2019-2020学年重庆重庆九年级上数学月考试卷
2019-2020学年重庆市涪陵十九中九年级(上)第一次月考数学试卷
2019-2020学年重庆市涪陵十九中九年级(上)第一次月考数学试卷一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个正确,请将答题卡上对应题目正确答案的标号涂黑.1.(4分)下列方程中,关于x的一元二次方程是()A.ax2+bx+c=0B.x2﹣x(x+7)=0C.2x2﹣y﹣1=0D.x2﹣2x﹣3=02.(4分)抛物线y=﹣(x﹣1)2﹣2 的顶点坐标是()A.(1,2)B.(﹣1,﹣2)C.(﹣1,2)D.(1,﹣2)3.(4分)已知关于x的一元二次方程(k﹣1)x2﹣2x+1=0有两个不相等的实数根,则k的取值范围是()A.k<﹣2B.k<2C.k>2D.k<2且k≠14.(4分)抛物线y=﹣2x2经过平移到y=﹣2x2﹣4x﹣5,平移方法是()A.向左平移1个单位,再向上平移3各单位B.向左平移1个单位,再向下平移3个单位C.向右平移1个单位,再向上平移3个单位D.向右平移1个单位,再向下平移3个单位5.(4分)已知关于x的一元二次方程x2+mx+n=0的两个实数根分别为x1=﹣2,x2=4,则m+n的值是()A.﹣10B.10C.﹣6D.26.(4分)若抛物线y=x2﹣2x+c与y轴的交点为(0,﹣3),则下列说法不正确的是()A.抛物线开口向上B.抛物线的对称轴是x=1C.当x=1时,y的最大值为﹣4D.抛物线与x轴的交点为(﹣1,0),(3,0)7.(4分)烟花厂为雁荡山旅游节特别设计制作一种新型礼炮,这种礼炮的升空高度h(m)与飞行时间t(s)的关系式是h=﹣t2+20t+1,若这种礼炮在点火升空到最高点处引爆,则从点火升空到引爆需要的时间为()A.3s B.4s C.5s D.6s8.(4分)设x1、x2是一元二次方程x2+x﹣3=0的两根,则x13﹣4x22+15等于()A.﹣4B.8C.6D.09.(4分)某商品原价800元,连续两次降价a%后售价为578元,下列所列方程正确的是()A.800(1+a%)2=578B.800(1﹣a%)2=578C.800(1﹣2a%)=578D.800(1﹣a2%)=57810.(4分)函数y=ax+b和y=ax2+bx+c在同一直角坐标系内的图象大致是()A.B.C.D.11.(4分)如图,四边形ABCD是矩形,AB=8,BC=4,动点P以每秒2个单位的速度从点A沿线段AB向B点运动,同时动点Q以每秒3个单位的速度从点B出发沿B﹣C﹣D的方向运动,当点Q到达点D时P、Q同时停止运动,若记△PQA的面积为y,运动时间为x,则下列图象中能大致表示y与x之间函数关系图象的是()A.B.C.D.12.(4分)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中正确的结论有()①abc<0;②2a+b=0;③b2﹣4ac<0;④9a+3b+c>0;⑤c+8a<0.A.1个B.2个C.3个D.4个二、填空题(本大题共6小题,每小题4分,满分24分)13.(4分)若函数y=(m﹣)是二次函数,则m=.14.(4分)点P1(﹣1,y1),P2(3,y2),P3(5,y3)均在二次函数y=﹣x2+2x+c的图象上,则y1,y2,y3的大小关系是.15.(4分)若关于x的一元二次方程kx2﹣2x﹣1=0有两个实数根,则k的取值范围是.16.(4分)对于一元二次方程ax2+bx+c=0(a≠0),下列说法:①a+c=0,方程ax2+bx+c=0,有两个不相等的实数;②若方程ax2+bx+c=0有两个不相等的实根.则方程cx2+bx+a=0也一定有两个不相等的实根;③若c是方程ax2+bx+c=0的一个根,则一定有ac+b+1=0成立.④若m是方程ax2+bx+c=0的一个根,则一定有b2﹣4ac=(2am+b)2成立.其中正确的结论是.(把你认为正确结论的序号都填上)17.(4分)在一条笔直的公路上有A、B两地,甲、乙两辆货车都要从A地送货到B地,甲车先从A地出发匀速行驶,3小时后,乙车从A地出发,并沿同一路线匀速行驶,当乙车到达B地后立刻按原速返回,在返回途中第二次与甲车相遇.甲车出发的时间记为t(小时),两车之间的距离记为y(千米),y与t的函数关系如图所示,则乙车第二次与甲车相遇时,甲车距离A地千米.18.(4分)某学校为九年级数学竞赛获奖选手购买以下三种奖品,其中小笔记本每本5元,大笔记本每本7元,钢笔每支10元,购买的大笔记本的数量是钢笔数量的2倍,共花费346元.若使购买的奖品总数最多,则这三种奖品中,大笔记本购买的数量是本.三、(本大题共2小题,每小题8分,满分16分)19.(8分)解方程:(1)x2﹣6x+5=0(2)2x2﹣3x﹣1=0.20.(8分)如图,AB∥CD,△EFG的顶点F,G分别落在直线AB,CD上,GE交AB于点H,GE平分∠FGD.若∠EFG=90°,∠E=35°,求∠EFB的度数.四、(本大题共4小题,每小题10分,满分40分)21.(10分)已知关于x的方程x2+ax+a﹣2=0.(1)当该方程的一个根为1时,求a的值及该方程的另一根;(2)求证:不论a取何实数,该方程都有两个不相等的实数根.22.(10分)在矩形ABCD中,点E在BC上,AE=AD,DF⊥AE,垂足为F.(1)求证:DF=AB;(2)若∠FDC=30°,且AB=4,求AD.23.(10分)已知抛物线y=x2+bx+c与x轴只有一个交点,且交点为A(﹣2,0).(1)求b,c的值;(2)若抛物线与y轴的交点为B,坐标原点为O,求△OAB的面积.24.(10分)为推进生态文明建设,加快发展新能源汽车,国家对新能源汽车实行补贴政策.一家4S店从事某品牌纯电动汽车和插电式混动汽车两种新能源汽车(以下简称电动车和混动车)的销售,电动车每辆进价16万元,去年国家对该车每辆补贴4.5万元,补贴后每辆售价14万元;混动车每辆进价18万元,去年国家对该车每辆补贴2.8万元,补贴后每辆售价18万元.该4S店去年12月共销售这两种汽车120辆,获得利润324万元.(1)求该4S店去年12月销售了多少辆混动车?(2)今年国家对该品牌新能源汽车的补贴有所下降,电动车每辆比去年少补贴0.5万元,混动车每辆比去年少补贴0.8万元,该4S店为减少损失,今年1月把电动车的售价提高了m%,结果销量在去年12月的基础上减少了m%,对混动车的售价没有作调整,而销量在去年12月的基础上增加了2.4m辆,结果该4S店今年1月的利润比去年12月少了14万元,求m的值.五、(本大题共2小题,每小题10分,满分22分)25.(10分)对任意一个四位数n,如果千位与十位上的数字之和为9,百位与个位上的数字之和也为9,则称n为“极数”.(1)请任意写出三个“极数”;并猜想任意一个“极数”是否是99的倍数,请说明理由;(2)如果一个正整数a是另一个正整数b的平方,则称正整数a是完全平方数.若四位数m为“极数”,记D (m)=,求满足D(m)是完全平方数的所有m.26.(12分)已知抛物线y=x2+1(如图所示).(1)填空:抛物线的顶点坐标是(,),对称轴是;(2)已知y轴上一点A(0,2),点P在抛物线上,过点P作PB⊥x轴,垂足为B.若△P AB是等边三角形,求点P的坐标;(3)在(2)的条件下,点M在直线AP上.在平面内是否存在点N,使四边形OAMN为菱形?若存在,直接写出所有满足条件的点N的坐标;若不存在,请说明理由.2019-2020学年重庆市涪陵十九中九年级(上)第一次月考数学试卷参考答案与试题解析一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个正确,请将答题卡上对应题目正确答案的标号涂黑.1.【解答】解:A、当a=0时,该方程不是一元二次方程,故本选项不符合题意.B、由该方程得到﹣7x=0,未知数的最高次数是1,故本选项不符合题意.C、该方程中含有两个未知数,不是一元二次方程,故本选项不符合题意.D、该方程符合一元二次方程的定义,故本选项符合题意.故选:D.2.【解答】解:抛物线y=﹣(x﹣1)2﹣2 的顶点坐标是(1,﹣2).故选:D.3.【解答】解:根据题意得:△=b2﹣4ac=4﹣4(k﹣1)=8﹣4k>0,且k﹣1≠0,解得:k<2,且k≠1.故选:D.4.【解答】解:∵y=﹣2x2﹣4x﹣5=﹣2(x+1)2﹣3,∴y=﹣2x2﹣4x﹣5的顶点坐标为(﹣1,﹣3),∴抛物线y=﹣2x2向左平移1个单位,再向下平移3个单位得到y=﹣2x2﹣4x﹣5.故选:B.5.【解答】解:∵关于x的一元二次方程x2+mx+n=0的两个实数根分别为x1=﹣2,x2=4,∴﹣2+4=﹣m,﹣2×4=n,解得:m=﹣2,n=﹣8,∴m+n=﹣10,故选:A.6.【解答】解:∵抛物线过点(0,﹣3),∴抛物线的解析式为:y=x2﹣2x﹣3.A、抛物线的二次项系数为1>0,抛物线的开口向上,正确.B、根据抛物线的对称轴x=﹣=﹣=1,正确.C、由A知抛物线的开口向上,二次函数有最小值,当x=1时,y的最小值为﹣4,而不是最大值.故本选项错误.D、当y=0时,有x2﹣2x﹣3=0,解得:x1=﹣1,x2=3,抛物线与x轴的交点坐标为(﹣1,0),(3,0).正确.故选:C.7.【解答】解:∵h=﹣t2+20t+1,∴h=﹣(t﹣4)2+41,∴当t=4秒时,礼炮达到最高点爆炸.故选:B.8.【解答】解:∵x1、x2是一元二次方程x2+x﹣3=0的两根,∴x1+x2=﹣1,x1x2=﹣3,x12=3﹣x1,x22=3﹣x2∵x13=x1x12=x1(3﹣x1)=3x1﹣x12,∴x13﹣4x22+15=3x1﹣x12﹣4x22+15=3x1﹣(3﹣x1)﹣4(3﹣x2)+15=4(x1+x2)=﹣4∴x13﹣4x22+15=﹣3﹣1﹣6+6=﹣4,故选:A.9.【解答】解:由题意可得:800(1﹣a%)2=578.故选:B.10.【解答】解:当a>0时,二次函数的图象开口向上,一次函数的图象经过一、三或一、二、三或一、三、四象限,故A、D不正确;由B、C中二次函数的图象可知,对称轴x=﹣>0,且a>0,则b<0,但B中,一次函数a>0,b>0,排除B.故选:C.11.【解答】解:(1)如图1,当动点Q在BC边上运动时,,∵4÷3=,∴动点Q从点B运动到点C向右的时间是秒,∵AP=2x,BQ=3x,∴y=2x×3x÷2=3x2(0<x),∴抛物线开口向上;(2)如图2,当动点Q在CD边上运动时,,∵(8+4)÷3=4(秒),4﹣,∴动点Q从点C运动到点D需要的时间是秒,∵AP=2x,BC=4,∴y=2x×4÷2=4x(<x≤4),单调递增,综上,可得y=,∴能大致表示y与x之间函数关系图象的是:.故选:B.12.【解答】解:∵图象的开口向下,与y轴的交点在y轴的正半轴上,对称轴是直线x=1,∴a<0,c>0,﹣=1,即2a+b=0,b>0,∴abc<0,故①②正确;∵抛物线的图象和x轴有两个交点,∴b2﹣4ac>0,故③错误;∵抛物线的图象的对称轴是直线x=1,和x轴的一个交点坐标是(﹣1,0),∴另一个交点坐标是(3,0),即当x=3时,y=a×32+b×3+c=0,故④错误;∵2a+b=0,即b=﹣2a,代入解析式得:y=ax2﹣2ax+c,当x=3时,y=9a﹣6a+c=3a+c=0,∵a<0,∴3a+c+5a=8a+c<0,故⑤正确;即正确的有3个,故选:C.二、填空题(本大题共6小题,每小题4分,满分24分)13.【解答】解:∵函数y=(m﹣)是二次函数,∴m2=2,且m﹣≠0,解得:m=﹣.故答案为:﹣.14.【解答】解:∵y=﹣x2+2x+c,∴对称轴为x=1,P2(3,y2),P3(5,y3)在对称轴的右侧,y随x的增大而减小,∵3<5,∴y2>y3,根据二次函数图象的对称性可知,P1(﹣1,y1)与(3,y1)关于对称轴对称,故y1=y2>y3,故答案为y1=y2>y3.15.【解答】解:∵关于x的一元二次方程kx2﹣2x﹣1=0有两个实数根,∴,解得k≥﹣1且k≠0.故答案为:k≥﹣1且k≠0.16.【解答】解:①因为a+c=0,a≠0,所以①a、c异号,所以△=b2﹣4ac>0,所以方程有两个不等的实数根;②当c=0时不成立;③若c是方程ax2+bx+c=0的一个根,当c=0时,ac+b+1=0不一定成立;④若m是方程ax2+bx+c=0的一个根,所以有am2+bm+c=0,即am2=﹣(bm+c),而(2am+b)2=4a2m2+4abm+b2=4a[﹣(bm+c)]+4abm+b2=4abm﹣4abm﹣4ac+b2=b2﹣4ac.所以①④成立.故答案为:①④.17.【解答】解:设甲车的速度为akm/h,乙车的速度为bkm/h,,解得,,设甲乙第二次相遇的时间为t小时,300=(60+180)×(t﹣7),解得,t=,则乙车第二次与甲车相遇时,甲车距离A地:60×=495(千米),故答案为:495.18.【解答】解:设购买小笔记本x本,大笔记本y本,钢笔z支,则有5x+7y+10z=346,y=2z,易知0<x≤69,0<y≤49,0<z≤34,∴5x+14z+10z=346,5x+24z=346,即x=.∵x,y,z均为正整数,346﹣24z≥0,即0<z≤14,∴z只能取14,9和4,①当z为14时,x==2,y=2z=28,x+y+z=44.②当z为9时,x==26,y=2z=18.x+y+z=53.③当z为4时,x==50,y=2z=8.x+y+z=62.综上所述,若使购买的奖品总数最多,应购买小笔记本50本,大笔记本8本,钢笔4支.故答案为:8三、(本大题共2小题,每小题8分,满分16分)19.【解答】解:(1)x2﹣6x+5=0,(x﹣5)(x﹣1)=0,x﹣5=0,x﹣1=0,x1=5,x2=1;(2)2x2﹣3x﹣1=0,b2﹣4ac=(﹣3)2﹣4×2×(﹣1)=17,x=,x1=,x2=.20.【解答】解:∵∠EFG=90°,∠E=35°,∴∠FGH=55°,∵GE平分∠FGD,AB∥CD,∴∠FHG=∠HGD=∠FGH=55°,∵∠FHG是△EFH的外角,∴∠EFB=55°﹣35°=20°.四、(本大题共4小题,每小题10分,满分40分)21.【解答】解:(1)设方程的另一个根为x,则由根与系数的关系得:x+1=﹣a,x•1=a﹣2,解得:x=﹣,a=,即a=,方程的另一个根为﹣;(2)∵△=a2﹣4(a﹣2)=a2﹣4a+8=a2﹣4a+4+4=(a﹣2)2+4>0,∴不论a取何实数,该方程都有两个不相等的实数根.22.【解答】证明:(1)在矩形ABCD中,∵AD∥BC,∴∠AEB=∠DAF,又∵DF⊥AE,∴∠DF A=90°,∴∠DF A=∠B,又∵AD=EA,∴△ADF≌△EAB,∴DF=AB.(2)∵∠ADF+∠FDC=90°,∠DAF+∠ADF=90°,∴∠FDC=∠DAF=30°,∴AD=2DF,∵DF=AB,∴AD=2AB=8.23.【解答】解:(1)∵抛物线y=x2+bx+c与x轴只有一个交点,且交点为A(﹣2,0),∴抛物线解析式为y=(x+2)2,即y=x2+4x+4,∴b=4,c=4;(2)当x=0时,y=x2+4x+4=4,则B(0,4),∴△OAB的面积=×2×4=4.24.【解答】解:(1)设该4S店去年12月销售了x辆混动车,由题意,得(14+4.5﹣16)(120﹣x)+(18+2.8﹣18x)=324解得x=80答:该4S店去年12月销售了80辆混动车;(2)由题意,得[14(1+m%)+4﹣16]×40(1﹣m%)+(18+2﹣18)×(80+2.4m)=324﹣14解得m1=10,m2=50,当m=50时,1﹣m%=﹣<0,不符合题意,舍去.故m=10.答:m的值为10.五、(本大题共2小题,每小题10分,满分22分)25.【解答】解:(1)根据“极数”的意义得,1287,2376,8712,任意一个“极数”都是99的倍数,理由:设对于任意一个四位数且是“极数”n的个位数字为x,十位数字为y,(x是0到9的整数,y是0到8的整数)∴百位数字为(9﹣x),千位数字为(9﹣y),∴四位数n为:1000(9﹣y)+100(9﹣x)+10y+x=9900﹣990y﹣99x=99(100﹣10y﹣x),∵x是0到9的整数,y是0到8的整数,∴100﹣10y﹣x是整数,∴99(100﹣10y﹣x)是99的倍数,即:任意一个“极数”都是99的倍数;(2)设四位数m为“极数”的个位数字为x,十位数字为y,(x是0到9的整数,y是0到8的整数)∴m=99(100﹣10y﹣x),∵m是四位数,∴m=99(100﹣10y﹣x)是四位数,即1000≤99(100﹣10y﹣x)<10000,∵D(m)==3(100﹣10y﹣x),∴30≤3(100﹣10y﹣x)≤303∵D(m)完全平方数,∴3(100﹣10y﹣x)既是3的倍数也是完全平方数,∴3(100﹣10y﹣x)只有36,81,144,225这四种可能,∴D(m)是完全平方数的所有m值为1188或2673或4752或7425.26.【解答】解:(1)顶点坐标是(0,1),对称轴是y轴(或x=0).(2)∵△P AB是等边三角形,∴∠ABO=90°﹣60°=30°.∴AB=20A=4.∴PB=4.解法一:把y=4代入y=x2+1,得x=±2.∴P1(2,4),P2(﹣2,4).解法二:∴OB==2∴P1(2,4).根据抛物线的对称性,得P2(﹣2,4).(3)∵点A的坐标为(0,2),点P的坐标为(2,4)∴设线段AP所在直线的解析式为y=kx+b∴解得:∴解析式为:y=x+2设存在点N使得OAMN是菱形,∵点M在直线AP上,∴设点M的坐标为:(m,m+2)如图,作MQ⊥y轴于点Q,则MQ=m,AQ=OQ﹣OA=m+2﹣2=m ∵四边形OAMN为菱形,∴AM=AO=2,∴在直角三角形AMQ中,AQ2+MQ2=AM2,即:m2+(m)2=22解得:m=±代入直线AP的解析式求得y=3或1,当P点在抛物线的右支上时,分为两种情况:当N在右图1位置时,∵OA=MN,∴MN=2,又∵M点坐标为(,3),∴N点坐标为(,1),即N1坐标为(,1).当N在右图2位置时,∵MN=OA=2,M点坐标为(﹣,1),∴N点坐标为(﹣,﹣1),即N2坐标为(﹣,﹣1).当P点在抛物线的左支上时,分为两种情况:第一种是当点M在线段P A上时(P A内部)我们求出N点坐标为(﹣,1);第二种是当M点在P A的延长线上时(在第一象限)我们求出N点坐标为(,﹣1)∴存在N1(,1),N2(﹣,﹣1)N3(﹣,1),N4(,﹣1)使得四边形OAMN是菱形.。
人教版2019-2020学年九年级数学上册第二次月考试卷(含答案)
2019-2020学年九年级(上)第二次月考数学试卷一、选择题:(本大题共10个小题,每小题4分,共40分)本题每小题均有A、B、C、D四个备选答案,其中只有一个是正确的,请你将正确答案的序号涂在相应的答题卡上.1.﹣的倒数是()A.B.C.﹣D.﹣2.下列方程中,是一元二次方程的为()A.3x2﹣6xy+2=0B.x2﹣5=﹣2xC.x2+3x﹣1=x2D.x2+=03.近似数3.0×102精确到()A.十分位B.个位C.十位D.百位4.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3的度数为()A.50°B.40°C.30°D.20°5.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.6.一元二次方程x2﹣3x﹣2=0的实数根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能确定7.小张的爷爷每天坚持锻炼身体,星期天爷爷从家里跑步到公园,打了一会儿太极拳,然后沿原路漫步走到家,下面能反映当天爷爷离家的距离y(米)与时间x(分钟)之间关系的大致图象的是()A.B.C.D.8.如图,在菱形ABOC中,∠A=60°,它的一个顶点C在反比例函数y=的图象上,若菱形边长为4,则反比例函数解析式为()A.y=B.y=﹣C.y=﹣D.y=9.如图,已知D是△ABC中的边BC上的一点,∠BAD=∠C,∠ABC的平分线交边AC 于E,交AD于F,那么下列结论中错误的是()A.△BDF∽△BEC B.△BFA∽△BEC C.△BAC∽△BDA D.△BDF∽△BAE 10.如图,矩形ABOC的顶点A的坐标为(﹣4,5),D是OB的中点,E是OC上的一点,当△ADE的周长最小时,点E的坐标是()A.(0,)B.(0,)C.(0,2)D.(0,)二、填空题:(本大题共8个小题,每小题4分,共32分)11.9的算术平方根是.12.若方程x2﹣5x+3=0两根为x1,x2,则x1x2=.13.设点P(x,y)在第二象限,且|x|=2,|y|=1,则点P的坐标为.14.函数的自变量x的取值范围是.15.如图,在正方形ABCD的外侧,作等边△ADE,则∠AEB=.16.如图是一段楼梯,∠A=30°,斜边AC是4米,若在楼梯上铺地毯,则至少需要地毯米.17.在△ABC中,∠A=30°,∠B=45°,AC=,则BC=.18.古希腊数学家把1,3,6,10,15,21,…叫做三角形数,根据它的规律,则第100个三角形数与第98个三角形数的差为.三、解答题:(本题共4个小题,第19,20,21、22题每题10分,共40分)19.(1)计算:()﹣1+(π﹣3.14)0﹣|﹣2|﹣2cos30°.(2)用公式法解方程:3x2+2x﹣1=0.20.先化简,(﹣)×,再从1,2,3中选取一个适当的数代入求值.21.已知:如图,在平行四边形ABCD中,AE⊥BD,CF⊥BD,垂足分别为E,F.求证:△ADE≌△CBF.22.某商店商品每件成本20元,按30元销售时,每天可销售100件,根据市场调查:若销售单价每上涨1元,该商品每天销售量就减少5件.若该商店计划该商品每天获利1125元,求该商品的售价?四、(本题满分12分)23.如图,正比例函数y1=﹣3x的图象与反比例函数y2=的图象交于A、B两点.点C 在x轴负半轴上,AC=AO,△ACO的面积为12.(1)求k的值;(2)根据图象,当y1>y2时,写出x的取值范围.五、(本题满分12分)24.小明为了测量楼房AB的高度,他从楼底的B处沿着斜坡向上行走20m,到达坡顶D处.已知斜坡的坡角为15°.(以下计算结果精确到0.1m)(1)求小明此时与地面的垂直距离CD的值;(2)小明的身高ED是1.6m,他站在坡顶看楼顶A处的仰角为45°,求楼房AB的高度.(sin15°≈0.2588 cos15°≈0.9659 tan≈.0.2677 )六.(本题满分14分)25.一块材料的形状是锐角三角形ABC,边BC=120mm,高AD=80mm,把它加工成正方形零件如图1,使正方形的一边在BC上,其余两个顶点分别在AB,AC上.(1)求证:△AEF∽△ABC;(2)求这个正方形零件的边长;(3)如果把它加工成矩形零件如图2,当EG宽为多少mm时,矩形有最大面积,最大面积是多少?参考答案与试题解析一、选择题:(本大题共10个小题,每小题4分,共40分)本题每小题均有A 、B 、C 、D 四个备选答案,其中只有一个是正确的,请你将正确答案的序号涂在相应的答题卡上.1.﹣的倒数是( )A .B .C .﹣D .﹣【分析】乘积是1的两数互为倒数,结合选项进行判断即可.【解答】解:﹣的倒数为﹣.故选:D .【点评】本题考查了倒数的定义,属于基础题,注意掌握乘积是1的两数互为倒数. 2.下列方程中,是一元二次方程的为( )A .3x 2﹣6xy +2=0B .x 2﹣5=﹣2xC .x 2+3x ﹣1=x 2D .x 2+=0 【分析】根据判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高次数是2”;“二次项的系数不等于0”;“整式方程”进行分析即可.【解答】解:A 、不是一元二次方程,故此选项错误;B 、是一元二次方程,故此选项正确;C 、不是一元二次方程,故此选项错误;D 、不是一元二次方程,故此选项错误;故选:B .【点评】此题主要考查了一元二次方程的定义,关键是掌握只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.3.近似数3.0×102精确到( )A .十分位B .个位C .十位D .百位【分析】要判断科学记数法表示的数精确到哪一位,应当看最后一个数字在什么位,即精确到了什么位.【解答】解:近似数3.0×102精确到十位,故选:C.【点评】本题考查了近似数和有效数字:经过四舍五入得到的数叫近似数;从一个近似数左边第一个不为0的数数起到这个数完为止,所有数字都叫这个数的有效数字.4.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3的度数为()A.50°B.40°C.30°D.20°【分析】根据两直线平行,同位角相等求出∠2的同位角,再根据三角形的外角性质求解即可.【解答】解:如图,∵∠2=50°,并且是直尺,∴∠4=∠2=50°(两直线平行,同位角相等),∵∠1=30°,∴∠3=∠4﹣∠1=50°﹣30°=20°.故选:D.【点评】本题主要考查了两直线平行,同位角相等的性质以及三角形的外角性质,熟练掌握性质定理是解题的关键.5.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:A、是轴对称图形,故A符合题意;B、不是轴对称图形,故B不符合题意;C、不是轴对称图形,故C不符合题意;D、不是轴对称图形,故D不符合题意.故选:A.【点评】本题主要考查轴对称图形的知识点.确定轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.6.一元二次方程x2﹣3x﹣2=0的实数根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能确定【分析】先计算出判别式的值,然后利用判别式的意义判断方程根的情况.【解答】解:∵△=(﹣3)2﹣4×(﹣2)=17>0,∴方程有两个不相等的两个实数根.故选:A.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac 有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.7.小张的爷爷每天坚持锻炼身体,星期天爷爷从家里跑步到公园,打了一会儿太极拳,然后沿原路漫步走到家,下面能反映当天爷爷离家的距离y(米)与时间x(分钟)之间关系的大致图象的是()A.B.C.D.【分析】由爷爷锻炼身体的行程,可得出距离的变化是先增加、中间有段不变后减少,再根据跑步的速度快于漫步的速度,对照选项即可得出结论.【解答】解:∵爷爷跑步去公园,漫步回家,且在公园停留打了一会儿太极拳,∴距离的变化是先增加、中间有段不变后减少,且增加的快,减少的慢.故选:D.【点评】本题考查了函数的图象,根据爷爷锻炼身体的行程找出爷爷离家的距离y(米)与时间x(分钟)之间关系的大致图象是解题的关键.8.如图,在菱形ABOC中,∠A=60°,它的一个顶点C在反比例函数y=的图象上,若菱形边长为4,则反比例函数解析式为()A.y=B.y=﹣C.y=﹣D.y=【分析】根据菱形的性质和平面直角坐标系的特点可以求得点C的坐标,从而可以求得k的值,进而求得反比例函数的解析式.【解答】解:∵在菱形ABOC中,∠A=60°,菱形边长为4,∴OC=4,∠COB=60°,∴点C的坐标为(﹣2,2),∵顶点C在反比例函数y=的图象上,∴2=,得k=﹣4,即y=﹣,故选:C.【点评】本题考查待定系数法求反比例函数解析式、菱形的性质,解答本题的关键是明确题意,求出点C的坐标,利用反比例函数的性质解答.9.如图,已知D是△ABC中的边BC上的一点,∠BAD=∠C,∠ABC的平分线交边AC 于E,交AD于F,那么下列结论中错误的是()A.△BDF∽△BEC B.△BFA∽△BEC C.△BAC∽△BDA D.△BDF∽△BAE【分析】根据相似三角形的判定,采用排除法,逐项分析判断.【解答】解:∵∠BAD=∠C,∠B=∠B,∴△BAC∽△BDA.故C正确.∵BE平分∠ABC,∴∠ABE=∠CBE,∴△BFA∽△BEC.故B正确.∴∠BFA=∠BEC,∴∠BFD=∠BEA,∴△BDF∽△BAE.故D正确.而不能证明△BDF∽△BEC,故A错误.故选:A.【点评】本题考查相似三角形的判定.识别两三角形相似,除了要掌握定义外,还要注意正确找出两三角形的对应边和对应角.10.如图,矩形ABOC的顶点A的坐标为(﹣4,5),D是OB的中点,E是OC上的一点,当△ADE的周长最小时,点E的坐标是()A.(0,)B.(0,)C.(0,2)D.(0,)【分析】作A关于y轴的对称点A′,连接A′D交y轴于E,则此时,△ADE的周长最小,根据A的坐标为(﹣4,5),得到A′(4,5),B(﹣4,0),D(﹣2,0),求出直线DA′的解析式为y=x+,即可得到结论.【解答】解:作A关于y轴的对称点A′,连接A′D交y轴于E,则此时,△ADE的周长最小,∵四边形ABOC是矩形,∴AC∥OB,AC=OB,∵A的坐标为(﹣4,5),∴A′(4,5),B(﹣4,0),∵D是OB的中点,∴D(﹣2,0),设直线DA′的解析式为y=kx+b,∴,∴,∴直线DA′的解析式为y=x+,当x=0时,y=,∴E(0,),故选:B.【点评】此题主要考查轴对称﹣﹣最短路线问题,解决此类问题,一般都是运用轴对称的性质,将求折线问题转化为求线段问题,其说明最短的依据是三角形两边之和大于第三边.二、填空题:(本大题共8个小题,每小题4分,共32分)11.9的算术平方根是3.【分析】9的平方根为±3,算术平方根为非负,从而得出结论.【解答】解:∵(±3)2=9,∴9的算术平方根是|±3|=3.故答案为:3.【点评】本题考查了数的算式平方根,解题的关键是牢记算术平方根为非负.12.若方程x2﹣5x+3=0两根为x1,x2,则x1x2=3.【分析】直接由方程根与系数的关系可求得答案.【解答】解:∵方程x2﹣5x+3=0两根为x1,x2,∴x1x2=3,故答案为:3.【点评】本题主要考查根与系数的关系,掌握一元二次方程两根之和等于﹣、两根之积等于是解题的关键.13.设点P(x,y)在第二象限,且|x|=2,|y|=1,则点P的坐标为(﹣2,1).【分析】根据第二象限内点的横坐标是负数,纵坐标是正数结合绝对值的性质求出x、y 的值,然后写出即可.【解答】解:∵点P(x,y)在第二象限,且|x|=2,|y|=1,∴x=﹣2,y=1,∴点P的坐标为(﹣2,1).故答案为:(﹣2,1).【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).14.函数的自变量x的取值范围是x≥2.【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:根据题意得,x﹣2≥0,解得x≥2.故答案为:x≥2.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负数.15.如图,在正方形ABCD的外侧,作等边△ADE,则∠AEB=15°.【分析】由四边形ABCD为正方形,三角形ADE为等比三角形,可得出正方形的四条边相等,三角形的三边相等,进而得到AB=AE,且得到∠BAD为直角,∠DAE为60°,由∠BAD+∠DAE求出∠BAE的度数,进而利用等腰三角形的性质及三角形的内角和定理即可求出∠AEB的度数.【解答】解:∵四边形ABCD为正方形,△ADE为等边三角形,∴AB=BC=CD=AD=AE=DE,∠BAD=90°,∠DAE=60°,∴∠BAE=∠BAD+∠DAE=150°,又∵AB=AE,∴∠AEB==15°.故答案为:15°.【点评】此题考查了正方形的性质,以及等边三角形的性质,利用了等量代换的思想,熟练掌握性质是解本题的关键.16.如图是一段楼梯,∠A=30°,斜边AC是4米,若在楼梯上铺地毯,则至少需要地毯2+2米.【分析】利用直角三角形中30°角对的直角边等于斜边的一半求出BC的长,再根据勾股定理求出AB的长,进而可得出结论.【解答】解:∵△ABC是直角三角形,∠A=30°,斜边AC是4米,∴BC=AC=2米,∴AB===2(m),∴如果在楼梯上铺地毯,那么至少需要地毯为AB+BC=(2)米.故答案为:2+2【点评】本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.17.在△ABC中,∠A=30°,∠B=45°,AC=,则BC=1.【分析】作CD⊥AB,由AC=、∠A=30°知CD=,由∠B=45°知CD=BD=,最后由勾股定理可得答案.【解答】解:如图,过点C作CD⊥AB于点D,在Rt△ACD中,∵AC=,∠A=30°,∴CD=AC=,∵在Rt△BCD中,∠B=45°,∴CD=BD=,则BC==1,故答案为1;【点评】本题主要考查勾股定理、直角三角形的性质,熟练掌握直角三角形的性质和勾股定理是解题的关键.18.古希腊数学家把1,3,6,10,15,21,…叫做三角形数,根据它的规律,则第100个三角形数与第98个三角形数的差为199.【分析】根据条件第二个比第一个大2,第三个比第二个大3,第四个比第三个大4,依此类推,可以得到:第n个比第n﹣1个大n.则第100个三角形数与第99个三角形数的差100,第99个三角形数与第98个三角形数的差99,∴第100个三角形数与第98个三角形数的差为100+99=199.【解答】解:第100个三角形数与第98个三角形数的差为199.【点评】这是一个探索性问题,是一个经常出现的问题.三、解答题:(本题共4个小题,第19,20,21、22题每题10分,共40分)19.(1)计算:()﹣1+(π﹣3.14)0﹣|﹣2|﹣2cos30°. (2)用公式法解方程:3x 2+2x ﹣1=0.【分析】(1)先求出每一部分的值,再代入求出即可;(2)先求出b 24ac 的值,再代入公式求出即可.【解答】解:(1)()﹣1+(π﹣3.14)0﹣|﹣2|﹣2cos30°=2+1﹣(2﹣)﹣2× =1;(2)3x 2+2x ﹣1=0,a=3,b=2,c=﹣1,∵b 2﹣4ac=22﹣4×3×(﹣1)=16>0,∴x=,∴x 1=,x 2=﹣1.【点评】本题考查了解一元二次方程,零指数幂,负整数指数幂,特殊角的三角函数值等知识点,能求出每一部分的值是解(1)的关键,能选择适当的方法解一元二次方程是解(2)的关键.20.先化简,(﹣)×,再从1,2,3中选取一个适当的数代入求值.【分析】根据分式的减法和乘法可以化简题目中的式子,在从1,2,3中选取一个使得原分式有意义的值代入化简后的式子即可解答本题.【解答】解:(﹣)×===,当x=1时,原式=.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.21.已知:如图,在平行四边形ABCD中,AE⊥BD,CF⊥BD,垂足分别为E,F.求证:△ADE≌△CBF.【分析】证出∠ADE=∠CBF,AD=CB,由AAS证△ADE≌△CBF即可.【解答】证明:∵四边形ABCD是平行四边形,∴AD=CB,AD∥BC,∴∠ADE=∠CBF,∵AE⊥BD,CF⊥BD,∴∠AED=∠CFB=90°,在△ADE和△CBF中,,∴△ADE≌△CBF(AAS).【点评】此题考查了平行四边形的性质、全等三角形的判定.熟练掌握平行四边形的性质是解决问题的关键.22.某商店商品每件成本20元,按30元销售时,每天可销售100件,根据市场调查:若销售单价每上涨1元,该商品每天销售量就减少5件.若该商店计划该商品每天获利1125元,求该商品的售价?【分析】设商品售价为每件(30+x)元,则每天销售(100﹣5x)件,根据总利润=单件利润×销售数量,即可得出关于x的一元二次方程,解之即可得出x的值,将其代入30+x中即可求出该商品的售价.【解答】解:设商品售价为每件(30+x)元,则每天销售(100﹣5x)件,根据题意得:(30+x﹣20)×(100﹣5x)=1125,整理得:x2﹣10x+25=0,解得:x1=x2=5,∴x+30=35.答:该商品的售价为35元.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.四、(本题满分12分)23.如图,正比例函数y1=﹣3x的图象与反比例函数y2=的图象交于A、B两点.点C 在x轴负半轴上,AC=AO,△ACO的面积为12.(1)求k的值;(2)根据图象,当y1>y2时,写出x的取值范围.【分析】(1)过点A作AD垂直于OC,由AC=AO,得到CD=DO,确定出三角形ADO与三角形ACD面积,即可求出k的值;(2)根据函数图象,找出满足题意x的范围即可.【解答】解:(1)如图,过点A作AD⊥OC,∵AC=AO,∴CD=DO,=S△ACD=6,∴S△ADO∴k=﹣12;(2)联立得:,解得:或,即A(﹣2,6),B(2,﹣6),根据图象得:当y1>y2时,x的范围为x<﹣2或0<x<2.【点评】此题考查了反比例函数与一次函数的交点问题,利用了数形结合的思想,熟练掌握各函数的性质是解本题的关键.五、(本题满分12分)24.小明为了测量楼房AB的高度,他从楼底的B处沿着斜坡向上行走20m,到达坡顶D处.已知斜坡的坡角为15°.(以下计算结果精确到0.1m)(1)求小明此时与地面的垂直距离CD的值;(2)小明的身高ED是1.6m,他站在坡顶看楼顶A处的仰角为45°,求楼房AB的高度.(sin15°≈0.2588 cos15°≈0.9659 tan≈.0.2677 )【分析】(1)利用在Rt△BCD中,∠CBD=15°,BD=20,得出CD=BD•sin15°求得答案即可;(2)由图可知:AB=AF+DE+CD,利用直角三角形的性质和锐角三角函数的意义,求得AF即可.【解答】解:(1)在Rt△BCD中,∵∠CBD=15°,BD=20,∴CD=BD•sin15°,∴CD≈5.2m;答:小明与地面的垂直距离CD的值是5.2m;(2)在Rt△AFE中,∵∠AEF=45°,∴AF=EF=BC,由(1)知,BC=BD•cos15°≈19.3(m),∴AB=AF+DE+CD=19.3+1.6+5.2=26.1(m).答:楼房AB的高度是26.1m.【点评】本题考查了解直角三角形的应用,题目中涉及到了仰角和坡角的问题,解题的关键是构造直角三角形.六.(本题满分14分)25.一块材料的形状是锐角三角形ABC,边BC=120mm,高AD=80mm,把它加工成正方形零件如图1,使正方形的一边在BC上,其余两个顶点分别在AB,AC上.(1)求证:△AEF∽△ABC;(2)求这个正方形零件的边长;(3)如果把它加工成矩形零件如图2,当EG宽为多少mm时,矩形有最大面积,最大面积是多少?【分析】(1)根据矩形的对边平行得到BC∥EF,利用“平行于三角形的一边的直线截其他两边或其他两边的延长线,得到的三角形与原三角形相似”判定即可.(2)设正方形零件的边长为x mm,则KD=EF=x,AK=80﹣x,根据EF∥BC,得到△AEF ∽△ABC,根据相似三角形的性质得到比例式,解方程即可得到结果;(3)根据矩形面积公式得到关于a的二次函数,根据二次函数求出矩形的最大值.【解答】解:(1)∵正方形EGHF∴EF∥BC∴△AEF∽△ABC(2)设EG=EF=x∵△AEF∽△ABC∴∴∴x=48∴正方形零件的边长为48mm,(3)设EG=a∵矩形EGHF∴EF∥BC∴△AEF∽△ABC∴∴∴EF=120﹣a∴矩形面积S=a(120﹣a)=﹣a2+120a=﹣(a﹣40)2+2400当a=40时,此时矩形面积最大,最大面积是2400mm2,即:当EG=40时,此时矩形面积最大,最大面积是2400mm2.【点评】此题是相似形综合题,主要考查了正方形的性质,矩形的性质,相似三角形的判定和性质,解本题的关键是判断出△AEF∽△ABC.。
