最新初中数学圆的经典测试题附答案
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A. B. C. D.
【答案】A
【解析】
【分析】
根据同弧和等弧所对的圆周角相等,则 弧所对的圆周角 , 和 是对顶角,所以 .
【详解】
解: ,
,
故选: .
【点睛】
考查相似三角形的判定定理:两角对应相等的两个三角形相似,关键就是牢记同弧所对的圆周角相等.
14.下列命题中哪一个是假命题( )
A.8的立方根是2
【详解】
∵将△ABC绕A逆时针方向旋转40°得到△ADE,
∴△ACB≌△AED,∠DAB=40°,
∴AD=AB=5,S△ACB=S△AED,
∵S阴影=S△AED+S扇形ADB-S△ACB=S扇形ADB,
∴S阴影= = ,
故选D.
【点睛】
本题考查了旋转的性质,扇形面积公式,熟练掌握旋转的性质:①对应点到旋转中心的距离相等;②对应点与旋转中心所连线段的夹角等于旋转角;③旋转前、后的图形全等.
最新初中数学圆的经典测试题附答案
一、选择题
1.“直角”在几何学中无处不在,下列作图作出的 不一定是直角的是()
A. B.
C. D.
【答案】C
【解析】
【分析】
根据作图痕迹,分别探究各选项所做的几何图形问题可解.
【详解】
解:选项A中,做出了点A关于直线BC的对称点,则 是直角.
选项B中,AO为BC边上的高,则 是直角.
故选: .
【点睛】
概率 相应的面积与总面积之比,本题实质是确定圆的内接正方形和外切正方形的边长比.设较小吧边长为单位1是在选择填空题中求比的常见方法.
5.如图, 的外切正六边形ABCDEF的边长为2,则图中阴影部分的面积为
A.
B.
C.
D.
【答案】A
【解析】
【分析】
【详解】
解:∵六边形ABCDEF是正六边形,
11.如图所示,AB是⊙O的直径,点C为⊙O外一点,CA,CD是⊙O的切线,A,D为切点,连接BD,AD.若∠ACD=30°,则∠DBA的大小是()
A.15°B.30°C.60°D.75°
【答案】D
【解析】
【分析】
【详解】
连接OD,∵CA,CD是⊙O的切线,
∴OA⊥AC,OD⊥CD,
∴∠OAC=∠ODC=90°,
C、菱形的对角线垂直且平分,故错误,是假命题;
D、在同圆中,相等的圆心角所对的弧相等,正确,是真命题,
故选C.
【点睛】
考查了命题与定理的知识,能够了解立方根的定义、一次函数的性质、菱形的性质及圆周角定理等知识是解题关键.
15.如图,抛物线y=ax2﹣6ax+5a(a>0)与x轴交于A、B两点,顶点为C点.以C点为圆心,半径为2画圆,点P在⊙C上,连接OP,若OP的最小值为3,则C点坐标是( )
3.下列命题中,是假命题的是
A.任意多边形的外角和为
B.在 和 中,若 , , ,则 ≌
C.在一个三角形中,任意两边之差小于第三边
D.同弧所对的圆周角和圆心角相等
【答案】D
【解析】
【分析】
根据相关的知识点逐个分析.
【详解】
解:A.任意多边形的外角和为 ,是真命题;
B.在 和 中,若 , , ,则 ≌ ,根据HL,是真命题;
B.在函数y=3x的图象中,y随x增大而增大
C.菱形的对角线相等且平分
D.在同圆中,相等的圆心角所对的弧相等
【答案】C
【解析】
【分析】
利用立方根的定义、一次函数的性质、菱形的性质及圆周角定理分别判断后即可确定正确的选项.
【详解】
A、8的立方根是2,正确,是真命题;
B、在函数 的图象中,y随x增大而增大,正确,是真命题;
C.半径为 的圆内接正方形的边长等于
D.只有正方形的外角和等于
【答案】D
【解析】
【分析】
根据三角形三边关系、中心角的概念、正方形与圆的关系、多边形的外角和对各选项逐一进行分析判断即可.
