高中数学 3.1.1《导数及其应用》课件 新人教版A选修1-1

合集下载

(人教版)高中数学选修1-1课件:第3章 导数及其应用3.1.3

(人教版)高中数学选修1-1课件:第3章 导数及其应用3.1.3
切线方程为y-__f_(_x0_)_=__f′_(_x_0)_(_x-__x_0_)_____.
数学 选修1-1
第三章 导数及其应用
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
函数y=f(x)的导函数
确定
导数
数学 选修1-1
第三章 导数及其应用
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
合作探究 课堂互动
高效测评 知能提升
答案: x+y-2=0
数学 选修1-1
第三章 导数及其应用
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
过点P的切线
数学 选修1-1
第三章 导数及其应用
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
数学 选修1-1
第三章 导数及其应用
自主学习 新知突破
(1)求曲线在点P处的切线的斜率; (2)求曲线在点P处的切线方程.
[思路点拨]
数学 选修1-1
第三章 导数及其应用
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
数学 选修1-1
第三章 导数及其应用
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
数学 选修1-1
第三章 导数及其应用
标.
(3)求切线的斜率f′(x0); (4)由斜率间的关系列出关于x0的方程,解方程求x0; (5)点(x0,y0)在曲线f(x)上,将(x0,y0)代入求y0得切点坐
数学 选修1-1
第三章 导数及其应用
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升

(人教版)高中数学选修1-1课件:第3章 导数及其应用3.3.2

(人教版)高中数学选修1-1课件:第3章 导数及其应用3.3.2

数学 选修1-1
第三章 导数及其应用
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
已知极值求参数
已知 f(x)=x3+ax2+bx+c 在 x=1 与 x=-23时都取 得极值.
(1)求 a,b 的值; (2)若 f(-1)=32,求 f(x)的单调区间和极值.
数学 选修1-1
第三章 导数及其应用
高效测评 知能提升
横看成岭侧成峰,远近高低各不同. 不识庐山真面目,只缘身在此山中. 在群山之中,各个山峰的顶端虽然不一定是群山之中的最 高处,但它却是其附近的最高点;同样,各个谷底虽然不一定 是群山之中的最低处,但它却是其附近的最低点.
数学 选修1-1
第三章 导数及其应用
自主学习 新知突破
合作探究 课堂互动
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
解析: (1)f′(x)=3x2+2ax+b, 令 f′(x)=0,由题设知 x=1 与 x=-23为 f′(x)=0 的解. ∴11- ×23-=23-=23ab3,. ∴a=-12,b=-2.
数学 选修1-1
第三章 导数及其应用
自主学习 新知突破
数学 选修1-1
第三章 导数及其应用
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
x
(-∞,-1) -1 (-1,1) 1 (1,+∞)
f′(x)

0

0

f(x)
极小值
极大值
由表可以看出:
当 x=-1 时,函数有极小值,且 f(-1)=-22-2=-3; 当 x=1 时,函数有极大值,且 f(1)=22-2=-1.

(人教版)高中数学选修1-1课件:第3章 导数及其应用3.2

(人教版)高中数学选修1-1课件:第3章 导数及其应用3.2

数学 选修1-1
第三章 导数及其应用
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
(1) 区 分 公 式 的 结 构 特 征 , 既 要 从 纵 的 方 面 (ln x)′ 与 (logax)′,(ex)′与(ax)′区分,又要从横的方面(logax)′与(ax)′ 区分,找出差异,记忆公式.
1.会应用导数的定义推导四种常见函数 y=c,y=x,y=x2, y=1x的导数公式.
2.掌握基本初等函数的导数公式,会求简单函数的导数. 3.掌握导数的和、差、积、商的求导法则. 4.会用导数的运算法则解决一些函数的求导问题.
数学 选修1-1
第三章 导数及其应用
自主学习 新知突破
合作探究 课堂互动
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
基本初等函数的导数公式
原函数 f(x)=xn(n∈Q*)
f(x)=sin x f(x)=cos x
f(x)=ax f(x)=ex
f(x)=logax
f(x)=ln x
导函数
f′(x)=_n_x_n_-_1__
f′(x)=__c_o_s_x _
f′(x)=_-__s_in_x_ f′(x)=_a_x_ln_a__(a>0且a≠1)
数学 选修1-1
第三章 导数及其应用
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
方法二:∵y=xx+-11=x+x+1-1 2=1-x+2 1, ∴y′=1-x+2 1′=-x+2 1′ =2′x+1x+-122x+1′=x+212.
数学 选修1-1
a-b=0, b-2c=0, c-1=0,