2019—2020学年度重庆南开中学第一学期初三12月月考初中数学
2019—2020学年度重庆南开中学第一学期初三12月月考初中数学数学试题〔全卷四个大题,共26个小题;时刻:120分钟 总分值:150分〕一、选择题〔本大题10个小题,每题4分,共40分〕每个小题都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的。
1.9的相反数是〔 〕 A .9B .-9C .6D .-62.以下运算正确的选项是〔 〕 A .3232a a a -=B .55a a a ÷=C .235a b ab +=D .326()a a -=3.用激光测距仪测量两座山峰之间的距离,从一座山峰发出的激光通过5410-⨯秒到达另一座山峰,光速为8310⨯米/秒,那么两座山峰之间的距离用科学记数法表示为〔 〕 A .31.210⨯米B .31210⨯米C .41.210⨯米D .51.210⨯米4.以下几项调查中,适合作普查的是〔 〕 A .重庆市初中生每人每周的生活费的调查B .调查你所在班级全体学生的体重C .环保部门对嘉陵江水域的水污染情形的调查D .日光灯管厂要检测一批灯管的使用寿命5.如图,⊙O 是ABC ∆的外接圆,直径2,AD =30,ABC ∠=那么AC 的长度是〔 〕A .1B .2C 2D 36.由6个大小相同的正方体搭成的几何体如下图,那么关于它的视图讲法正确的选项是〔 〕A .主视图的面积最大B .左视图的面积最大C .俯视图的面积最大D .三个视图的面积一样大7.如图,ABC ∆的顶点差不多上正方形网格中的格点,那么sin ABC ∠等于〔 〕A .5B .255C .55D .238.观看以下正方形的四个顶点所标的数字规律,那么2019那个数标在〔 〕A .第502个正方形的左下角B .第502个正方形的右下角C .第503个正方形的左下角D .第503个正方形的右下角9.如图,图a 是长方形纸带,20,DEF ∠=将纸带沿EF 折叠成图,b 再沿BF 折叠成图,c 那么图c 中的CFE ∠的度数是〔 〕A .110°B .120°C .140°D .150°10.如图,M 是边长为4的正方形AD 边的中点,动点P 自A 点起,由A B C D→→→匀速运动,直线MP 扫过正方形所形成面积为,y 点P 运动的路程为,x 那么表示y 与x 的函数关系的图象为〔 〕二、填空题〔本大题6个小题,每题4分,共24分〕 11.分解因式34m m -=________________________.12.关于x 的某个不等式组的解集在数轴上表示为如图,那么不等式组的解集为___________.13.,,,a b c d 为实数,先规定一种新的运算: , a c ad bc b d=-那么2 418(1) 5x =-时,x的值为__________________.14.如图,三个同心扇形的圆心角AOB ∠为120°,半径OA 为12cm ,C D 、是弧AB 的三等分点,那么阴影部分的面积为______________2cm .〔结果保留π〕15.如图,在矩形ABCD 中,对角线AC 和BD 相交于点,O 点E 和F 分不是OA 和OC 的中点,连接DF 并延长与BC 相交于点,N 连接NE 并延长与AD 相交于点,M 那么:AM MD =______.16.如图,二次函数2(0)y ax bx c a =++>图象的顶点为,D 其图象与x 轴的交点A B 、的横坐标分不为13,-、 与y 轴负半轴交于点C 。
2023-2024学年全国初中九年级上数学新人教版月考试卷(含解析)
2023-2024学年全国九年级上数学月考试卷考试总分:115 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息; 2.请将答案正确填写在答题卡上;卷I (选择题)一、 选择题 (本题共计 10 小题 ,每题 5 分 ,共计50分 )1. 下列方程中是一元二次方程的是( )A.B.C.D.2. 如图,抛物线的顶点为,与轴的一个交点在,之间,下列结论中错误的是( )A.B.C.当 时,随的增大而增大D.3. 用配方法解方程,配方结果正确的是( )A.B.xy +2=1+−9=0x 212x+2x −1=0x 2a +bx +c =0x 2y =a +bx +c x 2B(1,−3)x A (2,0)(3,0)bc >0a −b +c >0x ≥0y x a −c =3−6x −8=0x 2(x −3=17)2(x −3=14)2(x −6=442C.D.4. 方程 的根是 A.B.,C.,D.,5. 已知是关于的一元二次方程的一个根,则的值是( )A.B.C.D.无法确定6. 三角形两边的长是和,第三边的长是方程的根,则该三角形的周长为()A.B.C.或D.以上都不对7. 下列各式中,是的二次函数的是( )A.B.C.D.8. 已知关于的方程的一个根为,则另一个根是( )A.B.(x −6=44)2(x −3=1)2x(x −5)=0()5−550−5051x (m −1)+x +1=0x 2m 1−134−12x +35x 2=014121412y x y =−(x −1)xx 2y +a =−3x 2=2y +3x 2y =+x 2x −2x −x +a =0x 221−2C.D.9. 我省加快新旧动能转换,促进企业创新发展.某企业一月份的营业额是万元,月平均增长率相同,今年第一季度的总营业额是万元.若设月平均增长率是,那么可列出的方程是( )A.B.C.D.10. 如图,矩形的两条对角线、相交于点,,设矩形的面积为,则与之间的函数关系式为( )A.B.C.D.卷II (非选择题)二、 填空题 (本题共计 5 小题 ,每题 5 分 ,共计25分 )11. 若关于的一元二次方程的常数项为,则________.12. 方程的根是________.13. 已知关于的一元二次方程有一个非零实数根,则________.14. 的两边长分别为和,第三边长是方程的根,则的周长为−1−310003640x 1000=3640(1+x)21000(1+2x)=36401000+1000(1+x)+1000=3640(1+x)21000+1000(1+x)+1000(1+2x)=3640ABCD AC BD 0∠AOB =60∘AB =xcm ABCD S c m 2S x S =3–√x 2S =3–√3x 2S =3–√xx 2S =12x 2x (m −3)−3x +=9x 2m 20m =(x −1)(x +2)=4x +ax +b =0x 2−b a −b =△ABC 25−8x +12=0x 2△ABC________.15. 若实数、满足,且,恰好是等腰的两条边的边长,则的周长是________.三、 解答题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )16. 解方程:17. 已知一次函数,随的增大而增大,(1)求的取值范围;(2)如果这个一次函数又是正比例函数,求的值;(3)如果这个一次函数的图象经过一、三、四象限,试写一个的值,不用写理由.18. 关于的一元二次方程=有两个相等的实数根.(1)求的值;(2)求此方程的根.19. 为了丰富职工的文化生活,某公司准备组织职工观看电影.公司的刘会计受公司委派去购买某电影票,电影院给出了如下价格优惠:若人数不超过人,则每张电影票的价格为元.若人数超过人,则每增加人,每张电影票的价格降低元,但每张电影票的价格不低于元.已知刘会计支付了元购买电影票,问公司有多少职工去观看电影?20. 如图,要建一个面积为平方米的仓库,仓库的一边靠墙,这堵墙的长为米,在与墙垂直的一边要开一扇米宽的门,已知围建仓库的现有木板材料可使新建板墙的总长为米,那么这个仓库的宽和长分别是多少米?21. 某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是,则每个支干长几支小分支?22. 某商场将每件进价为元的某种商品原来按每件元出售,一天可售出件.后来经过市场调查,发现这种商品单价每降低元,其销量可增加件.求商场经营该商品原来一天可获利润________元.设后来该商品每件降价元,商场一天可获利润元.①若商场经营该商品一天要获利润元,则每件商品应降价多少元?m n |m −2|+=0n −4−−−−−√m n △ABC △ABC (1)−4x =3x 2(2)−4=2(x +2)x 2y =(m −3)x +m −8y x m m m x −2mx +(m −1x 2)20m (1)10100(2)1014701200140182329180100100110(1)(2)x y 2160②求出与之间的函数关系式,当取何值时,商场获利润最大? 23. 解方程(直开法)(2)(十字相乘法)(3)(配方法)(4)(公式法)y x x (1)(x −3=25)2+3x +2=0x 2−6x +8=0x 2−x −1=0x 2参考答案与试题解析2023-2024学年全国九年级上数学月考试卷一、 选择题 (本题共计 10 小题 ,每题 5 分 ,共计50分 )1.【答案】C【考点】一元二次方程的定义【解析】根据一元二次方程的定义:含有两个未知数,并且所含未知数的项的次数是次得整式方程,即可判断答案.【解答】解:根据一元二次方程的定义:,含有两个未知数,不是一元二次方程,故本选项错误;,该方程不是整式方程,故本选项错误;,是一元二次方程,故本选项正确;,当是常数,时,方程才是一元二次方程,故本选项错误.故选.2.【答案】C【考点】二次函数的定义【解析】此题暂无解析【解答】解:把,,代入抛物线得,由①得,④,把④代入②③得2A B C D abc a ≠0C (1,−3)(2,0)(3,0) a +b +c =−3①,4a +2b +c =0②,9a +3b +c =0③,c =−3−a −b {3a +b =3④,8a +2b =3⑤,④×26a +2b =6得,⑥,得,,所以.把代入④得,解得.把,代入④得,.所以,故错误;,故错误;由图知,当 时,随的增大而增大,故正确;,故错误.故选.3.【答案】A【考点】解一元二次方程-配方法【解析】配方法的一般步骤:把常数项移到等号的右边;把二次项的系数化为;等式两边同时加上一次项系数一半的平方.【解答】解:由原方程移项,得,等式两边同时加上一次项系数一半的平方,得,∴.故选.4.【答案】D【考点】一元二次方程的解【解析】此题暂无解析④×26a +2b =6⑤−⑥2a =−3a =−32a =−32−+b =392b =152a =−32b =152c =−9bc =−<01352A a −b +c =−−−9=−18<032152B x ≥0y x C a −c =−+9=−32152D C (1)(2)1(3)−6x =8x 232−6x +=8+x 23232(x −3=17)2A【解答】解:∵,∴或,解得,或.故选.5.【答案】B【考点】一元二次方程的解一元二次方程的定义【解析】把代入方程,即可得到一个关于的方程,即可求解.【解答】解:根据题意得:,解得:.故选.6.【答案】B【考点】三角形三边关系解一元二次方程-因式分解法【解析】易得方程的两根,那么根据三角形的三边关系,排除不合题意的边,进而求得三角形周长即可.【解答】解:解方程得:或.当时,,不能组成三角形;当时,,三边能够组成三角形.∴该三角形的周长为.故选.7.【答案】x(x −5)=0x =0x −5=0x =0x =5D x =1m (m −1)+1+1=0m =−1B −12x +35x 2=0x=5x=7x=73+4=7x=53+4>53+4+5=12BC【考点】二次函数的定义【解析】根据二次函数的定义:一般地,形如、、是常数,的函数,叫做二次函数进行分析.【解答】解:、整理后没有的二次方项,故此选项错误;、如果,则不是二次函数,故此选项错误;、符合二次函数定义,故此选项正确;、不是整式,故此选项错误;故选:.8.【答案】C【考点】根与系数的关系【解析】设另一根为,根据根与系数的关系得到,易得的值,再利用求出即可.【解答】解:设另一根为,根据题意得,解得.故选.9.【答案】C【考点】一元二次方程的应用——增长率问题由实际问题抽象出一元二次方程【解析】设月平均增长率是,然后用含的式子表示出二月份和三月份的营业额,最后根据三个月的营业额y =a +bx +c(a x 2b c a ≠0)A x B a =0C D C x 22+x 2=1x 22=a x 2a x 22+x 2=1=−1x 2C x x的和等于列方程即可.【解答】解:设月平均增长率是,则二月份的营业额为,三月份的营业额为.根据题意,得.故选.10.【答案】A【考点】一元二次方程的应用【解析】此题暂无解析【解答】此题暂无解答二、 填空题 (本题共计 5 小题 ,每题 5 分 ,共计25分 )11.【答案】【考点】一元二次方程的一般形式一元二次方程的定义【解析】方程整理为一般形式,根据常数项为确定出的值即可.【解答】解:方程整理得:,由常数项为,得到,解得:(舍去)或,则,故答案为:12.【答案】3640x 1000(1+x)1000(1+x)21000+1000(1+x)+1000=3640(1+x)2C −30m (m −3)−3x +−9=0x 2m 20−9=0m 2m =3m =−3m =−3−3,【考点】解一元二次方程-因式分解法【解析】首先把方程化成一元二次方程的一般形式,然后运用因式分解求解即可.【解答】解:,整理,得,因式分解,得,即或,解得,.故答案为:,.13.【答案】【考点】一元二次方程的解【解析】由于关于的一元二次方程有一个非零根,那么代入方程中即可得到,再将方程两边同时除以即可求解.【解答】解:∵关于的一元二次方程有一个非零根,∴.∵,∴.方程两边同时除以,得,∴.故答案为:.14.【答案】【考点】解一元二次方程-因式分解法三角形三边关系=−3x 1=2x 2(x −1)(x +2)=4+x −6=0x 2(x +3)(x −2)=0x +3=0x −2=0=−3x 1=2x 2=−3x 1=2x 21x +ax +b =0x 2−b −ab +b =0b 2b x +ax +b =0x 2−b −ab +b =0b 2−b ≠0b ≠0b b −a +1=0a −b =1113【解析】先利用因式分解法解方程,然后根据三角形的三边关系得出第三边的长,则该三角形的周长可求.【解答】解: ,,解得,,∵两边长分别为和,第三边长是方程的根,,,∴的第三边长是,∴该三角形的周长为:.故答案为:.15.【答案】【考点】等腰三角形的性质三角形三边关系非负数的性质:绝对值非负数的性质:偶次方非负数的性质:算术平方根【解析】由已知等式,结合非负数的性质求、的值,再根据、分别作为等腰三角形的腰,分类求解.【解答】∵,∴=,=,解得=,=,当=作腰时,三边为,,,不符合三边关系定理;当=作腰时,三边为,,,符合三边关系定理,周长为:=.三、 解答题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )16.【答案】解:()由,得.,−8x +12=0x 2−8x +12=0x 2(x −2)(x −6)=0=2x 1=6x 2△ABC 25−8x +12=0x 22+2<52+5>6△ABC 62+5+6=131310m n m n |m −2|+=0n −4−−−−−√m −20n −40m 2n 4m 2224n 42442+4+4101−4x =3x 2−4x −3=0x 2Δ=−4×(−3)=28(−4)2=,4+2–√∴∴;或∴.【考点】解一元二次方程-因式分解法解一元二次方程-公式法【解析】此题暂无解析【解答】解:()由,得.,∴∴;或∴.17.【答案】解:(1)根据题意得,解得;(2)根号题意得且,解得;(3)根据题意得:,解得:,∴中任取一个值都可以.【考点】一次函数图象与系数的关系正比例函数的定义【解析】(1)根据函数的增减性得到,从而确定的取值范围;(2)根据正比例汉是的定义得到且,从而确定的值;(3)根据一次函数的性质确定的取值范围,然后从的范围内确定的一个值即可.x =,4+27–√2×1=2+,=2−x 17–√x 27–√(2)−4=2(x +2),x 2(x +2)(x −2)−2(x +2)=0,x +2=0x −4=0,=−2,=4x 1x 21−4x =3x 2−4x −3=0x 2Δ=−4×(−3)=28(−4)2x =,4+27–√2×1=2+,=2−x 17–√x 27–√(2)−4=2(x +2),x 2(x +2)(x −2)−2(x +2)=0,x +2=0x −4=0,=−2,=4x 1x 2m −3>0m >3m −3≠0m −8=0m =8{m −3>0m −8<03<m <83<m <8m −3>0m m −3≠0m −8=0m m m m【解答】解:(1)根据题意得,解得;(2)根号题意得且,解得;(3)根据题意得:,解得:,∴中任取一个值都可以.18.【答案】∵关于的一元二次方程=有两个相等的实数根,∴===,解得:.将代入原方程得=,解得:=.【考点】解一元二次方程-配方法根的判别式【解析】(1)由方程有两个相等的实数根结合根的判别式,即可得出==,解之即可得出结论;(2)将的值代入原方程,利用配方法解方程即可得出结论.【解答】∵关于的一元二次方程=有两个相等的实数根,∴===,解得:.将代入原方程得=,解得:=.19.【答案】解:设公司有名职工去观看电影,由题意,得:,,即,求得,,当时,,m −3>0m >3m −3≠0m −8=0m =8{m −3>0m −8<03<m <83<m <8x −2mx +(m −1x 2)20△(−2m −4(m −1)2)28m −40m =12m =12−x +=(x −x 21412)20x 1=x 212△8m −40m x −2mx +(m −1x 2)20△(−2m −4(m −1)2)28m −40m =12m =12−x +=(x −x 21412)20x 1=x 212x [100−4(x −10)]x =1200∴(140−4x)x =1200(x −20)(x −15)=0=20x 1=15x 2∵x =20100−4(20−10)=60<70不合题意,舍去.即公司有名职工去观看电影.【考点】一元二次方程的应用——其他问题【解析】设出未知数,根据等量关系,列出方程求解即可解决问题.【解答】解:设公司有名职工去观看电影,由题意,得:,,即,求得,,当时,,不合题意,舍去.即公司有名职工去观看电影.20.【答案】解:设这个仓库的长为米,由题意得:,解得:,,∵这堵墙的长为米,∴不合题意舍去,∴,宽为:(米).则这个仓库的宽为米,长为米.【考点】一元二次方程的应用——几何图形面积问题【解析】首先设这个仓库的长为米,则宽表示为,再根据面积为平方米的仓库可得,再解一元二次方程即可.【解答】解:设这个仓库的长为米,由题意得:,解得:,,∴x =20∴x =1515x [100−4(x −10)]x =1200∴(140−4x)x =1200(x −20)(x −15)=0=20x 1=15x2∵x =20100−4(20−10)=60<70∴x =20∴x =1515x x ×(32+2−x)=14012=20x 1=14x 218x =20x =14×(32+2−14)=10121014x (32+2−x)12140x ×(32+2−x)=14012x x ×(32+2−x)=14012=20x 1=14x 2∵这堵墙的长为米,∴不合题意舍去,∴,宽为:(米).则这个仓库的宽为米,长为米.21.【答案】解:设每个支干长出的小分支的数目是支,根据题意列方程得:,解得:或(不合题意,应舍去),故每个支干长支小分支.【考点】一元二次方程的应用【解析】由题意设每个支干长出的小分支的数目是个,每个小分支又长出个分支,则又长出个分支,则共有个分支,即可列方程求得的值.【解答】解:设每个支干长出的小分支的数目是支,根据题意列方程得:,解得:或(不合题意,应舍去),故每个支干长支小分支.22.【答案】①由题可知,令得:,整理得:,解得:.∴应降价元或元.②,当时,.∴当降价元时,有最大利润元.【考点】一元二次方程的应用——利润问题二次函数的最值【解析】1218x =20x =14×(32+2−14)=10121014x +x +1=91x 2x =9x =−109x x x 2+x +1x 2x x +x +1=91x 2x =9x =−1092000(2)y =(100−x −80)(100+10x)=(10x +100)(20−x)=−10+100x +2000x 2y =2160−10+100x +2000=2160x 2(x −2)(x −8)=0=2,=8x 1x 228y =−10+100x +2000x 2=−10+2250(x −5)2x =5=2250y max 52250(1)原来一天可获利润(原售价-原进价)一天的销售量;【解答】解:(元),故答案为:.①由题可知,令得:,整理得:,解得:.∴应降价元或元.②,当时,.∴当降价元时,有最大利润元.23.【答案】解:(直开法),解得:,;(2)(十字相乘法),解得:,;(3)(配方法),则,解得:,;(4)(公式法),则,解得:,.【考点】解一元二次方程-因式分解法解一元二次方程-直接开平方法=×(1)(100−80)×100=20002000(2)y =(100−x −80)(100+10x)=(10x +100)(20−x)=−10+100x +2000x 2y =2160−10+100x +2000=2160x 2(x −2)(x −8)=0=2,=8x 1x 228y =−10+100x +2000x 2=−10+2250(x −5)2x =5=2250y max 52250(1)(x −3=25)2x −3=±5=8x 1=−2x 2+3x +2=0x 2(x +1)(x +2)=0=−1x 1=−2x 2−6x +8=0x 2(x −3=1)2x −3=±1=2x 1=4x 2−x −1=0x 2−4ac =1+4=5b 2x =1±5–√2=x 11+5–√2=x 21−5–√2解一元二次方程-配方法解一元二次方程-公式法【解析】(1)直接利用开平方法解方程得出答案;(2)直接利用十字相乘法分解因式得出答案;(3)直接利用配方法解方程得出答案;(4)直接利用公式法解方程得出答案.【解答】解:(直开法),解得:,;(2)(十字相乘法),解得:,;(3)(配方法),则,解得:,;(4)(公式法),则,解得:,.(1)(x −3=25)2x −3=±5=8x 1=−2x 2+3x +2=0x 2(x +1)(x +2)=0=−1x 1=−2x 2−6x +8=0x 2(x −3=1)2x −3=±1=2x 1=4x 2−x −1=0x 2−4ac =1+4=5b 2x =1±5–√2=x 11+5–√2=x 21−5–√2。
2019-2020学年重庆市九龙坡区九年级(上)第二次月考数学试卷解析版
2019-2020学年重庆市九龙坡区九年级(上)第二次月考数学试卷一、选择题:(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号填入答题卷中对应的表格内.1.(4分)﹣2的相反数是()A.2B.﹣2C.D.﹣2.(4分)如图是由6个大小相同的正方体组成的几何体,它的左视图是()A.B.C.D.3.(4分)已知反比例函数y=﹣的图象上有两点A(x1,y1),B(x2,y2),且x1<x2<0,则y1,y2的大小关系为()A.y1<y2B.y1>y2C.y1=y2D.无法确定4.(4分)在函数y=中自变量x的取值范围在数轴上表示正确的为()A.B.C.D.5.(4分)如果两个相似三角形的面积比是1:2,那么它们的周长比是()A.1:2B.1:4C.1:D.2:16.(4分)一个不透明的布袋中有分别标着数字1,2,3,4的四个乒乓球,现从袋中随机摸出两个乒乓球,则这两个乒乓球上的数字都是奇数的概率为()A.B.C.D.7.(4分)已知抛物线y=ax2+bx+c(a≠0)在平面直角坐标系的位置如图所示,则下列结论中:(1)a>0;(2)b>0;(3)a﹣b+c>0;(4)2a+b=0,正确的有()A.1个B.2个C.3个D.4个8.(4分)如图所示,平地上一棵树高为6米,两次观察地面上的影子,第一次是当阳光与地面成60°时,第二次是阳光与地面成30°时,第二次观察到的影子比第一次长()A.B.C.D.9.(4分)下列图形都是由同样大小的棋子按一定的规律组成,其中第①个图形有1颗棋子,第②个图形一共有6颗棋子,第③个图形一共有16颗棋子,…,则第⑥个图形中棋子的颗数为()A.51B.70C.76D.8110.(4分)已知y=ax2+bx+c(a≠0)的图象如图所示,则ax2+bx+c=n(a≠0,0<n<2)的方程的两实根x1,x2,则满足()A.1<x1<x2<3B.1<x1<3<x2C.x1<1<x2<3D.0<x1<1,且x2>311.(4分)如图为一座抛物线型的拱桥,AB、CD分别表示两个不同位置的水面宽度,O为拱桥顶部,水面AB宽为10米,AB距桥顶O的高度为12.5米,水面上升2.5米到达警戒水位CD位置时,水面宽为()米.A.5B.2C.4D.812.(4分)如图,A、B是双曲线y=(k≠0)上的点,A、B两点的横坐标分别是a、3a,线段AB的延长线交x轴于点C,若S=3.则k的值为()△AOCA.2B.﹣2C.3D.﹣二、填空题(本大题共6小题,每小题4分,满分24分)在每小题中,请将答案直接填在答题卷中对应的横线上.13.(4分)分式的值为1,则m=.14.(4分)在Rt△ABC中,∠C=90°,若AB=5,sin A=,则AC=.15.(4分)育才中学体育文化节中,10个评委对该校初三年级入场式表演的打分情况如下:则初三年级入场式表演得分的中位数为.16.(4分)如图,E是▱ABCD的边CD上一点,连接AE并延长交BC的延长线于点F,且AD=4,=,则CF的长为.17.(4分)有四张正面分别标有﹣1,0,1,2的不透明的卡片,它们除数字不同外其余全部相同,现将它们背面朝上,洗匀后从中取出一张,将卡片上的数字记为a,不放回,再取出一张,将卡片上的数字记为b,能使得方程ax2﹣x+=0有解,且直线y=x﹣(a+b)不经过第四象限的概率是.18.(4分)如图,矩形ABCD的边AB=4,BC=7,E为BC上一点,BE=3,连接AE,将矩形ABCD沿AE翻折,翻折后点B与点B′对应,点A与A′对应,再将所得△A′B′E绕着点E 旋转,线段A′B′与线段AE交于点P,当PA′=时,△B′AP为等腰三角形.三、解答题:解答时每小题必须给出必要的演算过程或推理步骤,请将解答过程做在答题卷上.19.(14分)(1)计算:+(﹣2)2﹣(π﹣2015)0×|﹣6|﹣tan60°(2)解方程组:.20.(6分)如图,在△ABC中,AD⊥BC于D,tan∠BAD=,∠ACD=45°,AB=5,求AC的长.21.(10分)先化简,再求值:+÷(2﹣a﹣),其中a是不等式﹣>1的最大整数解.22.(6分)如图,Rt△ABO的顶点A是双曲线y=(k≠0)与直线y=﹣x﹣(k+1)在第二象限=.的交点,AB⊥x轴于B,点C是双曲线与直线的另一个交点,且S△ABO(1)求这两个函数的解析式;(2)直接写出使一次函数的值大于反比例函数的值的x的取值范围.23.(8分)西宁市教育局自实施新课程改革后,学生的自主学习、合作交流能力有很大提高.张老师为了了解所教班级学生自主学习、合作交流的具体情况,对本班部分学生进行了为期半个月的跟踪调查,将调查结果分成四类,A:特别好;B:好;C:一般;D:较差;并将调查结果绘制成以下不完整的统计图,请你根据统计图解答下列问题:(1)本次调查中,张老师一共调查了名同学;(2)将上面的条形统计图补充完整;(3)为了共同进步,张老师想从被调查的A类和D类学生分别选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法列出所有等可能的结果,并求出所选两位同学恰好是一位男同学和一位女同学的概率.24.(10分)某商场经销一种销售成本为每千克40元的化工商品,据市场分析,若每千克50元销售,每月能售出500千克,销售单价每涨1元,月销售量就减少10千克,设销售单价是为每千克x元,月销售利润为y元.(1)求y与x的函数关系式?(不必写出x的取值范围)(2)商场想在月销售成本不超过9000元的情况下,使得月销售利润达到8000元,那么销售单价应定为多少?(3)该商场希望月销售利润达到最大,则销售单价应定为多少?此时最大月销售利润为多少?25.(12分)如图1,△ABC是等腰直角三角形,AC=BC,∠ACB=90°,直线l经过点C,AF⊥l于点F,BE⊥l于点E,点D是AB的中点,连接ED.(1)求证:△ACF≌△CBE;(2)求证:AF=BE+DE;(3)如图2,将直线l旋转到△ABC的外部,其他条件不变,(2)中的结论是否仍然成立,如果成立请说明理由,如果不成立AF、BE、DE又满足怎样的关系?并说明理由.26.(12分)如图,抛物线y=x2+x﹣2与x轴交于A、B两点,(A点在B点左边),与y轴交于点C,连接AC、BC.(1)求点A、B、C的坐标;(2)M为该抛物线对称轴上一点,是否存在以AC为斜边的直角三角形MAC?若存在,求点M 的坐标,并求三角形MAC的面积;若不存在,请说明理由;(3)D为第三象限抛物线上一动点,直线DE∥y轴交线段AC于E点,过D点作DF∥CB交AC 于F点,求△DEF周长的最大值和此时点F的坐标.参考答案与试题解析一、选择题:(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号填入答题卷中对应的表格内.1.解:根据相反数的定义,﹣2的相反数是2.故选:A.2.解:从物体左面看,是左边2个正方形,右边1个正方形.故选:A.3.解:∵反比例函数y=﹣的k=﹣2<0,可见函数位于二、四象限,∵x1<x2<0,可见A(x1,y1)、B(x2,y2)位于第二象限,由于在二四象限内,y随x的增大而增大,∴y1<y2.故选:A.4.解:函数y=中自变量x的取值范围x>1,故选:C.5.解:∵两个相似三角形的面积比是1:2,∴这两个相似三角形的相似比是1:,∴它们的周长比是1:.故选:C.6.解:列表如下:所有等可能的情况有12种,其中两个乒乓球都是奇数的情况有:(1,3),(3,1),则P==.故选:B.7.解:∵抛物线开口向下,∴a<0,故①错误;∵﹣>0,a<0,∴a与b异号,∴b>0,故②正确;∵抛物线与y轴交于负半轴,∴c<0,∴abc<0,故①正确;∵当x=﹣1时,y>0,∴a﹣b+c>0,故③正确;∵抛物线的对称轴x=﹣=2,∴b=﹣4a,∴2a+b=2a﹣4a=﹣2a,∵a<0,∴﹣2a>0,∴2a+b>0,故④错误.故选:B.8.解:第一次观察到的影子长为6×cot60°=2(米);第二次观察到的影子长为6×cot30°=6(米).两次观察到的影子长的差=6﹣2=4(米).故选:B.9.方法一:解:观察图形得到第①个图形中棋子的个数为1=1+5×0;第②个图形中棋子的个数为1+5=6;第③个图形中棋子的个数为1+5+10=1+5×3=16;…所以第n个图形中棋子的个数为1+5(1+2+…+n﹣1)=1+,当n=6时,1+=76故选C.方法二:n=1,s=1;n=2,s=12;n=3,s=20,设s=an2+bn+c,∴,∴a=,b=﹣,c=1,∴s=n2﹣n+1,把n=6代入,∴s=76.方法三:,,,,,∴a6=16+15+20+25=76.10.解:根据题意画出图形,如图所示:在图形中作出y=n(0<n<2),两交点的横坐标分别为x1,x2,则0<x1<1,且x2>3.故选:D.11.解:如图,建立如图所示的平面直角坐标系,∵水面AB宽为10米,AB距桥顶O的高度为12.5米,∴B(5,﹣12.5),设抛物线的解析式为:y =ax 2,把B (5,﹣12.5)代入y =ax 2得﹣12.5=25a , ∴a =﹣,∴抛物线的解析式为:y =﹣x 2, ∵水面上升2.5米到达警戒水位CD 位置,∴设D (m ,﹣10),代入y =﹣x 2得:﹣10=﹣x 2,∴x =±2,∴CD =4,∴水面宽为4米.故选:C .12.解:分别过点A 、B 作AF ⊥y 轴于点F ,AD ⊥x 轴于点D ,BG ⊥y 轴于点G ,BE ⊥x 轴于点E , ∵k >0,点A 是反比例函数图象上的点,∴S △AOD =S △AOF =,∵A 、B 两点的横坐标分别是a 、3a , ∴AD =3BE ,∴点B 是AC 的三等分点, ∴DE =2a ,CE =a ,∴S △AOC =S 梯形ACOF ﹣S △AOF =(OE +CE +AF )×OF ﹣=×5a ×﹣=3,解得k =(舍去)或k =﹣. 故选:D .二、填空题(本大题共6小题,每小题4分,满分24分)在每小题中,请将答案直接填在答题卷中对应的横线上.13.解:根据题意,可得:,解得:m=5,检验,当m=5时,最简公分母m﹣2≠0,∴m=5是原分式方程的解.故答案为:5.14.解:∵在Rt△ABC中,∠C=90°,AB=5,sin A=,sin A=,∴BC=3.∴AC=.故答案为:4.15.解:处于中间位置的两个数是10和9,那么由中位数的定义可知,这组数据的中位数是(10+9)÷2=9.5.故答案为:9.5.16.解:∵四边形ABCD是平行四边形,∴BC=AD=4,AB∥CD,∴△FEC∽△FAB,∴==,∴=,∴CF=BC=×4=2.故答案为:2.17.解:∵从四张正面分别标有﹣1,0,1,2的不透明的卡片中,取出一张,将卡片上的数字记为a,不放回,再取出一张,将卡片上的数字记为b,∴共有(﹣1,0),(﹣1,1),(﹣1,2),(0,1),(0,2),(1,2)种组合,∵方程ax 2﹣x +=0有解,∴1﹣2ab ≥0,解得:ab ≤,∵直线y =x ﹣(a +b )不经过第四象限,∴﹣(a +b )>0,∴a +b <0,∴满足条件的只有(﹣1,0)一种可能,∴能使得方程ax 2﹣x +=0有解,且直线y =x ﹣(a +b )不经过第四象限的概率是,故答案为:.18.解:∵AB =4,BE =3,∴AE =5,∵△B ′AP 为等腰三角形,∴PA =PB ′,设PA =PB ′=x ,则PA ′=4﹣x ,PE =5﹣x ,作PG ⊥A ′E 于G ,∵∠PA ′G =∠BAE ,∴cos ∠PA ′G =cos ∠BAE ,∴==,∴A ′G =(4﹣x ),∵A ′E =AE =5,∴GE =5﹣(4﹣x ),∵PA ′2﹣A ′G 2=PE 2﹣GE 2,∴(4﹣x )2﹣[(4﹣x )]2=(5﹣x )2﹣[5﹣(4﹣x )]2解得x =2.4,故当PA ′=2.4时,△B ′AP 为等腰三角形.故答案为2.4.三、解答题:解答时每小题必须给出必要的演算过程或推理步骤,请将解答过程做在答题卷上.19.解:(1)原式=3+4﹣6﹣=2﹣2;(2),①+②×4得:9x=63,即x=7,把x=7代入①得:y=2,则方程组的解为.20.解:∵AD⊥BC于D,∴∠ADB=∠ADC=90°,∵tan∠BAD=,∴设BD=x,AD=2x,∴AB==x=5,∴x=,2x=2,∴AD=2,∵∠ACD=45°,∴AD=CD=2,∴AC==2.21.解:解不等式式﹣>1,去分母,得2(x﹣1)﹣(3x+2)>6,去括号,得2x﹣2﹣3x﹣2>6,移项,得2x﹣3x>6+2+2,合并同类项,得﹣x>10,系数化为1得x<﹣10.则a=﹣11.原式=+÷=+÷=﹣•=﹣==﹣.当a=﹣11时,原式=﹣=﹣.22.解:(1)∵反比例函数y=的图象在二、四象限,∴k<0,=|k|=,∵S△ABO∴k=﹣3,∴双曲线的解析式为:y=﹣,直线y=﹣x﹣(k+1)的解析式为:y=﹣x﹣(﹣3+1),即y=﹣x+2;(2)∵把一次函数与反比例函数的解析式组成方程组,得,解得,,∴A(﹣1,3),C(3,﹣1);∵一次函数的解析式为:y=﹣x+2,∴令y=0,则﹣x+2=0,即x=2,∴直线AC与x轴的交点D(2,0),∵A(﹣1,3),C(3,﹣1),∴当x<﹣1或0<x<3时,一次函数的值大于反比例函数的值.23.解:(1)(1+2)÷15%=20人;(2)C组人数为:20×25%=5人,所以,女生人数为5﹣3=2人,D组人数为:20×(1﹣15%﹣50%﹣25%)=20×10%=2人,所以,男生人数为2﹣1=1人,补全统计图如图;(3)画树状图如图:所有等可能结果:男男、男女、女男、女女、女男、女女,P(一男一女)==.24.解:(1)当销售单价定为每千克x元时,月销售量为:[500﹣(x﹣50)×10]千克.每千克的销售利润是:(x﹣40)元,所以月销售利润为:y=(x﹣40)[500﹣(x﹣50)×10]=(x﹣40)(1000﹣10x)=﹣10x2+1400x ﹣40000,∴y与x的函数解析式为:y=﹣10x2+1400x﹣40000;(2)设销售单价为x元,根据题意得:(x﹣40)[500﹣10(x﹣50)]=8000,即x2﹣140x+4800=0,解得x1=60,x2=80,当x=60时,月销售成本40×[500﹣(60﹣50)×10]=16000>9000元,∴x=60元不合题意,舍去;当x=80月销售成本40×[500﹣(80﹣50)×10]=8000元<9000元,∴销售单价应定为每千克80元;则月销售利润达到8000元,销售单价应定为80元;(3)由(1)的函数可知:y=﹣10(x﹣70)2+9000因此:当x=70时,y max=9000元,即:当售价是70元时,利润最大为9000元.25.证明:(1)∵BE⊥CE,∴∠BEC=∠ACB=90°,∴∠EBC+∠BCE=∠BCE+∠ACF=90°,∴∠EBC=∠ACF,∵AF⊥l于点F,∴∠AFC=90°,在△BCE与△ACF中,,∴△ACF≌△CBE;(2)如图1,连接DF,CD,∵点D是AB的中点,∴CD=BD,∠CDB=90°,∵△ACF≌△CBE,∴BE=CF,CE=AF,∵∠EBD=∠DCF,在△BDE与△CDF中,,∴△BDE≌△CDF,∴∠EDB=∠FDC,DE=DF,∵∠CDF+∠FDB=90°,∠EDB+∠BDF=90°,∴∠EDF=90°,∴△EDF是等腰直角三角形,∴EF=DE,∴AF=CE=EF+CF=BE+DE;(3)不成立,BE+AF=DE,连接CD,DF,由(1)证得△BCE≌△ACF,∴BE=CF,CE=AF,由(2)证得△DEF是等腰直角三角形,∴EF=DE,∵EF=CE+CF=AF+BE=DE.即AF+BE=DE.26.解:(1)令y=0,则x2+x﹣2=0,解得x1=﹣4,x2=1.令x=0,则y=﹣2,所以A、B、C的坐标分别是A(﹣4,0)、B(1,0)、C(0,﹣2);(2)∵y=x2+x﹣2=(x+)2﹣,∴对称轴为x=﹣,设M(﹣,n),∵A(﹣4,0)、C(0,﹣2);∴MA2=(﹣+4)2+n2=+n2,MC2=(﹣)2+(n+2)2=n2+4n+,AC2=42+22=20,∵△MAC是以AC为斜边的直角三角形,∴MA2+MC2=AC2,即+n2+n2+4n+=20,解得n=﹣1±,∴M(﹣,﹣1+)或(﹣,﹣1﹣);由A(﹣4,0)、C(0,﹣2)可知直线AC的解析式为y=﹣x﹣2,把x=﹣代入得,y=﹣,∴直线AB与对称轴的交点为(﹣,﹣),当M(﹣,﹣1+)时,S=(﹣1++)×4=;△MAC当M(﹣,﹣1﹣)时,S=(﹣+1+)×4=;△MAC(3)∵直线AC的解析式为y=﹣x﹣2,设点D的横坐标为t,∴D(t,t2+t﹣2),E(t,﹣t﹣2),∴DE=(﹣t﹣2)﹣(t2+t﹣2)=﹣t2﹣2t,∵A(﹣4,0)、B(1,0)、C(0,﹣2);∴OA=4,OC=2,OB=1,∴AC=,BC=,AB=5,∵AC2+BC2=AB2=25,∴∠ACB=90°,∵DF∥CB,∴∠DFE=90°,∵DE∥y轴,∴∠ACO=∠DEF,∵∠DFE=∠AOC=90°,∴△DEF∽△ACO,∴==,∵△ACO的周长=OA+OC+AC=4+2+=6+2,∴△DEF的周长=(﹣t2﹣2t)=﹣(t+2)2+,∴当t=﹣2时,△DEF周长的最大值=,此时D(﹣2,﹣3),∵直线AC的解析式为y=﹣x﹣2,∴设直线DF的解析式为y=2x+b,把D(﹣2,﹣3)代入得,﹣3=﹣4+b,∴b=1,∴线DF的解析式为y=2x+1解得,∴F(﹣,﹣).。