【详解】
A、三角形两边的和大于第三边,A是真命题,不符合题意;
B、正六边形 条边对应 个中心角,每个中心角都等于 ,B是真命题,不符合题意;
A.6B.8C.10D.12
【答案】C
【解析】
【分析】
设点P(x,y),表示出PA2+PB2的值,从而转化为求OP的最值,画出图形后可直观得出OP的最值,代入求解即可.
【详解】
设P(x,y),
∵PA2=(x+1)2+y2,PB2=(x﹣1)2+y2,
∴PA2+PB2=2x2+2y2+2=2(x2+y2)+2,
∴△ABC为直角三角形,
∴△ABC的内切圆半径= =1,
∴S△ABC= AC•BC= ×4×3=6,
S圆=π,
∴小鸟落在花圃上的概率= ,
故选B.
【点睛】
本题考查几何概率,直角三角形内切圆的半径等于两直角边的和与斜边差的一半及勾股定理的逆定理,解题关键是熟练掌握公式.
13.如图,已知 和 都 是的内接三角形, 和 相交于点 ,则与 的相似的三角形是()
故选:B.
【点睛】
本题考查了圆周角定理,勾股定理,两点之间线段最短等知识,解题的关键是学会添加常用辅助线,则有中考选择题中的压轴题.
10.如图,在 中, , , ,将 绕一逆时针方向旋转 得到 ,点 经过的路径为弧 ,则图中阴影部分的面积为( )
A. B. C. D.
【答案】D
【解析】
【分析】
由旋转的性质可得△ACB≌△AED,∠DAB=40°,可得AD=AB=5,S△ACB=S△AED,根据图形可得S阴影=S△AED+S扇形ADB-S△ACB=S扇形ADB,再根据扇形面积公式可求阴影部分面积.
∵OP2=x2+y2,
∴PA2+PB2=2OP2+2,
当点P处于OC与圆的交点上时,OP取得最值,
∴OP的最小值为CO﹣CP=3﹣1=2,
∴PA2+PB2最小值为2×22+2=10.
故选:C.
【点睛】
本题考查了圆的综合,解答本题的关键是设出点P坐标,将所求代数式的值转化为求解OP的最小值,难度较大.
∴∠AOB=60°,∴△OAB是等边三角形,OA=OB=AB=2,
设点G为AB与⊙O的切点,连接OG,则OG⊥AB,
∴OG=OA•sin60°=2× = ,
∴S阴影=S△OAB﹣S扇形OMN= ×2× ﹣ = .故选A.
6.下列命题是假命题的是( )
A.三角形两边的和大于第三边
B.正六边形的每个中心角都等于
9.如图,在 中, , ,点 是 边上的一个动点,以 为直径的圆交 于点 ,若线段 长度的最小值是3,则 的面积为()
A.18B.27C.36D.54
【答案】B
【解析】
【分析】
如图,取BC的中点T,连接AT,QT.首先证明A,Q,T共线时,△ABC的面积最大,设QT=TB=x,利用勾股定理构建方程即可解决问题.
C.在一个三角形中,任意两边之差小于第三边,是真命题;
D.同弧所对的圆周角等于圆心角的一半,本选项是假命题.
故选D.
【点睛】
本题考核知识点:判断命题的真假.解题关键点:熟记相关性质或定义.
4.如图,小明随意向水平放置的大正方形内部区域抛一个小豆子,则小豆子落在小正方形内部及边界(阴影)区域的概率为()
A. B.
C. D.
【答案】B
【解析】
【分析】
由AB=5,BC=4,AC=3,得到AB2=BC2+AC2,根据勾股定理的逆定理得到△ABC为直角三角形,于是得到△ABC的内切圆半径= =1,求得直角三角形的面积和圆的面积,即可得到结论.
【详解】
解:∵AB=5,BC=4,AC=3,
∴AB2=BC2+AC2,
A. B. C. D.
【答案】C
【解析】
【分析】
算出阴影部分的面积及大正方形的面积,这个比值就是所求的概率.