高中数学第三章导数及其应用3.1.3导数的几何意义课件新人教A版选修1_1

高中数学第三章导数及其应用3.1.3导数的几何意义课件新人教A版选修1_1

解得 x0=1 或 x0=-12. 故所求的切线方程为 y-1=3(x-1)或 y+18=34(x+12), 即 3x-y-2=0 或 3x-4y+1=0.
『规律方法』 1.求曲线在点P(x0,y0)处切线的步骤: (1)求出函数y=f(x)在点x0处的导数f ′(x0); (2)根据直线的点斜式方程,得切线方程为y-y0=f ′(x0)(x-x0). 2.过曲线外的点P(x1,y1)求曲线的切线方程的步骤: (1)设切点为Q(x0,y0); (2)求出函数y=f(x)在点x0处的导数f ′(x0);
1.导数的几何意义 (1)切线的定义 如 图 , 对 于 割 线 PPn , 当 点Pn趋近于点P时,割线PPn趋 近于确定的位置,这个确定位 置 的 __直__线__P__T__ 称 为 点 P 处 的 切线.
(2)导数的几何意义
导数的几何意义:函数 f(x)在 x=x0 处的导数就是切线 PT 的斜率 k,即 k=lim Δx→0
跟踪练习1
已知y=f(x)的图象如图所示,则f ′(xA)与f ′(xB)的大小关系是( )A A.f ′(xA)>f ′(xB) B.f ′(xA)=f ′(xB) C.f ′(xA)<f ′(xB) D.f ′(xA)与f ′(xB)大小不能确定 [解析] 由y=f(x)的图象可知,在A,B点处的切线斜率kA>kB,根据导数的 几何意义有:f ′(xA)>f ′(xB).
A.不存在
B.与x轴平行或重合
C.与x轴垂直
D.与x轴斜交
[解析] 曲线在点(x0,f(x0))的切线斜率为0,切线平行或重合于x轴.
2.(2020·福建福州高二检测)曲线y=f(x)在点(x0,f(x0))处的切线方程为2x- y+1=0,则( A )

2014年人教A版选修1-1课件 第三章小结(导数及其应用)

2014年人教A版选修1-1课件 第三章小结(导数及其应用)

例2. 已知函数 f ( x ) a ln x b , 曲线 yf(x) 在点 x 1 x (1, f(1)) 处的切线方程为 x2y30. (1) 求 a, b 的值; (2) 证明: 当 x>0 且 x≠1 时, f(x)> ln x . x 1 分析: (1) 求曲线在点(1, f(1))处的切线方程, 与 x2y30 比较系数即可.
左负右正 左正右负
a b co
d
e
x
左负右正
y 8. 用导数求函数的极值 (1) 求导数 f(x). (2) 解导数不等式 f (x)≥0. (3) 确定极值点和极值: a o b x
如果函数连续, 在 f (x)≥0 的左端点处取 得极小值, 右端点处取得极大值.
9. 函数的最大值与最小值 如果函数在区间 [a, b] 上的图象是一条连 续不断的曲线, 那么它必有最大值和最小值.
3. 导数的意义 (1) 函数 yf(x) 在 x0 处的导数的几何意义是 函数过这点的切线的斜率. (2) 导数为正, 函数增; 导数为负, 函数减.
(3) 导数的绝对值大时, 函数增减变化快, 图 象陡峭; 导数绝对值小时, 函数增减变化慢, 图象 较平缓.
(4) 运动函数的导数是瞬时速度, 速度函数的 导数是加速度.
6. 导数与函数的单调性 在区间 (a, b) 内, 若 f(x)>0, 则 f (x) 在 这个区间内是增函数;
反之, 若 f(x)<0, 则 f(x) 在这个区域内
是减函数.
7. 导数与极值 极值点处的导数 等于0 . 极大值左边的导数 大于0 , 右边的导数 小于0 . 极小值左边的导数 小于0 , 右边的导数 大于0 . y 左正右负 左正右负

人教A版高中数学选修1-1 第三章 导数及其应用复习课说课教学课件 (共32张PPT)

