常叫作图解法.也可将平行四边形定则简化成三角形定则处理,更简单.图解法具有直观、简便的特点,多用于定性研究,应用图解法时应注意正确判断某个分力方向的变化情况及其空间范围.【知识点的应用及延伸】分解﹣个力的可能情况(1)已知两分力求合力有唯一解,而求一个力的两个分力,如不限制条件有无数组解,如图(a)所示,力F可在不同方向上进行分解.要得到唯一确定的解应附加一些条件:①已知合力和两个分力的方向,可求得两个分力的大小.图(b)所示把已知合力F分解成沿OA、OB方向的两个分力,可从F的矢端作OA、OB 的平行线,画出力的平行四边形得两分力F1、F2.②已知合力和一个分力的大小、方向,可求得另一个分力的大小和方向.如图(c)已知合力F、分力F1,则连接合力F和分力F1的矢端,即可作出力的平行四边形得另一分力F2.③已知合力、一个分力F1的方向与另一分力F2的大小,求F1的大小和F2的方向(无解、有一组解或两组解).如上图所示,已知力F、α(F1与F的夹角)和F2的大小,这时有四种情况,下面采用图示法和三角形知识进行分析,从力F的端点O作出分力F1的方向,以F的矢端为圆心,用分力F2的大小为半径作圆.a.当F2<Fsinα时,圆与F1无交点,说明此时无解,如图(a)所示.b.当F2=Fsinα时,圆与F1相切,此时有一解,如图(b)所示.c.当F≥F2>Fsinα时,圆与F1有两个交点,此时有两解,如图(c)所示.d.当F2>F时,圆与F1作用线只有一个交点,此时只有一解,如图(d)所示.(2)在实际问题中,一般根据力的作用效果或处理问题的方便及需要进行分解.【命题方向】(1)第一类常考题型是考查对力的分解的理解:如图所示,拖拉机拉着耙耕地,拉力F与水平方向成α角,若将该力沿水平和竖直方向分解,则它的水平分力为()A.Fsinα B.Fcosα C.Ftanα D.Fcotα分析:利用力的平行四边形定则将力F分解后,根据几何关系求解.解答:将力F沿水平和竖直方向正交分解,如图根据几何关系,可知F1=Fcosα故选B.点评:本题关键将力正交分解后,根据几何关系求解.(2)第二类常考题型是结合其他知识点对力的分解应用的考查:如图,用绳AC和BC吊起一个重50N的物体,两绳与竖直方向的夹角分别为30°和45°,求绳AC和BC对物体的拉力.分析:对结点C受力分析,受重力和两个拉力,根据共点力平衡条件并运用正交分解法列方程求解即可.解:对悬点C受力分析,因为C点平衡,所以有F AC cos30°+F BC cos45°=GF AC sin30°=F BC sin45°解得:F AC=50(﹣1)NF BC=25(﹣)N答:绳AC和BC对物体的拉力为50(﹣1)N和25(﹣)N.点评:本题关键受力分析后运用共点力平衡条件列式求解;注意三力平衡通常用合成法,四力平衡通常用正交分解法.【课堂检测】一.选择题(共12小题)1.如图轻质支架,A、B固定在竖直墙上,C点通过细绳悬挂一重物,则重物对C点的拉力按效果分解正确的是()A.B.C.D.2.小明想推动家里的衣橱,但使足了力气也推不动,他便想了个妙招,如图所示,用A、B两块木板,搭成一个人字形架,然后往中央一站,衣橱居然被推动了,下列说法中正确的是()A.A板对衣橱的推力一定小于小明的重力B.人字形架的底角越大,越容易推动衣橱C.人字形架的底角越小,越容易推动衣橱D.A板对衣橱的推力大小与人字形架的底角大小无关3.如图所示,被轻绳系住静止在光滑斜面上的小球.若按力的实际作用效果来分解小球受到的重力G,则G的两个分力的方向分别是图中的()A.1和4B.3和4C.2和4D.3和24.关于力的分解,下列说法正确的是()A.一个2N的力可以分解为8N和8N的两个分力B.一个3N的力可以分解为8N和4N的两个分力C.一个7N的力可以分解为5N和1N的两个分力D.一个8N的力可以分解为4N和3N的两个分力5.将一个有确定方向的力F=10N分解成两个分力,已知一个分力有确定的方向,与F成30°夹角,另一个分力的大小为6N,则在分解时()A.