【详解】
解:设小正方形的边长为1,则其面积为1.
圆的直径正好是大正方形边长,
根据勾股定理,其小正方形对角线为 ,即圆的直径为 ,
大正方形的边长为 ,
则大正方形的面积为 ,则小球停在小正方形内部(阴影)区域的概率为 .
C、半径为 的圆内接正方形中,对角线长为圆的直径 ,设边长等于 ,则: ,解得边长为 ,C是真命题,不符合题意;
D、任何凸 边形的外角和都为 , 是假命题,符合题意,
故选D.
【点睛】
本题考查了真假命题,熟练掌握正多边形与圆、中心角、多边形的外角和等知识是解本题的关键.
7.如图,AB是⊙O的直径,点C是⊙O上一点,点D在BA的延长线上,CD与⊙O交于另一点E,DE=OB=2,∠D=20°,则弧BC的长度为( )
【详解】Leabharlann Baidu
解:连接OE、OC,如图,
∵DE=OB=OE,
∴∠D=∠EOD=20°,
∴∠CEO=∠D+∠EOD=40°,
∵OE=OC,
∴∠C=∠CEO=40°,
∴∠BOC=∠C+∠D=60°,
∴ 的长度= = π,
故选A.
【点睛】
本题考查了弧长公式:l= (弧长为l,圆心角度数为n,圆的半径为R),还考查了圆的认识及等腰三角形的性质及三角形外角的性质,熟练掌握等腰三角形的性质和三角形外角性质是关键.
【答案】B
【解析】
【分析】
根据切线的性质求出∠OAC,结合∠C=42°求出∠AOC,根据等腰三角形性质求出∠B=∠BDO,根据三角形外角性质求出即可.
【详解】
解:∵∠ABD=24°,
∴∠AOC=48°,
∵AC是⊙O的切线,
∴∠OAC=90°,
∴∠AOC+∠C=90°,
∴∠C=90°﹣48°=42°,
选项D中, 是直径AB作对的圆周角,故 是直角.
故应选C
【点睛】
本题考查了尺规作图的相关知识,根据基本作图得到的结论,应用于几何证明是解题关键.
2.如图,在平面直角坐标系中,点P是以C(﹣ , )为圆心,1为半径的⊙C上的一个动点,已知A(﹣1,0),B(1,0),连接PA,PB,则PA2+PB2的最小值是( )
A. πB. πC. πD. π
【答案】A
【解析】
【分析】
连接OE、OC,如图,根据等腰三角形的性质得到∠D=∠EOD=20°,根据外角的性质得到∠CEO=∠D+∠EOD=40°,根据等腰三角形的性质得到∠C=∠CEO=40°,根据外角的性质得到∠BOC=∠C+∠D=60°,根据求弧长的公式得到结论.
【详解】
解:如图,取BC的中点T,连接AT,QT.
∵PB是⊙O的直径,
∴∠PQB=∠CQB=90°,
∴QT= BC=定值,AT是定值,
∵AQ≥AT-TQ,
∴当A,Q,T共线时,AQ的值最小,设BT=TQ=x,
在Rt△ABT中,则有(3+x)2=x2+62,
解得x= ,
∴BC=2x=9,
∴S△ABC= •AB•BC= ×6×9=27,
8.如图,有一个边长为 的正六边形纸片,若在该纸片上沿虚线剪一个最大圆形纸片,则这个圆形纸片的半径是()
A. B. C. D.
【答案】A
【解析】
【分析】
根据题意画出图形,再根据正多边形圆心角的求法求出∠AOB的度数,最后根据等腰三角形及直角三角形的性质解答即可.
【详解】
解:如图所示,正六边形的边长为2cm,OG⊥BC,
∵六边形ABCDEF是正六边形,
∴∠BOC=360°÷6=60°,
∵OB=OC,OG⊥BC,
∴∠BOG=∠COG= ∠BOC =30°,
∵OG⊥BC,OB=OC,BC=2cm,
∴BG= BC= ×2=1cm,
∴OB= =2cm,
∴OG= ,
∴圆形纸片的半径为 cm,
故选:A.