人教A版高中数学选修1-1 第三章 导数及其应用复习课说课教学课件 (共32张PPT)
x [3, )有三个零点,求实数t的取值范围。
2.6【畅所欲言------说反思】
出题者的意图想考我们求导知识,极值与零点概念、分 类讨论思想,数形结合思想等,所以我们平时要加强这 方面知识,同时它也反应出用导数知识解决函数问题的 基本题型与基本步骤,其它的可根据个人依不同角度总
结。你体会到了吗?比如:
2.3【各抒己见------说解法】(1)
例1:已知函数f(x)=(x2+ax+a)gex, (a R)。
(1)求函数f(x)的单调区间与极值;
2.3【各抒己见------说解法】(2)
例1:已知函数f(x)=(x2 +ax+a)gex, (a R)。
(2)设g(x)=f (x) t, (t R, a 2), 若函数g(x)在
x [3, )有三个零点,求实数t的取值范围。
分类讨论是否重复或遗漏? 定义域优先考虑了吗? 隐含条件注意了吗? 分类讨论后“综上所述”了吗? 计算过程都正确吗? 有谁可以把错解拿来辨析吗? 有没有其他方法?
2.5【引申拓展------说变式】 例1:已知函数f(x)=(x2+ax+a)gex, (a R)。 (1)求函数f(x)的单调区间与极值; (2)设g(x)=f (x) t, (t R, a 2),若函数g(x)在
f(-a)
f(-3)
-2 -3 -a
f(-2)
a2 (3) 3 a 解得a ? 至多两个零点,不合题意
f(-a)
f(-3)
-2 -a -3
f(-2)
2.3【各抒己见------说解法】(3)
2.4【精益求精------说检验】
例1:已知函数f(x)=(x2+ax+a)gex, (a R)。 (1)求函数f(x)的单调区间与极值; (2)设g(x)=f (x) t, (t R, a 2),若函数g(x)在

(人教版)高中数学选修1-1课件:第3章 导数及其应用3.1.1、2

(人教版)高中数学选修1-1课件:第3章 导数及其应用3.1.1、2

数学 选修1-1
第三章 导数及其应用
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
瞬时速度与平均速度的求解
一个直线运动的物体,其位移s与时间t的关系是s(t) =3t-t2.
(1)求此物体的初速度; (2)求此物体在t=2时的瞬时速度; (3)求t=0到t=2时的平均速度.
数学 选修1-1
单位为m,t的单位为s),那么其在1.2
s末的瞬时速度为
________.
解析: 物体运动在1.2 s末的瞬时速度即为s在1.2处的
导数,利用导数的定义即可求得.
答案: -4.8 m/s
数学 选修1-1
第三章 导数及其应用
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
数学 选修1-1
第三章 导数及其应用
函数的变化率
(x1,x2)
数学 选修1-1
第三章 导数及其应用
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
x=x0
数学 选修1-1
第三章 导数及其应用
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
数学 选修1-1
第三章 导数及其应用
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
高效测评 知能提升
3.质点M按规律s(t)=2t2+3t做直线运动(位移单位:cm, 时间单位:s),求质点M在t=2时的瞬时速度.
数学 选修1-1
第三章 导数及其应用
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
数学 选修1-1
第三章 导数及其应用

人教A版高中数学选修1-1课件-函数的最大(小)值与导数

人教A版高中数学选修1-1课件-函数的最大(小)值与导数

∴当 x=-23时, f(x)有极大值2227+c. 又 f(-1)=12+c,f(2)=2+c, ∴当 x∈[-1,2]时, f(x)的最大值为 f(2)=2+c. ∵当 x∈[-1,2]时, f(x)<c2 恒成立. ∴c2>2+c,解得 c<-1 或 c>2, ∴c 的取值范围是(-∞,-1)∪(2,+∞).
[解析] (1)解:f′(x)=-ax2+2eax-1x+2,f′(0)=2. 因此曲线 y=f(x)在(0,-1)处的切线方程是 2x-y-1=0. (2)证明:当 a≥1 时,f(x)+e≥(x2+x-1+ex+1)e-x. 令 g(x)=x2+x-1+ex+1,则 g′(x)=2x+1+ex+1. 当 x<-1 时,g′(x)<0,g(x)单调递减; 当 x>-1 时,g′(x)>0,g(x)单调递增. 所以 g(x)≥g(-1)=0.因此 f(x)+e≥0.
4.函数 f(x)=sin x+cos x 在 x∈[-2π,π2]上的最大值为___2___,最小值为 ___-__1__.
[解析] f′(x)=cos x-sin x, 令 f′(x)=0,即 cos x=sin x, ∵x∈[-π2,2π],∴x=4π. f(4π)= 2,f(-2π)=-1,f(2π)=1, ∴f(x)在区间[-2π,π2]上的最大值为 2,最小值为-1.
[思路分析] 本题主要考查导数的几何意义,极值的逆用和不等式的恒成立问题,求解第(2)小题的关 键是求出函数f(x)在[-1,2]上的最大值.
[解析] (1)f′(x)=3x2-x+b, f(x)的图象上有与 x 轴平行的切线,则 f′(x)= 0 有实数解,
即方程 3x2-x+b=0 有实数解, ∴Δ=1-12b≥0,解得 b≤112. 故 b 的取值范围为(-∞,112].