有无数组解B.有两组解C.有唯一解D.无解6.已知力F的大小为10N,要把它分解成两个力,以下关于两分力大小不可能的是()A.6N,6N B.3N,4N C.100N,100N D.428N,419N 7.如图所示,物体P静止在倾角为α的斜面上,其所受的重力可分解成平行于斜面的F1和垂直于斜面的F2,则()A.P受到重力、F1、F2、支持力和摩擦力的作用B.P受到重力、支持力和摩擦力的作用C.当α增大时,F2也随着增大D.当α减小时,F1却逐渐增大8.如图所示,分解一个水平向右的力F,F=6N,已知一个分力F1=4N和另一个分力F2与F的夹角为30°,以下说法正确的是()A.只有唯一解B.一定有两组解C.可能有无数解D.可能有两组解9.下图中按力的作用效果分解正确的是()A.B.C.D.10.将一个力F分解为两个分力F1和F2时,以下情况中不可能的是()A.F1与F2的大小都大于FB.F1、F2与F都在同一直线上C.F1与F2的大小都等于FD.F1与F2的大小、方向都于F相同11.分解一个确定大小和方向的力,在下列给出的四种附加条件中,能得到唯一确定解的情况,正确的说法是()①已知两个分力的方向,求两个分力的大小②已知两个分力的大小,求两个分力的方向③已知一个分力的大小和方向,求另一个分力的大小和方向④已知一个分力的大小和另一个分力的方向,求第一个分力的方向和另一个分力的大小.A.①和②B.①和③C.②和④D.③和④12.如图所示,小球静止时对斜面的压力为N,小球所受的重力G,可根据它产生的作用效果分解成()A.垂直于斜面的分力和水平方向的分力,且N=B.垂直于斜面的分力和水平方向的分力,且N=GcosθC.垂直于斜面的分力和平行于斜面的分力,且N=D.垂直于斜面的分力和平行于斜面的分力,且N=Gcosθ二.填空题(共4小题)13.如图所示,斜面的倾角为θ,圆柱体质量为m。
《力的分解》 知识清单

《力的分解》知识清单一、力的分解的概念力的分解是力的合成的逆运算,是将一个力按照实际作用效果分解为两个或多个分力的过程。
打个比方,一个斜向上拉物体的力,可以分解为水平方向和竖直方向的两个分力。
这就像是把一捆树枝拆开成一根根独立的树枝一样。
二、力的分解遵循的原则1、平行四边形定则力的分解同样遵循平行四边形定则。
如果已知合力和两个分力的方向,我们可以以合力为对角线,以两个分力的方向为邻边,作出平行四边形,两个邻边就代表两个分力的大小和方向。
2、唯一性在没有条件限制时,一个力可以分解为无数组不同的分力。
但如果给定了条件,比如已知两个分力的方向,或者已知一个分力的大小和方向,力的分解就是唯一的。
三、按实际作用效果分解力1、放在斜面上的物体重力作用在物体上,会产生两个实际作用效果。
一个是使物体沿斜面下滑,另一个是使物体压紧斜面。
所以重力可以分解为沿斜面向下的力和垂直于斜面向下的力。
2、悬挂在绳子上的物体物体受到重力和绳子的拉力。
重力可以分解为沿绳子方向和垂直绳子方向的两个分力。
沿绳子方向的分力与绳子的拉力平衡,垂直绳子方向的分力使物体有摆动的趋势。
3、水平拉动放在地面上的物体拉力在水平方向,可以分解为向前的动力和使物体压紧地面的压力。
四、力的正交分解1、正交分解的概念正交分解是将一个力分解为相互垂直的两个分力的方法。
通常选择两个互相垂直的方向作为坐标轴,比如水平方向和竖直方向。
2、步骤(1)建立坐标系:选择合适的坐标轴,一般以物体的运动方向或便于分析的方向为坐标轴。
(2)分解力:将力沿着坐标轴进行分解。
(3)计算分力大小:根据三角函数关系,计算出分力的大小。
3、优点正交分解可以使复杂的力的分析变得简单、清晰,便于计算和解决问题。
五、力的分解的应用1、桥梁的设计在桥梁的结构中,需要考虑各种力的作用。
通过力的分解,可以分析桥梁所受的压力、拉力等,从而确保桥梁的安全性和稳定性。
2、体育运动比如举重运动员在举起杠铃时,手臂肌肉所承受的力可以通过力的分解来分析,以了解如何更好地发力和保持平衡。