【点睛】
本题考查的是正多边形和圆,根据题意画出图形,利用直角三角形的性质及正六边形的性质解答是解答此题的关键.
故选:B.
【点睛】
考查了切线的性质,圆周角定理,三角形内角和定理,解此题的关键是求出∠AOC的度数,题目比较好,难度适中.
17.如图,点A、B、C、D、E、F等分⊙O,分别以点B、D、F为圆心,AF的长为半径画弧,形成美丽的“三叶轮”图案.已知⊙O的半径为1,那么“三叶轮”图案的面积为( )
∵∠ACD=30°,
∴∠AOD=360°﹣∠C﹣∠OAC﹣∠ODC=150°,
∵OB=OD,
∴∠DBA=∠ODB= ∠AOD=75°.
故选D.
考点:切线的性质;圆周角定理.
12.如图, 是一块绿化带,将阴影部分修建为花圃.已知 , , ,阴影部分是 的内切圆,一只自由飞翔的小鸟将随机落在这块绿化带上,则小鸟落在花圃上的概率为().
∴OC=OP+2=5,
∴ ,
∴ ,
∴C(3,﹣4),
故选:D.
【点睛】
本题考查了二次函数的图象和性质,解题的关键是明确圆外一点到圆上的最短距离即该点与圆心的距离减去半径长.
16.如图,AB是⊙O的直径,AC是⊙O的切线,OC交⊙O于点D,若∠ABD=24°,则∠C的度数是( )
A.48°B.42°C.34°D.24°
A. B.(4,﹣5)C.(3,﹣5)D.(3,﹣4)
【答案】D
【解析】
【分析】
首先根据二次函数的解析式求出点A、B、C三点的坐标,再由当点O、P、C三点共线时,OP取最小值为3,列出关于a的方程,即可求解.
【详解】
∵ 与x轴交于A、B两点,
∴A(1,0)、B(5,0),
∵ ,
∴顶点 ,
当点O、P、C三点共线时,OP取最小值为3,
【答案】A
【解析】
【分析】
根据同弧和等弧所对的圆周角相等,则 弧所对的圆周角 , 和 是对顶角,所以 .
【详解】
解: ,
,
故选: .
【点睛】
考查相似三角形的判定定理:两角对应相等的两个三角形相似,关键就是牢记同弧所对的圆周角相等.
14.下列命题中哪一个是假命题( )
A.8的立方根是2
【详解】
∵将△ABC绕A逆时针方向旋转40°得到△ADE,
∴△ACB≌△AED,∠DAB=40°,
∴AD=AB=5,S△ACB=S△AED,
∵S阴影=S△AED+S扇形ADB-S△ACB=S扇形ADB,
∴S阴影= = ,
故选D.
【点睛】
本题考查了旋转的性质,扇形面积公式,熟练掌握旋转的性质:①对应点到旋转中心的距离相等;②对应点与旋转中心所连线段的夹角等于旋转角;③旋转前、后的图形全等.
最新初中数学圆的经典测试题附答案
一、选择题
1.“直角”在几何学中无处不在,下列作图作出的 不一定是直角的是()
A. B.
C. D.
【答案】C
【解析】
【分析】
根据作图痕迹,分别探究各选项所做的几何图形问题可解.
【详解】
解:选项A中,做出了点A关于直线BC的对称点,则 是直角.
选项B中,AO为BC边上的高,则 是直角.
故选: .
【点睛】
概率 相应的面积与总面积之比,本题实质是确定圆的内接正方形和外切正方形的边长比.设较小吧边长为单位1是在选择填空题中求比的常见方法.
5.如图, 的外切正六边形ABCDEF的边长为2,则图中阴影部分的面积为
A.
B.
C.
D.