高中数学第三章导数及其应用32导数的计算课件新人教A版选修1

高中数学第三章导数及其应用32导数的计算课件新人教A版选修1

sin x
x
,f′(x)为函数f(x)的导函数,则f′
(π)=________.
解析:因为f′(x)=(sin
x)′x-sin x2
x·(x)′
=x·cosxx2-sin x
所以f′(π)=π·cos
π-sin π2
π=-ππ-2 0=-π1 .
答案:-π1
5.曲线 y=ln x 在 x=a 处的切线倾斜角为π4,则 a =____.
(2)准确记忆公式. (3)根式、分式求导时,应将根式、分式转化为幂的 形式. 2.解决函数求导的问题,应先分析所给函数的结构 特点,选择正确的公式和法则.对较为复杂的求导运算, 在求导之前应先将函数化简,然后求导,以减少运算量.
结束
语 同学们,你们要相信梦想是价值的源泉,相信成
功的信念比成功本身更重要,相信人生有挫折没 有失败,相信生命的质量来自决不妥协的信念,
x x

1- 1+
x x

(1+ x)2 1-x

(11--xx)2=2(11-+xx)=1-4 x-2,
所以
y′

1-4 x-2


4′(1-x)-4(1-x)′ (1-x)2

4 (1-x)2.
类型 3 导数的应用(巧思妙解) [典例 3] 求抛物线 y=x2 上的点到直线 x-y-2=0 的最短距离. [常规解法]设与抛物线 y=x2 相切且与直线 x-y-2 =0 平行的直线 l 的方程 x-y+m=0(m≠-2),
1.基本初等函数的导数公式
原函数
导函数
f(x)=c f(x)=xa(a∈Q*)
f(x)=sin x f(x)=cos x

导数及其应用课件新人教A版选修

导数及其应用课件新人教A版选修

2.对函数在某点处导数的认识 (1)函数在某点处的导数是一个定值,是函数在该点的函数 值改变量与自变量的改变量比值的极限,不是变量. (2)函数在x0处的导数f′(x0)只与x0有关,与Δx无关. (3)导数可以描述任何事物的瞬时变化率,应用非常广泛.
1.已知函数y=f(x)=x2+1,则在x=2,Δx=0.1时,Δy的
f1+Δx-f1 Δx
= lim (2+Δx)=2.
6分
Δx→0
(2)因为ΔΔxy=fa+ΔΔxx-fa
=a+Δx2+Δ3x-a2+3=2a+Δx,
f′(a)= lim Δx→0
fa+ΔΔxx-fa=Δlixm→0
(2a+Δx)=2a.
8分 12 分
利用导数定义求导数的三步曲: (1)求函数的增量 Δy=f(x0+Δx)-f(x0); (2)求平均变化率ΔΔxy=fx0+ΔΔxx-fx0; (3)取极限,得导数 f′(x0)=Δlixm→0 ΔΔxy. 简记为:一差,二比,三趋近. 特别提醒:取极限前,要注意化简ΔΔyx,保证使 Δx→0 时, 分母不为 0.
时间 日最高气温
3月18日 3.5 ℃
4月18日 18.6 ℃
4月20日 33.4 ℃
观察:3月18日到4月18日与4月18日到4月20日的温度变 化,用曲线图表示为:
[问题1] “气温陡增”是一句生活用语,它的数学意义是 什么?(形与数两方面)
[提示1] 曲线上BC之间一段几乎成了“直线”,由此联 想如何量化直线的倾斜程度.
函数的变化率
平均 变化