力的分解的四种方法

力的分解的四种方法
力的分解是将一个力分解为多个组成部分的过程,这些部分力在某一方向上合成为给定的力。
以下是常用的四种力的分解方法:
1.水平和垂直分解:将一个斜向作用的力分解为水平方向和
垂直方向上的分力。
根据三角函数的关系,可以使用正弦
和余弦函数来计算水平和垂直分力的大小。
2.分解到坐标轴上:将一个斜向作用的力投影到坐标轴上,
得到在x轴和y轴上的分力,分别称为水平力和垂直力。
这种方法适用于在直角坐标系中进行计算。
3.三角形法则:对于一个斜向作用的力,可以使用三角形法
则进行分解。
首先将力的起点和终点与原点连接,形成一
个三角形。
然后,可以将力分解为沿两条边的分力,使它
们在指定方向上合成为原始力。
4.平行四边形法则:对于两个平行作用的力,可以使用平行
四边形法则进行分解。
首先以两个力的起点为相邻边,在
其上构建一个平行四边形。
然后,通过从共同的起点到相
对点的对角线,将平行四边形分解为两个三角形。
这样可
以得到力在指定方向上的分力。
这些力的分解方法可以根据具体的情况和需求进行选择和使用。
它们对于计算和分析斜向作用的力在特定方向上的效果非常有用,并有助于理解力的作用和分解。
5、力的分解

30°FBiblioteka F2 F F1Ff解:画出物体受力图,如图所示。
G
把力F 分解为沿水平方向的分力F1 和沿竖直方向的分力F 2 。
由于物体在水平方向和竖 直方向都处于平衡状态,所以
F1 F f 0
F2
Ff
FN
F F1
F N F2 G 0
F f F1 F cos 30
G
200 0.866 N 173.2 N
G1=Gsin G2=Gcos
三、矢量相加法则
两个矢量首尾相接,从第一个矢量的始端指向第二 个矢量的末端的有向线段就表示合矢量的大小和方向.
C
A
B
例4 木箱重500 N,放在水平地面上,一个人用 大小为200 N与水平方向成30°向上的力拉木箱, 木箱沿地平面匀速运动,求木箱受到的摩擦力和 地面所受的压力。
F F F
2 x
F3y
2 y
Fx tan Fy
(与Y轴的夹角)
力的正交分解 (1)定义:把一个已知力沿着两个互相垂直的方向进行 分解 (2)正交分解步骤: y F1y ①建立xoy直角坐标系 F1 F2 ②沿xoy轴将各力分解 F2y ③求x、y轴上的合力Fx,Fy ④最后求Fx和Fy的合力F
复习旧知识:
F1
F2
力的分解
1、分力:几个力产生的效果跟原来一个力产生的效果相同, 这几个力就叫做原来那个力的分力。
注意:几个分力与原来那个力是等效的,它们可以互相 代替,并非同时并存。 2、力的分解:求一个已知力的分力叫力的分解。
拖拉机对耙的拉力F,同时产生两个效果: (1)使耙克服水平阻力前进 (2)把耙上提。
F2X
O
力的分解

F
α
F sin F cos G
G F sin cos
G
例14. 如图所示,两个大人和一个小孩沿河岸拉一条船
前进,两个大人的拉力分别为F1=200N, F2=100N,方 向 如图所示,要使船在河岸中间平行于河岸行驶,则小 孩对船施加的最小的力是多大?方向如何? F1 A 在RtΔOAC中,∠AOC=300 则FAC=200tan300N=115.5N 得:FBC=115.5-100=15.5N 在RtΔBCF中,∠BCF=600 则F3=FBCsin600=13.4N , 方向与河岸垂直指向读者.
y
F3 F2y
300
F3y F2 F4x 600 600 F 1 F2x
F3x
x
F4y
F4
y
F3 F2y
300
F3y F2 F4x 600 600 F 1 F2x
F3x
x
F
x
F1 F2 x F3 x F4 x
F4y
F4
1 2 cos600 3 3 cos 300 4 cos600
赵州桥是当今世界上跨径最大、建造最早的单孔敞肩型石拱桥。 距今1400多年。
F
郑和下西洋
如果让你 来处理索 道的技术 问题,请问 索道设计 的绷直还 是松一些?