【答案】A
【解析】
【分析】
【详解】
解:∵六边形ABCDEF是正六边形,
11.如图所示,AB是⊙O的直径,点C为⊙O外一点,CA,CD是⊙O的切线,A,D为切点,连接BD,AD.若∠ACD=30°,则∠DBA的大小是()
A.15°B.30°C.60°D.75°
【答案】D
【解析】
【分析】
【详解】
连接OD,∵CA,CD是⊙O的切线,
∴OA⊥AC,OD⊥CD,
∴∠OAC=∠ODC=90°,
C、菱形的对角线垂直且平分,故错误,是假命题;
D、在同圆中,相等的圆心角所对的弧相等,正确,是真命题,
故选C.
【点睛】
考查了命题与定理的知识,能够了解立方根的定义、一次函数的性质、菱形的性质及圆周角定理等知识是解题关键.
15.如图,抛物线y=ax2﹣6ax+5a(a>0)与x轴交于A、B两点,顶点为C点.以C点为圆心,半径为2画圆,点P在⊙C上,连接OP,若OP的最小值为3,则C点坐标是( )
3.下列命题中,是假命题的是
A.任意多边形的外角和为
B.在 和 中,若 , , ,则 ≌
C.在一个三角形中,任意两边之差小于第三边
D.同弧所对的圆周角和圆心角相等
【答案】D
【解析】
【分析】
根据相关的知识点逐个分析.
【详解】
解:A.任意多边形的外角和为 ,是真命题;
B.在 和 中,若 , , ,则 ≌ ,根据HL,是真命题;
B.在函数y=3x的图象中,y随x增大而增大
C.菱形的对角线相等且平分
D.在同圆中,相等的圆心角所对的弧相等
【答案】C
【解析】
【分析】
利用立方根的定义、一次函数的性质、菱形的性质及圆周角定理分别判断后即可确定正确的选项.
【详解】
A、8的立方根是2,正确,是真命题;
B、在函数 的图象中,y随x增大而增大,正确,是真命题;
C.半径为 的圆内接正方形的边长等于
D.只有正方形的外角和等于
【答案】D
【解析】
【分析】
根据三角形三边关系、中心角的概念、正方形与圆的关系、多边形的外角和对各选项逐一进行分析判断即可.
【详解】
A、三角形两边的和大于第三边,A是真命题,不符合题意;
B、正六边形 条边对应 个中心角,每个中心角都等于 ,B是真命题,不符合题意;
A.6B.8C.10D.12
【答案】C
【解析】
【分析】
设点P(x,y),表示出PA2+PB2的值,从而转化为求OP的最值,画出图形后可直观得出OP的最值,代入求解即可.
【详解】
设P(x,y),
∵PA2=(x+1)2+y2,PB2=(x﹣1)2+y2,
∴PA2+PB2=2x2+2y2+2=2(x2+y2)+2,
∴△ABC为直角三角形,
∴△ABC的内切圆半径= =1,
∴S△ABC= AC•BC= ×4×3=6,
S圆=π,
∴小鸟落在花圃上的概率= ,
故选B.
【点睛】
本题考查几何概率,直角三角形内切圆的半径等于两直角边的和与斜边差的一半及勾股定理的逆定理,解题关键是熟练掌握公式.
13.如图,已知 和 都 是的内接三角形, 和 相交于点 ,则与 的相似的三角形是()
故选:B.
【点睛】
本题考查了圆周角定理,勾股定理,两点之间线段最短等知识,解题的关键是学会添加常用辅助线,则有中考选择题中的压轴题.
10.如图,在 中, , , ,将 绕一逆时针方向旋转 得到 ,点 经过的路径为弧 ,则图中阴影部分的面积为( )
A. B. C. D.
【答案】D
【解析】
【分析】
由旋转的性质可得△ACB≌△AED,∠DAB=40°,可得AD=AB=5,S△ACB=S△AED,根据图形可得S阴影=S△AED+S扇形ADB-S△ACB=S扇形ADB,再根据扇形面积公式可求阴影部分面积.
∵OP2=x2+y2,
∴PA2+PB2=2OP2+2,
当点P处于OC与圆的交点上时,OP取得最值,
∴OP的最小值为CO﹣CP=3﹣1=2,
∴PA2+PB2最小值为2×22+2=10.