九年级(上)月考数学试卷(9月份)
2019-2020年九年级(上)月考数学试卷(9月份)一、选择题1.下列运算正确的是()A.B.C.D.2.用配方法解方程x2﹣2x﹣5=0时,原方程应变形为()A.(x+1)2=6 B.(x+2)2=9 C.(x﹣1)2=6 D.(x﹣2)2=93.下列二次根式中与是同类二次根式的是()A.B.C.D.4.若,则=()A.B.C.D.5.如图,已知D、E分别是△ABC的AB,AC边上的点,DE∥BC,且S△ADE :S四边形DBCE=1:8,那么AE:AC等于()A.1:9 B.1:3 C.1:8 D.1:26.关于x的一元二次方程(m﹣1)x2+5x+m2﹣3m+2=0的常数项为0,则m等于()A.1 B.2 C.1或2 D.07.如图,等边三角形ABC的边长为4,点P为BC边上一点,且BP=1,点D为AC边上一点.若∠APD=60°,则CD的长为()A. B. C. D.18.如图所示,给出下列条件:①∠B=∠ACD;②∠ADC=∠ACB;③;④AC2=AD•AB.其中单独能够判定△ABC∽△ACD的个数为()A.1 B.2 C.3 D.4二、填空题9.=2x﹣3,x的取值范围是.10.如图,△ABC是一块锐角三角形材料,边BC=80mm,高AD=60mm,要把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB、AC上,这个正方形零件的边长是mm.11.如图所示,在四边形ABCD中,AD∥BC,如果要使△ABC∽△DCA,那么还要补充的一个条件是.(只要求写出一个条件即可)12.小亮的身高是1.6米,某一时刻他在水平面上的影长是2米,若同一时刻测得附近一古塔在水平地面上的影长为20米,则古塔的高度是米.13.如图(1),在宽为20m,长为32m的矩形耕地上修建同样宽的三条道路(横向与纵向垂直),把耕地分成若干小矩形块,作为小麦试验田,假设试验田面积为570m2,求道路宽为多少?设宽为x m,从图(2)的思考方式出发列出的方程是.14.如图,在△ABC中,∠B=90°,AB=3厘米,BC=4厘米,点P从A沿AB边向点B以1厘米/秒的速度移动,点Q从B沿BC边向点C以2厘米/秒的速度移动,如P与Q同时出发,且当一点移动到端点并停止时,另一点也同时停下,秒后三角形PBQ的面积为2平方厘米.三、解答题15.(1)计算:﹣﹣;(2)计算:()﹣2﹣|2﹣3|+.16.解方程:(1)x2﹣2x=0;(2)30x2﹣45=0.17.解方程:x2+3x+1=0.18.解方程:(x﹣5)(x﹣6)=x﹣5.19.已知y=++3,求﹣的值.20.某企业xx年盈利3000万元,xx年克服全球金融危机的不利影响,仍实现盈利4320万元,从xx年到xx年,如果该企业每年盈利的年增长率相同,求:(1)该企业每年盈利的年增长率?(2)若该企业盈利的年增长率继续保持不变,预计xx年盈利多少万元?21.如图,网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点.△ACB 和△DCE的顶点都在格点上,ED的延长线交AB于点F.(1)求证:△ACB∽△DCE;(2)求证:EF⊥AB.22.已知▱ABCD的两边AB、AD的长是关于x的方程x2﹣mx+﹣=0的两个实数根,当m 为何值时,四边形ABCD是菱形?求出这时菱形的边长.23.如图所示,某幼儿园有一道长为16米的墙,计划用32米长的围栏靠墙围成一个面积为120平方米的矩形草坪ABCD.求该矩形草坪BC边的长.24.如图,正方形ABCD的边长为4,E是BC边的中点,点P在射线AD上,过P作PF ⊥AE于F.(1)求证:△PFA∽△ABE;(2)当点P在射线AD上运动时,设PA=x,是否存在实数x,使以P,F,E为顶点的三角形也与△ABE相似?若存在,请求出x的值;若不存在,说明理由.xx吉林省长春108中学九年级(上)月考数学试卷(9月份)参考答案与试题解析一、选择题1.下列运算正确的是()A. B. C. D.【考点】二次根式的混合运算.【分析】根据二次根式的混合运算的相关知识进行解答.需要注意的是,无论怎么化简、变形,原式值的符号不能改变.【解答】解:A、原式=6×=3,故A错误;B、原式=﹣,故B错误;C、a2=a2×=a,故C错误;D、原式=3﹣2=,故D正确.故选D.2.用配方法解方程x2﹣2x﹣5=0时,原方程应变形为()A.(x+1)2=6 B.(x+2)2=9 C.(x﹣1)2=6 D.(x﹣2)2=9【考点】解一元二次方程-配方法.【分析】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.【解答】解:由原方程移项,得x2﹣2x=5,方程的两边同时加上一次项系数﹣2的一半的平方1,得x2﹣2x+1=6∴(x﹣1)2=6.故选:C.3.下列二次根式中与是同类二次根式的是()A. B. C. D.【考点】同类二次根式.【分析】根据同类二次根式的定义,先化简,再判断.【解答】解:A、=2,与的被开方数不同,不是同类二次根式,故A选项错误;B、=,与的被开方数不同,不是同类二次根式,故B选项错误;C、=,与的被开方数不同,不是同类二次根式,故C选项错误;D、=3,与的被开方数相同,是同类二次根式,故D选项正确.故选:D.4.若,则=()【考点】比例的性质.【分析】由题干可得2b=3a ﹣3b ,根据比等式的性质即可解得a 、b 的比值.【解答】解:∵,∴5b=3a ,∴,故选D .5.如图,已知D 、E 分别是△ABC 的AB ,AC 边上的点,DE ∥BC ,且S △ADE :S 四边形DBCE =1:8,那么AE :AC 等于( )A .1:9B .1:3C .1:8D .1:2【考点】相似三角形的判定与性质.【分析】由题可知:△ADE ∽△ABC ,相似比为AE :AC ,由S △ADE :S 四边形DBCE =1:8,得S △ADE :S △ABC =1:9,根据相似三角形面积的比等于相似比的平方.【解答】解:∵DE ∥BC ,∴△ADE ∽△ABC ,∴S △ADE :S △ABC =AE 2:AC 2,∵S △ADE :S 四边形DBCE =1:8,∴S △ADE :S △ABC =1:9,∴AE :AC=1:3.故选B .6.关于x 的一元二次方程(m ﹣1)x 2+5x +m 2﹣3m +2=0的常数项为0,则m 等于( ) A .1 B .2 C .1或2 D .0【考点】一元二次方程的一般形式.【分析】根据一元二次方程成立的条件及常数项为0列出方程组,求出m 的值即可.【解答】解:根据题意,知,,解方程得:m=2.故选:B .7.如图,等边三角形ABC 的边长为4,点P 为BC 边上一点,且BP=1,点D 为AC 边上一点.若∠APD=60°,则CD 的长为( )【考点】相似三角形的判定与性质;等边三角形的性质.【分析】根据等边三角形性质求出AB=BC=AC=4,∠B=∠C=60°,推出∠BAP=∠DPC,证△BAP∽△CPD,得出=,代入求出即可.【解答】解:∵△ABC是等边三角形,∴AB=BC=AC=4,∠B=∠C=60°,∴∠BAP+∠APB=180°﹣60°=120°,∵∠APD=60°,∴∠APB+∠DPC=180°﹣60°=120°,∴∠BAP=∠DPC,即∠B=∠C,∠BAP=∠DPC,∴△BAP∽△CPD,∴=,∵AB=BC=4,CP=BC﹣BP=4﹣1=3,BP=1,即=,解得:CD=,故选C.8.如图所示,给出下列条件:①∠B=∠ACD;②∠ADC=∠ACB;③;④AC2=AD•AB.其中单独能够判定△ABC∽△ACD的个数为()A.1 B.2 C.3 D.4【考点】相似三角形的判定.【分析】由图可知△ABC与△ACD中∠A为公共角,所以只要再找一组角相等,或一组对应边成比例即可解答.【解答】解:有三个.①∠B=∠ACD,再加上∠A为公共角,可以根据有两组角对应相等的两个三角形相似来判定;②∠ADC=∠ACB,再加上∠A为公共角,可以根据有两组角对应相等的两个三角形相似来判定;③中∠A不是已知的比例线段的夹角,不正确④可以根据两组对应边的比相等且相应的夹角相等的两个三角形相似来判定;故选:C.二、填空题9.=2x﹣3,x的取值范围是x≥.【考点】二次根式的性质与化简.【分析】根据公式=|a|,可得出x的取值范围.【解答】解:∵=2x﹣3,∴3﹣2x≤0,解得x≥,∴x的取值范围是x≥,故答案为x≥.10.如图,△ABC是一块锐角三角形材料,边BC=80mm,高AD=60mm,要把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB、AC上,这个正方形零件的边长是mm.【考点】相似三角形的应用.【分析】如图,设正方形EFGH的边长为x,EF与AD交于点K.由EF∥BC,得到△AEF ∽△ABC,得到=,得=,列方程即可.【解答】解:如图,设正方形EFGH的边长为x,EF与AD交于点K.∵EF∥BC,∴△AEF∽△ABC,∴=,∴=,∴x=,故答案为.11.如图所示,在四边形ABCD中,AD∥BC,如果要使△ABC∽△DCA,那么还要补充的一个条件是∠B=∠DCA或∠BAC=∠D或.(只要求写出一个条件即可)【考点】相似三角形的判定.【分析】本题主要根据平行推出角的等量关系,再根据对应边的关系,利用两三角形相似的判定定理,做题即可.【解答】解:∵AD∥BC∴∠DAC=∠ACB∴当∠B=∠DCA或∠BAC=∠D或AD:AC=AC:BC∴都可得相似.答案不唯一,如∠B=∠DCA或∠BAC=∠D或AD:AC=AC:BC.12.小亮的身高是1.6米,某一时刻他在水平面上的影长是2米,若同一时刻测得附近一古塔在水平地面上的影长为20米,则古塔的高度是16米.【考点】相似三角形的应用;平行投影.【分析】利用相似及投影知识解题,因为某一时刻,实际高度和影长之比是一定的,进而得出答案.【解答】解:由题意可得:=,解得:古塔的高=16,故答案为:16.13.如图(1),在宽为20m,长为32m的矩形耕地上修建同样宽的三条道路(横向与纵向垂直),把耕地分成若干小矩形块,作为小麦试验田,假设试验田面积为570m2,求道路宽为多少?设宽为x m,从图(2)的思考方式出发列出的方程是(32﹣2x)(20﹣x)=570.【考点】由实际问题抽象出一元二次方程.【分析】设宽为xm,从图(2)可看出剩下的耕田面积可平移成长方形,且能表示出长和宽,从而根据面积可列出方程.【解答】解:设宽为xm,(32﹣2x)(20﹣x)=570.故答案为:(32﹣2x)(20﹣x)=570.14.如图,在△ABC中,∠B=90°,AB=3厘米,BC=4厘米,点P从A沿AB边向点B以1厘米/秒的速度移动,点Q从B沿BC边向点C以2厘米/秒的速度移动,如P与Q同时出发,且当一点移动到端点并停止时,另一点也同时停下,1秒或2秒后三角形PBQ 的面积为2平方厘米.【考点】一元二次方程的应用.【分析】根据题意表示出BP,BQ的长,进而利用三角形面积求出答案.【解答】解:设x秒后三角形PBQ的面积为2平方厘米,根据题意可得:BP=3﹣x,BQ=2x,故×2x(3﹣x)=2,解得:x1=1,x2=2,故1或2秒后三角形PBQ的面积为2平方厘米.故答案为:1或2.三、解答题15.(1)计算:﹣﹣;(2)计算:()﹣2﹣|2﹣3|+.【考点】实数的运算;负整数指数幂.【分析】(1)原式化简后,合并即可得到结果;(2)原式利用负整数指数幂法则,绝对值的代数意义,以及分母有理化计算即可得到结果.【解答】解:(1)原式=3﹣﹣2=﹣;(2)原式=4﹣3+2+=1+.16.解方程:(1)x2﹣2x=0;(2)30x2﹣45=0.【考点】解一元二次方程-因式分解法;解一元二次方程-直接开平方法.【分析】(1)原方程有公因式x,先提取公因式,然后再分解因式求解;(2)系数化为1后,利用直接开平方法求出方程的解.【解答】解:(1)∵x2﹣2x=0,∴x(x﹣2)=0,∴x=0或x﹣2=0,∴x1=0,x2=2.(2)∵30x2﹣45=0,∴x2=,∴x=±,∴x1=,x2=﹣17.解方程:x2+3x+1=0.【考点】解一元二次方程-公式法.【分析】先找出a,b,c,再求出△,代入求根公式即可.【解答】解:a=1,b=3,c=1,…∴△=b2﹣4ac=9﹣4×1×1=5>0,…∴x=﹣3±,…∴x1=﹣3+,x2=﹣3﹣….18.解方程:(x﹣5)(x﹣6)=x﹣5.【考点】解一元二次方程-因式分解法.【分析】方程整理后,利用因式分解法求出解即可.【解答】解:方程整理得:(x﹣5)(x﹣6)﹣(x﹣5)=0,分解因式得:(x﹣5)(x﹣7)=0,可得x﹣5=0或x﹣7=0,解得:x1=5,x2=7.19.已知y=++3,求﹣的值.【考点】分式的化简求值;二次根式有意义的条件.【分析】先算括号里面的,再算除法,最后求出x、y的值代入进行计算即可.【解答】解:原式=﹣==,∵与有意义,∴,解得x=2,∴y=3,∴原式==﹣9.20.某企业xx年盈利3000万元,xx年克服全球金融危机的不利影响,仍实现盈利4320万元,从xx年到xx年,如果该企业每年盈利的年增长率相同,求:(1)该企业每年盈利的年增长率?(2)若该企业盈利的年增长率继续保持不变,预计xx年盈利多少万元?【考点】一元二次方程的应用.【分析】(1)设每年盈利的年增长率为x,就可以表示出xx年的盈利,根据xx年的盈利为4320万元建立方程求出x的值即可;(2)根据(1)求出的年增长率就可以求出结论.【解答】解:(1)设每年盈利的年增长率为x,根据意,得3000(1+x)2=4320解得:x1=0.2,x2=﹣2.2(不合题意,舍去)答:增长率为20%;(2)由题意,得4320(1+0.2)=5184万元答:预计xx年该企业盈利5184万元.21.如图,网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点.△ACB 和△DCE的顶点都在格点上,ED的延长线交AB于点F.(1)求证:△ACB∽△DCE;(2)求证:EF⊥AB.【考点】相似三角形的判定与性质;三角形内角和定理.【分析】(1)从图中得到AC=3,CD=2,BC=6,CE=4,∠ACB=∠DCE=90°,故有,所以△ACB∽△DCE;(2)由1知,∠B=∠E,可得∠B+∠A=∠E+A=180°﹣∠AFE=90°,即∠EFA=90°,故EF ⊥AB.【解答】证明:(1)∵,,∴.又∵∠ACB=∠DCE=90°,∴△ACB∽△DCE.(2)∵△ACB∽△DCE,∴∠ABC=∠DEC.又∵∠ABC+∠A=90°,∴∠DEC+∠A=90°.∴∠EFA=90°.∴EF⊥AB.22.已知▱ABCD的两边AB、AD的长是关于x的方程x2﹣mx+﹣=0的两个实数根,当m 为何值时,四边形ABCD是菱形?求出这时菱形的边长.【考点】菱形的判定;根的判别式.【分析】由题意可知:AB、AD的长是关于x的方程x2﹣mx+﹣=0的两个实数根,也就是方程有两个相等的实数根,利用根的判别式为0即可求得m,进而求得方程的根即为菱形的边长.【解答】解:∵四边形ABCD是菱形,∴AB=AD,∴△=0,即m2﹣4(﹣)=0,整理得:(m﹣1)2=0,解得m=1,当m=1时,原方程为x2﹣x+=0,解得:x1=x2=0.5.故当m=1时,四边形ABCD是菱形,菱形的边长是0.5.23.如图所示,某幼儿园有一道长为16米的墙,计划用32米长的围栏靠墙围成一个面积为120平方米的矩形草坪ABCD.求该矩形草坪BC边的长.【考点】一元二次方程的应用.【分析】可设矩形草坪BC边的长为x米,则AB的长是,根据长方形的面积公式列出一元二次方程求解.【解答】解:设BC边的长为x米,则AB=CD=米,根据题意得:×x=120,解得:x1=12,x2=20,∵20>16,∴x2=20不合题意,舍去,答:矩形草坪BC边的长为12米.24.如图,正方形ABCD的边长为4,E是BC边的中点,点P在射线AD上,过P作PF ⊥AE于F.(1)求证:△PFA∽△ABE;(2)当点P在射线AD上运动时,设PA=x,是否存在实数x,使以P,F,E为顶点的三角形也与△ABE相似?若存在,请求出x的值;若不存在,说明理由.【考点】相似三角形的判定;正方形的性质.【分析】(1)在△PFA与△ABE中,易得∠PAF=∠AEB及∠PFA=∠ABE=90°;故可得△PFA∽△ABE;(2)根据题意:若△EFP∽△ABE,则∠PEF=∠EAB;必须有PE∥AB;分两种情况进而列出关系式.【解答】(1)证明:∵AD∥BC,∴∠PAF=∠AEB.∵∠PFA=∠ABE=90°,∴△PFA∽△ABE.(2)解:若△EFP∽△ABE,则∠PEF=∠EAB.∴PE∥AB.∴四边形ABEP为矩形.∴PA=EB=2,即x=2.若△PFE∽△ABE,则∠PEF=∠AEB.∵∠PAF=∠AEB,∴∠PEF=∠PAF.∴PE=PA.∵PF⊥AE,∴点F为AE的中点.∵AE==2,∴EF=AE=.∵,即,∴PE=5,即x=5.∴满足条件的x的值为2或5.xx年12月12日23216 5AB0 媰29913 74D9 瓙33039 810F 脏40267 9D4B 鵋R20983 51F7 凷30721 7801 码23662 5C6E 屮Y32954 80BA 肺9?39290 997A 饺!20537 5039 倹。
重庆市九年级上第三次月考数学试卷(含解析)-2019年(精校版)
重庆市巴南区三校九年级(上)第三次月考数学试卷一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个答案是正确的.1.(4分)抛物线y=﹣(x+3)2+4顶点坐标是()A.(3,4)B.(﹣3,4)C.(3,﹣4)D.(2,4)2.(4分)下面的图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.3.(4分)一元二次方程x2+6x﹣6=0配方后化为()A.(x﹣3)2=3 B.(x﹣3)2=15 C.(x+3)2=15 D.(x+3)2=34.(4分)如图,△ABC是⊙O的内接三角形,AC是⊙O的直径,∠C=50°,∠ABC的平分线BD交⊙O于点D,则∠BAD的度数是()A.45°B.85°C.90°D.95°5.(4分)若关于x的一元二次方程(k+1)x2+2(k+1)x+k﹣2=0有实数根,则k的取值范围在数轴上表示正确的是()A.B.C.D.6.(4分)一个布袋里装有6个只有颜色不同的球,其中2个红球,4个白球.从布袋里任意摸出1个球,则摸出的球是白球的概率为()A.B.C.D.7.(4分)已知抛物线y=ax2(a>0)过A(2,y1)、B(﹣1,y2)两点,则下列关系式一定正确的是()A.y1>0>y2B.y2>0>y1C.y1>y2>0 D.y2>y1>08.(4分)如图,小慧用如图的胶滚沿从左到右的方向将图案滚涂到墙上,下列给出的四个图形中,符合胶滚滚出的图案是()A. B. C. D.9.(4分)某校进行体操队列训练,原有8行10列,后增加40人,使得队伍增加的行数、列数相同,你知道增加了多少行或多少列吗?设增加了x行或列,则列方程得()A.(8﹣x)(10﹣x)=8×10﹣40 B.(8﹣x)(10﹣x)=8×10+40C.(8+x)(10+x)=8×10﹣40 D.(8+x)(10+x)=8×10+4010.(4分)如图是二次函数y=ax2+bx+c的部分图象,由图象可知不等式ax2+bx+c>0的解集是()A.﹣1<x<5 B.x>5 C.x<﹣1且x>5 D.x<﹣1或x>511.(4分)在同一坐标系中一次函数y=ax﹣b和二次函数y=ax2+bx的图象可能为()A.B.C.D.12.(4分)已知y=ax2+bx+c的图象如图,其对称轴为直线x=﹣1,与x轴的一个交点为(1,0),与y轴的交点在(0,2)与(0,3)之间(不包含端点),则下列结论正确的是()A.2a+b=0 B.3a+2c<0 C.a+5b+2c>0 D.二、填空题:(本大题6个小题,每小题4分,共24分)请将每个小题的答案直接填在答题卡(卷)中对应的标线上.13.(4分)一元二次方程x2﹣2x=0的解是.14.(4分)如图,AB是⊙O的弦,半径OA=2,∠AOB=120°,则弦AB的长是.15.(4分)“2016重庆国际马拉松”的赛事共有三项:A、“全程马拉松”、B、“半程马拉松”、C、“迷你马拉松”.小明和小刚参加了该项赛事的志愿者服务工作,组委会随机将志愿者分配到以上三个项目组,则小明和小刚被分配到不同项目组的概率是.16.(4分)在等腰△ABC中,∠C=90°,BC=4cm,如果以AC的中点O为旋转中心,将△ABC 旋转180°,点B落在B′处,则BB′的长度为.17.(4分)已知二次函数y1=ax2+bx+c与一次函数y2=kx+m(k≠0)的图象相交于点A(﹣2,4),B(8,2).如图所示,则能使y1>y2成立的x的取值范围是.18.(4分)二次函数y=x2的图象如图所示,自原点开始依次向上作内角为60度、120度的菱形(其中两个顶点在抛物线上另两个顶点在y轴上,相邻的菱形在y轴上有一个公共点),则第2017个菱形的周长= .三、解答题:(本大题2个小题,每小题7分,共14分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡(卷)中对应的位置上.19.(7分)解方程:(1)x2﹣16=0(2)x2﹣4=﹣2x.20.(7分)已知:△ABC在坐标平面内,三个顶点的坐标分别为A(0,3),B(3,4),C(2,2).(正方形网格中,每个小正方形的边长是1个单位长度)(1)画出△ABC向下平移4个单位,再向左平移2个位得到的△A1B1C1,并直接写出C1点的坐标;(2)作出△ABC绕点A顺时针方向旋转90°后得到的△A2B2C2,并直接写出点C旋转到C2的路线的长度.四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡(卷)中对应的位置上.21.(10分)图1是一个可以自由转动的转盘,被分成了面积相等的三个扇形,分别标有数﹣1,﹣2,﹣3,甲转动一次转盘,转盘停止后指针指向的扇形内的数记为A(如果指针恰好指在分割线上,那么重转一次,直到指针指向某一扇形为止).图2是背面完全一样、牌面数字分别是2,3,4,5的四张扑克牌,把四张扑克牌背面朝上,洗匀后放在桌面上,乙随机抽出一张牌的牌面数字记为B.计算A+B的值.(1)用树状图或列表法求A+B=0的概率;(2)甲乙两人玩游戏,规定:当A+B是正数时,甲胜;否则,乙胜.你认为这个游戏规则对甲乙双方公平吗?为什么?如果不公平,请你修改游戏规则,使游戏公平.22.(10分)某商店经销一种双肩包,已知这种双肩包的成本价为每个30元.市场调查发现,这种双肩包每天的销售量y (单位:个)与销售单价x (单位:元)有如下关系:y=﹣x+60(30≤x ≤60).设这种双肩包每天的销售利润为w 元. (1)求w 与x 之间的函数解析式;(2)这种双肩包销售单价定为多少元时,每天的销售利润最大?最大利润是多少元? (3)如果物价部门规定这种双肩包的销售单价不高于48元,该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为多少元?23.(10分)如图,在△ABC 中,∠C=90°,点O 在AC 上,以OA 为半径的⊙O 交AB 于点D ,BD 的垂直平分线交BC 于点E ,交BD 于点F ,连接DE . (1)判断直线DE 与⊙O 的位置关系,并说明理由; (2)若AC=6,BC=8,OA=2,求线段DE 的长.24.(10分)阅读材料:材料1.若一元二次方程ax 2+bx+c=0(a ≠0)的两根为x 1、x 2,则x 1+x 2=﹣,x 1x 2=材料2.已知实数m 、n 满足m 2﹣m ﹣1=0、n 2﹣n ﹣1=0,且m ≠n ,求+的值.解:由题知m 、n 是方程x 2﹣x ﹣1=0的两个不相等的实数根,根据材料1得m+n=1,mn=﹣1∴+====﹣3根据上述材料解决下面问题:(1)一元二次方程x 2﹣4x ﹣3=0的两根为x 1、x 2,则x 1+x 2= ,x 1x 2= . (2)已知实数m 、n 满足2m 2﹣2m ﹣1=0、2n 2﹣2n ﹣1=0,且m ≠n ,求m 2n+mn 2的值. (3)已知实数p 、q 满足p 2=3p+2、2q 2=3q+1,且p ≠2q ,求p 2+4q 2的值.五、解答题:(本大题2个小题,每小题12分,共24分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡(卷)中对应的位置上. 25.(12分)请阅读下列材料:问题:如图1,在等边三角形ABC 内有一点P ,且PA=2,PB=,PC=1、求∠BPC 度数的大小和等边三角形ABC 的边长.李明同学的思路是:将△BPC绕点B逆时针旋转60°,画出旋转后的图形(如图2),连接PP′,可得△P′PB是等边三角形,而△PP′A又是直角三角形(由勾股定理的逆定理可证),所以∠AP′B=150°,而∠BPC=∠AP′B=150°,进而求出等边△ABC的边长为,问题得到解决.请你参考李明同学的思路,探究并解决下列问题:如图3,在正方形ABCD内有一点P,且PA=,BP=,PC=1.求∠BPC度数的大小和正方形ABCD的边长.26.(12分)如图,在平面直角坐标系中,已知抛物线y=x2+bx+c过A,B,C三点,点A的坐标是(3,0),点C的坐标是(0,﹣3),动点P在抛物线上.(1)b= ,c= ,点B的坐标为;(直接填写结果)(2)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由;(3)过动点P作PE垂直y轴于点E,交直线AC于点D,过点D作x轴的垂线.垂足为F,连接EF,当线段EF的长度最短时,求出点P的坐标.重庆市巴南区九年级(上)第三次月考数学试卷参考答案与试题解析一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个答案是正确的.1.(4分)抛物线y=﹣(x+3)2+4顶点坐标是()A.(3,4)B.(﹣3,4)C.(3,﹣4)D.(2,4)【解答】解:抛物线y=﹣(x+3)2+4的顶点坐标(﹣3,4),故选:B.2.(4分)下面的图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、不是轴对称图形,是中心对称图形,故此选项错误;C、是轴对称图形,也是中心对称图形,故此选项正确;D、是轴对称图形,不是中心对称图形,故此选项错误.故选:C.3.(4分)一元二次方程x2+6x﹣6=0配方后化为()A.(x﹣3)2=3 B.(x﹣3)2=15 C.(x+3)2=15 D.(x+3)2=3【解答】解:x2+6x=6,x2+6x+9=15,(x+3)2=15.故选:C.4.(4分)如图,△ABC是⊙O的内接三角形,AC是⊙O的直径,∠C=50°,∠ABC的平分线BD交⊙O于点D,则∠BAD的度数是()A.45°B.85°C.90°D.95°【解答】解:∵AC是⊙O的直径,∴∠ABC=90°,∵∠C=50°,∴∠BAC=40°,∵∠ABC的平分线BD交⊙O于点D,∴∠ABD=∠DBC=45°,∴∠CAD=∠DBC=45°,∴∠BAD=∠BAC+∠CAD=40°+45°=85°,故选:B.5.(4分)若关于x的一元二次方程(k+1)x2+2(k+1)x+k﹣2=0有实数根,则k的取值范围在数轴上表示正确的是()A.B.C.D.【解答】解:∵关于x的一元二次方程(k+1)x2+2(k+1)x+k﹣2=0有实数根,∴,解得:k>﹣1.故选:A.6.(4分)一个布袋里装有6个只有颜色不同的球,其中2个红球,4个白球.从布袋里任意摸出1个球,则摸出的球是白球的概率为()A.B.C.D.【解答】解:因为一共有6个球,白球有4个,所以从布袋里任意摸出1个球,摸到白球的概率为:.故选:D.7.(4分)已知抛物线y=ax2(a>0)过A(2,y1)、B(﹣1,y2)两点,则下列关系式一定正确的是()A.y1>0>y2B.y2>0>y1C.y1>y2>0 D.y2>y1>0【解答】解:∵抛物线y=ax2(a>0),∴A(2,y1)关于y轴对称点的坐标为(﹣2,y1),∵a>0,∴x<0时,y随x的增大而减小,∵﹣2<﹣1<0,∴y1>y2>0;故选:C.8.(4分)如图,小慧用如图的胶滚沿从左到右的方向将图案滚涂到墙上,下列给出的四个图形中,符合胶滚滚出的图案是()A. B. C. D.【解答】解:根据旋转的性质和胶滚上的图案可知,横向状态转为正立状态,胶滚滚出的图案是.故选:A.9.(4分)某校进行体操队列训练,原有8行10列,后增加40人,使得队伍增加的行数、列数相同,你知道增加了多少行或多少列吗?设增加了x行或列,则列方程得()A.(8﹣x)(10﹣x)=8×10﹣40 B.(8﹣x)(10﹣x)=8×10+40C.(8+x)(10+x)=8×10﹣40 D.(8+x)(10+x)=8×10+40【解答】解:设增加了x行或列,根据题意得(8+x)(10+x)=8×10+40.故选:D.10.(4分)如图是二次函数y=ax2+bx+c的部分图象,由图象可知不等式ax2+bx+c>0的解集是()A.﹣1<x<5 B.x>5 C.x<﹣1且x>5 D.x<﹣1或x>5【解答】解:由图可知,抛物线的对称轴为直线x=2,与x轴的一个交点为(5,0),所以,抛物线与x轴的另一个交点坐标为(﹣1,0),所以,不等式ax2+bx+c>0的解集是﹣1<x<5.故选:A.11.(4分)在同一坐标系中一次函数y=ax﹣b和二次函数y=ax2+bx的图象可能为()A.B.C.D.【解答】解:A、由抛物线可知,a>0,x=﹣>0,得b<0,由直线可知,a>0,b>0,错误;B、由抛物线可知,a>0,由直线可知,a<0,错误;C、由抛物线可知,a<0,x=﹣>0,得b>0,由直线可知,a<0,b>0,正确;D、由抛物线可知,a<0,由直线可知,a>0,错误.故选:C.12.(4分)已知y=ax2+bx+c的图象如图,其对称轴为直线x=﹣1,与x轴的一个交点为(1,0),与y轴的交点在(0,2)与(0,3)之间(不包含端点),则下列结论正确的是()A.2a+b=0 B.3a+2c<0 C.a+5b+2c>0 D.【解答】解:根据题意得,a<0,b<0,2<c<3,∵对称轴为﹣=﹣1,∴2a﹣b=0;故A错误;∵抛物线与x轴的一个交点为(1,0),∴a+b+c=0,∴3a+c=0,∴3a+2c>0;故B错误;∴抛物线与x轴的另一个交点坐标(﹣3,0),∴9a﹣3b+c=0,∴a+5b+2c<0,故C错误;∵2<c<3,3a+c=0,∴﹣1<a<﹣,故D正确;故选:D.二、填空题:(本大题6个小题,每小题4分,共24分)请将每个小题的答案直接填在答题卡(卷)中对应的标线上.13.(4分)一元二次方程x2﹣2x=0的解是x1=0,x2=2 .【解答】解:原方程变形为:x(x﹣2)=0,x1=0,x2=2.故答案为:x1=0,x2=2.14.(4分)如图,AB是⊙O的弦,半径OA=2,∠AOB=120°,则弦AB的长是2.【解答】解:如图:过点O作OC⊥AB于C,则AC=BC,∠AOC=∠BOC=60°.在直角△AOC中,sin60°=,∴AC=AOsin60°=2×=.AB=2AC=2.故答案为:2.15.(4分)“2016重庆国际马拉松”的赛事共有三项:A、“全程马拉松”、B、“半程马拉松”、C、“迷你马拉松”.小明和小刚参加了该项赛事的志愿者服务工作,组委会随机将志愿者分配到以上三个项目组,则小明和小刚被分配到不同项目组的概率是.【解答】解:画树状图为:共有9种等可能的结果数,其中小明和小刚被分配到不同项目组的结果数为6,所以小明和小刚被分配到不同项目组的概率==.故答案为.16.(4分)在等腰△ABC中,∠C=90°,BC=4cm,如果以AC的中点O为旋转中心,将△ABC旋转180°,点B落在B′处,则BB′的长度为4cm .【解答】解:如图所示:在直角△OBC中,OC=AC=BC=2cm,则OB=(cm),则BB′=2OB=4(cm).故答案为:4cm.17.(4分)已知二次函数y1=ax2+bx+c与一次函数y2=kx+m(k≠0)的图象相交于点A(﹣2,4),B(8,2).如图所示,则能使y1>y2成立的x的取值范围是x<﹣2或x>8 .【解答】解:∵由函数图象可知,当x<﹣2或x>8时,一次函数的图象在二次函数的下方,∴能使y1>y2成立的x的取值范围是x<﹣2或x>8.故答案为:x<﹣2或x>8.18.(4分)二次函数y=x2的图象如图所示,自原点开始依次向上作内角为60度、120度的菱形(其中两个顶点在抛物线上另两个顶点在y轴上,相邻的菱形在y轴上有一个公共点),则第2017个菱形的周长= 8068 .【解答】解:设第一个菱形边长为b,则第一个菱形在x轴正向与函数y=x2交点为(b,)(因为其边长与x轴夹角为30°)代入y=x2得b=1;设第二个菱形边长为c,则其边长与函数交点为(c, c+1)代入函数表达式得c=2,同理得第三个菱形边长为3,第n个菱形边长为n,故第2017个菱形边长为2017 ∴其周长为:2017×4=8068. 故答案为:8068.三、解答题:(本大题2个小题,每小题7分,共14分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡(卷)中对应的位置上. 19.(7分)解方程: (1)x 2﹣16=0 (2)x 2﹣4=﹣2x .【解答】解:(1)x 2﹣16=0, x 2=16, x=±4,即x 1=4,x 2=﹣4;(2)x 2﹣4=﹣2x , x 2+2x=4, x 2+2x+1=4+1, (x+1)2=5, x+1=,x 1=﹣1+,x 2=﹣1﹣.20.(7分)已知:△ABC 在坐标平面内,三个顶点的坐标分别为A (0,3),B (3,4),C (2,2).(正方形网格中,每个小正方形的边长是1个单位长度)(1)画出△ABC 向下平移4个单位,再向左平移2个位得到的△A 1B 1C 1,并直接写出C 1点的坐标 (0,﹣2) ;(2)作出△ABC 绕点A 顺时针方向旋转90°后得到的△A 2B 2C 2,并直接写出点C 旋转到C 2的路线的长度π .【解答】解:(1)△A1B1C1如图1所示,其中C1(0,﹣2).故答案为:(0,﹣2).(2)△A2B2C2如图2所示,由勾股定理可得,AC==,∴点C旋转到C2的路线的长度为=.故答案为:.四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡(卷)中对应的位置上.21.(10分)图1是一个可以自由转动的转盘,被分成了面积相等的三个扇形,分别标有数﹣1,﹣2,﹣3,甲转动一次转盘,转盘停止后指针指向的扇形内的数记为A(如果指针恰好指在分割线上,那么重转一次,直到指针指向某一扇形为止).图2是背面完全一样、牌面数字分别是2,3,4,5的四张扑克牌,把四张扑克牌背面朝上,洗匀后放在桌面上,乙随机抽出一张牌的牌面数字记为B.计算A+B的值.(1)用树状图或列表法求A+B=0的概率;(2)甲乙两人玩游戏,规定:当A+B是正数时,甲胜;否则,乙胜.你认为这个游戏规则对甲乙双方公平吗?为什么?如果不公平,请你修改游戏规则,使游戏公平.【解答】解:(1)∵一共有12种情况,符合A+B=0的有2种情况,∴A+B=0的概率为=.(2)∵A+B是正数的情况有9种,∴甲胜的概率为:,乙胜的概率为:.∴这个游戏规则对甲乙双方不公平.游戏可以改为:甲乙两人玩游戏,规定:当A+B=1时,甲胜;当A+B=2时,乙胜.22.(10分)某商店经销一种双肩包,已知这种双肩包的成本价为每个30元.市场调查发现,这种双肩包每天的销售量y(单位:个)与销售单价x(单位:元)有如下关系:y=﹣x+60(30≤x≤60).设这种双肩包每天的销售利润为w元.(1)求w与x之间的函数解析式;(2)这种双肩包销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种双肩包的销售单价不高于48元,该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为多少元?【解答】解:(1)w=(x﹣30)•y=(﹣x+60)(x﹣30)=﹣x2+30x+60x﹣1800=﹣x2+90x﹣1800,w与x之间的函数解析式w=﹣x2+90x﹣1800;(2)根据题意得:w=﹣x2+90x﹣1800=﹣(x﹣45)2+225,∵﹣1<0,当x=45时,w有最大值,最大值是225.(3)当w=200时,﹣x2+90x﹣1800=200,解得x1=40,x2=50,∵50>48,x2=50不符合题意,舍,答:该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为40元.23.(10分)如图,在△ABC中,∠C=90°,点O在AC上,以OA为半径的⊙O交AB于点D,BD的垂直平分线交BC于点E,交BD于点F,连接DE.(1)判断直线DE与⊙O的位置关系,并说明理由;(2)若AC=6,BC=8,OA=2,求线段DE的长.【解答】解:(1)直线DE与⊙O相切,理由如下:连接OD,∵OD=OA,∴∠A=∠ODA,∵EF是BD的垂直平分线,∴EB=ED,∴∠B=∠EDB,∵∠C=90°,∴∠A+∠B=90°, ∴∠ODA+∠EDB=90°, ∴∠ODE=180°﹣90°=90°, ∴直线DE 与⊙O 相切; (2)连接OE ,设DE=x ,则EB=ED=x ,CE=8﹣x , ∵∠C=∠ODE=90°, ∴OC 2+CE 2=OE 2=OD 2+DE 2, ∴42+(8﹣x )2=22+x 2, 解得:x=4.75, 则DE=4.75.24.(10分)阅读材料:材料1.若一元二次方程ax 2+bx+c=0(a ≠0)的两根为x 1、x 2,则x 1+x 2=﹣,x 1x 2=材料2.已知实数m 、n 满足m 2﹣m ﹣1=0、n 2﹣n ﹣1=0,且m ≠n ,求+的值.解:由题知m 、n 是方程x 2﹣x ﹣1=0的两个不相等的实数根,根据材料1得m+n=1,mn=﹣1∴+====﹣3根据上述材料解决下面问题:(1)一元二次方程x 2﹣4x ﹣3=0的两根为x 1、x 2,则x 1+x 2= 4 ,x 1x 2= ﹣3 . (2)已知实数m 、n 满足2m 2﹣2m ﹣1=0、2n 2﹣2n ﹣1=0,且m ≠n ,求m 2n+mn 2的值. (3)已知实数p 、q 满足p 2=3p+2、2q 2=3q+1,且p ≠2q ,求p 2+4q 2的值. 【解答】解:(1)x 1+x 2=4,x 1x 2=﹣3, 故答案为:4;﹣3;(2)∵m 、n 满足2m 2﹣2m ﹣1=0,2n 2﹣2n ﹣1=0, ∴m 、n 可看作方程2x 2﹣2x ﹣1=0的两实数解,∴m+n=1,mn=﹣,∴m2n+mn2=mn(m+n)=﹣×1=﹣;(3)设t=2q,代入2q2=3q+1化简为t2=3t+2,则p与t(即2q)为方程x2﹣3x﹣2=0的两实数解,∴p+2q=3,p•2q=﹣2,∴p2+4q2=(p+2q)2﹣2p•2q=32﹣2×(﹣2)=13.五、解答题:(本大题2个小题,每小题12分,共24分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡(卷)中对应的位置上.25.(12分)请阅读下列材料:问题:如图1,在等边三角形ABC内有一点P,且PA=2,PB=,PC=1、求∠BPC度数的大小和等边三角形ABC的边长.李明同学的思路是:将△BPC绕点B逆时针旋转60°,画出旋转后的图形(如图2),连接PP′,可得△P′PB是等边三角形,而△PP′A又是直角三角形(由勾股定理的逆定理可证),所以∠AP′B=150°,而∠BPC=∠AP′B=150°,进而求出等边△ABC的边长为,问题得到解决.请你参考李明同学的思路,探究并解决下列问题:如图3,在正方形ABCD内有一点P,且PA=,BP=,PC=1.求∠BPC度数的大小和正方形ABCD的边长.【解答】解:(1)如图,将△BPC绕点B逆时针旋转90°,得△BP′A,则△BPC≌△BP′A.∴AP′=PC=1,BP=BP′=;连接PP′,在Rt△BP′P中,∵BP=BP′=,∠PBP′=90°,∴PP′=2,∠BP′P=45°;(2分)在△AP′P中,AP′=1,PP′=2,AP=,∵,即AP′2+PP′2=AP2;∴△AP′P是直角三角形,即∠AP′P=90°,∴∠AP′B=135°,∴∠BPC=∠AP′B=135°.(4分)(2)过点B作BE⊥AP′,交AP′的延长线于点E;则△BEP′是等腰直角三角形,∴∠EP′B=45°,∴EP′=BE=1,∴AE=2;∴在Rt△ABE中,由勾股定理,得AB=;(7分)∴∠BPC=135°,正方形边长为.26.(12分)如图,在平面直角坐标系中,已知抛物线y=x2+bx+c过A,B,C三点,点A的坐标是(3,0),点C的坐标是(0,﹣3),动点P在抛物线上.(1)b= ﹣2 ,c= ﹣3 ,点B的坐标为(﹣1,0);(直接填写结果)(2)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由;(3)过动点P作PE垂直y轴于点E,交直线AC于点D,过点D作x轴的垂线.垂足为F,连接EF,当线段EF的长度最短时,求出点P的坐标.【解答】解:(1)∵将点A和点C的坐标代入抛物线的解析式得:,解得:b=﹣2,c=﹣3.∴抛物线的解析式为y=x2﹣2x﹣3.∵令x2﹣2x﹣3=0,解得:x1=﹣1,x2=3.∴点B的坐标为(﹣1,0).故答案为:﹣2;﹣3;(﹣1,0).(2)存在.理由:如图所示:①当∠ACP1=90°.由(1)可知点A的坐标为(3,0).设AC的解析式为y=kx﹣3.∵将点A的坐标代入得3k﹣3=0,解得k=1,∴直线AC的解析式为y=x﹣3.∴直线CP1的解析式为y=﹣x﹣3.∵将y=﹣x﹣3与y=x2﹣2x﹣3联立解得x1=1,x2=0(舍去),∴点P1的坐标为(1,﹣4).②当∠P2AC=90°时.设AP2的解析式为y=﹣x+b.∵将x=3,y=0代入得:﹣3+b=0,解得b=3.∴直线AP2的解析式为y=﹣x+3.∵将y=﹣x+3与y=x2﹣2x﹣3联立解得x1=﹣2,x2=3(舍去),∴点P的坐标为(﹣2,5).2综上所述,P的坐标是(1,﹣4)或(﹣2,5).(3)如图2所示:连接OD.由题意可知,四边形OFDE是矩形,则OD=EF.根据垂线段最短,可得当OD⊥AC时,OD最短,即EF最短.由(1)可知,在Rt△AOC中,∵OC=OA=3,OD⊥AC,∴D是AC的中点.又∵DF∥OC,∴.∴点P的纵坐标是.∴,解得:.∴当EF最短时,点P的坐标是:(,)或(,).。