问题2:倾角增大重力的两个分力将怎样变化?
猜想 实验验证 理论分析 结论
倾角增大重力 的两个分力可 能增大
增大倾角 海绵的形 变都增大
M
Q O
N
(340) (240) 0.6 L 340
2
2
F2
P
F1
mg
L 0.85m
力的分解

作用在三角支架上的力F的作用效 果怎样?如何分解?(动手感验一下)
⊙
F
⊙
θ
F
⊙
θ
θ F
F2=Fcotθ F2
F1=F/sinθ
θ
θ
F1
F
小结
三、正交分解
目的是先分解再合成
力分解的步骤:
1、分析力的作用效果;
2、据力的作用效果定分力的方向;
(画两个分力的方向)
3、用平行四边形定则定分力的大小;
完成练习册上相关章节的习题
(把力F作为对角线,画平行四边形得分力)
4、据三角形知识求分力的大小和方向.
三、交流与讨论
泥潭拔车
四两拨千斤
F2
F
F1
若
将
斧
头
磨
锋
利
之 后
F1
F1 F
F2 磨刀不误砍柴工
F2 F
赵州桥是当今世界上跨径
最大、建造最早的单孔敞肩型石 拱桥。距今1400多年。
G
F
郑和下西洋
1根线提桶易断还是2根易断?
F1
F
F2
有唯一解
• (2)已知一个分力的大小和方向
F1
F2
F
F1
F
F2
有唯一解
• (3)已知两个分力的大小
F1
F2 F
F2
F1
F2
F
F1
有两个解,或者一个解,或 者无解
• (4)已知一个分力的大小和另一个力的方 向
F F1
有两个解,或者一个解,或 者无解
三、根据力的实际作用效果
【例】:斜面上物体重力的分解
两个邻边,就表示力F的两个分力.
力的分解常用的方法

力的分解常用的方法剖析:1.正交分解法(1)定义:把一个力分解为互相垂直的分力的方法.(2)优点:把物体所受的不同方向的各个力都分解到相互垂直的两个方向上去,然后再求每个方向的分力的代数和,这样就把复杂的矢量运算转化成了简单的代数运算,最后再求两个互成90o的力的合力就简单多了.(3)运用正交分解法解题的步骤:1正确选择直角坐标系,通常选择共点力的作用点为坐标原点,直角坐标x、y的选择可按以下原则去确定:a.尽可能使更多的力落在坐标轴上.b.沿物体运动方向或加速度方向设置一个坐标轴.c.若各种设置效果一样,则沿水平方向和竖直方向设置两坐标轴.2正交分解各力,即分别将各力投影到坐标轴上,分别求x轴和y轴各力投影的合力Fx和Fy,其中,;3求Fx和Fy的合力即为共点力的合力合力大小:,合力的方向与x轴夹角:.2.按问题的需要进行分解(1)已知合力和两个分力的方向,求分力的大小.如图2-2-5甲已知力F和α、β,显然所做出的平行四边形是唯一确定的,即两个分力的大小也唯一确定.(2)已知合力、一个分力的大小和方向,求令一个分力的大小和方向.如图2-2-5乙,已知F、F1和α,显然此平行四边形也被唯一确定,即F2的大小和方向(角度β)也被唯一确定了.(3)已知合力、一个分力的方向和另一个分力的大小,即已知F、α(F与F1的夹角)和F2的大小,求F1的大小和F2的方向,有如下几种情况:F>F2>Fsinα时,有两个解;F2=Fsinα时,有唯一解;F2<Fsinα时,无解,因为此时无法组成力的平行四边形;F2≥F时,有唯一解.【例题3】如图2-2-7甲所示,电灯的重力,绳与顶板间的夹角为绳水平,则绳所受的拉力;绳所受的拉力.解析: 查力的平衡、力的合成与分解.先分析物理现象:为什么绳AO,BO受到拉力呢?原因是由于OC绳受到电灯的拉力才使AO,BO绳张紧产生拉力,因此OC绳的拉力产生了两个效果,一是沿OA向下的拉紧AO的分力F1,二是沿BO向左的拉紧BO绳的分力F2,画出平行四边形如图2-2-7乙所示,因为OC拉力等于电灯重力,因此,由几何关系得:答案:【变式训练3】如图2-2-8所示,用轻质三角支架悬挂重物,已知AB杆所受的最大压力为2000N,AC 绳所受的最大拉力为1000N,α 角为30o.为了不使支架断裂,则所悬的重物应当满足。
力的分解

力和摩擦力.