故选:C.
【点睛】
本题考查了圆的综合,解答本题的关键是设出点P坐标,将所求代数式的值转化为求解OP的最小值,难度较大.
∴∠AOB=60°,∴△OAB是等边三角形,OA=OB=AB=2,
设点G为AB与⊙O的切点,连接OG,则OG⊥AB,
∴OG=OA•sin60°=2× = ,
∴S阴影=S△OAB﹣S扇形OMN= ×2× ﹣ = .故选A.
6.下列命题是假命题的是( )
A.三角形两边的和大于第三边
B.正六边形的每个中心角都等于
9.如图,在 中, , ,点 是 边上的一个动点,以 为直径的圆交 于点 ,若线段 长度的最小值是3,则 的面积为()
A.18B.27C.36D.54
【答案】B
【解析】
【分析】
如图,取BC的中点T,连接AT,QT.首先证明A,Q,T共线时,△ABC的面积最大,设QT=TB=x,利用勾股定理构建方程即可解决问题.
C.在一个三角形中,任意两边之差小于第三边,是真命题;
D.同弧所对的圆周角等于圆心角的一半,本选项是假命题.
故选D.
【点睛】
本题考核知识点:判断命题的真假.解题关键点:熟记相关性质或定义.
4.如图,小明随意向水平放置的大正方形内部区域抛一个小豆子,则小豆子落在小正方形内部及边界(阴影)区域的概率为()
A. B.
C. D.
【答案】B
【解析】
【分析】
由AB=5,BC=4,AC=3,得到AB2=BC2+AC2,根据勾股定理的逆定理得到△ABC为直角三角形,于是得到△ABC的内切圆半径= =1,求得直角三角形的面积和圆的面积,即可得到结论.
【详解】
解:∵AB=5,BC=4,AC=3,
∴AB2=BC2+AC2,
A. B. C. D.
【答案】C
【解析】
【分析】
算出阴影部分的面积及大正方形的面积,这个比值就是所求的概率.
【详解】
解:设小正方形的边长为1,则其面积为1.
圆的直径正好是大正方形边长,
根据勾股定理,其小正方形对角线为 ,即圆的直径为 ,
大正方形的边长为 ,
则大正方形的面积为 ,则小球停在小正方形内部(阴影)区域的概率为 .
C、半径为 的圆内接正方形中,对角线长为圆的直径 ,设边长等于 ,则: ,解得边长为 ,C是真命题,不符合题意;
D、任何凸 边形的外角和都为 , 是假命题,符合题意,
故选D.
【点睛】
本题考查了真假命题,熟练掌握正多边形与圆、中心角、多边形的外角和等知识是解本题的关键.
7.如图,AB是⊙O的直径,点C是⊙O上一点,点D在BA的延长线上,CD与⊙O交于另一点E,DE=OB=2,∠D=20°,则弧BC的长度为( )
【详解】Leabharlann Baidu
解:连接OE、OC,如图,
∵DE=OB=OE,
∴∠D=∠EOD=20°,
∴∠CEO=∠D+∠EOD=40°,
∵OE=OC,
∴∠C=∠CEO=40°,
∴∠BOC=∠C+∠D=60°,
∴ 的长度= = π,
故选A.
【点睛】
本题考查了弧长公式:l= (弧长为l,圆心角度数为n,圆的半径为R),还考查了圆的认识及等腰三角形的性质及三角形外角的性质,熟练掌握等腰三角形的性质和三角形外角性质是关键.
【答案】B
【解析】
【分析】
根据切线的性质求出∠OAC,结合∠C=42°求出∠AOC,根据等腰三角形性质求出∠B=∠BDO,根据三角形外角性质求出即可.
【详解】
解:∵∠ABD=24°,
∴∠AOC=48°,
∵AC是⊙O的切线,
∴∠OAC=90°,
∴∠AOC+∠C=90°,
∴∠C=90°﹣48°=42°,
选项D中, 是直径AB作对的圆周角,故 是直角.