2019-2020学年重庆八中九年级(上)第一次月考数学试卷试题及答案
2019-2020学年重庆八中九年级(上)第一次月考数学试卷一、填空题(每小题3分,共18分)1.(3分)(2019秋•沙坪坝区校级月考)一元二次方程22137x x -=的二次项系数为 ,一次项系数为 ,常数项为 .2.(3分)(2014•淄博)已知ABCD ,对角线AC ,BD 相交于点O ,请你添加一个适当的条件,使ABCD 成为一个菱形,你添加的条件是 .3.(3分)(2014•泉州)如图,Rt ABC ∆中,90ACB ∠=︒,D 为斜边AB 的中点,10AB cm =,则CD 的长为 cm .4.(3分)(2019秋•沙坪坝区校级月考)若1x 与2x 一元二次方程26150x x --=的两根,则12x x += ,12x x = .5.(3分)(2015•温州)一个不透明的袋中只装有1个红球和2个蓝球,它们除颜色外其余均相同.现随机从袋中摸出两个球,颜色是一红一蓝的概率是 .6.(3分)(2011•黄冈)如图:矩形ABCD 的对角线10AC =,8BC =,则图中五个小矩形的周长之和为 .二、选择题(每小题只有一个正确选项,每小题4分,共32分) 7.(4分)(2017•红桥区三模)方程22x x =的解是( )A .2x =B .12x =,20x =C .1x =20x =D .0x =8.(2016秋•天水期中)方程||(2)310m m x mx -++=是关于x 的一元二次方程,则( ) A .2m =±B .2m =C .2m =-D .2m ≠±9.(4分)(2013•兰州)用配方法解方程2210x x --=时,配方后得的方程为( )A .2(1)0x +=B .2(1)0x -=C .2(1)2x +=D .2(1)2x -=10.(4分)(2011•无锡)菱形具有而矩形不一定具有的性质是( ) A .对角线互相垂直 B .对角线相等 C .对角线互相平分D .对角互补11.(4分)(2017春•和平区期末)顺次连接矩形ABCD 各边中点所得四边形必定是()A .平行四边形B .矩形C .正方形D .菱形12.(4分)(2013•衡阳)某药品经过两次降价,每瓶零售价由168元降为128元.已知两次降价的百分率相同,每次降价的百分率为x ,根据题意列方程得( ) A .2168(1)128x += B .2168(1)128x -= C .168(12)128x -=D .2168(1)128x -=13.(4分)(2015秋•深圳期末)如图,矩形ABCD 中,对角线AC 、BD 相交于点O ,AE BD ⊥于E ,若24OAE ∠=︒,则BAE ∠的度数是( )A .24︒B .33︒C .42︒D .43︒14.(4分)(2014•孝感)如图,正方形OABC 的两边OA 、OC 分别在x 轴、y 轴上,点(5,3)D 在边AB 上,以C 为中心,把CDB ∆旋转90︒,则旋转后点D 的对应点D '的坐标是( )A .(2,10)B .(2,0)-C .(2,10)或(2,0)-D .(10,2)或(2,0)-三、解答题(本大题共9小题,共70分)15.(5分)(2019秋•沙坪坝区校级月考)解下列方程 (1)26180x x --=;(2)7(52)6(52)+=+.x x x16.(6分)(2018•莘县二模)已知:如图,在矩形ABCD中,点E,F分别在AB,CD 边上,BE DF=,连接CE,AF.求证:AF CE=.17.(8分)(2019秋•沙坪坝区校级月考)如图,矩形ABCD的对角线AC的垂直平分线EF 与AD、AC、BC分别交于点E、O、F.(1)求证:四边形AFCE是菱形;(2)若5AB=,12EF=,求菱形AFCE的面积.BC=,618.(8分)(2015•李沧区一模)小明、小芳做一个“配色”的游戏.右图是两个可以自由转动的转盘,每个转盘被分成面积相等的几个扇形,并涂上图中所示的颜色.同时转动两个转盘,如果转盘A转出了红色,转盘B转出了蓝色,或者转盘A转出了蓝色,转盘B转出了红色,则红色和蓝色在一起配成紫色,这种情况下小芳获胜;同样,蓝色和黄色在一起配成绿色,这种情况下小明获胜;在其它情况下不分胜负.(1)利用列表或树状图的方法表示此游戏所有可能出现的结果;(2)此游戏的规则,对小明、小芳公平吗?试说明理由.19.(7分)(2014•新疆)如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB,BC各为多少米?20.(9分)(2019秋•沙坪坝区校级月考)某超市销售一种成本为每千克40元的水产品,经市场分析,若按每千克50元销售,一个月能销售出500千克;销售单价每涨价1元,月销售量就减少10千克.针对这种水产品的销售情况,请解答以下问题:(1)每千克涨价x元,那么销售量表示为千克,涨价后每千克利润为元(用含x的代数式表示.)(2)要使得月销售利润达到8000元,又要“薄利多销”,销售单价应定为多少?这时应进货多少千克?21.(6分)(2017秋•惠城区期末)已知关于x的方程220++-=.x ax a(1)证明:不论a取任何实数,该方程都有两个不相等的实数根;(2)当1a=时,求该方程的根.22.(8分)(2019秋•沙坪坝区校级月考)如图,在ABC∆中,点O是AC边上的一动点,过O作直线//∠的外角平分线于点F.∠的平分线于点E,交BCAMN BC,设MN交BCA(1)求证:EO FO=;(2)当O点运动到何处时,四边形AECF是矩形?并证明你的结论.23.(8分)(2016秋•江都区期中)阅读下面的例题:解方程2||20x x --=解:当0x …时,原方程化为220x x --=,解得:12x =,21x =-(不合题意,舍去); 当0x <时,原方程化为220x x +-=,解得:11x =,(不合题意,舍去)22x =-;∴原方程的根是12x =,22x =-.请参照例题解方程2|1|10x x ---=.2019-2020学年重庆八中九年级(上)第一次月考数学试卷参考答案与试题解析一、填空题(每小题3分,共18分)1.(3分)(2019秋•沙坪坝区校级月考)一元二次方程22137x x -=的二次项系数为 2 ,一次项系数为 ,常数项为 .【解答】解:由22137x x -=得到:227130x x --=,所以该方程的二次项系数为 2,一次项系数为7-,常数项为13-. 故答案是:2;7-;13-.2.(3分)(2014•淄博)已知ABCD ,对角线AC ,BD 相交于点O ,请你添加一个适当的条件,使ABCD 成为一个菱形,你添加的条件是 AD DC = . 【解答】解:邻边相等的平行四边形是菱形,∴平行四边形ABCD 的对角线AC 、BD 相交于点O ,试添加一个条件:可以为:AD DC =;故答案为:AD DC =.3.(3分)(2014•泉州)如图,Rt ABC ∆中,90ACB ∠=︒,D 为斜边AB 的中点,10AB cm =,则CD 的长为 5 cm .【解答】解:90ACB ∠=︒,D 为斜边AB 的中点,1110522CD AB cm ∴==⨯=. 故答案为: 5 .4.(3分)(2019秋•沙坪坝区校级月考)若1x 与2x 一元二次方程26150x x --=的两根,则12x x += 6 ,12x x = . 【解答】解:根据题意得: 126x x +=,1215x x =-,故答案为:6,15-.5.(3分)(2015•温州)一个不透明的袋中只装有1个红球和2个蓝球,它们除颜色外其余均相同.现随机从袋中摸出两个球,颜色是一红一蓝的概率是 23. 【解答】解:画树状图得:共有6种等可能的结果,随机从袋中摸出两个球,颜色是一红一蓝的有4种情况,∴随机从袋中摸出两个球,颜色是一红一蓝的概率是:4263=. 故答案为:23. 6.(3分)(2011•黄冈)如图:矩形ABCD 的对角线10AC =,8BC =,则图中五个小矩形的周长之和为 28 .【解答】解:由勾股定理,得6AB ==,将五个小矩形的所有上边平移至AD ,所有下边平移至BC ,所有左边平移至AB ,所有右边平移至CD ,∴五个小矩形的周长之和2()2(68)28AB BC =+=⨯+=.故答案为:28.二、选择题(每小题只有一个正确选项,每小题4分,共32分) 7.(4分)(2017•红桥区三模)方程22x x =的解是( )A .2x =B .12x =,20x =C .1x =20x =D .0x =【解答】解:220x x -=, (2)0x x -=, 0x =或20x -=,所以10x =,22x =. 故选:B .8.(2016秋•天水期中)方程||(2)310m m x mx -++=是关于x 的一元二次方程,则( ) A .2m =±B .2m =C .2m =-D .2m ≠±【解答】解:方程||(2)310m m x mx -++=是关于x 的一元二次方程, ||2m ∴=,且20m -≠.解得:2m =-. 故选:C .9.(4分)(2013•兰州)用配方法解方程2210x x --=时,配方后得的方程为( ) A .2(1)0x +=B .2(1)0x -=C .2(1)2x +=D .2(1)2x -=【解答】解:把方程2210x x --=的常数项移到等号的右边,得到221x x -=, 方程两边同时加上一次项系数一半的平方,得到22111x x -+=+ 配方得2(1)2x -=. 故选:D .10.(4分)(2011•无锡)菱形具有而矩形不一定具有的性质是( ) A .对角线互相垂直 B .对角线相等 C .对角线互相平分D .对角互补【解答】解:A 、菱形对角线相互垂直,而矩形的对角线则不垂直;故本选项符合要求;B 、矩形的对角线相等,而菱形的不具备这一性质;故本选项不符合要求;C 、菱形和矩形的对角线都互相平分;故本选项不符合要求;D 、菱形对角相等;但菱形不具备对角互补,故本选项不符合要求;故选:A .11.(4分)(2017春•和平区期末)顺次连接矩形ABCD 各边中点所得四边形必定是()A .平行四边形B .矩形C .正方形D .菱形【解答】解:如图:E ,F ,G ,H 为矩形的中点,则AH HD BF CF ===,AE BE CG DG ===,在Rt AEH ∆与Rt DGH ∆中,AH HD =,AE DG =,AEH DGH ∴∆≅∆, EH HG ∴=,同理,AEH DGH BEF CGF DGH ∆≅∆≅∆≅∆≅∆, EH HE GF EF ∴===,EHG EFG ∠=∠,∴四边形EFGH 为菱形.故选:D .12.(4分)(2013•衡阳)某药品经过两次降价,每瓶零售价由168元降为128元.已知两次降价的百分率相同,每次降价的百分率为x ,根据题意列方程得( ) A .2168(1)128x += B .2168(1)128x -= C .168(12)128x -=D .2168(1)128x -=【解答】解:根据题意得:2168(1)128x -=, 故选:B .13.(4分)(2015秋•深圳期末)如图,矩形ABCD 中,对角线AC 、BD 相交于点O ,AE BD ⊥于E ,若24OAE ∠=︒,则BAE ∠的度数是( )A .24︒B .33︒C .42︒D .43︒【解答】解:AE BD ⊥,90AEO ∴∠=︒,9066AOE OAE ∴∠=︒-∠=︒,四边形ABCD 是矩形, 12OA OC AC ∴==,12OB OD BD ==,AC BD =, OA OB ∴=,1(18066)572OAB OBA ∴∠=∠=︒-︒=︒,33BAE OAB OAE ∴∠=∠-∠=︒;故选:B .14.(4分)(2014•孝感)如图,正方形OABC 的两边OA 、OC 分别在x 轴、y 轴上,点(5,3)D 在边AB 上,以C 为中心,把CDB ∆旋转90︒,则旋转后点D 的对应点D '的坐标是()A .(2,10)B .(2,0)-C .(2,10)或(2,0)-D .(10,2)或(2,0)-【解答】解:点(5,3)D 在边AB 上, 5BC ∴=,532BD =-=,①若顺时针旋转,则点D '在x 轴上,2OD '=, 所以,(2,0)D '-,②若逆时针旋转,则点D '到x 轴的距离为10,到y 轴的距离为2, 所以,(2,10)D ',综上所述,点D '的坐标为(2,10)或(2,0)-. 故选:C .三、解答题(本大题共9小题,共70分)15.(5分)(2019秋•沙坪坝区校级月考)解下列方程 (1)26180x x --=; (2)7(52)6(52)x x x +=+. 【解答】解:(1)2618x x -=,269189x x ∴-+=+,即2(3)27x -=,则3x -=±,13x ∴=+23x =-(2)7(52)6(52)0x x x +-+=,(52)(76)0x x ∴+-=,则520x +=或760x -=, 解得125x =-,267x =. 16.(6分)(2018•莘县二模)已知:如图,在矩形ABCD 中,点E ,F 分别在AB ,CD边上,BE DF =,连接CE ,AF .求证:AF CE =.【解答】证明:四边形ABCD 是矩形,//DC AB ∴,DC AB =,//CF AE ∴,DF BE =,CF AE ∴=,∴四边形AFCE 是平行四边形,AF CE ∴=.17.(8分)(2019秋•沙坪坝区校级月考)如图,矩形ABCD 的对角线AC 的垂直平分线EF 与AD 、AC 、BC 分别交于点E 、O 、F .(1)求证:四边形AFCE 是菱形;(2)若5AB =,12BC =,6EF =,求菱形AFCE 的面积.【解答】解:(1)四边形ABCD 是矩形,//AE FC ∴,EAO FCO ∴∠=∠, EF 垂直平分AC ,AO CO ∴=,FE AC ⊥,又AOE COF ∠=∠,()AOE COF AAS ∴∆≅∆,EO FO ∴=,∴四边形AFCE 为平行四边形,又FE AC ⊥,∴平行四边形AFCE 为菱形;(2)在Rt ABC ∆中,由5AB =,12BC =,根据勾股定理得:13AC ===,132OA ∴=, EAO ACB ∠=∠,tan tan EAO ACB ∴∠=∠, ∴EO AB AO BC=,即513122EO =, 6524EO ∴=, 6512EF ∴= ∴菱形AFCE 的面积116584513221224S AC EF ==⨯⨯=18.(8分)(2015•李沧区一模)小明、小芳做一个“配色”的游戏.右图是两个可以自由转动的转盘,每个转盘被分成面积相等的几个扇形,并涂上图中所示的颜色.同时转动两个转盘,如果转盘A 转出了红色,转盘B 转出了蓝色,或者转盘A 转出了蓝色,转盘B 转出了红色,则红色和蓝色在一起配成紫色,这种情况下小芳获胜;同样,蓝色和黄色在一起配成绿色,这种情况下小明获胜;在其它情况下不分胜负.(1)利用列表或树状图的方法表示此游戏所有可能出现的结果;(2)此游戏的规则,对小明、小芳公平吗?试说明理由.【解答】解:(1)用列表法将所有可能出现的结果表示如下:所有可能出现的结果共有12种.(2)不公平.上面等可能出现的12种结果中,有3种情况可能得到紫色,故配成紫色的概率是312,即小明获胜的概率是14;但只有2种情况才可能得到绿色,配成绿色的概率是212,即小强获胜的概率是16.而1146>,故小芳获胜的可能性大,这个“配色”游戏对双方是不公平的.19.(7分)(2014•新疆)如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB,BC各为多少米?【解答】解:设AB的长度为x米,则BC的长度为(1004)x-米.根据题意得(1004)400x x-=,解得120x=,25x=.则100420x-=或100480x-=.8025>,25x∴=舍去.即20AB =,20BC =.答:羊圈的边长AB ,BC 分别是20米、20米.20.(9分)(2019秋•沙坪坝区校级月考)某超市销售一种成本为每千克40元的水产品,经市场分析,若按每千克50元销售,一个月能销售出500千克;销售单价每涨价1元,月销售量就减少10千克.针对这种水产品的销售情况,请解答以下问题:(1)每千克涨价x 元,那么销售量表示为 (50010)x - 千克,涨价后每千克利润为 元(用含x 的代数式表示.)(2)要使得月销售利润达到8000元,又要“薄利多销”,销售单价应定为多少?这时应进货多少千克?【解答】解:(1)由题意可知:销售量为(50010)x -千克,涨价后每千克利润为:504010x x +-=+(千克)故答案是:(50010)x -;(10)x +;(2)210(20)9000y x =--+,即销售单价每涨价20元,售价为502070+=元时,月销售利润最高利润为9000元;(3)由题意可列方程:(10)(50010)8000x x +-=,整理,得:2403000x x -+=解得:110x =,230x =,因为又要“薄利多销”所以30x =不符合题意,舍去.答:销售单价应涨价10元.21.(6分)(2017秋•惠城区期末)已知关于x 的方程220x ax a ++-=.(1)证明:不论a 取任何实数,该方程都有两个不相等的实数根;(2)当1a =时,求该方程的根.【解答】(1)证明:△2224(2)48(2)4a a a a a =--=-+=-+.2(2)0a -…,2(2)40a ∴-+>,即△0>,∴不论a 取任何实数,该方程都有两个不相等的实数根;(2)解:当1a =时,原方程为210x x +-=,△2141(1)5=-⨯⨯-=,1x ∴,2x =. 22.(8分)(2019秋•沙坪坝区校级月考)如图,在ABC ∆中,点O 是AC 边上的一动点,过O 作直线//MN BC ,设MN 交BCA ∠的平分线于点E ,交B C A ∠的外角平分线于点F .(1)求证:EO FO =;(2)当O 点运动到何处时,四边形AECF 是矩形?并证明你的结论.【解答】(1)证明://MN BC ,CE 平分ACB ∠,CF 平分ACD ∠, BCE ACE OEC ∴∠=∠=∠,OCF FCD OFC ∠=∠=∠,OE OC ∴=,OC OF =,OE OF ∴=.(2)解:当O 运动到AC 中点时,四边形AECF 是矩形,AO CO =,OE OF =,∴四边形AECF 是平行四边形,12ECA ACF BCD ∠+∠=∠, 90ECF ∴∠=︒,∴四边形AECF 是矩形.23.(8分)(2016秋•江都区期中)阅读下面的例题:解方程2||20x x --=解:当0x …时,原方程化为220x x --=,解得:12x =,21x =-(不合题意,舍去); 当0x <时,原方程化为220x x +-=,解得:11x =,(不合题意,舍去)22x =-; ∴原方程的根是12x =,22x =-.请参照例题解方程2|1|10x x ---=.【解答】解:当10x -…即1x …时,原方程化为2(1)10x x ---= 即20x x -=, 解得10x =,21x =,1x …,1x ∴=;当10x -<即1x <时,原方程化为2(1)10x x +--= 即220x x +-=, 解得12x =-,211x x =<,2x ∴=-,∴原方程的根为11x =,22x =-.。
九年级(上)第二次月考数学试卷
九年级(上)第二次月考数学试卷一、选择题1.有9名同学参加歌咏比赛,他们的预赛成绩各不相同,现取其中前4名参加决赛,小红同学在知道自己成绩的情况下,要判断自己能否进入决赛,还需要知道这9名同学成绩的( ) A .平均数B .方差C .中位数D .极差2.已知一元二次方程2330p p --=,2330q q --=,则p q +的值为( ) A .3-B .3C .3-D .33.已知二次函数y =ax 2+bx +c (a <0<b )的图像与x 轴只有一个交点,下列结论:①x <0时,y 随x 增大而增大;②a +b +c <0;③关于x 的方程ax 2+bx +c +2=0有两个不相等的实数根.其中所有正确结论的序号是( ) A .①②B .②③C .①③D .①②③4.如图,在由边长为1的小正方形组成的网格中,点A ,B ,C ,D 都在格点上,点E 在AB 的延长线上,以A 为圆心,AE 为半径画弧,交AD 的延长线于点F ,且弧EF 经过点C ,则扇形AEF 的面积为( )A .58B .58πC .54πD .545.函数y=(x+1)2-2的最小值是( ) A .1B .-1C .2D .-26.在平面直角坐标系中,将抛物线y =2(x ﹣1)2+1先向左平移2个单位,再向上平移3个单位,则平移后抛物线的表达式是( ) A .y =2(x+1)2+4 B .y =2(x ﹣1)2+4 C .y =2(x+2)2+4D .y =2(x ﹣3)2+47.抛物线2y 3(x 1)1=-+的顶点坐标是( ) A .()1,1 B .()1,1-C .()1,1--D .()1,1-8.已知⊙O 的半径为1,点P 到圆心的距离为d ,若关于x 的方程x 2-2x+d=0有实数根,则点P ( )A .在⊙O 的内部B .在⊙O 的外部C .在⊙O 上D .在⊙O 上或⊙O 内部9.若两个相似三角形的相似比是1:2,则它们的面积比等于( ) A .12B .1:2C .1:3D .1:410.用配方法解方程2890x x ++=,变形后的结果正确的是( )A .()249x +=-B .()247x +=-C .()2425x +=D .()247x +=11.某班有40人,一次体能测试后,老师对测试成绩进行了统计.由于小亮没有参加本次集体测试因此计算其他39人的平均分为90分,方差s 2=41.后来小亮进行了补测,成绩为90分,关于该班40人的测试成绩,下列说法正确的是( ) A .平均分不变,方差变大 B .平均分不变,方差变小 C .平均分和方差都不变D .平均分和方差都改变12.如图,在□ABCD 中,E 、F 分别是边BC 、CD 的中点,AE 、AF 分别交BD 于点G 、H ,则图中阴影部分图形的面积与□ABCD 的面积之比为( )A .7 : 12B .7 : 24C .13 : 36D .13 : 72 13.有一组数据:4,6,6,6,8,9,12,13,这组数据的中位数为( )A .6B .7C .8D .914.如图,随意向水平放置的大⊙O 内部区域抛一个小球,则小球落在小⊙O 内部(阴影)区域的概率为( )A .12B .14C .13D .1915.如图,AB 为⊙O 的直径,PD 切⊙O 于点C ,交AB 的延长线于D ,且∠D =40°,则∠PCA 等于( )A .50°B .60°C .65°D .75°二、填空题16.已知∠A =60°,则tan A =_____.17.如图,在平面直角坐标系中,将△ABO 绕点A 顺指针旋转到△AB 1C 1的位置,点B 、O 分别落在点B 1、C 1处,点B 1在x 轴上,再将△AB 1C 1绕点B 1顺时针旋转到△A 1B 1C 2的位置,点C 2在x 轴上,将△A 1B 1C 2绕点C 2顺时针旋转到△A 2B 2C 2的位置,点A 2在x 轴上,依次进行下去…,若点A (53,0)、B (0,4),则点B 2020的横坐标为_____.18.一元二次方程290x 的解是__.19.将二次函数y=2x 2的图像沿x 轴向左平移2个单位,再向下平移3个单位后,所得函数图像的函数关系式为______________.20.如图,四边形ABCD 是半圆的内接四边形,AB 是直径,CD CB =.若100C ∠=︒,则ABC ∠的度数为______.21.在比例尺为1∶500 000的地图上,量得A 、B 两地的距离为3 cm ,则A 、B 两地的实际距离为_____km .22.如图,每个小正方形的边长都为1,点A 、B 、C 都在小正方形的顶点上,则∠ABC 的正切值为_____.23.把抛物线22(1)1y x =-+向左平移2个单位长度再向下平移3个单位长度后所得到的抛物线的函数表达式是__________. 24.在平面直角坐标系中,抛物线2yx 的图象如图所示.已知A 点坐标为()1,1,过点A 作1AA x ∕∕轴交抛物线于点1A ,过点1A 作12A A OA ∕∕交抛物线于点2A ,过点2A 作23A A x ∕∕轴交抛物线于点3A ,过点3A 作34A A OA ∕∕交抛物线于点4A ……,依次进行下去,则点2019A 的坐标为_____.25.一组数据3,2,1,4,x 的极差为5,则x 为______. 26.如图,抛物线2143115y x x =--与x 轴交于A 、B 两点,与y 轴交于C 点,⊙B 的圆心为B ,半径是1,点P 是直线AC 上的动点,过点P 作⊙B 的切线,切点是Q ,则切线长PQ 的最小值是__.27.一元二次方程x 2﹣3x+2=0的两根为x 1,x 2,则x 1+x 2﹣x 1x 2=______. 28.若函数y =(m +1)x 2﹣x +m (m +1)的图象经过原点,则m 的值为_____. 29.顶点在原点的二次函数图象先向左平移1个单位长度,再向下平移2个单位长度后,所得的抛物线经过点(0,﹣3),则平移后抛物线相应的函数表达式为_____. 30.已知二次函数y =ax 2+bx +c (a >0)图象的对称轴为直线x =1,且经过点(﹣1,y 1),(2,y 2),则y 1_____y 2.(填“>”“<”或“=”)三、解答题31.某市2017年对市区绿化工程投入的资金是5000万元,为争创全国文明卫生城,加大对绿化工程的投入,2019年投入的资金是7200万元,且从2017年到2019年,两年间每年投入资金的年平均增长率相同.(1)求该市对市区绿化工程投入资金的年平均增长率;(2)若投入资金的年平均增长率不变,那么该市在2020年预计需投入多少万元? 32.在平面直角坐标系中,已知抛物线24y x x =-+.(1)我们把一条抛物线上横坐标与纵坐标相等的点叫做这条抛物线的“方点”.试求拋物线24y x x =-+的“方点”的坐标;(2)如图,若将该抛物线向左平移1个单位长度,新抛物线与x 轴相交于A 、B 两点(A 在B 左侧),与y 轴相交于点C ,连接BC .若点P 是直线BC 上方抛物线上的一点,求PBC ∆的面积的最大值;(3)第(2)问中平移后的抛物线上是否存在点Q ,使QBC ∆是以BC 为直角边的直角三角形?若存在,直接写出所有符合条件的点Q 的坐标;若不存在,说明理由. 33.如图,在平面直角坐标系中,ABC ∆的顶点坐标分别为A (6,4),B (4,0),C (2,0).(1)在y 轴左侧,以O 为位似中心,画出111A B C ∆,使它与ABC ∆的相似比为1:2; (2)根据(1)的作图,111tan A B C ∠= .34.阅读理解:如图,在纸面上画出了直线l 与⊙O ,直线l 与⊙O 相离,P 为直线l 上一动点,过点P 作⊙O 的切线PM ,切点为M ,连接OM 、OP ,当△OPM 的面积最小时,称△OPM 为直线l 与⊙O 的“最美三角形”.解决问题:(1)如图1,⊙A 的半径为1,A(0,2) ,分别过x 轴上B 、O 、C 三点作⊙A 的切线BM 、OP 、CQ ,切点分别是M 、P 、Q ,下列三角形中,是x 轴与⊙A 的“最美三角形”的是 .(填序号)①ABM ;②AOP ;③ACQ(2)如图2,⊙A 的半径为1,A(0,2),直线y=kx (k≠0)与⊙A 的“最美三角形”的面积为12,求k 的值. (3)点B 在x 轴上,以B 为圆心,3为半径画⊙B ,若直线y=3x+3与⊙B 的“最美三角形”的面积小于32,请直接写出圆心B 的横坐标B x 的取值范围.35.解方程: (1)x 2-8x +6=0 (2)(x -1)2 -3(x -1) =0四、压轴题36.研究发现:当四边形的对角线互相垂直时,该四边形的面积等于对角线乘积的一半,如图1,已知四边形ABCD 内接于O ,对角线AC BD =,且AC BD ⊥.(1)求证:AB CD =; (2)若O 的半径为8,弧BD 的度数为120︒,求四边形ABCD 的面积;(3)如图2,作OM BC ⊥于M ,请猜测OM 与AD 的数量关系,并证明你的结论. 37.在长方形ABCD 中,AB =5cm ,BC =6cm ,点P 从点A 开始沿边AB 向终点B 以1/cm s 的速度移动,与此同时,点Q 从点B 开始沿边BC 向终点C 以2/cm s 的速度移动.如果P 、Q 分别从A 、B 同时出发,当点Q 运动到点C 时,两点停止运动.设运动时间为t 秒.(1)填空:______=______,______=______(用含t 的代数式表示); (2)当t 为何值时,PQ 的长度等于5cm ?(3)是否存在t 的值,使得五边形APQCD 的面积等于226cm ?若存在,请求出此时t 的值;若不存在,请说明理由.38.如图1,有一块直角三角板,其中AB 16=,ACB 90∠=,CAB 30∠=,A 、B 在x 轴上,点A 的坐标为()20,0,圆M 的半径为33,圆心M 的坐标为()5,33-,圆M 以每秒1个单位长度的速度沿x 轴向右做平移运动,运动时间为t 秒;()1求点C 的坐标;()2当点M 在ABC ∠的内部且M 与直线BC 相切时,求t 的值;()3如图2,点E 、F 分别是BC 、AC 的中点,连接EM 、FM ,在运动过程中,是否存在某一时刻,使EMF 90∠=?若存在,直接写出t 的值,若不存在,请说明理由.39.如图,一次函数122y x =-+的图象交y 轴于点A ,交x 轴于点B 点,抛物线2y x bx c =-++过A 、B 两点.(1)求A ,B 两点的坐标;并求这个抛物线的解析式;(2)作垂直x 轴的直线x =t ,在第一象限交直线AB 于M ,交这个抛物线于N .求当t 取何值时,MN 有最大值?最大值是多少?(3)在(2)的情况下,以A 、M 、N 、D 为顶点作平行四边形,求第四个顶点D 的坐标.40.如图,在边长为5的菱形OABC中,sin∠AOC=45,O为坐标原点,A点在x轴的正半轴上,B,C两点都在第一象限.点P以每秒1个单位的速度沿O→A→B→C→O运动一周,设运动时间为t(秒).请解答下列问题:(1)当CP⊥OA时,求t的值;(2)当t<10时,求点P的坐标(结果用含t的代数式表示);(3)以点P为圆心,以OP为半径画圆,当⊙P与菱形OABC的一边所在直线相切时,请直接写出t的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】9人成绩的中位数是第5名的成绩.参赛选手要想知道自己是否能进入前4名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【详解】由于总共有9个人,且他们的分数互不相同,第5的成绩是中位数,要判断是否进入前5名,故应知道中位数的多少.故选:C . 【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、极差、方差的意义,掌握相关知识点是解答此题的关键.2.B解析:B 【解析】 【分析】根据题干可以明确得到p,q 是方程230x -=的两根,再利用韦达定理即可求解. 【详解】解:由题可知p,q 是方程230x -=的两根, ∴, 故选B. 【点睛】本题考查了一元二次方程的概念,韦达定理的应用,熟悉韦达定理的内容是解题关键.3.C解析:C 【解析】 【分析】①根据对称轴及增减性进行判断; ②根据函数在x=1处的函数值判断;③利用抛物线与直线y=-2有两个交点进行判断. 【详解】解:∵a <0<b ,∴二次函数的对称轴为x=2ba->0,在y 轴右边,且开口向下, ∴x <0时,y 随x 增大而增大; 故①正确;根据二次函数的系数,可得图像大致如下, 由于对称轴x=2ba-的值未知, ∴当x=1时,y=a+b+c 的值无法判断, 故②不正确;由图像可知,y==ax 2+bx +c ≤0,∴二次函数与直线y=-2有两个不同的交点, ∴方程ax 2+bx +c =-2有两个不相等的实数根. 故③正确. 故选C. 【点睛】本题考查了二次函数的图像的性质,二次函数的图像与系数的关系,二次函数与方程的关系,借助图像解决问题是关键.4.B解析:B 【解析】 【分析】连接AC ,根据网格的特点求出r=AC 的长度,再得到扇形的圆心角度数,根据扇形面积公式即可求解. 【详解】连接AC ,则r=AC=22251=+ 扇形的圆心角度数为∠BAD=45°, ∴扇形AEF 的面积=()2455360π⨯⨯=58π故选B.【点睛】此题主要考查扇形面积求解,解题的关键是熟知勾股定理及扇形面积公式.5.D解析:D 【解析】 【分析】抛物线y=(x+1)2-2开口向上,有最小值,顶点坐标为(-1,-2),顶点的纵坐标-2即为函数的最小值.【详解】解:根据二次函数的性质,当x=-1时,二次函数y=(x+1)2-2的最小值是-2.故选D.【点睛】本题考查了二次函数的最值.6.A解析:A【解析】【分析】只需确定原抛物线解析式的顶点坐标平移后的对应点坐标即可.【详解】解:原抛物线y=2(x﹣1)2+1的顶点为(1,1),先向左平移2个单位,再向上平移3个单位,新顶点为(﹣1,4).即所得抛物线的顶点坐标是(﹣1,4).所以,平移后抛物线的表达式是y=2(x+1)2+4,故选:A.【点睛】本题主要考查了二次函数图像的平移,抛物线的解析式为顶点式时,求出顶点平移后的对应点坐标,可得平移后抛物线的解析式,熟练掌握二次函数图像的平移规律是解题的关键. 7.A解析:A【解析】【分析】已知抛物线顶点式y=a(x﹣h)2+k,顶点坐标是(h,k).【详解】∵抛物线y=3(x﹣1)2+1是顶点式,∴顶点坐标是(1,1).故选A.【点睛】本题考查了由抛物线的顶点式写出抛物线顶点的坐标,比较容易.8.D解析:D【解析】【分析】先根据条件x 2 -2x+d=0有实根得出判别式大于或等于0,求出d的范围,进而得出d与r 的数量关系,即可判断点P和⊙O的关系..【详解】解:∵关于x的方程x 2 -2x+d=0有实根,∴根的判别式△=(-2) 2 -4×d≥0,解得d≤1,∵⊙O的半径为r=1,∴d≤r∴点P在圆内或在圆上.故选:D.【点睛】本题考查了点和圆的位置关系,由点到圆心的距离和半径的数量关系对点和圆的位置关系作出判断是解答此题的重要途径,即当d>r时,点在圆外,当d=r时,点在圆上,当d<r 时,点在圆内.9.D解析:D【解析】【分析】根据相似三角形面积的比等于相似比的平方解答即可.【详解】解:∵两个相似三角形的相似比是1:2,∴这两个三角形们的面积比为1:4,故选:D.【点睛】此题考查相似三角形的性质,掌握相似三角形面积的比等于相似比的平方是解决此题的关键.10.D解析:D【解析】【分析】先将常数项移到右侧,然后两边同时加上一次项系数一半的平方,配方后进行判断即可.【详解】2890++=,x x289+=-,x x222++=-+,x x8494x+=,所以()247故选D.【点睛】本题考查了配方法解一元二次方程,熟练掌握配方法的一般步骤以及注意事项是解题的关键.11.B解析:B【解析】【分析】根据平均数、方差的定义计算即可.【详解】∵小亮的成绩和其它39人的平均数相同,都是90分,∴40人的平均数是90分,∵39人的方差为41,小亮的成绩是90分,40人的平均分是90分,∴40人的方差为[41×39+(90-90)2]÷40<41,∴方差变小,∴平均分不变,方差变小故选B.