【解题指导】审题时应重点关注以下两点: (1)“物体静止”说明物体对绳子及绳子对人的拉力都等 于物体的重力. (2)人静止,说明在水平方向和竖直方向上人受力平衡.
【标准解答】人与物体静止,所受合 力皆为零,对物体受力分析得,绳的 拉力F1=200 N;对人受力分析如图, 人受四个力作用,重力G、拉力F1、 支持力FN、摩擦力Ff,可将绳的拉力
力的分解
一、力的分解的几种情况
将一个力按一定条件分解时合力可能能按要求进行分解, 即有解,也可能不能按要求进行分解,即无解.分析是否有 解的方法是看代表合力的有向线段与代表分力的有向线段 能否按要求构成平行四边形,如果能构成平行四边形,说
明有解;如果它们不能构成平行四边形,说明无解.典型的
F1正交分解,如图.根据平衡条件可得:水平方向:摩擦力
Ff=F1x=F1cos 60°=200× 1 N =100 N竖直方向:支持力
2
FN=G-F1sin 60°= (500-200× 3 )N =100(5- 3 )N. 答案:100(5- 3 ) N 100 N
2
【规律方法】坐标轴方向的选取技巧
3.下列说法正确的是(
)
A.2 N的力能够分解成6 N和3 N的两个分力 B.10 N的力能够分解成5 N和3 N的两个分力
C.2 N的力可能分解成6 N和5 N的两个分力
D.10 N的力可以分解成10 N和10 N的两个分力 【解析】选C、D.因为6 N和3 N的力的合力最大为9 N,最 小为3 N,不可能得到2 N的合力,所以2 N的力不可能分解 为6 N和3 N的分力,选项A错误.同理可得B错误,C、D正确.
【规律方法】 应用三角形定则分析力的分解问题中解的
力的分解

(1)定义
把两个矢量首尾相接从而求出合矢 笔 量的方法叫做三角形定则 记
F1
F
F1 F
F2
平行四边形定则
F2
三角形定则
四、矢量相加的法则
1.三角形定则 (2)说明 ①三角形定则与平行四边形定则 实质一样 ②所有矢量(如:速度、位移) 相加都满足三角形定则 合矢量 x
x2 分矢量2 x1 分矢量1
四、矢量相加的法则
当F乙垂直于OO'时, F乙最小 F乙max=F甲sin30°=500N
F甲 30° F乙F1 乙2 F乙3
F1 F2 F3
作业
新课程导学 第39页 课堂达标 第3题
新课程导学 第39页 课堂达标 第3题
作业:一个木箱质量m=60kg,静止在水平 地面上,工人推木箱,若动摩擦因数为μ=0.3, 最大静摩擦力等于滑动摩擦力。求: (sin37°=0.6,cos37°=0.8,g取10m/s2 )
之间放有一个重为G=20N的光滑圆球,如图所示,试求这个球对斜面的
压力和对挡板的压力.(sin37°=0.6,cos37°=0.8)
解:重力G的两个作用效
果分别是:
G1
①压斜面,②压挡板 沿这两个方向分解重力
θ θ
G2跟G方向的夹角为θ 由数学知识有:
G2 G
tanq = G1
G
球对档板的压力N1=G1 G tanq
F
30°
例解4:木箱重500 N,放在水平地面上,一个人用大小为200 N与 水平方向成30°向上的力拉木箱,木箱沿地平面匀速运动,求木 箱受到的摩擦力和地面所受的压力。
解:画出物体受力图,如图所示。 y
建立合适的直角坐标系
力的分解概念

力的分解概念力的分解是指将一个力分解成若干个分力,使得这些分力的合力等于原来的力。
力的分解是研究力的合成和分解问题的重要方法之一,具有广泛的应用。
力的分解可以分为平行分解和不平行分解两种情况。
平行分解是指将一个力分解成与其方向平行的两个力。
当一个力沿着一条直线方向作用时,我们可以将这个力分解成两个力,一个是沿着这条直线方向的分力,另一个是垂直于这条直线方向的分力。
根据力的三角法则,这两个分力的合力等于原力。
平行分解可以用于解决斜面上物体的滑动问题、斜面问题、绳索问题等。
