点差法习题(有答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

点差法习题

【学习目标】 圆锥曲线的中点弦问题是高考常见的题型,在选择题、填空题和解答题中都是命题的热点。它的一般方法是:联立直线和圆锥曲线的方程,借助于一元二次方程的根的判别式、根与系数的关系、中点坐标公式及参数法求解。 若已知直线与圆锥曲线的交点(弦的端点)坐标,将这两点代入圆锥曲线的方程并对所得两式作差,得到一个与弦 的中点和斜率有关的式子,可以大大减少运算量。我们称这种代点作差的方法为“点差法”,它的一般结论叫做点差法公式。

使用说明及学法指导】

1、通过证明定理,熟悉“点差法”的运用;

2、记住点差法推导出的公式,并熟练应用;

若设直线与圆锥曲线的交点(弦的端点)坐标为),(11y x A 、),(22y x B ,将这两点代入圆锥曲线的方程并对所得两式作差,得到一个与弦AB 的中点和斜率有关的式子,可以大大减少运算量。我们称这种代点作差的方法为“点差法”。

一、自主证明

1、定理 在椭圆12222=+b y a x (a >b >0)中,若直线l 与椭圆相交于M 、N 两点,点),(00y x P 是弦MN 的中点,

弦MN 所在的直线l 的斜率为MN k ,则

22

00a b x y k MN -=⋅. 同理可证,在椭圆122

22=+a y b x (a >b >0)中,若直线l 与椭圆相交于M 、N 两点,点),(00y x P 是弦MN 的中点,

弦MN 所在的直线l 的斜率为MN k ,则

22

00b a x y k MN -=⋅. 2、定理 在双曲线122

22=-b y a x (a >0,b >0)中,若直线l 与双曲线相交于M 、N 两点,点

),(00y x P 是弦MN 的中点,弦MN 所在的直线l 的斜率为MN k ,则

22

00a b x y k MN =⋅. 同理可证,在双曲线122

22=-b x a y (a >0,b >0)中,若直线l 与双曲线相交于M 、N 两点,点),(00y x P 是弦MN

的中点,弦MN 所在的直线l 的斜率为MN k ,则

22

00b a x y k MN =⋅. 3、定理 在抛物线

)0(22≠=m mx y 中,若直线l 与抛物线相交于M 、N 两点,点),(00y x P 是弦MN 的中点,弦MN 所在的直线l 的斜率为

MN k ,则m y k MN =⋅0.

例1 设椭圆方程为1422=+y x ,过点)1,0(M 的直线l 交椭圆于点A 、B ,O 为坐标原点,点P 满足)(21OB OA OP +=,

点N 的坐标为⎪

⎭⎫ ⎝⎛21,21.当l 绕点M 旋转时,求: (1)动点P 的轨迹方程;

(2)||NP 的最大值和最小值.

例2 已知双曲线13:2

2

=-x y C ,过点)1,2(P 作直线l 交双曲线C 于A 、B 两点. (1)求弦AB 的中点M 的轨迹;

(2)若P 恰为弦AB 的中点,求直线l 的方程.

例3 抛物线

x y 42=的过焦点的弦的中点的轨迹方程是( ) A. 12-=x y B. )1(22-=x y C. 212-=x y D.

122-=x y 1. 已知椭圆4222=+y x ,则以)1,1(为中点的弦的长度为( ) A. 23 B. 32 C. 330 D. 26

3

2. 已知双曲线中心在原点且一个焦点为)0,7(F ,直线1-=x y 与其相交于M 、N 两点,MN 的中点的横坐标为32-,则此双曲线的方程为( )

A.14322=-y x

B. 13422=-y x

C. 12522=-y x

D. 1522

2=-y x

3. 已知直线02=--y x 与抛物线

x y 42=交于A 、B 两点,那么线段AB 的中点坐标是________. 【规律总结】

同理可证,在抛物线

)0(22≠=m my x 中,若直线l 与抛物线相交于M 、N 两点,点),(00y x P 是弦MN 的中点,弦MN 所在的直线l 的斜率为MN k ,则m x k MN =⋅01.