【点睛】本题考查了平均数与方差,熟练掌握定义是解题关键.12.B解析:B【解析】【分析】根据已知条件想办法证明BG=GH=DH ,即可解决问题;【详解】解:∵四边形ABCD 是平行四边形,∴AB ∥CD ,AD ∥BC ,AB=CD ,AD=BC ,∵DF=CF ,BE=CE , ∴12DH DF HB AB ==,12BG BE DG AD ==, ∴13DH BG BD BD ==, ∴BG=GH=DH ,∴S △ABG =S △AGH =S △ADH ,∴S 平行四边形ABCD =6 S △AGH ,∴S △AGH :ABCD S 平行四边形=1:6,∵E 、F 分别是边BC 、CD 的中点, ∴12EF BD =, ∴14EFC BCDD S S =, ∴18EFC ABCD SS =四边形, ∴1176824AGH EFC ABCD S S S +=+=四边形=7∶24, 故选B.本题考查了平行四边形的性质、平行线分线段成比例定理、等底同高的三角形面积性质,题目的综合性很强,难度中等.13.B解析:B【解析】【分析】先把这组数据按顺序排列:4,6,6,6,8,9,12,13,根据中位数的定义可知:这组数据的中位数是6,8的平均数.【详解】∵一组数据:4,6,6,6,8,9,12,13,∴这组数据的中位数是()6821427+÷÷==,故选:B .【点睛】本题考查中位数的计算,解题的关键是熟练掌握中位数的求解方法:先将数据按大小顺序排列,当数据个数为奇数时,最中间的那个数据是中位数,当数据个数为偶数时,居于中间的两个数据的平均数才是中位数.14.B解析:B【解析】【分析】针扎到内切圆区域的概率就是内切圆的面积与外切圆面积的比.【详解】解:∵如图所示的正三角形,∴∠CAB =60°,∴∠OAB =30°,∠OBA =90°,设OB =a ,则OA =2a ,则小球落在小⊙O 内部(阴影)区域的概率为()22142a a ππ=. 故选:B .【点睛】本题考查了概率问题,掌握圆的面积公式是解题的关键.15.C【解析】【分析】根据切线的性质,由PD切⊙O于点C得到∠OCD=90°,再利互余计算出∠DOC=50°,由∠A=∠ACO,∠COD=∠A+∠ACO,所以1252A COD∠=∠=︒,然后根据三角形外角性质计算∠PCA的度数.【详解】解:∵PD切⊙O于点C,∴OC⊥CD,∴∠OCD=90°,∵∠D=40°,∴∠DOC=90°﹣40°=50°,∵OA=OC,∴∠A=∠ACO,∵∠COD=∠A+∠ACO,∴1252A COD∠=∠=︒,∴∠PCA=∠A+∠D=25°+40°=65°.故选C.【点睛】本题考查了切线的性质、等腰三角形的性质、直角三角形的性质、三角形外角性质等知识;熟练掌握切线的性质与三角形外角性质是解题的关键.二、填空题16.【解析】【分析】直接利用特殊角的三角函数值得出答案.【详解】tanA=tan60°=.故答案为:.【点睛】本题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.【解析】【分析】直接利用特殊角的三角函数值得出答案.tan A=tan60°.【点睛】本题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.17.10100【解析】【分析】首先根据已知求出三角形三边长度,然后通过旋转发现,B、B2、B4…每偶数之间的B相差10个单位长度,根据这个规律可以求解.【详解】由图象可知点B2020在第一象限解析:10100【解析】【分析】首先根据已知求出三角形三边长度,然后通过旋转发现,B、B2、B4…每偶数之间的B相差10个单位长度,根据这个规律可以求解.【详解】由图象可知点B2020在第一象限,∵OA=53,OB=4,∠AOB=90°,∴AB133===,∴OA+AB1+B1C2=53+133+4=10,∴B2的横坐标为:10,同理:B4的横坐标为:2×10=20,B6的横坐标为:3×10=30,∴点B2020横坐标为:2020102⨯=10100.故答案为:10100.【点睛】本题考查了点的坐标规律变换,通过图形旋转,找到所有B点之间的关系是本题的关键.题目难易程度适中,可以考察学生观察、发现问题的能力.18.x1=3,x2=﹣3.【解析】先移项,在两边开方即可得出答案.【详解】∵∴=9,∴x=±3,即x1=3,x2=﹣3,故答案为x1=3,x2=﹣3.【点睛】本题考查了解一解析:x1=3,x2=﹣3.【解析】【分析】先移项,在两边开方即可得出答案.【详解】x-=∵290∴2x=9,∴x=±3,即x1=3,x2=﹣3,故答案为x1=3,x2=﹣3.【点睛】本题考查了解一元二次方程-直接开平方法,熟练掌握该方法是本题解题的关键.19.y=2(x+2)2-3【解析】【分析】根据“上加下减,左加右减”的原则进行解答即可.【详解】解:根据“上加下减,左加右减”的原则可知,二次函数y=2x2的图象向左平移2个单位,再向下平移解析:y=2(x+2)2-3【解析】【分析】根据“上加下减,左加右减”的原则进行解答即可.【详解】解:根据“上加下减,左加右减”的原则可知,二次函数y=2x2的图象向左平移2个单位,再向下平移3个单位后得到的图象表达式为y=2(x+2)2-3本题考查的是二次函数的图象与几何变换,熟知“上加下减,左加右减”的原则是解答此题的关键.20.50【解析】【分析】连接AC ,根据圆内接四边形的性质求出,再利用圆周角定理求出,,计算即可.【详解】解:连接AC ,∵四边形ABCD 是半圆的内接四边形,∴∵DC=CB∴∵AB 是直解析:50【解析】【分析】连接AC ,根据圆内接四边形的性质求出DAB ∠,再利用圆周角定理求出ACB ∠,CAB ∠,计算即可.【详解】解:连接AC ,∵四边形ABCD 是半圆的内接四边形,∴DAB 180DCB 80∠∠=︒-=︒∵DC=CB∴1CAB 402DAB ∠=∠=︒ ∵AB 是直径∴ACB 90∠=︒∴ABC 90CAB 50∠∠=︒-=︒故答案为:50.【点睛】本题考查的知识点有圆的内接四边形的性质以及圆周角定理,熟记知识点是解题的关键. 21.15【解析】【分析】由在比例尺为1:50000的地图上,量得A、B两地的图上距离AB=3cm,根据比例尺的定义,可求得两地的实际距离.【详解】解:∵比例尺为1:500000,量得两地的距离解析:15【解析】【分析】由在比例尺为1:50000的地图上,量得A、B两地的图上距离AB=3cm,根据比例尺的定义,可求得两地的实际距离.【详解】解:∵比例尺为1:500000,量得两地的距离是3厘米,∴A、B两地的实际距离3×500000=1500000cm=15km,故答案为15.【点睛】此题考查了比例尺的性质.注意掌握比例尺的定义,注意单位要统一.22.1【解析】【分析】根据勾股定理求出△ABC的各个边的长度,根据勾股定理的逆定理求出∠ACB=90°,再解直角三角形求出即可.【详解】如图:长方形AEFM,连接AC,∵由勾股定理得:AB解析:1【解析】【分析】根据勾股定理求出△ABC的各个边的长度,根据勾股定理的逆定理求出∠ACB=90°,再解直角三角形求出即可.【详解】如图:长方形AEFM,连接AC,∵由勾股定理得:AB 2=32+12=10,BC 2=22+12=5,AC 2=22+12=5∴AC 2+BC 2=AB 2,AC =BC ,即∠ACB =90°,∴∠ABC =45°∴tan ∠ABC=1【点睛】本题考查了解直角三角形和勾股定理及逆定理等知识点,能求出∠ACB =90°是解此题的关键.23.【解析】【分析】根据二次函数图象的平移规律平移即可.【详解】抛物线向左平移2个单位长度再向下平移3个单位长度后所得到的抛物线的函数表达式是即故答案为:.【点睛】本题主要考查二次函解析:22(1)2y x =+-【解析】【分析】根据二次函数图象的平移规律平移即可.【详解】抛物线22(1)1y x =-+向左平移2个单位长度再向下平移3个单位长度后所得到的抛物线的函数表达式是 22(12)13y x =-++-即22(1)2y x =+-故答案为:22(1)2y x =+-.【点睛】本题主要考查二次函数的平移,掌握平移规律“左加右减,上加下减”是解题的关键. 24.【解析】【分析】根据二次函数性质可得出点的坐标,求得直线为,联立方程求得的坐标,即可求得的坐标,同理求得的坐标,即可求得的坐标,根据坐标的变化找出变化规律,即可找出点的坐标.【详解】解:∵解析:2(1010,1010)-【解析】【分析】根据二次函数性质可得出点1A 的坐标,求得直线12A A 为2y x =+,联立方程求得2A 的坐标,即可求得3A 的坐标,同理求得4A 的坐标,即可求得5A 的坐标,根据坐标的变化找出变化规律,即可找出点2019A 的坐标.【详解】解:∵A 点坐标为()1,1,∴直线OA 为y x =,()11,1A -,∵12A A OA ∕∕,∴直线12A A 为2y x =+,解22y x y x =+⎧⎨=⎩得11x y =-⎧⎨=⎩或24x y =⎧⎨=⎩, ∴()22,4A ,∴()32,4A -,∵34A A OA ∕∕,∴直线34A A 为6y x =+,解26y x y x =+⎧⎨=⎩得24x y =-⎧⎨=⎩或39x y =⎧⎨=⎩, ∴()43,9A ,∴()53,9A -…,∴()220191010,1010A -,故答案为()21010,1010-. 【点睛】本题考查了二次函数图象上点的坐标特征、一次函数的图象以及交点的坐标,根据坐标的变化找出变化规律是解题的关键.25.-1或6【解析】【分析】由题意根据极差的公式即极差=最大值-最小值.可能是最大值,也可能是最小值,分两种情况讨论.【详解】解:当x 是最大值,则x-(1)=5,所以x=6;当x 是最小值,解析:-1或6【解析】【分析】由题意根据极差的公式即极差=最大值-最小值.x 可能是最大值,也可能是最小值,分两种情况讨论.【详解】解:当x 是最大值,则x-(1)=5,所以x=6;当x 是最小值,则4-x=5,所以x=-1;故答案为-1或6.【点睛】本题考查极差的定义,极差反映了一组数据变化范围的大小,求极差的方法是用一组数据中的最大值减去最小值,同时注意分类的思想的运用.26.【解析】【分析】先根据解析式求出点A 、B 、C 的坐标,求出直线AC 的解析式,设点P 的坐标,根据过点P 作⊙B 的切线,切点是Q 得到PQ 的函数关系式,求出最小值即可.【详解】令中y=0,得x1=【解析】【分析】先根据解析式求出点A 、B 、C 的坐标,求出直线AC 的解析式,设点P 的坐标,根据过点P 作⊙B 的切线,切点是Q 得到PQ 的函数关系式,求出最小值即可.【详解】令21115y x =-中y=0,得x 1x 2∴直线AC的解析式为1y =-, 设P (x ,313x ), ∵过点P 作⊙B 的切线,切点是Q ,BQ=1∴PQ 2=PB 2-BQ 2,2+(313x )2-1, =24283753x x , ∵43a =0<, ∴PQ 2有最小值24283475()3326443,∴PQ【点睛】此题考查二次函数最小值的实际应用,求动线段的最小值,需构建关于此线段的函数解析式,利用二次函数顶点坐标公式求最值,此题找到线段PQ 、BQ 、PB 之间的关系式是解题的关键.27.1【解析】【分析】利用根与系数的关系得到x1+x2=3,x1x2=2,然后利用整体代入的方法计算.【详解】解:根据题意得:x1+x2=3,x1x2=2,所以x1+x2-x1x2=3-2=解析:1【解析】【分析】利用根与系数的关系得到x 1+x 2=3,x 1x 2=2,然后利用整体代入的方法计算.【详解】解:根据题意得:x 1+x 2=3,x 1x 2=2,所以x 1+x 2-x 1x 2=3-2=1.故答案为:1.【点睛】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=-ba,x1x2=ca.28.0或﹣1【解析】【分析】根据题意把原点(0,0)代入解析式,得出关于m的方程,然后解方程即可.【详解】∵函数经过原点,∴m(m+1)=0,∴m=0或m=﹣1,故答案为0或﹣1.【点解析:0或﹣1【解析】【分析】根据题意把原点(0,0)代入解析式,得出关于m的方程,然后解方程即可.【详解】∵函数经过原点,∴m(m+1)=0,∴m=0或m=﹣1,故答案为0或﹣1.【点睛】本题考查二次函数图象上点的坐标特征,解题的关键是知道函数图象上的点满足函数解析式.29.y=﹣(x+1)2﹣2【解析】【分析】根据坐标平移规律可知平移后的顶点坐标为(﹣1,﹣2),进而可设二次函数为,再把点(0,﹣3)代入即可求解a的值,进而得平移后抛物线的函数表达式.【详解】解析:y=﹣(x+1)2﹣2【解析】【分析】根据坐标平移规律可知平移后的顶点坐标为(﹣1,﹣2),进而可设二次函数为()212y a x +-=,再把点(0,﹣3)代入即可求解a 的值,进而得平移后抛物线的函数表达式.【详解】由题意可知,平移后的函数的顶点为(﹣1,﹣2),设平移后函数的解析式为()212y a x +-=,∵所得的抛物线经过点(0,﹣3),∴﹣3=a ﹣2,解得a =﹣1,∴平移后函数的解析式为()212y x +=--,故答案为()212y x +=--.【点睛】本题考查坐标与图形变化-平移,解题的关键是掌握坐标平移规律:“左右平移时,横坐标左移减右移加,纵坐标不变;上下平移时,横坐标不变,纵坐标上移加下移减”。
最新2019-2020年度人教版九年级(上)第二次月考数学试卷及答案解析-精品试卷
九年级(上)第二次月考数学试卷一.选择题(每小题3分,共30分)1.如图所示几何体的左视图是()A.B.C.D.2.下列说法正确的是()A.等腰梯形既是中心对称图形,又是轴对称图形B.矩形是轴对称图形,有四条对称轴C.等腰三角形一腰上的高与底边的夹角等于顶角的一半D.有一个角的平分线平分对边的三角形是等腰直角三角形3.某电视台举行的歌手大奖赛,每场比赛都有编号为1~10号共10道综合素质测试题供选手随机抽取作答.在某场比赛中,前两位选手已分别抽走了2号、7号题,第3位选手抽中8号题的概率是()A.B.C.D.4.某工厂计划经过两年的时间将某种产品的产量从每年144万台提高到169万台,则每年平均约增长()A.5% B.8% C.10% D.15%5.在△ABC中,已知AB=AC,DE垂直平分AC,∠A=50°,则∠DCB的度数是()A.15°B.30°C.50°D.65°6.如图,在△MBN中,BM=6,点A、C、D分别在MB、NB、MN上,四边形ABCD为平行四边形,且∠NDC=∠MDA,则▱ABCD的周长是()A.24 B.18 C.16 D.127.在同一直角坐标系中,函数y=kx﹣k与y=(k≠0)的图象大致是()A.B.C.D.8.如图,它们是一个物体的三视图,该物体的形状是()A.圆柱B.正方体C.圆锥D.长方体9.在函数的图象上有三点A1(x1,y1)、A2(x2,y2)、A3(x3,y3),若x1<0<x2<x3,则下列正确的是()A.y1<0<y2<y3B.y2<y3<0<y1C.y2<y3<y1<0 D.0<y2<y1<y310.已知四边形ABCD,有以下四个条件:①AB∥CD;②AB=CD;③BC∥AD;④BC=AD.从这四个条件中任选两个,能使四边形ABCD成为平行四边形的选法种数共有()A.6种B.5种C.4种D.3种二.填空题(每小题3分,共18分)11.从﹣1,1,2三个数中任取一个,作为一次函数y=kx+3的k值,则所得一次函数中y随x的增大而增大的概率是.12.已知菱形ABCD的边长为6,∠A=60°,如果点P是菱形内一点,且PB=PD=2,那么AP 的长为.13.已知x是一元二次方程x2+3x﹣1=0的实数根,那么代数式的值为.14.已知函数y=(m+1)是反比例函数,则m的值为.15.如图,E、F、G、H分别是四边形ABCD四条边的中点,要使四边形EFGH为矩形,四边形ABCD应具备的条件是.16.如图,两个反比例函数和在第一象限内的图象依次是C1和C2,设点P在C1上,PC ⊥x轴于点C,交C2于点A,PD⊥y轴于点D,交C2于点B,则四边形PAOB的面积为.三.解答题(共72分)17.解方程(1)(x﹣8)(x﹣1)=﹣12(2)x2﹣6x+2=0.18.如图,已知AC⊥BC,BD⊥AD,AC与BD交于O,AC=BD.求证:(1)BC=AD;(2)△OAB是等腰三角形.19.甲、乙两人用如图所示的两个分格均匀的转盘做游戏:分别转动两个转盘,若转盘停止后,指针指向一个数字(若指针恰好停在分格线上,则重转一次),用所指的两个数字作乘积,如果积大于10,那么甲获胜;如果积不大于10,那么乙获胜.请你解决下列问题:(1)利用树状图(或列表)的方法表示游戏所有可能出现的结果;(2)求甲、乙两人获胜的概率.20.如图,在梯形纸片ABCD中,AD∥BC,AD>CD,将纸片沿过点D的直线折叠,使点C落在AD上的点C′处,折痕DE交BC于点E,连接C′E,试判断四边形CDC′E是什么特殊四边形,并说明理由.21.新苑小区的物业管理部门为了美化环境,在小区靠墙的一侧设计了一处长方形花圃(墙长25m),三边外围用篱笆围起,栽上蝴蝶花,共用篱笆40m,(1)花圃的面积能达到180m2吗?(2)花圃的面积能达到250m2吗?如果能,请你给出设计方案;如果不能,请说明理由.22.如图,Rt△ABO的顶点A是双曲线y=与直线y=﹣x﹣(k+1)在第二象限的交点.AB⊥x轴于B,且S△ABO=.(1)求这两个函数的解析式;(2)求直线与双曲线的两个交点A、C的坐标和△AOC的面积.23.已知,如图,AB和DE是直立在地面上的两根立柱,AB=5m,某一时刻AB在阳光下的投影BC=3m.(1)请你在图中画出此时DE在阳光下的投影;(2)在测量AB的投影时,同时测量出DE在阳光下的投影长为6m,请你计算DE的长.24.为预防“手足口病”,某校对教室进行“药熏消毒”.已知药物燃烧阶段,室内每立方米空气中的含药量y(mg)与燃烧时间x(分钟)成正比例;燃烧后,y与x成反比例(如图所示).现测得药物10分钟燃完,此时教室内每立方米空气含药量为8mg.据以上信息解答下列问题:(1)从消毒开始,经多长时间,教室内每立方米空气含药量为4mg.(2)当每立方米空气中含药量低于1.6mg时,对人体方能无毒害作用,那么从消毒开始,经多长时间学生才可以回教室?25.将一副三角尺如图拼接:含30°角的三角尺(△ABC)的长直角边与含45°角的三角尺(△ACD)的斜边恰好重合.已知AB=,P是AC上的一个动点.(1)当点P运动到∠ABC的平分线上时,连接DP,求DP的长;(2)当点P在运动过程中出现PD=BC时,求此时∠PDA的度数;(3)当点P运动到什么位置时,以D,P,B,Q为顶点的平行四边形的顶点Q恰好在边BC上?求出此时▱DPBQ的面积.参考答案与试题解析一.选择题(每小题3分,共30分)1.如图所示几何体的左视图是()A.B.C.D.考点:简单组合体的三视图.分析:根据从左边看得到的图形是左视图,可得答案.解答:解:从左边看第一层是两个小正方形,第二层左边一个小正方形,第三层左边一个小正方形.故选:D.点评:本题考查了简单组合体的三视图,从左边看得到的图形是左视图.2.下列说法正确的是()A.等腰梯形既是中心对称图形,又是轴对称图形B.矩形是轴对称图形,有四条对称轴C.等腰三角形一腰上的高与底边的夹角等于顶角的一半D.有一个角的平分线平分对边的三角形是等腰直角三角形考点:等腰梯形的性质;等腰三角形的性质;等腰直角三角形;矩形的性质;轴对称图形;中心对称图形.分析:根据等腰梯形的对称性,矩形的对称轴,等腰三角形三线合一的性质,对各选项分析判断后利用排除法.解答:解:A、等腰梯形不是中心对称图形,是轴对称图形,故本选项错误;B、矩形是轴对称图形,对称轴是过对边中点的直线,共2条,故本选项错误;C、如图,过点A作AE⊥BC,则AE平分∠BAC,∴∠2=∠A,∵BD⊥AC,∴∠1+∠C=90°,又∠2+∠C=90°,∴∠1=∠2,∴∠1=∠A,即等腰三角形一腰上的高与底边的夹角等于顶角的一半,故本选项正确;D、有一个角的平分线平分对边的三角形是等腰三角形,不一定是等腰直角三角形,故本选项错误.故选C.点评:本题考查了等腰梯形的对称性,轴对称图形的性质,等腰三角形的性质,是小综合题,难度不大,熟练掌握各种图形的性质是解题的关键.3.某电视台举行的歌手大奖赛,每场比赛都有编号为1~10号共10道综合素质测试题供选手随机抽取作答.在某场比赛中,前两位选手已分别抽走了2号、7号题,第3位选手抽中8号题的概率是()A.B.C.D.考点:概率公式.分析:先求出题的总号数及8号的个数,再根据概率公式解答即可.解答:解:前两位选手抽走2号、7号题,第3位选手从1、3、4、5、6、8、9、10共8位中抽一个号,共有8种可能,每个数字被抽到的机会相等,所以抽中8号的概率为.故选B.点评:考查概率的求法,关键是真正理解概率的意义,正确认识到本题是八选一的问题,不受前面叙述的影响.4.某工厂计划经过两年的时间将某种产品的产量从每年144万台提高到169万台,则每年平均约增长()A.5% B.8% C.10% D.15%考点:一元二次方程的应用.专题:增长率问题.分析:设每年平均增长的百分数是x,根据某工厂计划经过两年的时间,把某种产品从现在的年产量144万台提高到169万台,可列方程求解.解答:解:设每年平均增长的百分数是x,144(1+x)2=169,x≈8%或x≈﹣208%(舍去).故每年平均增长的百分数约是8%.故选B.点评:本题考查理解题意的能力,关键是设出增长率,根据两年前和两年后的产量,列方程求解.5.在△ABC中,已知AB=AC,DE垂直平分AC,∠A=50°,则∠DCB的度数是()A.15°B.30°C.50°D.65°考点:线段垂直平分线的性质;等腰三角形的性质.专题:计算题.分析:首先由AB=AC可得∠ABC=∠ACB,再由DE垂直平分AC可得DC=AD,推出∠DAC=∠DCA.易求∠DCB.解答:解:AB=AC,∠A=50°⇒∠ABC=∠ACB=65°.∵DE垂直平分AC,∴∠DAC=∠DCA.∴∠DCB=∠ACB﹣∠DCA=65°﹣50°=15°.故选A.点评:本题考查的是线段垂直平分线的性质以及等腰三角形的性质,考生主要了解线段垂直平分线的性质即可求解.6.如图,在△MBN中,BM=6,点A、C、D分别在MB、NB、MN上,四边形ABCD为平行四边形,且∠NDC=∠MDA,则▱ABCD的周长是()A.24 B.18 C.16 D.12考点:相似三角形的判定与性质;平行四边形的性质.分析:首先根据平行四边形的性质可得AB∥DC,AD∥BN,根据平行线的性质可得∠N=∠ADM,∠M=∠NDC,再由∠NDC=∠MDA,可得∠N=∠NDC,∠M=∠MDA,∠M=∠N,根据等角对等边可得CN=DC,AD=MA,NB=MB,进而得到答案.解答:解:∵四边形ABCD为平行四边形,∴AD=BC,DC=AB,AB∥DC,AD∥BN,∴∠N=∠ADM,∠M=∠NDC,∵∠NDC=∠MDA,∴∠N=∠NDC,∠M=∠MDA,∠M=∠N,∴CN=DC,AD=MA,NB=MB,∴平行四边形ABCD的周长是BM+BN=6+6=12,故答案为:12.点评:此题主要考查了平行四边形的性质,关键是掌握平行四边形对边相等.7.在同一直角坐标系中,函数y=kx﹣k与y=(k≠0)的图象大致是()A.B.C.D.考点:反比例函数的图象;一次函数的图象.专题:数形结合.分析:根据k的取值范围,分别讨论k>0和k<0时的情况,然后根据一次函数和反比例函数图象的特点进行选择正确答案.解答:解:解法一:系统分析①当k>0时,一次函数y=kx﹣k经过一、三、四象限,反比例函数的y=(k≠0)的图象经过一三象限,选项中没有符合条件的图象,②当k<0时,一次函数y=kx﹣k经过一、二、四象限,反比例函数的y=(k≠0)的图象经过二四象限,故D选项的图象符合要求,解法二:具体分析A、由一次函数的图象得出k<0,而反比例函数的开口方向也应该是在第二、四象限即:k<0,不符合题意,故A选项错误;B、由一次函数的图象得出k>0,而反比例函数的开口方向也应该是在第一、三象限即:k>0,不符合题意,故B选项错误;C、由一次函数的图象得出k>0,即与y轴的交点在y轴负半轴,不符合题意,故C选项错误;D、由一次函数的图象得出k<0,与y轴的交点也在正半轴,反比例函数图象也是在第二四象限,符合题意,故D选项正确;故选:D.点评:此题考查反比例函数的图象问题;用到的知识点为:反比例函数与一次函数的k值相同,则两个函数图象必有交点;一次函数与y轴的交点与一次函数的常数项相关.8.如图,它们是一个物体的三视图,该物体的形状是()A.圆柱B.正方体C.圆锥D.长方体考点:由三视图判断几何体.分析:根据题意,正视图与左视图均为三角形,俯视图为圆形故可以看出该几何体为圆锥.解答:解:本题中,圆柱的三视图不可能由三角形,正方体的三视图均为正方形,长方体的三视图不可能由圆和三角形,因此只有圆锥符合条件.故选:C.点评:本题考查由三视图确定几何体的形状,主要考查学生空间想象能力以及对立体图形的认识.9.在函数的图象上有三点A1(x1,y1)、A2(x2,y2)、A3(x3,y3),若x1<0<x2<x3,则下列正确的是()A.y1<0<y2<y3B.y2<y3<0<y1C.y2<y3<y1<0 D.0<y2<y1<y3考点:反比例函数图象上点的坐标特征.分析:根据反比例函数图象的性质,点A1在第二象限,y1>0,所以,A2、A3在第四象限,因为在每个象限内,y随x的增大而增大,所以y2<y3.解答:解:∵k=﹣<0,∴点A1在第二象限,点A2、A3在第四象限,如图,y2<y3<0<y1.故选B.点评:本题考查了由反比例函数图象的性质判断函数图象上点的坐标特征,同学们应重点掌握.10.已知四边形ABCD,有以下四个条件:①AB∥CD;②AB=CD;③BC∥AD;④BC=AD.从这四个条件中任选两个,能使四边形ABCD成为平行四边形的选法种数共有()A.6种B.5种C.4种D.3种考点:平行四边形的判定.专题:压轴题.分析:根据平行四边形的判定方法即可找到所有组合方式:(1)两组对边平行①③;(2)两组对边相等②④;(3)一组对边平行且相等①②或③④,所以有四种组合.解答:解:依题意得有四种组合方式:(1)①③,利用两组对边平行的四边形是平行四边形判定;(2)②④,利用两组对边相等的四边形是平行四边形判定;(3)①②或③④,利用一组对边平行且相等的四边形是平行四边形判定.故选:C.点评:此题主要考查了平行四边形的判定方法,熟练掌握平行四边形的判定方法是解题的关键.二.填空题(每小题3分,共18分)11.从﹣1,1,2三个数中任取一个,作为一次函数y=kx+3的k值,则所得一次函数中y随x的增大而增大的概率是.考点:概率公式;一次函数图象与系数的关系.分析:从﹣1,1,2三个数中任取一个,共有三种取法,其中函数y=﹣1•x+3是y随x增大而减小的,函数y=1•x+3和y=2•x+3都是y随x增大而增大的,所以符合题意的概率为.解答:解:P(y随x增大而增大)=.故本题答案为:.点评:用到的知识点为:概率=所求情况数与总情况数之比;一次函数未知数的比例系数大于0,y 随x的增大而增大.12.已知菱形ABCD的边长为6,∠A=60°,如果点P是菱形内一点,且PB=PD=2,那么AP的长为或.考点:菱形的性质.专题:压轴题;分类讨论.分析:根据题意得,应分P与A在BD的同侧与异侧两种情况进行讨论.解答:解:当P与A在BD的异侧时:连接AP交BD于M,∵AD=AB,DP=BP,∴AP⊥BD(到线段两端距离相等的点在垂直平分线上),在直角△ABM中,∠BAM=30°,∴AM=AB•cos30°=3,BM=AB•sin30°=3,∴PM==,∴AP=AM+PM=4;当P与A在BD的同侧时:连接AP并延长AP交BD于点MAP=AM﹣PM=2;当P与M重合时,PD=PB=3,与PB=PD=2矛盾,舍去.AP的长为4或2.故答案为4或2.点评:本题注意到应分两种情况讨论,并且注意两种情况都存在关系AP⊥BD,这是解决本题的关键.13.已知x是一元二次方程x2+3x﹣1=0的实数根,那么代数式的值为.考点:一元二次方程的解;分式的化简求值.分析:利用方程解的定义找到等式x2+3x=1,再把所求的代数式利用分式的计算法则化简后整理出x2+3x的形式,再整体代入x2+3x=1,即可求解.解答:解:∵x是一元二次方程x2+3x﹣1=0的实数根,∴x2+3x=1,∴=÷=•==.故填空答案:.点评:此题主要考查了方程解的定义和分式的运算,此类题型的特点是:利用方程解的定义找到相等关系,再把所求的代数式化简后整理出所找到的相等关系的形式,再把此相等关系整体代入所求代数式,即可求出代数式的值.14.已知函数y=(m+1)是反比例函数,则m的值为 1 .考点:反比例函数的定义.分析:根据反比例函数的定义知m2﹣2=﹣1,且m+1≠0,据此可以求得m的值.解答:解:∵y=(m+1)x m2﹣2是反比例函数,∴m2﹣2=﹣1,且m+1≠0,∴m=±1,且m≠﹣1,∴m=1;故答案是:1.点评:本题考查了反比例函数的定义,重点是将一般式y=(k≠0)转化为y=kx﹣1(k≠0)的形式.15.如图,E、F、G、H分别是四边形ABCD四条边的中点,要使四边形EFGH为矩形,四边形ABCD应具备的条件是对角线互相垂直.考点:矩形的判定;三角形中位线定理.分析:可连接AC、BD,利用三角形中位线定理及矩形的性质求解.解答:解:连接BD、AC;∵H、G分别是AD、CD的中点,∴HG是△DAC的中位线;∴HG∥AC;同理可证得EF∥AC,HE∥BD∥FG;若四边形EHGF是矩形,则∠FEH=∠EHG=∠HGF=∠EFG=90°;∴DB⊥AC.故四边形ABCD应具备的条件为对角线互相垂直.点评:本题考查的是矩形的判定和性质以及三角形中位线定理的应用.16.如图,两个反比例函数和在第一象限内的图象依次是C1和C2,设点P在C1上,PC ⊥x轴于点C,交C2于点A,PD⊥y轴于点D,交C2于点B,则四边形PAOB的面积为 4 .考点:反比例函数系数k的几何意义.专题:数形结合.分析:四边形PAOB的面积=矩形OCPD的面积﹣△ODB的面积﹣△OAC的面积,根据反比例函数中k的几何意义即可求出.解答:解:根据题意可得四边形PAOB的面积=S矩形OCPD﹣S△OBD﹣S△OAC,由反比例函数中k的几何意义,可知其面积为四边形PAOB的面积=8﹣2﹣2=4.故答案为:4.点评:主要考查了反比例函数中k的几何意义,即在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.在反比例函数的图象上任意一点象坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是,且保持不变.三.解答题(共72分)17.解方程(1)(x﹣8)(x﹣1)=﹣12(2)x2﹣6x+2=0.考点:解一元二次方程-因式分解法;解一元二次方程-配方法.专题:计算题.分析:(1)先把方程化为一般式,然后利用因式分解法解方程;(2)利用配方法得到(x﹣3)2=7,然后利用直接开平方法解方程.解答:解:(1)x2﹣9x+20=0,(x﹣5)(x﹣4)=0,x﹣5=0或x﹣4=0,所以x1=5,x2=4;(2)x2﹣6x=2,x2﹣6x+9=7,(x﹣3)2=7,x﹣3=±,所以x1=3+,x2=3﹣.点评:本题考查了解一元二次方程﹣因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).也考查了配方法解一元二次方程.18.如图,已知AC⊥BC,BD⊥AD,AC与BD交于O,AC=BD.求证:(1)BC=AD;(2)△OAB是等腰三角形.考点:全等三角形的判定与性质;等腰三角形的判定.专题:证明题.分析:(1)根据AC⊥BC,BD⊥AD,得出△ABC与△BAD是直角三角形,再根据AC=BD,AB=BA,得出Rt△ABC≌Rt△BAD,即可证出BC=AD,(2)根据Rt△ABC≌Rt△BAD,得出∠CAB=∠DBA,从而证出OA=OB,△OAB是等腰三角形.解答:证明:(1)∵AC⊥BC,BD⊥AD,∴∠ADB=∠ACB=90°,在Rt△ABC和Rt△BAD中,∵,∴Rt△ABC≌Rt△BAD(HL),∴BC=AD,(2)∵Rt△ABC≌Rt△BAD,∴∠CAB=∠DBA,∴OA=OB,∴△OAB是等腰三角形.点评:本题考查了全等三角形的判定及性质;用到的知识点是全等三角形的判定及性质、等腰三角形的判定等,全等三角形的判定是重点,本题是道基础题,是对全等三角形的判定的训练.19.甲、乙两人用如图所示的两个分格均匀的转盘做游戏:分别转动两个转盘,若转盘停止后,指针指向一个数字(若指针恰好停在分格线上,则重转一次),用所指的两个数字作乘积,如果积大于10,那么甲获胜;如果积不大于10,那么乙获胜.请你解决下列问题:(1)利用树状图(或列表)的方法表示游戏所有可能出现的结果;(2)求甲、乙两人获胜的概率.考点:列表法与树状图法.分析:先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率.解答:解:(1)树状图法:或列表法:× 1 2 34 4 8 125 5 10 15(2)根据列出的表,P(甲)==,P(乙)==.点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏地列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.20.如图,在梯形纸片ABCD中,AD∥BC,AD>CD,将纸片沿过点D的直线折叠,使点C落在AD上的点C′处,折痕DE交BC于点E,连接C′E,试判断四边形CDC′E是什么特殊四边形,并说明理由.考点:翻折变换(折叠问题).分析:首先由折叠的性质可得:CD=C′D,∠C′DE=∠CDE,CE=C′E,又由AD∥BC,即可证得△CDE是等腰三角形,可得CD=CE,然后根据四条边都相等的四边形是菱形,即可证得四边形CDC′E为菱形.解答:解:四边形CDC′E是菱形.理由:根据折叠的性质,可得:CD=C′D,∠C′DE=∠CDE,CE=C′E,∵AD∥BC,∴∠C′DE=∠CED,∴∠CDE=∠CED,∴CD=CE,∴CD=C′D=C′E=CE,∴四边形CDC′E为菱形.点评:此题考查了折叠的性质,等腰三角形的判定与性质以及菱形的判定等知识.此题难度适中,解题的关键是注意数形结合思想的应用,注意根据折叠的性质找到对应边与对应角.21.新苑小区的物业管理部门为了美化环境,在小区靠墙的一侧设计了一处长方形花圃(墙长25m),三边外围用篱笆围起,栽上蝴蝶花,共用篱笆40m,(1)花圃的面积能达到180m2吗?(2)花圃的面积能达到250m2吗?如果能,请你给出设计方案;如果不能,请说明理由.考点:一元二次方程的应用.专题:几何图形问题.分析:设BC=xm,则AB=(40﹣x)m,花圃的面积为x(40﹣x).(1)(2)假设花圃的面积能达到180 m2,250m2,只需令x(40﹣x)等于200或250,判断所列方程是否有解,若有解求出x的值,即花圃的面积能达到,否则不能达到;解答:解:(1)设BC=xm,则AB=(40﹣x)=(20﹣x)m①由题意得:x(20﹣x)=180,x2﹣40x+360=0,△=402﹣4×360=0,解之得,x=20m答:能达到200m2.(2)x(20﹣x)=250,x2﹣40x+500=0,△=402﹣4×500=﹣400<0,即:此方程无解,答:不能达到250m2点评:本题主要考查一元二次方程的应用,关键在于理解清楚题意,找出等量关系列出方程求解.22.如图,Rt△ABO的顶点A是双曲线y=与直线y=﹣x﹣(k+1)在第二象限的交点.AB⊥x轴于B,且S△ABO=.(1)求这两个函数的解析式;(2)求直线与双曲线的两个交点A、C的坐标和△AOC的面积.考点:反比例函数综合题.专题:计算题;综合题;数形结合.分析:(1)欲求这两个函数的解析式,关键求k值.根据反比例函数性质,k绝对值为3且为负数,由此即可求出k;(2)交点A、C的坐标是方程组的解,解之即得;(3)从图形上可看出△AOC的面积为两小三角形面积之和,根据三角形的面积公式即可求出.解答:解:(1)设A点坐标为(x,y),且x<0,y>0,则S△ABO=•|BO|•|BA|=•(﹣x)•y=,∴xy=﹣3,又∵y=,即xy=k,∴k=﹣3.∴所求的两个函数的解析式分别为y=﹣,y=﹣x+2;(2)由y=﹣x+2,令x=0,得y=2.∴直线y=﹣x+2与y轴的交点D的坐标为(0,2),A、C两点坐标满足∴交点A为(﹣1,3),C为(3,﹣1),∴S△AOC=S△ODA+S△ODC=OD•(|x1|+|x2|)=×2×(3+1)=4.点评:此题首先利用待定系数法确定函数解析式,然后利用解方程组来确定图象的交点坐标,及利用坐标求出线段和图形的面积.23.已知,如图,AB和DE是直立在地面上的两根立柱,AB=5m,某一时刻AB在阳光下的投影BC=3m.(1)请你在图中画出此时DE在阳光下的投影;(2)在测量AB的投影时,同时测量出DE在阳光下的投影长为6m,请你计算DE的长.考点:平行投影;相似三角形的性质;相似三角形的判定.专题:计算题;作图题.分析:(1)根据投影的定义,作出投影即可;(2)根据在同一时刻,不同物体的物高和影长成比例;构造比例关系.计算可得DE=10(m).解答:解:(1)连接AC,过点D作DF∥AC,交直线BC于点F,线段EF即为DE的投影.(2)∵AC∥DF,∴∠ACB=∠DFE.∵∠ABC=∠DEF=90°∴△ABC∽△DEF.∴,∴∴DE=10(m).说明:画图时,不要求学生做文字说明,只要画出两条平行线AC和DF,再连接EF即可.点评:本题考查了平行投影特点:在同一时刻,不同物体的物高和影长成比例.要求学生通过投影的知识并结合图形解题.24.为预防“手足口病”,某校对教室进行“药熏消毒”.已知药物燃烧阶段,室内每立方米空气中的含药量y(mg)与燃烧时间x(分钟)成正比例;燃烧后,y与x成反比例(如图所示).现测得药物10分钟燃完,此时教室内每立方米空气含药量为8mg.据以上信息解答下列问题:(1)从消毒开始,经多长时间,教室内每立方米空气含药量为4mg.(2)当每立方米空气中含药量低于1.6mg时,对人体方能无毒害作用,那么从消毒开始,经多长时间学生才可以回教室?考点:反比例函数的应用;一次函数的应用.分析:(1)首先根据题意,药物燃烧阶段,室内每立方米空气中的含药量y与燃烧时间x成正比例;燃烧后,y与x成反比例,且其图象都过点(10,8),将数据代入用待定系数法可得反比例函数的关系式,分别求出函数解析式,再计算出y=4时,x的值即可;(2)根据题意可知得<1.6,解不等式即可.解答:解:(1)设药物燃烧阶段函数解析式为y=k1x(k1≠0),由题意得:8=10k1,∴k1=,∴此阶段函数解析式为y=x(0≤x≤10).当y=4时,x=5;设药物燃烧结束后函数解析式为y=(k2≠0),由题意得:,∴k2=80,∴此阶段函数解析式为y=(x≥10).,当y=4时,x=20,答:从消毒开始,经5分钟和20分钟,教室内每立方米空气含药量为4mg;(2)当y<1.6时,得<1.6,∵x>0,∴1.6x>80,解得x>50.答:从消毒开始经过50分钟学生才可返回教室.点评:本题主要考查了一次函数、反比例函数的应用,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.25.将一副三角尺如图拼接:含30°角的三角尺(△ABC)的长直角边与含45°角的三角尺(△ACD)的斜边恰好重合.已知AB=,P是AC上的一个动点.(1)当点P运动到∠ABC的平分线上时,连接DP,求DP的长;(2)当点P在运动过程中出现PD=BC时,求此时∠PDA的度数;(3)当点P运动到什么位置时,以D,P,B,Q为顶点的平行四边形的顶点Q恰好在边BC上?求出此时▱DPBQ的面积.考点:解直角三角形;平行四边形的性质.专题:压轴题;动点型.分析:(1)作DF⊥AC,由AB的长求得BC、AC的长.在等腰Rt△DAC中,DF=FA=FC;在Rt△BCP中,求得PC的长.则由勾股定理即可求得DP的长.(2)由(1)得BC与DF的关系,则DP与DF的关系也已知,先求得∠PDF的度数,则∠PDA的度数也可求出,需注意有两种情况.(3)由于四边形DPBQ为平行四边形,则BC∥DF,P为AC中点,作出平行四边形,求得面积.解答:解:在Rt△ABC中,AB=2,∠BAC=30°,∴BC=,AC=3.(1)如图(1),作DF⊥AC.∵Rt△ACD中,AD=CD,∴DF=AF=CF=.∵BP平分∠ABC,∴∠PBC=30°,∴CP=BC•tan30°=1,∴PF=,∴DP==.(2)当P点位置如图(2)所示时,根据(1)中结论,DF=,∠ADF=45°,又∵PD=BC=,∴cos∠PDF==,。