不平行分解是指将一个力分解成与其方向不平行的两个力。
当一个力不沿着一条直线方向作用时,我们可以将这个力分解成两个力,一个是沿着x轴方向的分力,另一个是沿着y轴方向的分力。
根据力的三角法则,这两个分力的合力等于原力。
不平行分解可以用于解决斜面上滑动物体的问题、平面运动问题等。
力的分解可以通过几何方法和代数方法进行求解。
几何方法是通过力的三角法则进行求解。
对于平行分解,我们可以通过画图将举例分解成两个方向的力,然后根据图像测量得到分力的大小,并求出其合力。
对于不平行分解,我们可以根据力的分解要求,画出力的分解图,然后根据几何关系求解分力的大小,并求出其合力。
代数方法是通过向量的平行分量和垂直分量进行分解以及合成问题的解答。
对于平行分解,我们可以根据力的分类,将力的大小和方向用数值表示,然后根据力的三角关系求解分力的大小,并求出其合力。
对于不平行分解,我们可以通过将力用分解方向上的单位向量表示,并根据单位向量的线性组合求解分力的大小,并求出其合力。
力的分解在物理学中有着广泛的应用。
例如,力的分解可以用于解决斜面上物体的问题。
当物体在斜面上滑动时,我们可以将重力分解成垂直于斜面的分力和沿着斜面的分力,并根据分力的性质求解物体的加速度和摩擦力。
力的分解也可以用于解决平面运动问题。
当物体在平面上做运动时,我们可以将作用在物体上的力分解成分别沿着x轴和y轴方向的分力,并根据分力的性质求解物体的速度和加速度。
力的分解

5、三段不可伸长的细绳OA、OB、OC能承受 的最大拉力相同,它们共同悬挂一重物,如 图12所示,其中OB是水平的,A端、B端固定。 若逐渐增加C端所挂物体的质量,则最先断的 绳( ) A、必定是OA B、必定是OB C、必定是OC D、可能是OB,也可能是OC
F 2 F 2 F12
F1
1802 2402 N 300 N F 180 F2 tan 0.6 F 2 240 = 36°
F
3、一个物体静止在斜面上,若斜面倾 角增大,而物体仍保持静止,则它所受 斜面的支持力和摩擦力的变化情况是 ( ) A、支持力变大,摩擦力变大; B、支持力变大,摩擦力变小; C、支持力减小,摩擦力变大; D、支持力减小,摩擦力减小;
大家谈
为什么斧头能够轻易劈开树桩?
F
劈
F1 F
F 1 F 2 F 2 sin 2
F2
例1:如图,固定在竖直墙上的三角支架,一端挂有重物, 重物重G,求AC杆和BC杆受到的力是多少?
A
θ
C G
B
结论
F1
θ F2
θ
G
G F1 tan
G F2 sin
做一做
如图所示,AC为一轻质杆,BC是细绳,C点所
4、如图11所示,悬臂梁AB一端插入墙中, 其B端有一光滑的滑轮。一根轻绳的一端固 定在竖直墙上,另一端绕过悬梁一端的定滑 轮,并挂一个重10N的重物G,若悬梁AB保 持水平且与细绳之间的夹角为30°,则当系 统静止时,悬梁臂B端受到的作用力的大小 为( ) A、17.3N; B、20N; C、10N; D、无法计算;
拖拉机斜向上拉耙
练习: 1.将一个力F分解为两个不为零的力,下列哪种分解方法 是可能的( ABC A.分力之一垂直F B.两个分力的大小与F的大小相同 C.一个分力的大小与F的大小相同 D.一个分力与F相同 )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
力的分解
解析 力的最小值为: F2=F1sin 30°=50 N
方向为垂直于河岸且向北
目标定位
预习导学
课堂讲义
对点练习
课堂讲义 三、力的正交分解
力的分解
1.建立坐标系:以共点力的作用点为坐标原点建立 直角坐标系,直角坐标系x轴和y轴的选择应使尽量多 的力在坐标轴上. 2.正交分解各力,即将 每一个不在坐标轴上的 力分解到x轴和y轴上, 并求出各分力的大小, 如图所示.