瞬时 变化

定义
实例
作用
函数 y=f(x)从 x1 到 x2 的 ①平均速度;
平均变化率为

新版高中数学人教A版选修1-1课件:第三章 导数及其应用 3.1.1-3.1.2

新版高中数学人教A版选修1-1课件:第三章 导数及其应用 3.1.1-3.1.2
第三章 导数及其应用
-1-
3.1 变化率与导数
-2-
3.1.1 变化率问题 3.1.2 导数的概念
-3-
M 目标导航 UBIAODAOHANG
Z 知识梳理 HISHI SHULI
Z 重难聚焦 HONGNAN JVJIAO
D 典例透析 IANLI TOUXI
1.了解导数概念的实际背景. 2.会求函数在某一点附近的平均变化率. 3.会利用导数的定义求函数在某点处的导数.
P1(x1,f(x1)),P2(x2,f(x2))所在直线的斜率.
(6)平均变化率的物理意义是把位移s看成时间t的函数s=s(t),在
时间段[t1,t2]上的平均速度,即
������
=
������(������2)-������(������1 ������2-������1
)
.
2.函数的平均变化率和瞬时变化率的关系
f(x)-f(x0).
x-x0
D 典例透析 IANLI TOUXI
123
M 目标导航 UBIAODAOHANG
Z 知识梳理 HISHI SHULI
Z 重难聚焦 HONGNAN JVJIAO
D 典例透析 IANLI TOUXI
【做一做 3】 求函数 y= ������在������ = 1 处的导数.
M 目标导航 UBIAODAOHANG
Z 知识梳理 HISHI SHULI
Z 重难聚焦 HONGNAN JVJIAO
D 典例透析 IANLI TOUXI
123
1.平均变化率
我们把式子 ������(������2)-������(������1) 称为函数������(������)从������1 到������2 的平均变化率.

高中数学第三章导数及其应用3.2导数的计算课件新人教A版选修1_1

高中数学第三章导数及其应用3.2导数的计算课件新人教A版选修1_1
④ 紧跟老师的推导过程抓住老师的思路。老师在课堂上讲解某一结论时,一般有一个推导过程,如数学问题的来龙去脉、物理概念的抽象归纳、语 文课的分析等。感悟和理解推导过程是一个投入思维、感悟方法的过程,这有助于理解记忆结论,也有助于提高分析问题和运用知识的能力。
⑤ 搁置问题抓住老师的思路。碰到自己还没有完全理解老师所讲内容的时候,最好是做个记号,姑且先把这个问题放在一边,继续听老师讲后面的 内容,以免顾此失彼。来自:学习方法网
x2
-
1
1
x2
.
22
(2)y′=(
ln
x
)′=
(ln
x)x

x ln
x
=
1 x

x

ln
x
x
x2
x2
= 1 ln x . x2
(3)y=tan x; (4)y=3xex-2x+e.
解:(3)y′=( sin x )′= (sin x)cos x sin x(cos x)
cos x
cos2 x
课堂探究 素养提升
题型一 利用导数公式求函数的导数
【例 1】 求下列函数的导数:
(1)y=x8;(2)y=
5
x2
;(3)y=4x;(4)y= log1
2
x;(5)y=sin(x+
π 2
);(6)y=sin
π 3
.
解:(1)y′=(x8)′=8x8-1=8x7.
(2)y′=(
5
x2
)′=(
2
x 5 )′=
编后语
老师上课都有一定的思路,抓住老师的思路就能取得良好的学习效果。在上一小节中已经提及听课中要跟随老师的思路,这里再进一步论述听课时如何 抓住老师的思路。