一、 以定点为中点的弦所在直线的方程

例1、过椭圆14

162

2=+y x 内一点)1,2(M 引一条弦,使弦被M 点平分,求这条弦所在直线的方程。 例2、已知双曲线12

2

2=-y x ,经过点)1,1(M 能否作一条直线l ,使l 与双曲线交于A 、B ,且点M 是线段AB 的中点。若存在这样的直线l ,求出它的方程,若不存在,说明理由。

二、 过定点的弦和平行弦的中点坐标和中点轨迹

例3、已知椭圆1257522=+x y 的一条弦的斜率为3,它与直线2

1=x 的交点恰为这条弦的中点M ,求点M 的坐标。 例4、已知椭圆125

752

2=+x y ,求它的斜率为3的弦中点的轨迹方程。)235235(0<<-=+x y x 三、 求与中点弦有关的圆锥曲线的方程

例5、已知中心在原点,一焦点为)50,0(F 的椭圆被直线23:-=x y l 截得的弦的中点的横坐标为

2

1,求椭圆的方程。 四、圆锥曲线上两点关于某直线对称问题 例6、已知椭圆13

42

2=+y x ,试确定的m 取值范围,使得对于直线m x y +=4,椭圆上总有不同的两点关于该直线对称。

答 案

例1. 解:设直线与椭圆的交点为),(11y x A 、),(22y x B

)1,2(M 为AB 的中点 ∴421=+x x 221=+y y

又A 、B 两点在椭圆上,则1642121=+y x ,1642

222=+y x

两式相减得0)(4)(22212221=-+-y y x x

于是0))((4))((21212121=-++-+y y y y x x x x ∴

2

1244)(421212121-=⨯-=++-=--y y x x x x y y 即21-=AB k ,故所求直线的方程为)2(2

11--=-x y ,即042=-+y x 。 例2. 解:设存在被点M 平分的弦AB ,且),(11y x A 、),(22y x B

则221=+x x ,221=+y y 122121=-y x ,122

222=-y x 两式相减,得

0))((2

1))((21212121=-+--+y y y y x x x x ∴22121

=--=x x y y k AB 故直线)1(21:-=-x y AB 由⎪⎩

⎪⎨⎧=--=-12)1(2122y x x y 消去y ,得03422=+-x x ∴ 08324)4(2<-=⨯⨯--=∆

这说明直线AB 与双曲线不相交,故被点M 平分的弦不存在,即不存在这样的直线l 。

评述:本题如果忽视对判别式的考察,将得出错误的结果,请务必小心。由此题可看到中点弦问题中判断点的M 位置非常重要。(1)若中点M 在圆锥曲线内,则被点M 平分的弦一般存在;(2)若中点M 在圆锥曲线外,则被点M 平分的弦可能不存在。

例3. 解:设弦端点),(11y x P 、),(22y x Q ,弦PQ 的中点),(00y x M ,则2

10=x 12021==+x x x , 0212y y y =+

又 125752121=+x y ,125

752

222=+x y 两式相减得0))((75))((2521212121=-++-+x x x x y y y y

即0)(3)(221210=-+-x x y y y ∴0212123y x x y y -=-- 32121=--=

x x y y k ∴ 3230=-y ,即2

10-=y ∴点M 的坐标为)2

1,21(-。 例4. 解:设弦端点),(11y x P 、),(22y x Q ,弦PQ 的中点),(y x M ,则

x x x 221=+, y y y 221=+ 又 125752121=+x y ,125

752

222=+x y 两式相减得0))((75))((2521212121=-++-+x x x x y y y y

即0)(3)(2121=-+-x x x y y y ,即y x x x y y 32121

-=--

相关文档
最新文档