目标定位 预习导学 课堂讲义 对点练习
对点练习 力的正交分解 4 .如图所示, 水平地面 上有一重 60 N的物体,在 与水平方向成 30°角斜向 f 上、大小为 20 N 的拉力 F 作用下匀速运动,求地面 对物体的支持力和摩擦力 大小. FN Fy
力的分解
F
Fx G
解析 对物体进行受力分析 1 y方向:FN=G-Fy=G-Fsin 30°=60-20× 2 N=50N
力的分解
(1)拉力F可分解为:水平向前的力F1和竖直向上的力 F2如图
(2)重力产生两个效 果:一是使物体具有 沿斜面下滑趋势的分 析力F1,二是使物体 压紧斜面的分力F2. α 如图乙.
目标定位 预习导学 课堂讲义
G F1 1
α
F2=Gcosα
G F22
对点练习
G
课堂讲义
力的分解
例1 如图所示,轻杆与柱子之间用铰链连接,杆的
力的分解
1.已知合力和两个分力的方向时(如图甲),两分力有 唯一解( 如图乙所示). 2.已知合力和一个分力的大小和方向时(如图丙,若 已知F和F1),另一分力有唯一解(如图丁).
目标定位
预习导学
课堂讲义
对点练习
课堂讲义
力的分解
二、有限制条件的力的分解 3.已知合力以及一个分力的大小和另一个分力的方 向时,如图,有下面几种可能: (1)当Fsin θ<F2<F时,有两解(如图甲) (2)当F2=Fsin θ时,有唯一解(如图乙). 一个 (3)当F2<Fsin θ时,无解(如图丙) . 解 (4)当F2>F时,有唯一解(如图丁) 无解 两个解 一个解
目标定位 预习导学 课堂讲义 对点练习
对点练习
力的分解
按力的效果分解 3.将一个有确定方向的力F=10 N分解成两个分力,已 知一个分力有确定的方向,与F成30°夹角,另一个 分力的大小为6 N,则在分解时( B ) A.有无数组解 B.有两组解 C.有唯一解 D.无解
F2 30°
Fmin=5N
F=10N对点练习
课堂讲义
力的分解
例2 按下列两种情况把一个竖直向下的180 N的力 分解为两个分力. (1)一个分力在水平方向上,并等于240 N,求另一个 分力的大小和方向. (2)一个分力在水平方向上,另一个分力与竖直方向的 夹角为30°斜向下(如图所示),求两个分力的大小. 解析 F1=240 N F2 θ (1)力的分解如图所示
F2= F 2 F12=300 N
设F2与F的夹角为θ, 解得θ=53°
F1 4 F=180 N tan = F 3
预习导学 课堂讲义 对点练习
目标定位
课堂讲义
力的分解
例2 按下列两种情况把一个竖直向下的180 N的力 分解为两个分力. (1)一个分力在水平方向上,并等于240 N,求另一个 分力的大小和方向. (2)一个分力在水平方向上,另一个分力与竖直方向的 夹角为30°斜向下(如图所示),求两个分力的大小. F1 F2 30° F=180N (2)力的分解如图所示
Fy=F2 sin 37+F3 sin 37-F4=27N
F F F 38.2N
2 x 2 y
tan =
对点练习
Fy Fx
=1 =45
目标定位
预习导学
课堂讲义
对点练习 按力的效果分解 1.在图中,AB、AC两 光滑斜面互相垂直,AC 与水平面成30°.如把球 O的重力按照其作用效果 分解,则两个分力的大 小分别为( A )
力的分解
力分解时有解或无解,关键看代表合力的对角线与 给定的代表分力的有向线段是否能构成平行四边形( 或三角形),若能,即有解;若不能则无解.具体情 况有以下几种:
1.已知合力和两个分力的方向时(如图甲),两分力有 唯一解( 如图乙所示).