(人教版)高中数学选修1-1课件:第3章 导数及其应用3.3.1

(人教版)高中数学选修1-1课件:第3章 导数及其应用3.3.1

数学 选修1-1
第三章 导数及其应用
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
上述结论可用图来直观理解.
数学 选修1-1
第三章 导数及其应用
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
1.深入理解导数与单调性的关系 在某个区间内f′(x)>0(f′(x)<0)是函数f(x)在此区间内为增( 减)函数的充分条件,而不是必要条件.如果出现个别点使f′(x) =0,不会影响函数f(x)在包含该点的某个区间内的单调性.例 如函数f(x)=x3在定义域(-∞,+∞)上是增函数,但由f′(x)= 3x2知,f′(0)=0,即并不是在定义域内的任意一点处都满足 f′(x)>0.
合作探究 课堂互动
高效测评 知能提升
1.掌握函数的单调性与导数的关系. 2.能利用导数研究函数的单调性,会求不超过三次的 多项式函数的单调区间和其他函数的单调区间.
数学 选修1-1
第三章 导数及其应用
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
2010年舒马赫复出的消息是F1赛车上的重磅炸弹,人们 纷纷研究这位传奇的“F1之王”.研究发现,其除了超群的技 术外,速度的调节也恰到好处,他不轻易使用刹车,在某个时 间段内速度连续增加,在另一个时间段内速度则连续减少,呈 现一定的规律性.
数学 选修1-1
第三章 导数及其应用
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
2.设f′(x)是函数f(x)的导函数,y=f′(x)的图象如下图所 示,则y=f(x)的图象最有可能是( )
数学 选修1-1
第三章 导数及其应用

高中数学第三章导数及其应用3.1.3导数的几何意义课件新人教A版选修1_1

高中数学第三章导数及其应用3.1.3导数的几何意义课件新人教A版选修1_1

• (2)导数的几何意义:函数f(x)在x=x0处的导数
f(x0+Δ x)-f(x0)
就 是 切 线 PT 的 斜 率 Δkx , 即 k =
____________________= f′(x0).
• 2.导函数的概念 f′(x)
• (1)定义:当x变化时,_____便是x的一个函数,
f(x+Δ x)-f(x)
所以 2x30-3x20+1=(x0-1)2(2x0+1)=0, 解得 x0=1 或 x0=-12.(6 分) 第二步,求切点横坐标 故所求直线斜率为 k=3x20-3=0 或 k=3x20-3=-94, 于是 y-(-2)=0·(x-1)或 y-(-2)=-94(x-1), 即 y=-2 或 y=-94x+14.(10 分) 故过点 P(1,-2)的切线方程为 y第=三-步2 ,或求y=过-P的94x切+线14.(方12程分)
• (1)与导数的几何意义相关的题目往往涉及解 析几何的相关知识,如直线的方程、直线间的 位置关系等,因此要综合应用所学知识解题.
• (2)与导数的几何意义相关的综合问题解题的 关键是函数在某点处的导数,已知切点可以求 斜率,已知斜率也可以求切线,切点的坐标是 常设的未知量.
◎变式训练 • 3.设函数f(x)=x3+ax2-9x-1(a<0),若曲线 y=f(x)的斜率最小的切线与直线12x+y=6平行, 求a的值.
即 f′(x0)=3x20+2ax0-9=3x0+a32-9-a32. 当 x0=-a3时,f′(x0)取最小值-9-a32. ∵斜率最小的切线与 12x+y=6 平行, ∴该切线斜率为-12.∴-9-a32=-12. 解得 a=±3.又 a<0,∴a=-3.
短板补救案·核心素养培优

选修1-1第三章导数及其应用课件人教新课标1

选修1-1第三章导数及其应用课件人教新课标1
2) 如果恒有 f′(x)≤0,那么 y=f(x) 在这个区间(a,b)内单调递减。
已知三次函数f(x)=ax3+bx2+cx+d(x∈R)
的导数为 f‘(x)=3ax2+2bx+c
(1)有三个单调区间
a ≠0
(2)有极大值和极小值 (3)有极值 (4)仅有一个单调区间
Δ>0 a ≠0
(5)没有极值
3.若f(x)=sinx,则f'(x)=cosx
4.若f(x)=cosx,则f'(x)=-sinx
5.若f(x)=ax,则f'(x)=ax ln a
6.若f(x)=ex,则f'(x)=ex
7.若f(x)=logax,则f'(x)=
1 xlna
8.若f(x)=lnx,则f'(x)=
1 x
三.导数的基本运算
一、利用分离参数法解决恒成立问题
已知函数f(x)=ax -lnx . 若f(x)>1在 (1,+∞)上恒成立,求a的取值范围. 解题根据: (1)a≥f(x)恒成立 a [ f (x)]max (2)a≤f(x)恒成立 a [ f (x)]min
课堂小结: 这节课你有什么收获?
作业设计: 习题
第三章 导数及其应用复习小结
本章知识结构
导数概念 导数 导数运算
导数应用
函数的瞬时变化率 运动的瞬时速度 曲线的切线斜率
基本初等函数求导
导数的四则运算法则
函数单调性研究
函数的极定义和几何意义
①函数的平均变化率
函数y=f(x)的定义域为D,x1.x2∈D,f(x)从x1到x2 平均变化率为:
y f(x2 ) f (x1)