重庆市北碚区西南大学附中2019-2020学年九年级数学(上)第一次月考试卷 含答案解析
重庆市北碚区西南大学附中2019-2020学年九年级数学(上)第一次月考试卷含答案解析一.选择题(共12小题)1.在﹣2.4,0,﹣2,2这四个数中,是负整数的是()A.﹣2.4 B.﹣2 C.0 D.22.如图是一个由4个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.3.如图,△ABC∽△ADE,若AB=9,AD=3,DE=2,则BC的长是()A.4 B.6 C.8 D.74.如图,点A、B、C、D在⊙O上,∠AOC=112°,点B是弧AC的中点,则∠D的度数是()A.56°B.35°C.38°D.28°5.下列命题正确的是()A.有一组邻边相等的平行四边形是正方形B.有一个角是直角的平行四边形是正方形C.对角线相等的菱形是正方形D.对角线互相平分的矩形是正方形6.估计的值应在()A.3和4之间B.4和5之间C.5和6之间D.6和7之间7.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x匹,小马有y匹,那么可列方程组为()A.B.C.D.8.按如图所示的运算程序,能使输出结果的值为11的是()A.x=3,y=1 B.x=2,y=2 C.x=2,y=3 D.x=0,y=1.5 9.小蓉从格致楼底楼点A处沿立人大礼堂旁的台阶AB拾阶而上,步行20米后到达万象楼楼底点B,再从点B直线行进15米到达直通博雅楼的台阶底端C,然后沿台阶CD步行至博雅楼底楼的小平台D.在D点处测得竖立于百汇园旁的万象楼BE的楼顶点E的仰角为30°.如图所示,已知台阶AB与水平地面夹角为45°,台阶CD与水平地面夹角为60°,CD=12米,点A,B,C,D,E在同一平面.则格致楼楼底点A到万象楼楼顶点E的垂直高度约为()(参考数据:≈1.7,≈1.4)A.22.1米B.35.2米C.27.3米D.36.1米10.如图,在平面直角坐标系中,直角△AOB的直角顶点O在坐标原点,OB=5,OA=10,斜边AB的中点C恰在y轴上,反比例函数y=(k>0)的图象经过点B,则k的值为()A.10 B.C.D.4011.已知数m使关于x的不等式组至少有一个非负整数解,且使关于x的分式方程有不大于5的整数解,则所有满足条件的m的个数是()A.1 B.2 C.3 D.412.如图,在四边形ABCD中,AD∥BC,∠A=90°,∠ADC=120°,连接BD,把△ABD沿BD翻折,得到△A′BD,连接A′C,若AB=3,∠ABD=60°,则点D到直线A′C的距离为()A.B.C.D.二.填空题(共6小题)13.2019年9月6日重庆来福士购物中心优雅启幕,开业首日客流达35000人次,请把数35000科学记数法表示为.14.计算:=.15.一个不透明的袋中装有四张形状大小质地完全相同的卡片,它们上画分别标有数字0,1,2,3,随机抽取一张不放回,再随机抽取一张,两次抽取的卡片数字同奇偶的概率是.16.如图,在矩形ABCD中,AD=6,以点C为圆心,以CB的长为半径画弧交AD于E,点E 恰好是AD中点,则图中阴影部分的面积为(结果保留π)17.暑假假期,小明和小亮两家相约自驾车从重庆出发前往相距172千米的景区游玩两家人同时同地出发,以各自的速度匀速行驶,出发一段时间后,小明家因故停下来休息了15分钟,为了尽快追上小亮家,小明家提高速度后仍保持匀速行驶(加速的时间忽略不计),小明家追上小亮家后以提高后的速度直到景区,小亮家保持原速,如图是小明家、小亮家两车之间的距离s(km)与出发时间t(h)之间的函数关系图象,则小明家比小亮家早到景区分钟.18.新学期伊始,西大附中的学子们积极响应学校的“书香校园”活动,踊跃捐出自己喜爱的书籍,互相分享,让阅读成为一种习惯.据调查,某年级甲班、乙班共80人捐书,丙班有40人捐书,已知乙班人均捐书数量比甲班人均捐书数量多5本,而丙班的人均捐书数量是甲班人均捐书数量的一半,若该年级甲、乙、丙三班的人均捐书数量恰好是乙班人均捐书数量的,且各班人均捐书数量均为正整数,则甲、乙、丙三班共捐书本.三.解答题(共8小题)19.计算:(1)(a+2b)2﹣(a+b)(a﹣b).(2).20.如图,在△ABC中,AB=AC,D是BC边的中点,连接AD,过点D作DE∥AB (1)若∠C=70°,求∠BAD的度数;(2)求证:AE=DE.21.为加强学生对“垃圾分类知识”的重视程度,某学校组织了“垃圾分类知识”比赛.现七、八年级各抽取10名同学的成绩进行统计分析(成绩得分用x表示,共分成四组:A:60≤x<70,B:70≤x<80,C:80≤x<90,D:90≤x≤100),绘制了如下的图表,请根据图中的信息解答下列问题:七年级10名学生的成绩是:69,78,96,77,68,95,86,100,85,86八年级10名学生的成绩在C组中的数据是:86,87,87七、八年级抽取学生比赛成绩统计表年级平均数中位数众数方差七年级84 85.5 b109.6八年级84 c92 102.6(1)直接写出上述图表中a,b,c的值:a=,b=,c=.(2)根据以上数据,你认为该校七、八年级中哪个年级学生掌握垃圾分类知识较好?请说明理由(一条理由即可):.(3)若两个年级共680人参加了此次比赛,估计参加此次比赛成绩优秀(90≤x≤100)的学生人数是多少?22.在初中阶段的函数学习中,我们经历了“确定函数的表达式﹣利用函数图象研究其性质﹣应用函数解决问题”的学习过程.在画函数图象时,我们通过描点或平移的方法画出了一个陌生函数的大致图象,结合上面经历的学习过程,现在来解决下面问题:在函数y=|中,当x=0时,y=1;当x=2时,y=.(1)求这函数的表达式;(2)在给出的平面直角坐标系中画出这个函数的大致图象并写出这个函数的一条性质;(3)结合你所画的函数图象与y=x+的图象,直接写出不等式组的解集.23.如果一个六位正整数由一个三位正整数循环组成,则称这个六位正整数为“六位循环数”如123123、484484.(1)猜想任意一个六位循环数能否被91整除,并说明理由;(2)已知一个六位循环数能被17整除且百位数字与个位数字之和等于十位数字,求满足要求的所有六位循环数.24.“中秋节”是我国的传统佳节,中秋赏月吃月饼.某蛋糕店销售“杏花楼”和“元祖”两个品牌的月饼,每个“杏花楼”月饼的售价是15元,每个“元祖”月饼的售价是12元.(1)8月份,两个品牌的月饼一共销售180个,且总销售额不低于2460,则卖出“杏花楼”月饼至少多少个?(2)9月份,月饼大量上市,受此影响,“杏花楼”月饼的售价降低了a%(a%<30%),销售量在八月份的最低销售量的基础上增加了5a个,“元祖”月饼的售价降低a元,销售量在八份的最高销售量的基础上增加了a%,结果9月份的总销售额比8月最低销售额增加了1020元,求a的值.25.如图,在平行四边形ABCD中,连接AC,AD=AC,过点D作DF⊥AC交BC于点F,交AC 于点E,连接AF.(1)若AE=4,DE=2EC,求EC的长.(2)延长AC至点H,连接FH,使∠H=∠EDC,若AB=AF=FH,求证:FD+FC=AD.26.如图,抛物线y=与x轴交于A、B两点,与y轴交于C点.(1)点P是线段BC下方的抛物线上一点,过点P作PD⊥BC交BC于点D,过点P作EP ∥y轴交BC于点E.点MN是直线BC上两个动点且MN=AO(x M<x N).当DE长度最大时,求PM+MN﹣BN的最小值.(2)将点A向左移动3个单位得点G,△GOC延直线BC平移运动得到三角形△G'O′C'(两三角形可重合),则在平面内是否存在点G',使得△G′BC为等腰三角形,若存在,直接写出满足条件的所有点G′的坐标,若不存在请说明理由.参考答案与试题解析一.选择题(共12小题)1.在﹣2.4,0,﹣2,2这四个数中,是负整数的是()A.﹣2.4 B.﹣2 C.0 D.2【分析】首先找出这四个数中的负数,然后找出负数中的整数,即可得出答案.【解答】解:在﹣2.4,0,﹣2,2这四个数中负数有﹣2.4和﹣2,因为﹣2.4是小数而不是整数,所以只有﹣2是负整数.故选:B.2.如图是一个由4个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从正面看易得第一层有3个正方形,第二层中间有一个正方形.故选:D.3.如图,△ABC∽△ADE,若AB=9,AD=3,DE=2,则BC的长是()A.4 B.6 C.8 D.7【分析】由题可知△ADE∽△ABC,可根据相似三角形的对应边成比例求解.【解答】解:∵△ADE∽△ABC,∴=,即=,解得:BC=6,故选:B.4.如图,点A、B、C、D在⊙O上,∠AOC=112°,点B是弧AC的中点,则∠D的度数是()A.56°B.35°C.38°D.28°【分析】根据圆心角、弧、弦的关系定理得到∠AOB=∠AOC,再根据圆周角定理解答.【解答】解:连接OB,∵点B是弧AC的中点,∴∠AOB=∠AOC=56°,由圆周角定理得,∠D=∠AOB=28°,故选:D.5.下列命题正确的是()A.有一组邻边相等的平行四边形是正方形B.有一个角是直角的平行四边形是正方形C.对角线相等的菱形是正方形D.对角线互相平分的矩形是正方形【分析】根据正方形的判定判断即可.【解答】解:A、有一组邻边相等的平行四边形是菱形,原命题是假命题;B、有一个角是直角的平行四边形是矩形,原命题是假命题;C、对角线相等的菱形是正方形,是真命题;D、对角线互相垂直的矩形是正方形,原命题是假命题;故选:C.6.估计的值应在()A.3和4之间B.4和5之间C.5和6之间D.6和7之间【分析】原式利用二次根式乘法法则计算得到结果,估算即可.【解答】解:原式=2﹣2,∵36<40<49,即62<()2<72,∴6<2<7,即4<2﹣2<5,故选:B.7.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x匹,小马有y匹,那么可列方程组为()A.B.C.D.【分析】设大马有x匹,小马有y匹,根据题意可得等量关系:①大马数+小马数=100;②大马拉瓦数+小马拉瓦数=100,根据等量关系列出方程组即可.【解答】解:设大马有x匹,小马有y匹,由题意得:,故选:C.8.按如图所示的运算程序,能使输出结果的值为11的是()A.x=3,y=1 B.x=2,y=2 C.x=2,y=3 D.x=0,y=1.5 【分析】把各项中的x与y的值代入运算程序中计算得到结果,即可作出判断.【解答】解:A、把x=3,y=1代入运算程序中得:输出结果为9+2=11,符合题意;B、把x=2,y=2代入运算程序中得:4﹣4=0,不符合题意;C、把x=2,y=3代入运算程序中得:4﹣6=﹣2,不符合题意;D、把x=0,y=1.5代入运算程序得:0﹣3=﹣3,不符合题意,故选:A.9.小蓉从格致楼底楼点A处沿立人大礼堂旁的台阶AB拾阶而上,步行20米后到达万象楼楼底点B,再从点B直线行进15米到达直通博雅楼的台阶底端C,然后沿台阶CD步行至博雅楼底楼的小平台D.在D点处测得竖立于百汇园旁的万象楼BE的楼顶点E的仰角为30°.如图所示,已知台阶AB与水平地面夹角为45°,台阶CD与水平地面夹角为60°,CD=12米,点A,B,C,D,E在同一平面.则格致楼楼底点A到万象楼楼顶点E的垂直高度约为()(参考数据:≈1.7,≈1.4)A.22.1米B.35.2米C.27.3米D.36.1米【分析】作DH⊥BC交BC的延长线于H,作DG⊥BE于G,作AF⊥BE交BE的延长线于F,根据正弦的定义BF,根据正弦和余弦的定义分别求出CH、DH,根据正切的定义求出EG,结合图形计算,得到答案.【解答】解:作DH⊥BC交BC的延长线于H,作DG⊥BE于G,作AF⊥BE交BE的延长线于F,则四边形BGDH为矩形,∴DH=BG,DG=BH,在Rt△ABF中,sin A=,则BF=AB•sin A=10,在Rt△DCH中,DH=CD•sin∠DCH=6,CH=CD=6,∴BH=BC+CH=15+6=21,在Rt△DEG中,tan∠EDG=,则EG=DG•tan∠EDG=7,∴EF=7+6+10≈36.1(米)故选:D.10.如图,在平面直角坐标系中,直角△AOB的直角顶点O在坐标原点,OB=5,OA=10,斜边AB的中点C恰在y轴上,反比例函数y=(k>0)的图象经过点B,则k的值为()A.10 B.C.D.40【分析】先利用勾股定理计算出AB=5,再利用直角三角形斜边上的中线性质得OC =,则C点坐标为(0,),设B(m,n),利用两点间的距离公式得到m2+n2=52,m2+(n﹣)2=()2,利用加减消元法解得n=,m=2,从而得到B点坐标为(2,),然后把B点坐标代入y=中可求出k的值.【解答】解:在Rt△AOB中,AB===5,∵点C为斜边AB的中点,∴OC=AB=,∴C点坐标为(0,),设B(m,n),∴m2+n2=52,m2+(n﹣)2=()2,∴n=,m=2,∴B点坐标为(2,),把B(2,)代入y=得k=2×=10.故选:A.11.已知数m使关于x的不等式组至少有一个非负整数解,且使关于x的分式方程有不大于5的整数解,则所有满足条件的m的个数是()A.1 B.2 C.3 D.4【分析】分别解不等式组的两个不等式,根据“关于x的不等式组至少有一个非负整数解”,得到关于m的一元一次不等式,解之,解分式方程,结合“该分式方程有不大于5的整数解”,得到关于m的不等式,解之,经判断后即可得到m的值,即可得到答案.【解答】解:解不等式﹣11x﹣5≤6得:x≥﹣1,解不等式>x﹣m得:x<2m,∵关于x的不等式组至少有一个非负整数解,∴2m>﹣1,解得:m,解分式方程得:x=,且x≠2,∵关于x的分式方程有不大于5的整数解,≤5且≠2,解得:m≤13且m≠1,则符合要求的m的值为:5,9,13,共3个,故选:C.12.如图,在四边形ABCD中,AD∥BC,∠A=90°,∠ADC=120°,连接BD,把△ABD沿BD翻折,得到△A′BD,连接A′C,若AB=3,∠ABD=60°,则点D到直线A′C的距离为()A.B.C.D.【分析】过点D作DE⊥A′C于E,过A'作A'F⊥CD于F,由直角三角形的性质得出BD =2AB=6,AD=AB=3,求出∠BDC=90°,由三角函数得出CD=tan∠DBC•BD=2,由折叠的性质得∠A'DB=∠ADB=30°,A'D=AD=3,求出∠DA'F=30°,由直角三角形的性质得出DF=A'D=,A'F=DF=,得出CF=CD﹣DF=,由勾股定理得出A'C==,再由面积法求出DE即可.【解答】解:过点D作DE⊥A′C于E,过A'作A'F⊥CD于F,如图所示:∵AD∥BC,∴∠ADB=∠DBC,∠ADC+∠BCD=180°,∠BCD=180°﹣120°=60°,∵∠ABD=60°,∴∠ADB=30°,∴BD=2AB=6,AD=AB=3,∠BDC=∠ADC﹣∠ADB=120°﹣30°=90°,∠DBC=30°,∴CD=tan∠DBC•BD=tan30°×6=×6=2,由折叠的性质得:∠A'DB=∠ADB=30°,A'D=AD=3,∴∠A'DC=120°﹣30°﹣30°=60°,∵A'F⊥CD,∴∠DA'F=30°,∴DF=A'D=,A'F=DF=,∴CF=CD﹣DF=2﹣=,∴A'C===,∵△A'CD的面积=A'C×DE=CD×A'F,∴DE===,即D到直线A′C的距离为;故选:C.二.填空题(共6小题)13.2019年9月6日重庆来福士购物中心优雅启幕,开业首日客流达35000人次,请把数35000科学记数法表示为 3.5×104.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值是易错点,由于35000有5位,所以可以确定n=5﹣1=4.【解答】解:35000=3.5×104.故答案为:3.5×104.14.计算:=﹣1 .【分析】直接利用负指数幂的性质以及零指数幂的性质分别化简得出答案.【解答】解:原式=2﹣4+1=﹣1.故答案为:﹣1.15.一个不透明的袋中装有四张形状大小质地完全相同的卡片,它们上画分别标有数字0,1,2,3,随机抽取一张不放回,再随机抽取一张,两次抽取的卡片数字同奇偶的概率是.【分析】先根据题意画出树状图,据此得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式计算可得.【解答】解:画树状图如下:由树状图知,共有12种等可能结果,其中两次抽取的卡片数字同奇偶的有4种结果,所以两次抽取的卡片数字同奇偶的概率为=,故答案为:.16.如图,在矩形ABCD中,AD=6,以点C为圆心,以CB的长为半径画弧交AD于E,点E 恰好是AD中点,则图中阴影部分的面积为6π+(结果保留π)【分析】如图,连接EC.首先证明∠ECD=30°,解直角三角形求出DE=EC,利用分割法求解即可.【解答】解:如图,连接EC.在Rt△ECD中,∵∠D=90°,EC=BC=2DE,∴∠ECD=30°,∵∠DCB=90°,∴∠ECB=60°,∵AD=EC=6,∴DE=3,DC=3,∴S阴=S扇形BCE+S△EDC=+×3×=6π+,故答案为6π+.17.暑假假期,小明和小亮两家相约自驾车从重庆出发前往相距172千米的景区游玩两家人同时同地出发,以各自的速度匀速行驶,出发一段时间后,小明家因故停下来休息了15分钟,为了尽快追上小亮家,小明家提高速度后仍保持匀速行驶(加速的时间忽略不计),小明家追上小亮家后以提高后的速度直到景区,小亮家保持原速,如图是小明家、小亮家两车之间的距离s(km)与出发时间t(h)之间的函数关系图象,则小明家比小亮家早到景区 6 分钟.【分析】设出发时小明家的速度是a千米/小时,小亮家的速度是b千米/小时,由图象可知:小明的速度大于小亮的速度,即a>b,由OB段可知:0.8小时两人距离为8千米,列方程可得a=b+10,由BC和AC段可知是小明休息15分时段,此时可知小亮路程为12+8=20千米,根据时间列等式可得小亮的速度,从而得小明家的速度是90千米/小时,设小明加速后的速度为m千米/小时,根据点D的横坐标列方程可得m的值,即可解决问题.【解答】解:设出发时小明家的速度是a千米/小时,小亮家的速度是b千米/小时,且a>b,由题意得:0.8(a﹣b)=8,a=b+10,小明家因故停下来休息了15分钟,可知A(1.05,12),小亮的速度为:=80(千米/小时),∴小明家的速度是90千米/小时,设小明加速后的速度为m千米/小时,根据题意得:×80=(﹣1.05)m+0.8×90,m=100,﹣﹣1.05,=0.1(小时),=6(分),即小明家比小亮家早到景区6分钟.故答案为:6.18.新学期伊始,西大附中的学子们积极响应学校的“书香校园”活动,踊跃捐出自己喜爱的书籍,互相分享,让阅读成为一种习惯.据调查,某年级甲班、乙班共80人捐书,丙班有40人捐书,已知乙班人均捐书数量比甲班人均捐书数量多5本,而丙班的人均捐书数量是甲班人均捐书数量的一半,若该年级甲、乙、丙三班的人均捐书数量恰好是乙班人均捐书数量的,且各班人均捐书数量均为正整数,则甲、乙、丙三班共捐书1080本.【分析】根据设间接未知数列三元一次方程组求各班人均捐书数,然后再求三个班共捐书即可解答.【解答】解:设甲班的人均捐书数量为x本,乙班的人均捐书数量为(x+5)本,丙班的人均捐书数量为本,设甲班有y人,乙班有(80﹣y)人.根据题意,得xy+(x+5)(80﹣y)+•40=解得:y=可知x为2且5的倍数,故x=10,y=64共捐书10×64+15×16+5×40=1080.答:甲、乙、丙三班共捐书1080本.故答案为1080.三.解答题(共8小题)19.计算:(1)(a+2b)2﹣(a+b)(a﹣b).(2).【分析】(1)原式利用完全平方公式,以及平方差公式计算,去括号合并即可得到结果;(2)原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分即可得到结果.【解答】解:(1)原式=a2+4ab+4b2﹣a2+b2=4ab+5b2;(2)原式=•=•=.20.如图,在△ABC中,AB=AC,D是BC边的中点,连接AD,过点D作DE∥AB (1)若∠C=70°,求∠BAD的度数;(2)求证:AE=DE.【分析】(1)由“SSS”可证△ABD≌△ACD,可得∠BAD=∠CAD,∠BDA=∠CDA=90°,即可求解;(2)由平行线的性质可得∠ADE=∠CAD,可得AE=DE.【解答】解:(1)∵D是BC边的中点,∴BD=CD,且AB=AC,AD=AD,∴△ABD≌△ACD(SSS)∴∠BAD=∠CAD,∠BDA=∠CDA=90°,∵∠C=70°,∴∠CAD=20°=∠BAD;(2)∵DE∥AB,∴∠BAD=∠ADE,∴∠ADE=∠CAD,∴AE=DE.21.为加强学生对“垃圾分类知识”的重视程度,某学校组织了“垃圾分类知识”比赛.现七、八年级各抽取10名同学的成绩进行统计分析(成绩得分用x表示,共分成四组:A:60≤x<70,B:70≤x<80,C:80≤x<90,D:90≤x≤100),绘制了如下的图表,请根据图中的信息解答下列问题:七年级10名学生的成绩是:69,78,96,77,68,95,86,100,85,86八年级10名学生的成绩在C组中的数据是:86,87,87七、八年级抽取学生比赛成绩统计表年级平均数中位数众数方差七年级84 85.5 b109.6八年级84 c92 102.6(1)直接写出上述图表中a,b,c的值:a=40 ,b=86 ,c=87 .(2)根据以上数据,你认为该校七、八年级中哪个年级学生掌握垃圾分类知识较好?请说明理由(一条理由即可):两个年级的平均数一样,但是八年级学生的中位数高于七年级.(3)若两个年级共680人参加了此次比赛,估计参加此次比赛成绩优秀(90≤x≤100)的学生人数是多少?【分析】(1)根据统计图中的数据可以计算出a、b、c的值,本题得以解决;(2)根据统计图中的数据可以解答本题;(3)根据统计图中的数据可知七年级的优秀率是30%,八年级是40%,两个年级一起的话,可以预估为35%,从而可以解答本题.【解答】解:(1)∵八年级C组有三个数字,故C组所占的百分比是:3÷10×100%=30%,∴a%=1﹣10%﹣20%﹣30%=40%,∴a=40,由七年级的成绩可知,b=86,由统计图中的数据可知,c==87,故答案为:40,86,87;(2)根据以上数据,该校八年级学生掌握垃圾分类知识较好,理由:两个年级的平均数一样,但是八年级学生的中位数高于七年级,方差小于七年级,说明八年级成绩波动小,成绩好于七年级,故该校八年级学生掌握垃圾分类知识较好,故答案为:两个年级的平均数一样,但是八年级学生的中位数高于七年级;(3)由统计图可知,七年级的优秀率是30%,八年级的优秀率是40%,则参加此次比赛成绩优秀(90≤x≤100)的学生人数是680×()=238,答:参加此次比赛成绩优秀(90≤x≤100)的学生有238人.22.在初中阶段的函数学习中,我们经历了“确定函数的表达式﹣利用函数图象研究其性质﹣应用函数解决问题”的学习过程.在画函数图象时,我们通过描点或平移的方法画出了一个陌生函数的大致图象,结合上面经历的学习过程,现在来解决下面问题:在函数y=|中,当x=0时,y=1;当x=2时,y=.(1)求这函数的表达式y=;(2)在给出的平面直角坐标系中画出这个函数的大致图象并写出这个函数的一条性质关于y轴对称;(3)结合你所画的函数图象与y=x+的图象,直接写出不等式组的解集.【分析】(1)根据在函数y=中,当x=0时,y=1;当x=2时,y=,可以求得该函数的表达式;(2)根据(1)中的表达式列表、描点,连线可以画出该函数的图象并得到函数的性质;(3)根据图象可以直接写出所求不等式组的解集.【解答】解:(1)∵在函数y=中,当x=0时,y=1;当x=2时,y=.∴,得,∴这个函数的表达式是y=,故答案为y=;(2)∵y=,∴y=,列表:x﹣5 ﹣2 ﹣1 0 1 2 5 …y 4 2 1 2 4 …描点、连线画出该函数的图象如图所示:函数的性质:关于y轴对称,故答案为关于y轴对称;(3)由函数图象可得,y=是0≤x≤1.23.如果一个六位正整数由一个三位正整数循环组成,则称这个六位正整数为“六位循环数”如123123、484484.(1)猜想任意一个六位循环数能否被91整除,并说明理由;(2)已知一个六位循环数能被17整除且百位数字与个位数字之和等于十位数字,求满足要求的所有六位循环数.【分析】(1)设三位正数百位a,十位b,个位c,将“六位循环数”表示为91(1100a+110b+11c);(2)由(1)结合题意,可得11(100a+10b+c)能被17整除,即100a+10b+c能被17整除,再结合a+c=b,转化为10a+c能被17整除即可求解.【解答】解:(1)设三位正数百位a,十位b,个位c,则“六位循环数”为100000a+10000b+1000c+100a+10b+c=100100a+10010b+1001c=91(1100a+110b+11c),∴任意一个六位循环数能被91整除;(2)由(1)可知任意一个任意一个六位循环数为100100a+10010b+1001c,∵六位循环数能被17整除,∴1100a+110b+11c=11(100a+10b+c)能被17整除,∵百位数字与个位数字之和等于十位数字,∴a+c=b,∴100a+10b+c=110a+11c=11(10a+c)能被17整除,∴10a+c能被17整除,∴a=1,c=7或a=3,c=4或a=5,c=1或a=6,c=8或a=8,c=5,∵0≤b≤9,∴a=1,c=7或a=3,c=4或a=5,c=1,∴满足要求的六位循环数是187187,374374,565565.24.“中秋节”是我国的传统佳节,中秋赏月吃月饼.某蛋糕店销售“杏花楼”和“元祖”两个品牌的月饼,每个“杏花楼”月饼的售价是15元,每个“元祖”月饼的售价是12元.(1)8月份,两个品牌的月饼一共销售180个,且总销售额不低于2460,则卖出“杏花楼”月饼至少多少个?(2)9月份,月饼大量上市,受此影响,“杏花楼”月饼的售价降低了a%(a%<30%),销售量在八月份的最低销售量的基础上增加了5a个,“元祖”月饼的售价降低a元,销售量在八份的最高销售量的基础上增加了a%,结果9月份的总销售额比8月最低销售额增加了1020元,求a的值.【分析】(1)设卖出“杏花楼”月饼x个,则卖出“元祖”月饼(180﹣x)个,根据总价=单价×数量结合总销售额不低于2460,即可得出关于x的一元一次不等式,解之取其中最小值即可得出结论;(2)根据总价=单价×数量,即可得出关于a的一元二次方程,解之取其较小值即可得出结论.【解答】解:(1)设卖出“杏花楼”月饼x个,则卖出“元祖”月饼(180﹣x)个,依题意,得:15x+12(180﹣x)≥2460,解得:x≥100.答:卖出“杏花楼”月饼至少100个.(2)依题意,得:15(1﹣a%)×(100+5a)+(12﹣a)×(180﹣100)(1+a%)=2460+1020,整理,得:1.05a2﹣72a+1020=0,解得:a1=20,a2=(不合题意,舍去).答:a的值为20.25.如图,在平行四边形ABCD中,连接AC,AD=AC,过点D作DF⊥AC交BC于点F,交AC 于点E,连接AF.(1)若AE=4,DE=2EC,求EC的长.(2)延长AC至点H,连接FH,使∠H=∠EDC,若AB=AF=FH,求证:FD+FC=AD.【分析】(1)设EC=x,则DE=2x,AD=AC=AE+EC=4+x,在Rt△ADE中,由勾股定理得出方程,解方程即可;(2)证明△DEC≌△HEF(AAS),得出EC=EF,DE=EH,得出△CEF是等腰直角三角形,得出∠ECF=45°,再证明△ADE是等腰直角三角形,得出∠DAC=45°,DE=AD,由等腰三角形的性质得出∠ADC=∠ACD=67.5°,求出∠EDC=∠H=22.5°,得出∠CFH =∠EF﹣∠H=22.5°=∠H,证出CF=CH,即可得出结论.【解答】(1)解:设EC=x,则DE=2x,AD=AC=AE+EC=4+x,∵DF⊥AC,∴∠AED=90°,在Rt△ADE中,由勾股定理得:(2x)2+42=(4+x)2,解得:x=,或x=0(舍去),∴EC=;(2)证明:∵四边形ABCD是平行四边形,∴AB=CD,∵AB=AF=FH,∴CD=FH,∵DF⊥AC,∴∠DEC=∠HEF=90°,在△DEC和△HEF中,,∴△DEC≌△HEF(AAS),∴EC=EF,DE=EH,∵DF⊥AC,∴△CEF是等腰直角三角形,∴∠ECF=45°,∵AF=FH,DF⊥AC,∴AE=HE=DE,∴△ADE是等腰直角三角形,∴∠DAC=45°,DE=AD,∵AD=AC,∴∠ADC=∠ACD=(180°﹣45°)=67.5°,∴∠EDC=∠H=22.5°,∴∠CFH=∠EF﹣∠H=22.5°=∠H,∴CF=CH,∴EF+FC=EC+CH=EH=DE,∴FD+FC=DE+EF+FC=DE+DE=2DE=AD.26.如图,抛物线y=与x轴交于A、B两点,与y轴交于C点.(1)点P是线段BC下方的抛物线上一点,过点P作PD⊥BC交BC于点D,过点P作EP ∥y轴交BC于点E.点MN是直线BC上两个动点且MN=AO(x M<x N).当DE长度最大时,求PM+MN﹣BN的最小值.(2)将点A向左移动3个单位得点G,△GOC延直线BC平移运动得到三角形△G'O′C'(两三角形可重合),则在平面内是否存在点G',使得△G′BC为等腰三角形,若存在,直接写出满足条件的所有点G′的坐标,若不存在请说明理由.【分析】(1)DE=PE sin∠EPD=(x﹣﹣x2﹣x+),当x=2时,DE最大,此时点P(3,﹣);MN=AO=1,将△BCO沿BC翻折得到BCO′,将点P 沿CB的方向平移1个单位得到点P′(,﹣),作P′H⊥BO′交BO′于点H,交BC于点N,将点N沿C方向平移1个单位得到点M,则点M、N为所求;即可求解;(2)分BC=BG′、BC=G′C、BG=CG′三种情况,分别求解即可.【解答】解:(1)y==(x﹣4)(x+1),故点A、B、C的坐标分别为:(﹣1,0)、(4,0)、(0,﹣);则直线BC的表达式为:y=(x﹣4);设点P(x,),则点E(x,x﹣),DE=PE sin∠EPD=(x﹣﹣x2﹣x+),当x=2时,DE最大,此时点P(3,﹣);MN=AO=1,将△BCO沿BC翻折得到BCO′,将点P沿CB的方向平移1个单位得到点P′(,﹣),作P′H⊥BO′交BO′于点H,交BC于点N,将点N沿C方向平移1个单位得到点M,则点M、N为所求;P′P∥MN,且PP′=MN,则四边形P′PNM为平行四边形,则P′N=PM,∠CBO′=∠OBC=30°,则HN=NB sin30BN,PM+MN﹣BN=MN+P′N﹣BN=MN+P′H为最小;直线BO′的倾斜角为60°,则其表达式为:y=(x﹣4)…①,则直线P′N表达式中的k为:﹣,其表达式为:y=﹣+b,将点P′坐标代入并解得:直线P′N的表达式为:y=﹣x+…②,联立①②并解得:x=,故点H(,﹣);P′H=,PM+MN﹣BN最小值=MN+P′N﹣BN=MN+P′H=;(2)直线BC的表达式为:y=(x﹣4);点G′(﹣4,0),设△GOC延直线BC向上平移m个单位,则向右平移m个单位,则点G′(m﹣4,m);BC2=,BG′2=(m﹣8)2+3m2,CG′2=(m﹣4)2+(m+)2=4m2+;①当BC=BG′时,BC2=(m﹣8)2+3m2,方程无解;②当BC=G′C时,同理可得:m=0;。
最新数学试卷:2019-2020学年重庆市两江育才中学九年级(上)第一次月考数学试卷试题及答案解析
2019-2020学年重庆市两江育才中学九年级(上)第一次月考数学试卷一、选择题:(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将正确答案的代号在题后对应的括号内.1.(4分)(2015秋•开县期中)下列方程一定是一元二次方程的是( ) A .2213x x -=B .221x y -=C .20ax bx c ++=D .2121x x+= 2.(4分)(2014•嘉定区一模)抛物线2(2)3y x =--+的顶点坐标是( ) A .(2,3)-B .(2,3)C .(2,3)-D .(2,3)--3.(4( ) A .3和4B .4和5C .5和6D .6和74.(4分)(2013•长汀县一模)下列一元二次方程中没有实数根是( ) A .2340x x ++=B .2440x x -+=C .2250x x --=D .2240x x +-=5.(4分)(2013•广元)三角形的两边长分别是3和6,第三边是方程2680x x -+=的解,则这个三角形的周长是( ) A .11B .13C .11或13D .11和136.已知抛物线21y x x =--与x 轴的一个交点为(,0)m ,则代数式22014m m -+的值为( ) A .2012B .2013C .2014D .20157.关于x 的一元二次方程2210kx x +-=有两个不相等的实数根,则k 的取值范围是( ) A .1k >-B .1k >C .0k ≠D .1k >-且0k ≠8.(4分)(2019•南岸区校级模拟)下列图形是由同样大小的围棋棋子按照一定规律摆成的“山”字,其中第①个“山”字中有7颗棋子,第②个“山”字中有12颗棋子,第③个“山”字中有17颗棋子,⋯,按照此规律,第⑥个“山”字中棋子颗数为( )颗.A .32B .37C .22D .429.(4分)(2019秋•垫江县校级月考)二次函数2(y ax bx c a =++,b ,c 为常数,且0)a ≠中的x 与y 的部分值对应如下表:则下列说法中错误的是( ) A .图象与y 轴交点坐标为(0,1) B .抛物线开口向下 C .图象与x 轴有两个交点D .函数的最大值为210.(4分)(2015•十堰)如图,正方形ABCD 的边长为6,点E 、F 分别在AB ,AD 上,若CE =45ECF ∠=︒,则CF 的长为( )A .B .CD 11.(4分)已知二次函数2(0)y ax bx c a =++≠的图象如图所示,下列结论错误的是()A .0abc >B .32a b >C .()(m am b a b m +-…为任意实数)D .420a b c -+<12.(4分)若整数a 既使得关于x 的分式方程32133ax xx x -+=--有正整数解,又使得关于y 的不等式组318221123y y a y ⎧-+⎪⎪⎨+⎪-<⎪⎩…至少有3个整数解,则符合条件的所有a 之和为( )A .6B .7C .11D .10二、填空题:(本大题6个小题,每小题4分,共24分)在每小题中,请将正确答案直接填在题后的横线上13.(4分)(2016x 的取值范围是 . 14.(4分)(2019秋•垫江县校级月考)一元二次方程(2)0x x -=的根是 .15.(4分)(2019秋•垫江县校级月考)若抛物线2y ax bx c =++与x 轴的交点为(4,0)与(2,0),则抛物线的对称轴为直线x = .16.(4分)(2019秋•垫江县校级月考)二次函数2y x bx c =-++的对称轴是2x =-,若点1(A x ,1)y ,2(B x ,2)y 在此函数的图象上且122x x <<-,则1y 2y (填<或>或)=. 17.(4分)(2016•重庆)为增强学生体质,某中学在体育课中加强了学生的长跑训练.在一次女子800米耐力测试中,小静和小茜在校园内200米的环形跑道上同时起跑,同时到达终点;所跑的路程S (米)与所用的时间t (秒)之间的函数图象如图所示,则她们第一次相遇的时间是起跑后的第 秒.18.(4分)(2019•南岸区校级模拟)某商店为促进销售,将A 、B 、C 三种糖果以甲、乙两种方式进行搭配销售,两种方式均配成本价为5元的包装袋,甲方式每袋含A 糖果1千克,B 糖果1千克,C 糖果3千克,乙方式每袋含A 糖果3千克,B 糖果1千克,C 糖果1千克,已知每千克C 糖果比每千克A 糖果成本价高2.5元,甲种方式(含包装袋)每袋成本为55元,现甲、乙两种方式分别在成本价(含包装袋)基础上提价20%和35%进行销售,两种方式销售完毕后利润率达到30%,则甲、乙两种方式的销量之比为 . 三、解答题解答时每小题必须给出必要的演算过程或推理步骤19.(10分)(2019秋•垫江县校级月考)(1)解方程:22310x x -+=.(2)计算22944(3)33x x x x x x --+-+÷+--.20.(10分)(2019•南岸区校级模拟)已知:如图,在ABC ∆中,D 是边AC 上一点,AB BD DC ==,20ABD ∠=︒,//AE BD 交CB 延长线于点E .求AEB ∠的度数.四、解答题21.(10分)(2019•沂水县二模)垃圾分类有利于对垃圾进行分流处理,能有效提高垃圾的资源价值和经济价值,力争物尽其用,为了了解同学们对垃圾分类相关知识的掌握情况,增强同学们的环保意识,某校对八年级甲,乙两班各60名学生进行了垃极分类相关知识的测试,并分别抽取了15份成绩,整理分析过程如下,请补充完整. 【收集数据】甲班15名学生测试成绩统计如下:(满分100分)68,72,89,85,82,85,74,92,80,85,78,85,69,76,80 乙班15名学生测试成绩统计如下:《满分100分)86,89,83,76,73,78,67,80,80,79,80,84,82,80,83 【整理数据】(1)按如下分数段整理、描述这两组样本数据在表中,a = ,b = .(2)补全甲班15名学生测试成绩频数分布直方图:【分析数据】(3)两组样本数据的平均数、众数、中位数、方差如下表所示:在表中:x = ,y = .(4)若规定得分在80分及以上(含80分)为合格,请估计乙班60名学生中垃极分类及投放相关知识合格的学生有 人.(5)你认为哪个班的学生掌握垃圾分类相关知识的整体水平较好,说明理由.22.(10分)(2019秋•垫江县校级月考)如图,抛物线与x 轴交于(1,0)A -、(3,0)B 两点,与y 轴交于点(0,3)C -,设抛物线的顶点为D . (1)求该抛物线的解析式和顶点D 的坐标? (2)求出ECD ∆的面积是多少?23.(10分)(2018•秀屿区模拟)小东根据学习函数的经验,对函数24(1)1y x =-+图象与性质进行了探究,下面是小东的探究过程,请补充完整,并解决相关问题: (1)函数24(1)1y x =-+的自变量x 的取值范围是 ;(2)如表是y 与x 的几组对应值.