故应选C
【点睛】
本题考查了尺规作图的相关知识,根据基本作图得到的结论,应用于几何证明是解题关键.
2.如图,在平面直角坐标系中,点P是以C(﹣ , )为圆心,1为半径的⊙C上的一个动点,已知A(﹣1,0),B(1,0),连接PA,PB,则PA2+PB2的最小值是( )
A. πB. πC. πD. π
【答案】A
【解析】
【分析】
连接OE、OC,如图,根据等腰三角形的性质得到∠D=∠EOD=20°,根据外角的性质得到∠CEO=∠D+∠EOD=40°,根据等腰三角形的性质得到∠C=∠CEO=40°,根据外角的性质得到∠BOC=∠C+∠D=60°,根据求弧长的公式得到结论.
【详解】
解:如图,取BC的中点T,连接AT,QT.
∵PB是⊙O的直径,
∴∠PQB=∠CQB=90°,
∴QT= BC=定值,AT是定值,
∵AQ≥AT-TQ,
∴当A,Q,T共线时,AQ的值最小,设BT=TQ=x,
在Rt△ABT中,则有(3+x)2=x2+62,
解得x= ,
∴BC=2x=9,
∴S△ABC= •AB•BC= ×6×9=27,
8.如图,有一个边长为 的正六边形纸片,若在该纸片上沿虚线剪一个最大圆形纸片,则这个圆形纸片的半径是()
A. B. C. D.
【答案】A
【解析】
【分析】
根据题意画出图形,再根据正多边形圆心角的求法求出∠AOB的度数,最后根据等腰三角形及直角三角形的性质解答即可.
【详解】
解:如图所示,正六边形的边长为2cm,OG⊥BC,
∵六边形ABCDEF是正六边形,
∴∠BOC=360°÷6=60°,
∵OB=OC,OG⊥BC,
∴∠BOG=∠COG= ∠BOC =30°,
∵OG⊥BC,OB=OC,BC=2cm,
∴BG= BC= ×2=1cm,
∴OB= =2cm,
∴OG= ,
∴圆形纸片的半径为 cm,
故选:A.
【点睛】
本题考查的是正多边形和圆,根据题意画出图形,利用直角三角形的性质及正六边形的性质解答是解答此题的关键.
故选:B.
【点睛】
考查了切线的性质,圆周角定理,三角形内角和定理,解此题的关键是求出∠AOC的度数,题目比较好,难度适中.
17.如图,点A、B、C、D、E、F等分⊙O,分别以点B、D、F为圆心,AF的长为半径画弧,形成美丽的“三叶轮”图案.已知⊙O的半径为1,那么“三叶轮”图案的面积为( )
∵∠ACD=30°,
∴∠AOD=360°﹣∠C﹣∠OAC﹣∠ODC=150°,
∵OB=OD,
∴∠DBA=∠ODB= ∠AOD=75°.
故选D.
考点:切线的性质;圆周角定理.
12.如图, 是一块绿化带,将阴影部分修建为花圃.已知 , , ,阴影部分是 的内切圆,一只自由飞翔的小鸟将随机落在这块绿化带上,则小鸟落在花圃上的概率为().
∴OC=OP+2=5,
∴ ,
∴ ,
∴C(3,﹣4),
故选:D.
【点睛】
本题考查了二次函数的图象和性质,解题的关键是明确圆外一点到圆上的最短距离即该点与圆心的距离减去半径长.
16.如图,AB是⊙O的直径,AC是⊙O的切线,OC交⊙O于点D,若∠ABD=24°,则∠C的度数是( )
A.48°B.42°C.34°D.24°
A. B.(4,﹣5)C.(3,﹣5)D.(3,﹣4)
【答案】D
【解析】
【分析】
首先根据二次函数的解析式求出点A、B、C三点的坐标,再由当点O、P、C三点共线时,OP取最小值为3,列出关于a的方程,即可求解.
【详解】
∵ 与x轴交于A、B两点,
∴A(1,0)、B(5,0),
∵ ,
∴顶点 ,
当点O、P、C三点共线时,OP取最小值为3,