高中数学第三章导数及其应用3.1.1变化率问题3.1.2导数的概念课件新人教A版选修1_1

高中数学第三章导数及其应用3.1.1变化率问题3.1.2导数的概念课件新人教A版选修1_1

[思路点拨]
思路一:
求Δy
―→
求ΔΔyx
―→
求 lim
Δx→0
Δy Δx
思路二: 求f x ―→ 求f
解析: 方法一:Δy=2(3+Δx)2+4(3+Δx)-(2×32+4×3)
=12Δx+2(Δx)2+4Δx=2(Δx)2+16Δx,
∴ΔΔyx=2Δx2Δ+x 16Δx=2Δx+16.
y′|x=3= lim Δx→0
7分
lim
Δt→0
ΔΔst =liΔmt→0
(-1-Δt)=-1,
8分
∴当 t=2 时,物体的瞬时速度为-1.
(3)当 t∈[0,2]时,Δt=2-0=2. Δs=s(2)-s(0) =(3×2-22)-(3×0-02)=2. v =ΔΔst=22=1. ∴在 0 到 2 之间,物体的平均速度为 1.
=3f′(x0)=1,
所以 f′(x0)=13,故选 D.
【错因】 错解虽然注意到了系数关系,但却忽略了分子 Δy 与 分 母 Δx 的 对 应 关 系 . 在 导 数 的 定 义 f′(x0) = lim
Δx→0
fx0+ΔΔxx-fx0中,Δx 是分子 f(x0+Δx)与 f(x0)中的两个自变量的 差,即(x0+Δx)-x0.初学者在求解此类问题时容易忽略分子与分 母相应的符号或 Δx 系数的一致性.
求平均变化率的步骤: (1)先计算函数值的改变量 Δy=f(x1)-f(x0). (2)再计算自变量的改变量 Δx=x1-x0. (3)求平均变化率ΔΔyx=fxx11- -fx0x0.
1.在函数 y=2x2+1 中,分别求函数在 x=1,2,3 附近的平均
变化率,取 Δx 的值均为14,问哪一点附近的平均变化率最大? 解析: ΔΔyx=2x0+Δx2+Δx1-2x20+1=4x0+2Δx 当 x0=1,Δx=14时,函数在[1,1.25]上的平均变化率为 k1=4×1+2×14=4.5.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章 导数及其应用
微积分主要与四类问题的处理相关:
• 一、已知物体运动的路程作为时间的函数, 求物体在任意时刻的速度与加速度等; • 二、求曲线的切线; • 三、求已知函数的最大值与最小值; • 四、求长度、面积、体积和重心等。 导数是微积分的核心概念之一它是研究函 数增减、变化快慢、最大(小)值等问题 最一般、最有效的工具。
应用:
• 例2 将原油精练为汽油、柴油、塑胶等各种不同 产品,需要对原由进行冷却和加热。如果第 x(h) 时,原由的温度(单位:0C)为 f(x)=x27x+15(0≤x≤8).计算第2(h) 和第6(h)时,原由 温度的瞬时变化率,并说明它们的意义。
关键是求出:
f x 3 x f 再求出lim x 0 x
r (V2 ) r (V1 ) V2 V1
问题2 高台跳水
在高台跳水运动中,运动员相对于水面的高 度h(单位:米)与起跳后的时间t(单位:秒)存 在函数关系 h(t)=-4.9t2+6.5t+10. 如何用运动员在某些时间段内的平均速度粗略地 描述其运动状态?
请计算
0 t 0.5和1 t 2时的平均速度v :
它说明在第2(h)附近,原油 温度大约以3 0C/H的速度下降; 在第6(h)附近,原油温度大 约以5 0C/H的速度上升。