表中m 的值为 ;(3)如图,在平面直角坐标系中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出函数24(1)1y x =-+的大致图象;(4)结合函数图象,请写出函数24(1)1y x =-+的一条性质: . (5)解决问题:如果函数24(1)1y x =-+与直线y a =的交点有2个,那么a 的取值范围是 .24.(10分)(2019秋•垫江县校级月考)“绿色苗圃基地”种植的某种树苗除了运往外地销售外,还可以让厂家亲自去苗圃基地购买,今年6月份该树苗在外地、苗圃基地的销售价格分别是50元/棵、40元/棵,6月份一共销售了300棵,总销售金额为14000元. (1)今年6月份该树苗在外地、苗圃基地各销售了多少棵?(2)7月份由于天气炎热,该树苗在苗圃基地的销售量在6月份的基础上下降了%(20)a a <,销售价相当于6份的12a.而运往外地销售的树苗,它的销售价格和销售量与6月份持平,这样7月份的总销售金额比6月份下降了5%7a ,求a 的值.五、解答题25.(10分)(2019秋•垫江县校级月考)如图,在正方形ABCD 中,线段CE 交四边形的边于点E ,点H 为BD 的中点,BF 、DG 分别垂直CE 于点F 和点G ,连接HF 、HG . (1)若3AB =,2AE EB =,求BF 的长:(2)求证:FG =.26.(8分)(2019秋•垫江县校级月考)如图①,已知抛物线2y ax bx c =++的图象经过点(0,3)A 、(1,0)B ,其对称轴为直线:2l x =,过点A 作//AC x 轴交抛物线于点C ,AOB ∠的平分线交线段AC 于点E ,点P 是抛物线上的一个动点,设其横坐标为m .(1)若动点P 在直线OE 下方的抛物线上,连结PE 、PO ,当m 为何值时,四边形AOPE 面积最大?当四边形AOPE 面积最大时,在抛物线对称轴直线上找一点M ,使得MB MP +的值最小,求M 的坐标;(2)如图②,F 是抛物线的对称轴l 上的一点,在抛物线上是否存在点P 使POF ∆成为以点P 为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P 的坐标;若不存在,请说明理由.2019-2020学年重庆市两江育才中学九年级(上)第一次月考数学试卷参考答案与试题解析一、选择题:(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将正确答案的代号在题后对应的括号内.1.(4分)(2015秋•开县期中)下列方程一定是一元二次方程的是( ) A .2213x x -=B .221x y -=C .20ax bx c ++=D .2121x x+= 【解答】解:A 、符合一元二次方程的定义,正确;B 、方程含有两个未知数,故错误;C 、方程二次项系数可能为0,故错误;D 、不是整式方程,故错误.故选:A .2.(4分)(2014•嘉定区一模)抛物线2(2)3y x =--+的顶点坐标是( ) A .(2,3)-B .(2,3)C .(2,3)-D .(2,3)--【解答】解:抛物线的解析式为:2(2)3y x =--+,∴其顶点坐标为(2,3).故选:B .3.(4( ) A .3和4B .4和5C .5和6D .6和7【解答】=42=56∴<,故选:C .4.(4分)(2013•长汀县一模)下列一元二次方程中没有实数根是( ) A .2340x x ++=B .2440x x -+=C .2250x x --=D .2240x x +-=【解答】解:A 、△2491670b ac =-=-=-<,方程没有实数根.B 、△2416160b ac =-=-=,方程有两个相等的实数根.C 、△24420240b ac =-=+=>,方程有两个不相等的实数根.D 、△2441620b ac =-=+=,方程有两个不相等的实数根.故选:A .5.(4分)(2013•广元)三角形的两边长分别是3和6,第三边是方程2680x x -+=的解,则这个三角形的周长是( ) A .11B .13C .11或13D .11和13【解答】解:方程2680x x -+=, 分解因式得:(2)(4)0x x --=, 可得20x -=或40x -=, 解得:12x =,24x =,当2x =时,三边长为2,3,6,不能构成三角形,舍去;当4x =时,三边长分别为3,4,6,此时三角形周长为34613++=. 故选:B .6.(4分)(2014•黔东南州)已知抛物线21y x x =--与x 轴的一个交点为(,0)m ,则代数式22014m m -+的值为( ) A .2012B .2013C .2014D .2015【解答】解:抛物线21y x x =--与x 轴的一个交点为(,0)m , 210m m ∴--=,解得21m m -=.22014120142015m m ∴-+=+=.故选:D .7.(4分)(2006•广安)关于x 的一元二次方程2210kx x +-=有两个不相等的实数根,则k 的取值范围是( ) A .1k >-B .1k >C .0k ≠D .1k >-且0k ≠【解答】解: 由题意知0k ≠,△440k =+> 解得1k >-且0k ≠. 故选:D .8.(4分)(2019•南岸区校级模拟)下列图形是由同样大小的围棋棋子按照一定规律摆成的“山”字,其中第①个“山”字中有7颗棋子,第②个“山”字中有12颗棋子,第③个“山”字中有17颗棋子,⋯,按照此规律,第⑥个“山”字中棋子颗数为( )颗.A .32B .37C .22D .42【解答】解:设第n 个“山”字中有n a 个棋子,观察图形,可知:17a =,21512a a =+=,315217a a =+⨯=,415322a a =+⨯=,⋯,(可直接利用列举法,找出第⑥个“山”字中棋子颗数) 15(1)52(n a a n n n ∴=+-=+为正整数), 656232a ∴=⨯+=.故选:A .9.(4分)(2019秋•垫江县校级月考)二次函数2(y ax bx c a =++,b ,c 为常数,且0)a ≠中的x 与y 的部分值对应如下表:则下列说法中错误的是( ) A .图象与y 轴交点坐标为(0,1) B .抛物线开口向下 C .图象与x 轴有两个交点D .函数的最大值为2【解答】解:A 、由表格中的数据知,当0x =时1y =,即抛物线与y 轴的交点坐标是(0,1),故本选项不符合题意.B 、由表格中的数据知,当1x <时,y 随x 的增大而增大,且抛物线与y 轴的交点坐标是(0,1),则该抛物线开口方向向下,故本选项不符合题意.C 、由以上分析知,抛物线开口向下,则该抛物线与x 轴有2个交点,故本选项不符合题意. D 、当对称轴位于1x =与2x =之间时,函数的最大值就不是2,故本选项符合题意.故选:D .10.(4分)(2015•十堰)如图,正方形ABCD 的边长为6,点E 、F 分别在AB ,AD 上,若CE =45ECF ∠=︒,则CF 的长为( )A.B.CD【解答】解:如图,延长FD 到G ,使DG BE =; 连接CG 、EF ;四边形ABCD 为正方形, 在BCE ∆与DCG ∆中, CB CD CBE CDG BE DG =⎧⎪∠=∠⎨⎪=⎩, ()BCE DCG SAS ∴∆≅∆, CG CE ∴=,DCG BCE ∠=∠, 45GCF ∴∠=︒,在GCF ∆与ECF ∆中, GC EC GCF ECF CF CF =⎧⎪∠=∠⎨⎪=⎩, ()GCF ECF SAS ∴∆≅∆, GF EF ∴=,3CE =6CB =,3BE ∴===, 3AE ∴=,设AF x =,则6DF x =-,3(6)9GF x x =+-=-,EF ∴=,22(9)9x x ∴-=+, 4x ∴=,即4AF =, 5GF ∴=,2DF ∴=,CF ∴= 故选:A .11.(4分)(2012•威海)已知二次函数2(0)y ax bx c a =++≠的图象如图所示,下列结论错误的是( )A .0abc >B .32a b >C .()(m am b a b m +-…为任意实数)D .420a b c -+<【解答】解:A .由函数图象可得各系数的关系:0a <,0c >,对称轴102bx a=-=-<,则0b <,故0abc >,故此选项正确,但不符合题意;B .12bx a=-=-, 2b a ∴=,24b a ∴=,0a <,0b <,32a b ∴>,故此选项正确,但不符合题意; C .2b a =,代入()()m am b a b +--得:(2)(2)m am a a a ∴+--, 22am am a =++,2(1)a m =+, 0a <,2(1)0a m ∴+…, ()()0m am b a b ∴+--…,即()m am b a b +-…,故此选项正确,但不符合题意;D .当2x =-代入2y ax bx c =++,得出42y a b c =-+,利用图象与x 轴交点右侧小于1,则得出图象与坐标轴左侧交点一定小于2-, 故420y a b c =-+>,故此选项错误,符合题意; 故选:D .12.(4分)(2019秋•垫江县校级月考)若整数a 既使得关于x 的分式方程32133ax xx x -+=--有正整数解,又使得关于y 的不等式组318221123y y a y ⎧-+⎪⎪⎨+⎪-<⎪⎩…至少有3个整数解,则符合条件的所有a 之和为( ) A .6B .7C .11D .10【解答】解:解分式方程32133ax x x x -+=--,得:61x a =-, 分式方程的解为正整数,且3x ≠, 2a ∴=,4,解不等式组318221123y y a y ⎧-+⎪⎪⎨+⎪-<⎪⎩…,得:3392a y -<…,不等式组至少有三个整数解,∴3372a -<,173a <, ∴符合条件的所有整数a 的和246+=,故选:A .二、填空题:(本大题6个小题,每小题4分,共24分)在每小题中,请将正确答案直接填在题后的横线上13.(4分)(2016x 的取值范围是 3x … .【解答】解:260x ∴-…,解得:3x …. 故答案为:3x ….14.(4分)(2019秋•垫江县校级月考)一元二次方程(2)0x x -=的根是 10x =,22x = . 【解答】解:(2)0x x -=,0x ∴=或20x -=,解得10x =,22x =, 故答案为:10x =,22x =.15.(4分)(2019秋•垫江县校级月考)若抛物线2y ax bx c =++与x 轴的交点为(4,0)与(2,0),则抛物线的对称轴为直线x = 3 .【解答】解:函数的对称轴为:1(42)32x =+=,故答案为:3.16.(4分)(2019秋•垫江县校级月考)二次函数2y x bx c =-++的对称轴是2x =-,若点1(A x ,1)y ,2(B x ,2)y 在此函数的图象上且122x x <<-,则1y < 2y (填<或>或)=. 【解答】解:2y x bx c =-++的对称轴是2x =-,开口向下,∴当2x <-时,y 随着x 的增大而增大,122x x <<-, 12y y ∴<.故答案为:<.17.(4分)(2016•重庆)为增强学生体质,某中学在体育课中加强了学生的长跑训练.在一次女子800米耐力测试中,小静和小茜在校园内200米的环形跑道上同时起跑,同时到达终点;所跑的路程S (米)与所用的时间t (秒)之间的函数图象如图所示,则她们第一次相遇的时间是起跑后的第 120 秒.【解答】解:设直线OA 的解析式为y kx =, 代入(200,800)A 得800200k =, 解得4k =,故直线OA 的解析式为4y x =,设BC 的解析式为11y k x b =+,由题意,得1136060540150k b k b =+⎧⎨=+⎩,解得:12240k b =⎧⎨=⎩,BC ∴的解析式为12240y x =+,当1y y =时,42240x x =+, 解得:120x =.则她们第一次相遇的时间是起跑后的第120秒. 故答案为120.18.(4分)(2019•南岸区校级模拟)某商店为促进销售,将A 、B 、C 三种糖果以甲、乙两种方式进行搭配销售,两种方式均配成本价为5元的包装袋,甲方式每袋含A 糖果1千克,B 糖果1千克,C 糖果3千克,乙方式每袋含A 糖果3千克,B 糖果1千克,C 糖果1千克,已知每千克C 糖果比每千克A 糖果成本价高2.5元,甲种方式(含包装袋)每袋成本为55元,现甲、乙两种方式分别在成本价(含包装袋)基础上提价20%和35%进行销售,两种方式销售完毕后利润率达到30%,则甲、乙两种方式的销量之比为 5:11 . 【解答】解:两种方式均配成本价为5元的包装袋,甲方式每袋含A 糖果1千克,B 糖果1千克,C 糖果3千克,乙方式每袋含A 糖果3千克,B 糖果1千克,C 糖果1千克,已知每千克C 糖果比每千克A 糖果成本价高2.5元,∴一袋甲糖果成本比一袋乙糖果成本多:2.525⨯=(元/袋),甲种方式(含包装袋)每袋成本为55元,∴乙种方式(含包装袋)每袋成本为50元,设甲、乙两种方式各自的销量分别为x 袋和y 袋,根据题意得, 550.2500.3530%(5550)x y x y ⨯+⨯=+,整理得,5.5 2.5x y =, :5:11x y ∴=.故答案为:5:11.三、解答题解答时每小题必须给出必要的演算过程或推理步骤19.(10分)(2019秋•垫江县校级月考)(1)解方程:22310x x -+=.(2)计算22944(3)33x x x x x x --+-+÷+--. 【解答】解:(1)22310x x -+=, (21)(1)0x x ∴--=,则210x -=或10x -=, 解得11x =,20.5x =-;(2)原式22299(2)()33(3)x x x x x x ---=-÷++-+ 2(2)(3)3(2)x x x x x ---+=+-2xx =-.20.(10分)(2019•南岸区校级模拟)已知:如图,在ABC ∆中,D 是边AC 上一点,AB BD DC ==,20ABD ∠=︒,//AE BD 交CB 延长线于点E .求AEB ∠的度数.【解答】解:AB BD =,20ABD ∠=︒,80ADB ∴∠=︒, BD DC =, 40CBD ∴∠=︒, //AE BD , 40AEB ∴∠=︒.四、解答题21.(10分)(2019•沂水县二模)垃圾分类有利于对垃圾进行分流处理,能有效提高垃圾的资源价值和经济价值,力争物尽其用,为了了解同学们对垃圾分类相关知识的掌握情况,增强同学们的环保意识,某校对八年级甲,乙两班各60名学生进行了垃极分类相关知识的测试,并分别抽取了15份成绩,整理分析过程如下,请补充完整. 【收集数据】甲班15名学生测试成绩统计如下:(满分100分)68,72,89,85,82,85,74,92,80,85,78,85,69,76,80 乙班15名学生测试成绩统计如下:《满分100分)86,89,83,76,73,78,67,80,80,79,80,84,82,80,83 【整理数据】(1)按如下分数段整理、描述这两组样本数据在表中,a = 4 ,b = .(2)补全甲班15名学生测试成绩频数分布直方图:【分析数据】(3)两组样本数据的平均数、众数、中位数、方差如下表所示:在表中:x=,y=.(4)若规定得分在80分及以上(含80分)为合格,请估计乙班60名学生中垃极分类及投放相关知识合格的学生有人.(5)你认为哪个班的学生掌握垃圾分类相关知识的整体水平较好,说明理由.【解答】解:(1)乙班75.5~80.5分数段的学生数为4,80.5~85.5分数段的学生数为5,故4a=,5b=,故答案为:4,5;(2)补全甲班15名学生测试成绩频数分布直方图如图所示,(3)甲班15名学生测试成绩中85出现的次数最多,故85x=;把乙班学生测试成绩按从小到大排列为:67,73,76,78,79,80,80,80,80,82,83,83,84,86,89,处在中间位置的数为80,故80y=;故答案为:85,80;(4)760100%2815⨯⨯=(人),答:乙班60名学生中垃极分类及投放相关知识合格的学生有28人;故答案为:28;(5)乙班的学生掌握垃圾分类相关知识的整体水平较好,甲班的方差>乙班的方差,∴乙班的学生掌握垃圾分类相关知识的整体水平较好.22.(10分)(2019秋•垫江县校级月考)如图,抛物线与x 轴交于(1,0)A -、(3,0)B 两点,与y 轴交于点(0,3)C -,设抛物线的顶点为D . (1)求该抛物线的解析式和顶点D 的坐标? (2)求出ECD ∆的面积是多少?【解答】解:(1)抛物线的表达式为:2(1)(3)(23)y a x x a x x =+-=--, 故33a -=-,解得:1a =,故抛物线的表达式为:223y x x =--, 函数的对称轴为:1x =,点(1,4)D -;(2)过点D 作y 轴的平行线交BC 与点H ,将点BC 的坐标代入一次函数表达式:y kx b =+得:303k b b +=⎧⎨=-⎩,解得:13k b =⎧⎨=-⎩,故直线BC 的表达式为:3y x =-,故点(1,2)H -,则2HD =, ECD ∆的面积1123322HD OB =⨯=⨯⨯=. 23.(10分)(2018•秀屿区模拟)小东根据学习函数的经验,对函数24(1)1y x =-+图象与性质进行了探究,下面是小东的探究过程,请补充完整,并解决相关问题: (1)函数24(1)1y x =-+的自变量x 的取值范围是 全体实数 ;(2)如表是y 与x 的几组对应值.表中m 的值为 ;(3)如图,在平面直角坐标系中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出函数24(1)1y x =-+的大致图象;(4)结合函数图象,请写出函数24(1)1y x =-+的一条性质:(5)解决问题:如果函数24(1)1y x =-+与直线y a =的交点有2个,那么a 的取值范围是 .【解答】解:(1)函数24(1)1y x =-+的自变量x 的取值范围是:全体实数,故答案为:全体实数;(2)把4x =代入24(1)1y x =-+得,242(41)15y ==-+, 25m ∴=, 故答案为:25; (3)如图所示(4)①图象位于一二象限,②当1x =时,函数由值最大4,③当1x <时,y 随x 的增大而增大,④当1x >时,y 随x 的增大而减小,⑤图象与x 轴没有交点.故答案为:①图象位于一二象限,②当1x =时,函数由值最大4,③当1x <时,y 随x 的增大而增大,④当1x >时,y 随x 的增大而减小,⑤图象与x 轴没有交点.(5)由图象,得04a <<.故答案为:04a <<.24.(10分)(2019秋•垫江县校级月考)“绿色苗圃基地”种植的某种树苗除了运往外地销售外,还可以让厂家亲自去苗圃基地购买,今年6月份该树苗在外地、苗圃基地的销售价格分别是50元/棵、40元/棵,6月份一共销售了300棵,总销售金额为14000元.(1)今年6月份该树苗在外地、苗圃基地各销售了多少棵?(2)7月份由于天气炎热,该树苗在苗圃基地的销售量在6月份的基础上下降了%(20)a a <,销售价相当于6份的12a .而运往外地销售的树苗,它的销售价格和销售量与6月份持平,这样7月份的总销售金额比6月份下降了5%7a ,求a 的值.【解答】解:(1)设今年6月份该树苗在外地销售了x 棵,在苗圃基地各销售了(300)x -棵,由题意得,5040(300)14000x x +-=解得:200x =则300100x -=答:今年6月份该树苗在外地销售了200棵,在苗圃基地各销售了100棵.(2)由题意得5(100100%)(40)2005014000(1%)127a a a -⨯⨯+⨯=⨯- 解得:110a =,2120(20a a =<,舍去)答:a 的值是10.五、解答题25.(10分)(2019秋•垫江县校级月考)如图,在正方形ABCD 中,线段CE 交四边形的边于点E ,点H 为BD 的中点,BF 、DG 分别垂直CE 于点F 和点G ,连接HF 、HG .(1)若3AB =,2AE EB =,求BF 的长:(2)求证:FG =.【解答】解:(1)如图,四边形ABCD 为正方形,3AB =,2AE EB =,3BC AB ∴==,2AE =,1BE =,∴在直角BEC ∆中,由勾股定理得到:CE =, 则1122BE BC CE BF =,故BE BC BF CE ==;(2)如图,FG =.理由如下:连接CH ,在BFC ∆与CGD ∆中,BCF CDG BFC CGD BC CD ∠=∠⎧⎪∠=∠⎨⎪=⎩,()BFC CGD AAS ∴∆≅∆,BF CG ∴=,FBC DCG ∠=∠.点H 是BD 的中点,CH BD ∴⊥,且HC BH DH ==,45HBC HCD ∴∠=∠=︒,FBH GHC ∴∠=∠.在HBF ∆与HCG ∆中,BF CG FBH GCH BH CH =⎧⎪∠=∠⎨⎪=⎩,()HBF HCG SAS ∴∆≅∆,FH GH ∴=,FHB GHC ∠=∠,90FHG BHC ∴∠=∠=︒,FG ∴.26.(8分)(2019秋•垫江县校级月考)如图①,已知抛物线2y ax bx c =++的图象经过点(0,3)A 、(1,0)B ,其对称轴为直线:2l x =,过点A 作//AC x 轴交抛物线于点C ,AOB ∠的平分线交线段AC 于点E ,点P 是抛物线上的一个动点,设其横坐标为m .(1)若动点P 在直线OE 下方的抛物线上,连结PE 、PO ,当m 为何值时,四边形AOPE 面积最大?当四边形AOPE 面积最大时,在抛物线对称轴直线上找一点M ,使得MB MP +的值最小,求M 的坐标;(2)如图②,F 是抛物线的对称轴l 上的一点,在抛物线上是否存在点P 使POF ∆成为以点P 为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P 的坐标;若不存在,请说明理由.【解答】解:(1)抛物线2y ax bx c =++的图象经过点(1,0)B ,其对称轴为直线:2l x =,则与x 轴另外一个交点坐标为(3,0),则抛物线的表达式为:2(1)(3)(43)y a x x a x x =--=-+,即33a =,解得1a =,故抛物线的表达式为:243y x x =-+;(2)AOB ∠的平分线交线段AC 于点E ,则3OE OA ==,故点(3,3)E , 四边形AOPE 面积AOE =∆的面积OPE +∆的面积,由于AOE ∆的面积是定值, 故四边形AOPE 面积最大,只需要确定OPE ∆的面积最大即可,过点P 作y 轴的平行线交OE 于点H ,设点2(,43)P m m m -+,则点(,)H m m ,221133(43)(53)222OPE S PH AE m m m m m ∆=⨯⨯=⨯⨯-+-=--+, 302-<,故OPE ∆的面积有最大值,即四边形AOPE 面积最大,此时,52m =,故点5()(2P P ',3)4-, 连接AP '交抛物线对称轴于点M ,则点M 为所求,将点AP '的坐标代入一次函数表达式并解得:直线AP '的表达式为:332y x =-+, 当2x =时,0y =,即点(2,0)M ;(3)①当点P 在一、四象限时,如下图,过点P 作x 轴的平行线分别交y 轴和直线l 于点R 、S , 设:RP a =,PS b =,则2a b +=,90OPR ROP ∠+∠=︒,90OPR FPS ∠+∠=︒,FPS ROP ∴∠=∠, 90PKO FSP ∠=∠=︒,PO PF =,()PKO FSP AAS ∴∆≅∆, 则FS RP a ==,OR PS =,故点(,2)P a a -,将点P 的坐标代入抛物线表达式并解得:x =,故点P 的坐标为:或; ②当点P 在第二象限时,同理可设:点(2,)P m m -,同理可得点P ;综上,点P 的坐标为:或或.。
2019届重庆市九年级上学期第三次月考数学试卷【含答案及解析】(1)
2019届重庆市九年级上学期第三次月考数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、选择题1. -3的绝对值是()A.3 B.-3 C. D.2. 若有意义,则x的取值范围是()A.x>4 B.x≠4 C.x≥4 D.x<43. 下列图案中,既是轴对称图形又是中心对称图形的是()4. 点A(-3,2)关于原点对称的点为点B,则点B的坐标是()A.(3,2) B.(-3,2) C.(3,-2) D.(-2,3)5. 下列函数,一定是二次函数的是()A.y=x2-B.y=ax2+bx+cC.y=(x-3)2-x2D.y=(m2+1)x2(m为常数)6. 已知△ABC∽△DEF,若△ABC与△DEF的相似比为3:4,则△ABC与△DEF的周长之比为()A.4:3 B.3:4 C.16:9 D.9:167. 下列说法中不正确的是()A.抛掷一枚硬币,硬币落地时正面朝上是随机事件B.把4个球放入三个抽屉中,其中一个抽屉中至少有2个球是必然事件C.一个盒子中有白球m个,红球6个,黑球n个(每个球除了颜色外都相同),如果从中任取一个球,取得的是红球的概率与不是红球的概率相同,那么m+n=6D.任意打开七年级下册数学教科书,正好是97页是确定事件8. 某次球赛共有x个队参加,每两个队之间打一场比赛,共打了176场,则根据题意可列出的方程是()A.x(x+1)=176 B.x(x-1)=176C.2x(x+1)=176 D.x(x-1)=2×1769. 如图,AB是⊙O的切线,B为切点,AO与⊙O交于点C,若∠BCA=115°,则∠A的度数为()A.40° B.45° C.50° D.55°10. 2013年“中国好声音”全国巡演重庆站在奥体中心举行.童童从家出发前往观看,先匀速步行至轻轨车站,等了一会儿,童童搭乘轻轨至奥体中心观看演出,演出结束后,童童搭乘邻居刘叔叔的车顺利回到家.其中x表示童童从家出发后所用时间,y表示童童离家的距离.下面能反映y与x的函数关系的大致图象是()11. 观察如图的图形,它们是按一定规律排列的,依照此规律,第()个图形共由120个五角星组成.A.13 B.14 C.15 D.1612. 如图,双曲线y=与矩形OABC的对角线OB相交于点D,且DB:OD=2:3,则矩形OABC的面积为()A. B. C. D.8二、填空题13. 已知二次函数y=x2-3x+m(m为常数)的图象与x轴的一个交点为(1,0),则关于x 的一元二次方程x2-3x+m=0的两实数根是.14. 已知A(-4,y1),B(-3,y2),C(3,y3)三点都在反比例函数y=-的图象上,则y1,y2,y3的大小关系为.(用“<”连接)15. 某商店1月份的利润是1000元,3月份的利润达到1210元,若这两个月的月利润增长的百分率相同,则此增长百分率为.16. 如图,已知点A、B、C、D均在已知圆上,AD∥BC,AC平分∠BCD,∠ADC=120°,四边形ABCD的周长为10cm.图中阴影部分的面积为 cm2.17. 从-3,-2,-1,0,1,2这六个数中,任意抽取一个数,作为反比例函数和二次函数y=(m+1)x2+mx+1中的m的值,恰好使所得的反比例函数在每个象限内,y随x的增大而增大,且二次函数的图象开口向上的概率为.18. 如图,在Rt△POQ中,OP=OQ=4,M是PQ中点,把一三角尺的直角顶点放在点M处,以M为旋转中心,旋转三角尺,三角尺的两直角边与△POQ的两直角边分别交于点A、B.连结AB,在旋转三角尺的过程中,△AOB的周长的最小值.三、计算题19. 计算:-|1-|-(3.14-π)0+(-)-2.四、解答题20. 解方程(1)x2+2x-2=0(2)(x+2)2-10(x+2)+25=0.五、计算题21. 化简:(1)(x+3y)2-2(x+3y)(x-3y)+(x-3y)2(2).六、填空题22. 2014年10月16-17日南岸区在重庆第十一中学进行中学生运动会,该校学生会对高一年级各班的志愿者人数进行了统计,各班志愿者人数有6名,5名、4名、3名、2名、1名共计六种情况,并制成两幅不完整的统计图如下:(1)该年级共有个班级,并将条形图补充完整;(2)求志愿者人数是6名的班级所占圆心角度数;(3)为了了解志愿者在这次活动中的感受,校学生会准备从只有2名志愿者的班级中任选两名志愿者参加座谈会,请用列表或画树状图的方法,求出所选志愿者来自同一个班级的概率.七、解答题23. 端午节期间,某品牌粽子经销商销售甲、乙两种不同味道的粽子,已知一个甲种粽子和一个乙种粽子的进价之和为10元,每个甲种粽子的利润是4元,每个乙种粽子的售价比其进价的2倍少1元,小王同学买4个甲种粽子和3个乙种粽子一共用了61元.(1)甲、乙两种粽子的进价分别是多少元?(2)在(1)的前提下,经销商统计发现:平均每天可售出甲种粽子200个和乙种粽子150个.如果将两种粽子的售价各提高1元,则每天将少售出50个甲种粽子和40个乙种粽子.为使每天获取的利润更多,经销商决定把两种粽子的价格都提高x元.在不考虑其他因素的条件下,当x为多少元时,才能使该经销商每天销售甲、乙两种粽子获取的利润为1190元?八、填空题24. 阅读材料,解答问题:若两个二次函数图象的顶点,开口方向都相同,则称这两个二次函数为“同簇二次函数”.(1)下列各组二次函数中,是“同簇二次函数”的是(填序号);①y=x2+1与y=2x2;②y=x2+2x+2与y=2(x-1)2+1;③y=-x2-2x+3与y=-(x+1)2+4(2)已知关于x的二次函数y1=2x2-4mx+2m2+1和y2=ax2+bx+5,其中y1的图象经过点A (1,1),若y1+y2与y1为“同簇二次函数”,求函数y2的表达式.九、解答题25. 如图1,矩形ABCD中,AB=4,AD=3,把矩形沿直线AC折叠,使点B落在点E处,AE 交CD于点F,连接DE.(1)求证:△DEC≌△EDA;(2)求DF的值;(3)如图2,若P为线段EC上一动点,过点P作△AEC的内接矩形,使其顶点Q落在线段AE上,定点M、N落在线段AC上,当线段PE的长为何值时,矩形PQMN的面积最大?并求出其最大值.26. 已知抛物线y=ax2-2ax+c与y轴交于C点,与x轴交于A、B两点,点A的坐标是(-1,0),O是坐标原点,且|OC|=3|OA|(1)求抛物线的函数表达式;(2)直接写出直线BC的函数表达式;(3)如图1,D为y轴的负半轴上的一点,且OD=2,以OD为边作正方形ODEF.将正方形ODEF以每秒1个单位的速度沿x轴的正方向移动,在运动过程中,设正方形ODEF与△OBC 重叠部分的面积为s,运动的时间为t秒(0<t≤2).求:①s与t之间的函数关系式;②在运动过程中,s是否存在最大值?如果存在,直接写出这个最大值;如果不存在,请说明理由.(4)如图2,点P(1,k)在直线BC上,点M在x轴上,点N在抛物线上,是否存在以A、M、N、P为顶点的平行四边形?若存在,请直接写出M点坐标;若不存在,请说明理由.参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第20题【答案】第22题【答案】第23题【答案】第24题【答案】第25题【答案】第26题【答案】。
重庆市第二外国语学校2019-2020学年九年级(上)第一次月考数学模拟试卷 含答案解析
重庆市第二外国语学校2019-2020学年九年级(上)第一次月考数学模拟试卷含答案解析一.选择题(共12小题)1.﹣8的立方根是()A.﹣4 B.﹣2 C.4 D.22.如图,这个几何体的左视图正确的是()A.B.C.D.3.下列四个选项中,既是轴对称又是中心对称的图形是()A.矩形B.等边三角形C.正五边形D.正七边形4.若△ABC∽△DEF,△ABC与△DEF的面积之比为4:25,则△ABC与△DEF周长之比为()A.4:25 B.2:5 C.5:2 D.25:45.下列命题正确的是()A.四条边都相等的四边形一定是正方形B.一组对边平行,另一组对边相等的四边形一定是平行四边形C.菱形的两条对角线互相垂直平分D.对角线相等的四边形一定是矩形6.已知a是方程x2﹣3x﹣1=0的一个根,则代数式2a2﹣6a+3的值是()A.6 B.5 C.D.7.如图,在平行四边形ABCD中,点E是CD边上一点,DE:EC=2:3,连接AE、BE、BD,且AE、BD交于点F.若S△DEF=2,则S△ABE=()A.15.5 B.16.5 C.17.5 D.18.58.函数y=kx+1与函数y=在同一坐标系中的大致图象是()A.B.C.D.9.某工厂一月份生产机器100台,计划二、三月份共生产250台,设二、三月份的生产平均增长率为x,则根据题意列出的方程是()A.100(1+x)=250B.100(1+x)+100(1+x)2=250C.100(1﹣x)2=250D.100(1+x)2=25010.如图,菱形ABCD中,AC交BD于点O,DE⊥BC于点E,连接OE,若∠ABC=140°,则∠OED=()A.20°B.30°C.40°D.50°11.如图,在平面直角坐标系中,▱AOBC的边AO在x轴上,经过点C的反比例函数y=(k ≠0)交OB于点D,且OD=2BD,若▱AOBC的面积是6,则k的值是()A.B.C.D.12.使得关于x的不等式组有且只有4个整数解,且关于x的分式方程=﹣8的解为正数的所有整数a的值之和为()A.11 B.15 C.18 D.19二.填空题(共6小题)13.一元二次方程x(x﹣2)=0的解是.14.若线段AB=2,且点C是AB的黄金分割点且AC>BC,则BC等于.15.如图,在平行四边形ABCD中,BE⊥AD,BF⊥CD垂足分别为E,F,若CF=3,DE=2,∠A=60°,则平行四边形ABCD的周长为.16.全国开展扫黑除悉专项斗争是党中央的重大决策,是以习近平同志为核心的党中央作出的重大决策部署,为期三年,一年治标、两年治根,三年治本.为了让更多的民众参与进来,某社区举办了“扫黑除恶”的知识竞答活动,并对答对问题的人员发放小礼品.现打算从报名参加知识竞答活动的三男两女中随机抽取2人知识竞答,则抽取到的两人刚好是1男1女的概率是.17.如图,在正方形ABCD的边AB上取一点E,连接CE,将△BCE沿CE翻折,点B恰好与对角线AC上的点F重合,连接DF,若BE=1,则△CDF的面积是.18.重庆渴乐自驾游公司在元旦节推出四条自驾线路,为调查客户对各条线路的喜欢情况,微信群里做了一次“我最期待的自驾线路”问卷调查(群里每个人都进行了调查且只选择一条线路),统计后发现选湘西的人数比选毕棚沟的少6人;选邛海的人数不仅比选毕棚沟的多,且为整数倍:选毕棚沟与邛海的人数之和是选择湘西和北海的人数之和的4倍;选北海和邛海的人数之和比选湘西与毕棚沟的人数之和多22人,则该微信群里参与调查的共人.三.解答题(共8小题)19.用适当的方法解下列一元二次方程:(1)2x2+3x﹣1=0.(2)x2﹣8x=84.20.如图,四边形ABCD是正方形,点A的坐标是(0,1),点B的坐标是(0,﹣2),反比例函数y=的图象经过点C,一次函数y=ax+b的图象经过A、C两点,两函数图象的另一个交点E的坐标是(m,3).(1)分别求出一次函数与反比例函数的解析式.(2)求出m的值,并根据图象回答:当x为何值时,一次函数的值大于反比例函数的值.(3)若点P是反比例函数图象上的一点,△AOP的面积恰好等于正方形ABCD的面积,求点P坐标.21.为调查我市民上班时最常用的交通工具的情况随机抽取了部分市民进行调查,要求被调查者从“A:自行车,B:电动车,C:公交车,D:家庭汽车;E.其他”中选择最常用的一项.将所有调查结果整理后绘制成如下不完整计图,请结合统计图回答下列问题:(1)本次一共调查了名市民;扇形统计图中B项对应的圆心角是度;(2)补全条形统计图;(3)若甲、乙两人上班时从A、B、C、D四种交通工具中随或画树状图的方法,求出甲、乙两人恰好选择同一种交通工具上班的概率.22.如图,为了测量一栋楼的高度OE,小明同学先在操场上A处放一面镜子,向后退到B 处,恰好在镜子中看到楼的顶部E;再将镜子放到C处,然后后退到D处,恰好再次在镜子中看到楼的顶部E(O,A,B,C,D在同一条直线上),测得AC=2m,BD=2.1m,如果小明眼睛距地面髙度BF,DG为1.6m,试确定楼的高度OE.23.近期猪肉价格不断走高,引起了民众与政府的高度关注,当市场猪肉的平均价格每千克达到一定的单价时,政府将投入储备猪肉以平抑猪肉价格.据统计:从今年年初至7月20日,猪肉价格不断走高,7月20日比年初价格上涨了60%.某市民于某超市今年7月20日购买2.5千克猪肉花100元钱.(1)问:那么今年年初猪肉的价格为每千克多少元?(2)某超市将进货价为每千克30元的猪肉,按7月20日价格出售,平均一天能销售出100千克,经调查表明:猪肉的售价每千克下降1元,其日销售量就增加20千克,超市为了实现销售猪肉每天有1120元的销售利润,为了尽可能让顾客优惠应该每千克定价为多少元?(3)7月21日,某市决定投入储备猪肉并规定其在原销售价的基础上下调a%出售,某超市按规定价出售一批储备猪肉,该超市在非储备猪肉的价格不变情况下,该天的两种猪肉总销量比7月20日增加了a%,且储备猪肉的销量占总销量的,两种猪肉销售的总金额比7月20日提高了a%,求a的值.24.如图,在正方形ABCD中,点P为AD延长线上一点,连接AC、CP,F为AB边上一点,满足CF⊥CP,过点B作BM⊥CF,分别交AC、CF于点M、N(1)若AC=AP,AC=4,求△ACP的面积;(2)若BC=MC,证明:CP﹣BM=2FN.25.阅读材料:各类方程的解法求解一元一次方程,根据等式的基本性质,把方程转化为x=a的形式.求解二元一次方程组,把它转化为一元一次方程来解;类似的,求解三元一次方程组,把它转化为解二元一次方程组.求解一元二次方程,把它转化为两个一元一次方程来解.求解分式方程,把它转化为整式方程来解,由于“去分母”可能产生增根,所以解分式方程必须检验.各类方程的解法不尽相同,但是它们有一个共同的基本数学思想﹣﹣转化,把未知转化为已知.用“转化”的数学思想,我们还可以解一些新的方程.例如,一元三次方程x3+x2﹣2x=0,可以通过因式分解把它转化为x(x2+x﹣2)=0,解方程x=0和x2+x﹣2=0,可得方程x3+x2﹣2x=0的解.(1)问题:方程x3+x2﹣2x=0的解是x1=0,x2=,x3=;(2)拓展:用“转化”思想求方程=x的解;(3)应用:如图,已知矩形草坪ABCD的长AD=8m,宽AB=3m,小华把一根长为10m 的绳子的一端固定在点B,沿草坪边沿BA,AD走到点P处,把长绳PB段拉直并固定在点P,然后沿草坪边沿PD、DC走到点C处,把长绳剩下的一段拉直,长绳的另一端恰好落在点C.求AP的长.26.如图,已知四边形ABCD中,AB∥DC,AB=DC,且AB=6cm,BC=8cm,对角线AC=10cm.(1)求证:四边形ABCD是矩形;(2)如图(2),若动点Q从点C出发,在CA边上以每秒5cm的速度向A点匀速移动,同时动点P从点B出发,在BC边上以每秒4cm的速度向C点匀速移动,运动时间为t 秒(0≤t<2),连接BQ、AP,若AP⊥BQ,求t的值;(3)如图(3),若点Q在对角线AC上,CQ=4cm,动点P从B点出发,以每秒1cm的速度沿BC运动至点C止.设点P运动了t秒,请你探索:从运动开始,经过多少时间,以点Q、P、C为顶点的三角形是等腰三角形?请求出所有可能的结果.参考答案与试题解析一.选择题(共12小题)1.﹣8的立方根是()A.﹣4 B.﹣2 C.4 D.2【分析】依据立方根的定义解答即可.【解答】解:﹣8的立方根是﹣2.故选:B.2.