目标定位
预习导学
课堂讲义
对点练习
课堂讲义
二、有限制条件的力的分解
课堂讲义
对点练习
课堂讲义 例4 在同一平面内共点 F2y F3y F3x 解析
力的分解
的四个力F1、F2、F3、
F4的大小依次为19 N、 40 N、30 N和15 N,方 向如图所示,求它们的 合力.(sin 37°=0.6,
F2x
建立直角坐标系
cos 37°=0.8)
Fx=F1+F2cos 37-F3cos 37=27N
末端吊着一个重为30 N的物体,轻绳与水平轻杆之间 的夹角为θ=30°,求轻绳和杆各受多大的力? 解析 以O点为研究对象 G 60 N 由几何关系 F1 sin 30
⊙
F2
30
G F2 52 N tan 30
F= 530 N N G
30
对点练习
F1
目标定位
预习导学
课堂讲义
课堂讲义 二、有限制条件的力的分解
1 3 3 A. G, G B. G,3G 2 2 2 2 2 2 3 C. G, G D. G, G 3 2 2 2
目标定位 预习导学 课堂讲义
力的分解
F2
F1 G
3 F1 Gsin 60 G 2
1 F2 Gcos 60 G 2
对点练习
对点练习 按力的效果分解
力的分解
2.如图所示,已知电灯 G2 的重力为G=10 N,AO 绳与顶板间的夹角为θ= 45°,BO绳水平. G1 (1)请按力的实际作用效 G 果将OC绳对O点的拉力 根据二力平衡 加以分解,并作出图示. G (2)AO绳所受的拉力F1和 F1 G1 = 10 2N sin 45 BO绳所受的拉力F2分别 F2 Gtan 45 10N 为多少?
高中物理· 必修一· 人教版
第三章
第 8讲
相互作用
力的分解
目标定位
1 进一步掌握力的平行四边形定则.
力的分解
2 知道力的分解也遵守平行四边形定则.
3 理解力的分解原则,会正确分解一个力.
目标定位
预习导学
课堂讲义
对点练习
课堂讲义 一、力的分解 1.力的分解的运算法则:平行四边形定则
力的分解
2. 如果没有限制 , 一个力可分解为无数对大小、方向不 同的分力. 3.力的效果分解法 (1) 根据力的实 际作用效 果确定两个分力的方向. (2)根据两个分力的方向作出 力的平行四边形或三角形. (3)利用数学知识解三角形,分析、计算分力的大小.
3 x方向:f=Fx=Fcos 30°=20× N=10 2
目标定位 预习导学 课堂讲义 对点练习
3N
F 180 F2 = = 120 3N cos 30 3 2
课堂讲义 对点练习
3 F1=F tan 30=180 60 3 N 3
目标定位
预习导学
课堂讲义 例3 如图所示,一个大 人与一个小孩在河的两 岸,沿河岸拉一条船前 进,大人的拉力为F1= 400 N,方向与河中心线 的夹角为30°,要使船 向正东方向行驶,求小 孩对船施加的最小力的 大小和方向. 合力向东 F2
目标定位
预习导学
课堂讲义
对点练习
课堂讲义 三、力的正交分解
力的分解
3.分别求出x轴、y轴上各分力的矢量和,即: Fx=F1x+F2x+F3x+…
Fy=F1y+F2y+F3y+…
4.求共点力的合力:
合力大小 F
Fx2 +Fy2
合力的方向与 x 轴的夹角
为α,则 tan =
Fy Fx
.
目标定位
预习导学
目标定位 预习导学 课堂讲义 对点练习
F
课堂讲义 一、力的分解 4.两种典型情况的力的分解
力的分解
(1)拉力F可分解为:水平向前的力F1和竖直向上的力 F2如图 F F2
F2 = F sin q
q
F1 = F cos q
F1
目标定位
预习导学
课堂讲义
对点练习
课堂讲义 一、力的分解 4.两种典型情况的力的分解