瞬时速度?
• 我们用
h (2 t ) h (2) lim 13.1 t 0 t
表示 “当t=2, Δt趋近于0时,平均速度趋于确定值 -13.1”. • 那么,运动员在某一时刻t0的瞬时速度?
ht( 0 t) ht( 0) lim t0 t
导数的定义:
从函数y=f(x)在x=x0处的瞬时变化率是:
1 0 0.62(dm / L)
• 当V从1增加到2时,气球半径增加了 r (2) r (1) 0.16(dm 显然 气球的平均膨胀率为 r (2) r (1)
2 1 0.16(dm / L)0.62>0.16
思考?
• 当空气容量从V1增加到V2时,气球的平 均膨胀率是多少?
应用:
1 2 s gt 其 例1 物体作自由落体运动,运动方程为: 2 2
中位 移单位是m,时间单位是s,g=10m/s .求: (1) 物体在时间区间[2,2.1]上的平均速度; (2) 物体在时间区间[2,2.01]上的平均速度; (3) 物体在t=2(s)时的瞬时速度.
解:
__
s 1 v 2 g g ( t ) t 2
O s(2) s(2+t)
(1)将 Δ t=0.1代入上式,得: __
v 2.05g 20.5m / s.
s
(2)__ 将 Δ t=0.01代入上式,得:
( 3)当t 0,2 t 2,
__
v 2.005g 20.05m / s.
从而平均速度 v 的极限为: __ s v lim v lim 2 g 20m / s. s t 0 t 0 t 即物体在时刻t0=2(s)的瞬时速度等于20(m/s). 当时间间隔Δ t 逐渐变小时,平均速度就越接近 t0=2(s) 时的瞬时速度v=20(m/s).
请计 0 t 0.5和1 t 2时的平均速度v : 算
平均速度不能反映他在这段时间里运动状态, 需要用瞬时速度描述运动状态。
平均变化率定义:
f(x ) f ( x ) 2 1 上述问题中的变化率可用式子 表示 x2 x1
称为函数f(x)从x1到x2的平均变化率
• 若设Δx=x2-x1, Δf=f(x2)-f(x1)
小结:
• 1.函数的平均变化率
f x
f(x2 ) f ( x1 ) x2 x1
• 2.求函数的平均变化率的步骤: (1)求函数的增量Δf=Δy=f(x2)-f(x1);
(2)计算平均变化率
f x
f(x2 ) f ( x1 ) x2 x1
练习:
• 过曲线y=f(x)=x3上两点P(1,1)和Q (1+Δx,1+Δy)作曲线的割线,求出当Δx=0.1 时割线的斜率. K=3Δx+(Δx)2=3+3×0.1+(0.1)2=3.31
这里Δx看作是对于x1的一 个“增量”可用x1+Δx代 替x2 同样Δf=Δy==f(x2)-f(x1)
Байду номын сангаас
f 则平均变化率为 x
f(x2 ) f ( x1 ) x2 x1
思考?
• 观察函数f(x)的图象
f(x2 ) f ( x1 ) 平均变化率 y x2 x1 f(x )
2
Y=f(x) x2-x1 f(x2)-f(x1)
3.1.1变化率问题
• 问题1 气球膨胀率
我们都吹过气球回忆一下吹气球的过程,可 以发现,随着气球内空气容量的增加,气球的半径增 加越来越慢.从数学角度,如何描述这种现象呢?
我们来分析一下:
• 气球的体积V(单位:L)与半径r 4 3 (单位:dm)之间的函数关系是 V (r ) r
3 3V 3 • 如果将半径r表示为体积V的函数,那么 r (V ) 4 • 当V从0增加到1时,气球半径增加了 r (1) r (0) 0.62(dm) 气球的平均膨胀率为 r (1) r (0)
B
表示什么?
f(x1)
A x x1 x2
直线AB的斜 率
O
做两个题吧!
• 1 、已知函数f(x)=-x2+x的图象上的一点A(1,-2)及临近一点B(-1+Δx,-2+Δy),则 Δy/Δx=( )D A 3 B 3Δx-(Δx)2 C 3-(Δx)2 D 3-Δx
• 2、求y=x2在x=x0附近的平均速度。 2x0+Δx
作业:
• 第二教材P67 A 1、2、4,B 5
3.1.2 导数的概念
• 在高台跳水运动中,平均速度不能反映他在 这段时间里运动状态,需要用瞬时速度描 述运动状态。我们把物体在某一时刻的速 度称为瞬时速度.
又如何求 瞬时速度呢?
如何求(比如, t=2时的)瞬时速度?
当Δt趋近于0时,平均 速度有什么变化趋势? 通过列表看出平均速度的变化趋势
相关文档
最新文档