如图,这个几何体的左视图正确的是()A.B.C.D.【分析】找到从几何体的左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.【解答】解:从几何体的左面看所得到的图形是:故选:C.3.下列四个选项中,既是轴对称又是中心对称的图形是()A.矩形B.等边三角形C.正五边形D.正七边形【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、矩形是轴对称图形,也是中心对称图形,故此选项正确;B、等边三角形是轴对称图形,不是中心对称图形,故此选项错误;C、正五边形是轴对称图形,不是中心对称图形,故此选项错误;D、正七边形是轴对称图形,不是中心对称图形,故此选项错误.故选:A.4.若△ABC∽△DEF,△ABC与△DEF的面积之比为4:25,则△ABC与△DEF周长之比为()A.4:25 B.2:5 C.5:2 D.25:4【分析】根据相似三角形的面积的比等于相似比的平方先求出△ABC与△DEF的相似比,然后根据相似三角形的周长的比等于相似比解答即可.【解答】解:∵相似三角形△ABC与△DEF面积的比为4:25,∴它们的相似比为2:5,∴△ABC与△DEF的周长比为2:5.故选:B.5.下列命题正确的是()A.四条边都相等的四边形一定是正方形B.一组对边平行,另一组对边相等的四边形一定是平行四边形C.菱形的两条对角线互相垂直平分D.对角线相等的四边形一定是矩形【分析】根据正方形、平行四边形、矩形的判定定理、菱形的性质定理判断即可.【解答】解:四条边都相等、四个角相等的四边形一定是正方形,A是假命题;一组对边平行,另一组对边相等的四边形不一定是平行四边形,B是假命题;菱形的两条对角线相互垂直平分,C是真命题;对角线相等的平行四边形一定是矩形,D是假命题;故选:C.6.已知a是方程x2﹣3x﹣1=0的一个根,则代数式2a2﹣6a+3的值是()A.6 B.5 C.D.【分析】根据方程的根的定义,把x=a代入方程求出a2﹣3a的值,然后整体代入代数式进行计算即可得解.【解答】解:∵a是方程x2﹣3x﹣1=0的一个根,∴a2﹣3a﹣1=0,整理得,a2﹣3a=1,∴2a2﹣6a+3=2(a2﹣3a)+3=2×1+3=5.故选:B.7.如图,在平行四边形ABCD中,点E是CD边上一点,DE:EC=2:3,连接AE、BE、BD,且AE、BD交于点F.若S△DEF=2,则S△ABE=()A.15.5 B.16.5 C.17.5 D.18.5【分析】根据已知可得到相似三角形,从而可得到其相似比,再根据相似三角形的面积比等于相似比的平方求出△ABE,△BEF的面积即可.【解答】解:∵四边形ABCD是平行四边形,∴DE∥AB,∴△DFE∽△BFA,∵DE:EC=2:3,∴DE:AB=2:5,DF:FB=2:5,∵S△DEF=2,∴S△ABF=,S△BEF=5,∴S△ABE=+5=,故选:C.8.函数y=kx+1与函数y=在同一坐标系中的大致图象是()A.B.C.D.【分析】根据一次函数和反比例函数的特点,k≠0,所以分k>0和k<0两种情况讨论.当两函数系数k取相同符号值,两函数图象共存于同一坐标系内的即为正确答案.【解答】解:分两种情况讨论:①当k>0时,y=kx+1与y轴的交点在正半轴,过一、二、三象限,y=的图象在第一、三象限;②当k<0时,y=kx+1与y轴的交点在正半轴,过一、二、四象限,y=的图象在第二、四象限.故选:A.9.某工厂一月份生产机器100台,计划二、三月份共生产250台,设二、三月份的生产平均增长率为x,则根据题意列出的方程是()A.100(1+x)=250B.100(1+x)+100(1+x)2=250C.100(1﹣x)2=250D.100(1+x)2=250【分析】主要考查增长率问题,一般用增长后的量=增长前的量×(1+增长率),如果设二、三月份的生产平均增长率为x,那么首先可以用x表示二、三月份共生产的机器100(1+x)+100(1+x)2,然后可得出的方程为100(1+x)+100(1+x)2=250.【解答】解:依题意得二、三月份共生产的机器100(1+x)+100(1+x)2,∴方程为100(1+x)+100(1+x)2=250.故选:B.10.如图,菱形ABCD中,AC交BD于点O,DE⊥BC于点E,连接OE,若∠ABC=140°,则∠OED=()A.20°B.30°C.40°D.50°【分析】根据直角三角形的斜边中线性质可得OE=BE=OD,根据菱形性质可得∠DBE=∠ABC=70°,从而得到∠OEB度数,再依据∠OED=90°﹣∠OEB即可.【解答】解:∵四边形ABCD是菱形,∴O为BD中点,∠DBE=∠ABC=70°.∵DE⊥BC,∴在Rt△BDE中,OE=BE=OD,∴∠OEB=∠OBE=70°.∴∠OED=90°﹣70°=20°.故选:A.11.如图,在平面直角坐标系中,▱AOBC的边AO在x轴上,经过点C的反比例函数y=(k ≠0)交OB于点D,且OD=2BD,若▱AOBC的面积是6,则k的值是()A.B.C.D.【分析】作BE⊥x轴于点E,DF⊥x轴于点F,则DF∥BE,△ODF∽△OBE,根据相似三角形对应边成比例得出===,设D(2x,),表示出B(3x,),C(,),根据▱AOBC的面积是6,列出方程(3x﹣)•=6,即可求出k的值.【解答】解:作BE⊥x轴于点E,DF⊥x轴于点F,则DF∥BE,∴△ODF∽△OBE,∴===.设D(2x,),则B(3x,),C(,),∵▱AOBC的面积是6,∴(3x﹣)•=6,解得k=.故选:D.12.使得关于x的不等式组有且只有4个整数解,且关于x的分式方程=﹣8的解为正数的所有整数a的值之和为()A.11 B.15 C.18 D.19【分析】解不等式组得到4<a≤10,由关于x的分式方程=﹣8的解为正数,得到a<8且a≠7,于是确定出a的整数值,从而得到结论.【解答】解:解不等式组得≤x<4,∵关于x的不等式组有且只有4个整数解,∴﹣1<≤0,解得4<a≤10,解方程=﹣8得x=,∵方程的解为正数,∴8﹣a>0且8﹣a≠1,解得:a<8且a≠7,所以在4<a≤10的范围内符合条件的整数有5、6,则整数a的值之和为11,故选:A.二.填空题(共6小题)13.一元二次方程x(x﹣2)=0的解是x1=0,x2=2 .【分析】利用因式分解法解方程.【解答】解:x=0或x﹣2=0,所以x1=0,x2=2.故答案为:x1=0,x2=2.14.若线段AB=2,且点C是AB的黄金分割点且AC>BC,则BC等于3﹣.【分析】根据黄金比值为计算即可.【解答】解:∵点C是AB的黄金分割点,AC>BC,∴AC=AB=﹣1,则BC=AB﹣AC=2﹣(﹣1)=3﹣,故答案为:3﹣.15.如图,在平行四边形ABCD中,BE⊥AD,BF⊥CD垂足分别为E,F,若CF=3,DE=2,∠A=60°,则平行四边形ABCD的周长为28 .【分析】根据平行四边形的性质和含30°的直角三角形的性质解答即可.【解答】解:∵平行四边形ABCD,∠A=60°,∴∠C=60°,∵CF=3,BF⊥CD,∴BC=6,∵DE=2,∴AE=6﹣2=4,∵BE⊥AD,∴AB=8,∴平行四边形ABCD的周长=(6+8)×2=28,故答案为:2816.全国开展扫黑除悉专项斗争是党中央的重大决策,是以习近平同志为核心的党中央作出的重大决策部署,为期三年,一年治标、两年治根,三年治本.为了让更多的民众参与进来,某社区举办了“扫黑除恶”的知识竞答活动,并对答对问题的人员发放小礼品.现打算从报名参加知识竞答活动的三男两女中随机抽取2人知识竞答,则抽取到的两人刚好是1男1女的概率是.【分析】根据题意可以画出相应的树状图,从而可以求得相应的概率.【解答】解:由题意可得,则抽取到的两人刚好是1男1女的概率是:=,故答案为:.17.如图,在正方形ABCD的边AB上取一点E,连接CE,将△BCE沿CE翻折,点B恰好与对角线AC上的点F重合,连接DF,若BE=1,则△CDF的面积是1+.【分析】由折叠可得EF=BE=1,∠CFE=∠B=90°,且∠FAE=45°可得AF=1,AE=,即可求对角线BD的长,则可求△CDF面积【解答】解:如图连接BD交AC于O∵ABCD为正方形∴∠ABC=90°,AB=BC,AC⊥BD,DO=BO,∠BAC=45°∵△BCE沿CE翻折,∴BE=EF=1,BC=CF,∠EFC=90°∵∠BAC=45°,∠EFC=90°∴∠EAF=∠AEF=45°∴AF=EF=1∴AE=∴AB=+1=BC=CF∴BD=AB=2+∴OD=∵S△CDF=×CF×DO∴S△CDF==18.重庆渴乐自驾游公司在元旦节推出四条自驾线路,为调查客户对各条线路的喜欢情况,微信群里做了一次“我最期待的自驾线路”问卷调查(群里每个人都进行了调查且只选择一条线路),统计后发现选湘西的人数比选毕棚沟的少6人;选邛海的人数不仅比选毕棚沟的多,且为整数倍:选毕棚沟与邛海的人数之和是选择湘西和北海的人数之和的4倍;选北海和邛海的人数之和比选湘西与毕棚沟的人数之和多22人,则该微信群里参与调查的共50 人.【分析】根据题意,可以列出相应的方程组,从而可以求得总人数,注意k为正整数,人数为正整数.【解答】解:设湘西、毕棚沟、邛海、北海的人数分别为a人、b人、c人、d人,解得,,∴a+b+c+d=4+10+30+6=50,故答案为:50.三.解答题(共8小题)19.用适当的方法解下列一元二次方程:(1)2x2+3x﹣1=0.(2)x2﹣8x=84.【分析】(1)先求出b2﹣4ac的值,再代入公式求出即可;(2)整理后分解因式,即可得出两个一元一次方程,求出方程的解即可.【解答】解:(1)2x2+3x﹣1=0,b2﹣4ac=32﹣4×2×(﹣1)=17,x=,x1=,x2=;(2)整理得:x2﹣8x﹣84=0,(x+6)(x﹣14)=0,x+6=0,x﹣14=0,x1=﹣6,x2=14.20.如图,四边形ABCD是正方形,点A的坐标是(0,1),点B的坐标是(0,﹣2),反比例函数y=的图象经过点C,一次函数y=ax+b的图象经过A、C两点,两函数图象的另一个交点E的坐标是(m,3).(1)分别求出一次函数与反比例函数的解析式.(2)求出m的值,并根据图象回答:当x为何值时,一次函数的值大于反比例函数的值.(3)若点P是反比例函数图象上的一点,△AOP的面积恰好等于正方形ABCD的面积,求点P坐标.【分析】(1)先根据A点和B点坐标得到正方形的边长,则BC=3,于是可得到C(3,﹣2),然后利用待定系数法求反比例函数与一次函数的解析式;(2)将点E的坐标(m,3)代入反比例函数的解析式即可求出m的值,根据图象找出一次函数落在反比例函数图象上方的部分对应的自变量的取值范围即可;(3)设P(t,﹣),根据三角形面积公式和正方形面积公式得到×1×|t|=3×3,然后解绝对值方程求出t即可得到P点坐标.【解答】解:(1)∵点A的坐标为(0,1),点B的坐标为(0,﹣2),∴AB=1+2=3,∵四边形ABCD为正方形,∴BC=AB=3,∴C(3,﹣2),把C(3,﹣2)代入y=,得k=3×(﹣2)=﹣6,∴反比例函数解析式为y=﹣;把C(3,﹣2),A(0,1)代入y=ax+b,得,解得,∴一次函数解析式为y=﹣x+1;(2)∵反比例函数y=﹣的图象过点E(m,3),∴m=﹣2,∴E点的坐标为(﹣2,3);由图象可知,当x<﹣2或0<x<3时,一次函数落在反比例函数图象上方,即当x<﹣2或0<x<3时,一次函数的值大于反比例函数的值;(3)设P(t,﹣),∵△AOP的面积恰好等于正方形ABCD的面积,∴×1×|t|=3×3,解得t=18或t=﹣18,∴P点坐标为(18,﹣)或(﹣18,).21.为调查我市民上班时最常用的交通工具的情况随机抽取了部分市民进行调查,要求被调查者从“A:自行车,B:电动车,C:公交车,D:家庭汽车;E.其他”中选择最常用的一项.将所有调查结果整理后绘制成如下不完整计图,请结合统计图回答下列问题:(1)本次一共调查了2000 名市民;扇形统计图中B项对应的圆心角是54 度;(2)补全条形统计图;(3)若甲、乙两人上班时从A、B、C、D四种交通工具中随或画树状图的方法,求出甲、乙两人恰好选择同一种交通工具上班的概率.【分析】(1)根据D组的人数以及百分比,即可得到被调查的人数,再根据扇形圆心角的度数=部分占总体的百分比×360°进行计算即可;(2)由各选项人数和等于总人数求出C选项的人数,从而补全图形;(3)根据甲、乙两人上班时从A、B、C、D四种交通工具中随机选择一种画树状图或列表,即可运用概率公式得到甲、乙两人恰好选择同一种交通工具上班的概率.【解答】解:(1)本次调查的总人数为500÷25%=2000人,扇形统计图中,B项对应的扇形圆心角是360°×=54°,故答案为:2000,54;(2)选择公交车人数为800人,补全条形统计图如图所示(3)列表如下:A B C DA(A,A)(B,A)(C,A)(D,A)B(A,B)(B,B)(C,B)(D,B)C(A,C)(B,C)(C,C)(D,C)D(A,D)(B,D)(C,D)(D,D)由表可知共有16种等可能结果,其中甲、乙两人恰好选择同一种交通工具上班的结果有4种,所以甲、乙两人恰好选择同一种交通工具上班的概率为.22.如图,为了测量一栋楼的高度OE,小明同学先在操场上A处放一面镜子,向后退到B 处,恰好在镜子中看到楼的顶部E;再将镜子放到C处,然后后退到D处,恰好再次在镜子中看到楼的顶部E(O,A,B,C,D在同一条直线上),测得AC=2m,BD=2.1m,如果小明眼睛距地面髙度BF,DG为1.6m,试确定楼的高度OE.【分析】根据题意得到△GDC∽△EOC和△FBA∽△EOA,利用相似三角形的对应边的比相等列式计算即可.【解答】解:令OE=a,AO=b,CB=x,则由△GDC∽△EOC得,即,整理得:3.2+1.6b=2.1a﹣ax①,由△FBA∽△EOA得,即,整理得:1.6b=2a﹣ax②,将②代入①得:3.2+2a﹣ax=2.1a﹣ax,∴a=32,即OE=32,答:楼的高度OE为32米.23.近期猪肉价格不断走高,引起了民众与政府的高度关注,当市场猪肉的平均价格每千克达到一定的单价时,政府将投入储备猪肉以平抑猪肉价格.据统计:从今年年初至7月20日,猪肉价格不断走高,7月20日比年初价格上涨了60%.某市民于某超市今年7月20日购买2.5千克猪肉花100元钱.(1)问:那么今年年初猪肉的价格为每千克多少元?(2)某超市将进货价为每千克30元的猪肉,按7月20日价格出售,平均一天能销售出100千克,经调查表明:猪肉的售价每千克下降1元,其日销售量就增加20千克,超市为了实现销售猪肉每天有1120元的销售利润,为了尽可能让顾客优惠应该每千克定价为多少元?(3)7月21日,某市决定投入储备猪肉并规定其在原销售价的基础上下调a%出售,某超市按规定价出售一批储备猪肉,该超市在非储备猪肉的价格不变情况下,该天的两种猪肉总销量比7月20日增加了a%,且储备猪肉的销量占总销量的,两种猪肉销售的总金额比7月20日提高了a%,求a的值.【分析】(1)利用单价=总价÷数量可求出7月20日猪肉的单价,设今年年初猪肉的价格为每千克x元,根据年初与7月20日猪肉单价间的关系,可得出关于x的一元一次方程,解之即可得出结论;(2)设每千克降价y元,则日销售(100+20y)千克,根据总利润=每千克的利润×销售数量,即可得出关于y的一元二次方程,解之即可得出y值,再将其较大值代入(40﹣y)中即可求出结论;(3)设该超市7月20日售出m千克猪肉,根据销售总金额=销售单价×销售数量,即可得出关于a的一元二次方程,解之取其正值即可得出结论.【解答】解:(1)今年7月20日猪肉的价格=100÷2.5=40(元/千克).设今年年初猪肉的价格为每千克x元,依题意,得:(1+60%)x=40,解得:x=25.答:今年年初猪肉的价格为每千克25元.(2)设每千克降价y元,则日销售(100+20y)千克,依题意,得:(40﹣30﹣y)(100+20y)=1120,整理,得:y1=2,y2=3,∵尽可能让顾客优惠,∴y=3,∴40﹣y=37.答:应该每千克定价为37元.(3)设该超市7月20日售出m千克猪肉,依题意,得:40(1﹣a%)×(1+a%)m+40×(1+a%)m=(1+a%)×40m,整理,得:a2﹣20a=0,解得:a1=0(舍去),a2=20.答:a的值为20.24.如图,在正方形ABCD中,点P为AD延长线上一点,连接AC、CP,F为AB边上一点,满足CF⊥CP,过点B作BM⊥CF,分别交AC、CF于点M、N(1)若AC=AP,AC=4,求△ACP的面积;(2)若BC=MC,证明:CP﹣BM=2FN.【分析】(1)根据题意求出AP、CD,根据三角形的面积公式计算即可;(2)在CF上截取FN=NG,连接BG,证明△BCF≌△DCP、△BCG≌△ABM,根据全等三角形的性质、等腰三角形的三线合一证明.【解答】解:(1)∵AC=AP,AC=4,∴AP=.AD=CD=4∴S△ACP=AP×CD=××4=7;(2)在CF上截取FN=NG,连接BG,∵四边形ABCD是正方形,∴AB=CB=CD,∠CBF=∠CDP=∠BCF+∠FCD=90°,又∵CF⊥CP,∴∠DCP+∠FCD=90°,∴∠BCF=∠BCD,在△BCF和△DCP中,,∴△BCF≌△DCP,∴CF=CP,∵BC=MC,BM⊥CF,∴∠BCF=∠ACF=∠BCA=22.5°,∴∠CFB=67.5°,∵FC⊥BM,FN=NG∴BF=BG∴∠FBG=45°,∠FBN=22.5°∴∠CBG=45°,在△BCG和△BAN中,,∴△BCG≌△ABM,∴BM=CG,∴CF﹣CG=FG,∵BF=BG,BM⊥CF,∴FN=NG,∴CP﹣BM=2FN.25.阅读材料:各类方程的解法求解一元一次方程,根据等式的基本性质,把方程转化为x=a的形式.求解二元一次方程组,把它转化为一元一次方程来解;类似的,求解三元一次方程组,把它转化为解二元一次方程组.求解一元二次方程,把它转化为两个一元一次方程来解.求解分式方程,把它转化为整式方程来解,由于“去分母”可能产生增根,所以解分式方程必须检验.各类方程的解法不尽相同,但是它们有一个共同的基本数学思想﹣﹣转化,把未知转化为已知.用“转化”的数学思想,我们还可以解一些新的方程.例如,一元三次方程x3+x2﹣2x=0,可以通过因式分解把它转化为x(x2+x﹣2)=0,解方程x=0和x2+x﹣2=0,可得方程x3+x2﹣2x=0的解.(1)问题:方程x3+x2﹣2x=0的解是x1=0,x2=﹣2 ,x3= 1 ;(2)拓展:用“转化”思想求方程=x的解;(3)应用:如图,已知矩形草坪ABCD的长AD=8m,宽AB=3m,小华把一根长为10m 的绳子的一端固定在点B,沿草坪边沿BA,AD走到点P处,把长绳PB段拉直并固定在点P,然后沿草坪边沿PD、DC走到点C处,把长绳剩下的一段拉直,长绳的另一端恰好落在点C.求AP的长.【分析】(1)因式分解多项式,然后得结论;(2)两边平方,把无理方程转化为整式方程,求解,注意验根;(3)设AP的长为xm,根据勾股定理和BP+CP=10,可列出方程,由于方程含有根号,两边平方,把无理方程转化为整式方程,求解,【解答】解:(1)x3+x2﹣2x=0,x(x2+x﹣2)=0,x(x+2)(x﹣1)=0所以x=0或x+2=0或x﹣1=0∴x1=0,x2=﹣2,x3=1;故答案为:﹣2,1;(2)=x,方程的两边平方,得2x+3=x2即x2﹣2x﹣3=0(x﹣3)(x+1)=0∴x﹣3=0或x+1=0∴x1=3,x2=﹣1,当x=﹣1时,==1≠﹣1,所以﹣1不是原方程的解.所以方程=x的解是x=3;(3)因为四边形ABCD是矩形,所以∠A=∠D=90°,AB=CD=3m设AP=xm,则PD=(8﹣x)m因为BP+CP=10,BP=,CP=∴+=10∴=10﹣两边平方,得(8﹣x)2+9=100﹣20+9+x2整理,得5=4x+9两边平方并整理,得x2﹣8x+16=0即(x﹣4)2=0所以x=4.经检验,x=4是方程的解.答:AP的长为4m.26.如图,已知四边形ABCD中,AB∥DC,AB=DC,且AB=6cm,BC=8cm,对角线AC=10cm.(1)求证:四边形ABCD是矩形;(2)如图(2),若动点Q从点C出发,在CA边上以每秒5cm的速度向A点匀速移动,同时动点P从点B出发,在BC边上以每秒4cm的速度向C点匀速移动,运动时间为t 秒(0≤t<2),连接BQ、AP,若AP⊥BQ,求t的值;(3)如图(3),若点Q在对角线AC上,CQ=4cm,动点P从B点出发,以每秒1cm的速度沿BC运动至点C止.设点P运动了t秒,请你探索:从运动开始,经过多少时间,以点Q、P、C为顶点的三角形是等腰三角形?请求出所有可能的结果.【分析】(1)根据平行四边形的判定定理得到四边形ABCD是平行四边形,根据勾股定理的逆定理得到∠B=90°,根据矩形的判定定理证明结论;(2)作QE⊥BC于E,证明△CQE∽△CAB,根据相似三角形的性质用t表示出QE、CE,证明△ABP∽△BEQ,根据相似三角形的性质列出比例式,代入计算得到答案;(3)分CP=CQ、QP=QC、P′C=P′Q三种情况,根据等腰三角形的性质、相似三角形的性质列式计算即可.【解答】(1)证明:∵AB∥DC,AB=DC,∴四边形ABCD是平行四边形,AB2+BC2=62+82=100,AC2=100,∴AB2+BC2=AC2,∴∠B=90°,∴平行四边形ABCD为矩形;(2)解:作QE⊥BC于E,由题意得CQ=5t,BP=4t,∵QE⊥BC,AB⊥BC,∴QE∥AB,∴△CQE∽△CAB,∴=,即=,解得,QE=3t,∴EC==4t,∴BE=8﹣4t,∵AP⊥BQ,AB⊥BC,∴∠BAP=∠EBQ,又∠ABP=∠BEQ,∴△ABP∽△BEQ,∴=,即=,解得,t=;(3)当CP=CQ=4时,BP=8﹣4=4,则点P运动了4秒;当QP=QC时,作QE⊥BC于E,由(2)可知,△CQE∽△CAB,=,即=,解得,CE=3.2,。
2020-2021学年重庆市璧山区四校联考九年级(上)第一次月考数学试卷(附答案详解)
2020-2021学年重庆市璧山区四校联考九年级(上)第一次月考数学试卷1.一元二次方程x2−x−2=0的解是( )A. x1=1,x2=2B. x1=1,x2=−2C. x1=−1,x2=−2D. x1=−1,x2=22.用配方法解一元二次方程x2−6x−10=0时,下列变形正确的为( )A. (x+3)2=1B. (x−3)2=1C. (x+3)2=19D. (x−3)2=193.将抛物线y=x2向下平移3个单位长度,再向左平移2个单位长度后,得到的抛物线的解析式为( )A. y=(x−2)2+3B. y=(x−2)2−3C. y=(x+2)2+3D. y=(x+2)2−34.关于二次函数y=2x2+3,下列说法中正确的是( )A. 它的开口方向是向下B. 当x<−1时,y随x的增大而减小C. 它的顶点坐标是(2,3)D. 当x=0时,y有最大值是35.如图所示,是一个运算程序的示意图,若开始输入x的值为125,则第2020次输出的结果为( )A. 125B. 25C. 1D. 56.点P1(−1,y1),P2(3,y2),P3(5,y3)均在二次函数y=−x2+2x+c的图象上,则y1,y2,y3的大小关系是( )A. y3>y2>y1B. y3>y1=y2C. y1>y2>y3D. y1=y2>y37.在同一直角坐标系中,函数y=kx2−k和y=kx+k(k≠0)的图象大致是( )A. B. C. D.8.《九章算术》勾股章有一问题,其意思是:现有一竖立着的木柱,在木柱上段系有绳索,绳索从木柱上端顺木柱下垂后,堆在地面的部分尚有3尺,牵着绳索退行,在离木柱根部8尺处时绳索用尽,请问绳索有多长?( )A. 9B. 10C. 12D. 7369.已知关于x的一元二次方程(a+1)x2+2bx+(a+1)=0有两个相等的实数根,下列判断正确的是( )A. 1一定不是关于x的方程x2+bx+a=0的根B. 0一定不是关于x的方程x2+bx+a=0的根C. 1和−1都是关于x的方程x2+bx+a=0的根D. 1和−1不都是关于x的方程x2+bx+a=0的根10.青龙湖旅游景区去年第二季度游客数量比第一季度下降20%,第三、四季度游客数量持续增长,第四季度游客数量比第一季度增长15.2%,设第三、四季度的平均增长率为x,下列方程正确的是( )A. (1−20%)(1+x)2=1+15.2%B. (1−20%)(1+2x)=1+15.2%C. (1−20%)(1+15.2%)=1+2xD. 20%+15.2%=(1+x)211.如图,在直角三角形ABC中,∠C=90∘,AC=BC,E是AB的中点,过点E作AC和BC的垂线,垂足分别为点D和点F,四边形CDEF沿着CA方向匀速运动,点C与点A重合时停止运动,设运动时间为t,运动过程中四边形CDEF与△ABC的重叠部分面积为S.则S关于t的函数图象大致为( )A. B.C. D.12.若数a使关于x的不等式组{4x≥3(x+1)2x−x−12<a有解,且使函数y=x2−2ax在x≥7的范围内y随着x的增大而增大,则满足条件的所有整数a的值的和是( )A. 10B. 11C. 12D. 1313.抛物线y=−(x+5)2−3的顶点坐标是______14.观察:①y=x(2x−1);②y=−3x2+5③y=2020x2−400x+2021;④y=x3−2x+1;⑤y=x2−1x+2;⑥y=(x+1)2−x2;⑦y=√x2+x+1,其中是二次函数的有______(填序号)15.若a是方程x2−2x+m−1=0的一个实数根,且该方程有实数根,且a还满足(a2−2a+3)(m+4)=7,则m的值为______16.如图是一张长12cm,宽10cm的矩形铁皮,将其剪去两个全等的正方形和两个全等的矩形,剩余部分(阴影部分)可制成底面积是24cm2的有盖的长方体铁盒.则剪去的正方形的边长为______cm.x+3分别交x轴、y轴于点A、B,P是抛17.如图,已知直线y=−34x2+2x+5上的一个动点,其横坐标为a,过点P且物线y=−12x+3于点Q,则当PQ=BQ时,a平行于y轴的直线交直线y=−34的值是______.18.中秋国庆到来之际,永辉超市璧山点隆重推出月饼组合销售活动,A组合:2盒美心月饼,4盒嘉华月饼;B组合:3盒美心月饼,8盒嘉华月饼,1盒元祖月饼;C组合:2盒美心月饼,6盒嘉华月饼,1盒元祖月饼,已知美心月饼每盒200元,嘉华月饼每盒150元,元祖月饼每盒1000元,中秋当天销售这三种组合月饼共48500元,其中美心月饼的销售额为11600元,则元祖月饼的销售额是______元.19.解方程①2(x−1)2−6=0;②x(x−4)+x−4=0.20.(1)已知二次函数y=x2+bx+c的图象经过点(1,−2)与(4,1),求这个二次函数的表达式;(2)请更换第(1)题中的部分已知条件,重新设计一个求二次函数y=x2+bx+c表达式的题目,使所得到的二次函数与(1)题得到的二次函数相同,并写出你的求解过程.21.2020年年初以来,全国多地猪肉价格连续上涨,引起了民众与政府的高度关注,政府向市场投入储备猪肉进行了价格平抑.据统计:大润发超市2020年1月10日猪肉价格比去年同一天上涨了40%,某市民在今年1月10日这天购买2.5千克猪肉,至少要花140元钱.(1)求2019年1月10日猪肉的最低价格为每千克多少元?(2)现在大润发超市以每千克46元的价格购进猪肉,按2020年1月10日价格出售,平均一天能销售100千克.经调查表明:猪肉的售价每千克下降1元,平均每日销售量就增加20千克,超市为了实现销售猪肉平均每天有1120元的销售利润,在尽可能让利于顾客的前提下,每千克猪肉应该定价为多少元?22.宏志班“数学兴趣小组”对函数y=x2−2|x|的图象和性质进行了探究,探究过程如下,请补充完整.(1)自变量x的取值范围是全体实数,x与y的几组对应值列表如下:x…−3−52−2−1012523…y (35)4m−10−10543…其中,m=______(2)根据表中数据,在如图所示的平面直角坐标系中描点,并画出了函数图象的一部分,请画出该函数图象的另一部分.(3)观察函数图象,写出两条函数的性质:①______;②______.(4)关于x的方程x2−2|x|=a有4个实数根时,a的取值范围是______.23.材料1:若一个正整数,从左到右各位数上的数字与从右到左各位数字对应相同,则称为“对称数”.如:1、232、4554是“对称数”.材料2:对于一个三位自然数A,将它各个数位上的数字分别2倍后取个位数字,得到三个新的数字x,y,z,我们对自然数A规定一个运算:K(A)=x2+y2+z2.如:A=191是一个三位的“对称数”,其各个数位上的数字分别2倍后取个位数字分别是:2、8、2,则K(191)= 22+82+22=72.请解答:(1)请你直接写出最小的五位“对称数”______,K(898)=______.(2)一个四位的“对称数”B,若K(B)=8,请求出B的所有值.24.华为作为最强国货品牌,经常就受到国外抵制,但是华为并不惧怕,反而是迎难而上,不断地研发创新,华为P40Pro机身高级内敛,四曲满溢屏;全时段超清图象,超清四摄,不用担心夜晚拍照不清晰,失去美感;50倍数字变焦;麒麟9905GSoC,硬核担当,不失优雅;5G+4G 双卡双待,Wi−Fi6+峰值,速率2.4Gbps,快充不受限.璧山华为专卖店销售两种(内存为256G和内存为128G)P40Pro的华为手机,已知售出5部256G的手机,3部128G的手机的销售额为51000元;售出3部256G的手机,2部128G的手机的销售额为31500元.(1)求256G的手机和128G的手机的售价分别是多少元?(2)璧山华为专卖店在9月开学季实行“满减促销”活动,活动方案为:单部手机满3000元减500元,满5000元减1500元(每部手机只能参加最高满减活动),结果9月开学季256G的,10月国庆中秋“双节”璧山华为专卖店加大促销活动力度,手机的销量是128G的手机的13a%,销量比9月增加2a%;每部128G的手机每部256G的手机按照9月满减后的售价再降13a%,结果10月黄金周的销售总额比9月按照满减后的售价再降a%,销量比9月销量增加23a%,求a的值.的销售总额多21525.如图,Rt△ABC中,∠B=90∘,AB=6cm,BC=8cm.(1)点P从A点开始沿AB边向点B以1cm/s的速度移动,点Q从B点开始沿BC边向点C以2cm/s的速度移动.如果点P、Q分别从A、B同时出发,经过多少秒钟,△PBQ的面积等于8cm2(2)点P从A点开始沿AB边向点B以1cm/s的速度移动,点Q从B点开始沿BC边向点C以2cm/s的速度移动.如果点P、Q分别从A、B同时出发,线段PQ能否将△ABC分成面积为1:3的两部分?若能,求出运动时间;若不能说明理由.(3)若P点沿射线AB方向从A点出发以1cm/s的速度移动,点Q沿射线CB方向从C点出发以2cm/s的速度移动,P、Q同时出发,问几秒后,△PBQ的面积为1cm2.26.如图1,若二次函数y=ax2+bx+c的图象与x轴交于点A(−1,0)、B,与y轴交于点C(0,4),.连接AC、BC,且抛物线的对称轴为直线x=32(1)求二次函数的解析式;(2)若点P是抛物线在第一象限内BC上方一动点,且点P在对称轴的右侧,连接PB、PC,S△ABC?若存在,求出点的坐标;若不存在,说明理由;是否存在点P,使S△PBC=35(3)如图2,若点Q是抛物线上一动点,且满足∠QBC=45∘−∠ACO,请直接写出点Q坐标.答案和解析1.【答案】D【解析】解:x2−x−2=0(x−2)(x+1)=0,解得:x1=−1,x2=2.故选:D.直接利用十字相乘法分解因式,进而得出方程的根此题主要考查了十字相乘法分解因式解方程,正确分解因式是解题关键.2.【答案】D【解析】【分析】此题考查了解一元二次方程-配方法,熟练掌握完全平方公式是解本题的关键.方程移项变形后,利用完全平方公式配方得到结果,即可做出判断.【解答】解:方程移项得:x2−6x=10,配方得:x2−6x+9=19,即(x−3)2=19.故选:D.3.【答案】D【解析】解:将抛物线y=x2向下平移3个单位长度,再向左平移2个单位长度后,得到的抛物线的解析式为:y=(x+2)2−3.故选:D.根据“左加右减、上加下减”的原则进行解答即可.此题主要考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.4.【答案】B【解析】解:A、∵a=2>0,故它的开口方向是向上,故此选项错误;B、对称轴为y轴,在y轴左侧,y随x的增大而减小,故当x<−1时,y随x的增大而减小,正确;C、它的顶点坐标是(0,3),故此选项错误;D、当x=0时,y有最小值是3,故此选项错误;故选:B.分别利用二次函数的性质分析得出即可.此题主要考查了二次函数的性质,正确把握二次函数的性质是解题关键.5.【答案】Dx=25,【解析】解:当x=125时,15x=5,当x=25时,15x=1,当x=5时,15当x=1时,x+4=5,x=1,当x=5时,15当x=1时,x+4=5,x=1,当x=5时,15…(2020−1)÷2=1009…1,即输出的结果是5,故选:D.依次求出每次输出的结果,根据结果得出规律,即可得出答案.本题考查了求代数式的值,能根据求出的结果得出规律是解此题的关键.6.【答案】D【解析】【分析】本题考查了函数图象上的点的坐标与函数解析式的关系,同时考查了函数的对称性及增减性.根据函数解析式的特点,其对称轴为x=1,图象开口向下,在对称轴的右侧,y随x的增大而减小,据二次函数图象的对称性可知,P1(−1,y1)与(3,y1)关于对称轴对称,可判断y1=y2>y3.【解答】解:∵y=−x2+2x+c,∴对称轴为x=1,P2(3,y2),P3(5,y3)在对称轴的右侧,y随x的增大而减小,∵3<5,∴y2>y3,根据二次函数图象的对称性可知,P1(−1,y1)与(3,y1)关于对称轴对称,故y1=y2>y3,故选D.7.【答案】D【解析】解:A 、由一次函数y =kx +k 的图象可得:k >0,此时二次函数y =kx 2−kx 的图象应该开口向上,错误;B 、由一次函数y =kx +k 图象可知,k >0,此时二次函数y =kx 2−kx 的图象顶点应在y 轴的负半轴,错误;C 、由一次函数y =kx +k 可知,y 随x 增大而减小时,直线与y 轴交于负半轴,错误;D 、正确. 故选:D.可先根据一次函数的图象判断k 的符号,再判断二次函数图象与实际是否相符,判断正误. 本题考查的是一次函数和二次函数的图象,应该熟记一次函数y =kx +b 在不同情况下所在的象限,以及熟练掌握二次函数的有关性质:开口方向、对称轴、顶点坐标.8.【答案】D【解析】解:设绳索AC 的长为x 尺,则木柱AB 的长为(x −3)尺, 在Rt △ABC 中,由勾股定理得,AC 2−AB 2=BC 2, 即x 2−(x −3)2=82, 解得x =736,答:绳索长为736尺. 故选:D.设绳索AC 的长为x 尺,则木柱AB 的长为(x −3)尺,在Rt △ABC 中,根据勾股定理即可列出方程解答即可.本题考查了勾股定理的应用,熟记直角三角形两直角边的平方和等于斜边的平方是解题的关键.9.【答案】D【解析】解:∵关于x 的一元二次方程(a +1)x 2+2bx +(a +1)=0有两个相等的实数根, ∴{a +1≠0△=(2b)2−4(a +1)2=0, ∴b =a +1或b =−(a +1).当b =a +1时,有a −b +1=0,此时−1是方程x 2+bx +a =0的根; 当b =−(a +1)时,有a +b +1=0,此时1是方程x 2+bx +a =0的根. ∵a +1≠0, ∴a +1≠−(a +1),∴1和−1不都是关于x 的方程x 2+bx +a =0的根. 故选:D.根据方程有两个相等的实数根可得出b=a+1或b=−(a+1),当b=a+1时,−1是方程x2+ bx+a=0的根;当b=−(a+1)时,1是方程x2+bx+a=0的根.再结合a+1≠−(a+1),可得出1和−1不都是关于x的方程x2+bx+a=0的根.本题考查了根的判别式以及一元二次方程的定义,牢记“当△=0时,方程有两个相等的实数根”是解题的关键.10.【答案】A【解析】解:根据题意得:(1−20%)(1+x)2=1+15.2%,故选:A.根据第二季度的销售额及第四季度的销售额,即可得出关于x的一元二次方程.本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.11.【答案】C【解析】【分析】根据已知条件得到△ABC是等腰直角三角形,推出四边形EFCD是正方形,设正方形的边长为a,当移动的距离<a时,如图1,S=正方形的面积−△EE′H的面积=a2−12t2;当移动的距离>a时,如图2,S=S△AC′H=12(2a−t)2=12t2−2at+2a2,根据函数关系式即可得到结论;本题考查动点问题的函数图象,正方形的性质、勾股定理等知识,解题的关键是读懂题意,学会分类讨论的思想,属于中考常考题型.【解答】解:∵在直角三角形ABC中,∠C=90∘,AC=BC,∴△ABC是等腰直角三角形,∵EF⊥BC,ED⊥AC,∴四边形EFCD是矩形,∵E是AB的中点,∴EF=12AC,DE=12BC,∴EF=ED,∴四边形EFCD是正方形,设正方形的边长为a,如图1当移动的距离<a时,S=正方形的面积−△EE′H的面积=a2−12t2;当移动的距离>a时,如图2,S=S△AC′H=12(2a−t)2=12t2−2at+2a2,∴S关于t的函数图象大致为C选项,故选:C.12.【答案】D【解析】解:解不等式4x≥3(x+1),可得x≥3,解不等式2x−x−12<a,可得x<2a−13,∵不等式组{4x≥3(x+1)2x−x−12<a有解,∴2a−13>3,解得a>5,∵y=x2−2ax=(x−a)2−a2,∴对称轴为x=a,开口向上,∴当x≥a时,y随x的增大而增大,∵函数y=x2−2ax在x≥7的范围内y随x增大而增大,∴a≤7,综上可知5<a≤7,又a是整数,∴a的值为6或7,∴满足条件的a的值之和为6+7=13,故选:D.先由不等式组有解可求得a>5,再由二次函数的性质可求得a≤7,从而可求得a的取值范围,则可求得a的取值,即可求得答案.本题主要考查不等式组的解法及二次函数的性质,根据条件求得a的取值范围是解题的关键.13.【答案】(−5,−3)【解析】解:抛物线y=−(x+5)2−3的顶点坐标是(−5,−3),故答案为:(−5,−3).根据抛物线的顶点公式求解即可.本题考查了二次函数的性质,掌握顶点坐标的求法是解题的关键.14.【答案】①②③【解析】解:①该函数是二次函数;②该函数是二次函数;③该函数是二次函数;④该函数不是二次函数;⑤该函数分母含有字母,不是二次函数;⑥该函数化简后没有二次项,是一次函数;⑦该函数不是二次函数.是二次函数的有①②③.故答案为:①②③.根据二次函数的定义判断即可.此题主要考查了二次函数定义,解题的关键是掌握形如y=ax2+bx+c(a、b、c是常数,a≠0)的函数,叫做二次函数.15.【答案】−3【解析】解:由题意得(−2)2−4(m−1)≥0,解得m≤2,∵a是方程x2−2x+m−1=0的一个实数根,∴a2−2a+m−1=0,∴a2−2a=1−m,∵(a2−2a+3)(m+4)=7,∴(1−m+3)(m+4)=7,即m2=9,解得m=3或m=−3,∵m≤2,∴m=−3.故答案为:−3.先确定m的取值范围,然后由方程根的定义,用m表示出a,代入已知等式可得到关于m的方程,则可求得m的取值.本题主要考查根的判别式,掌握方程根的情况与根的判别式的关系是解题的关键.16.【答案】2【解析】解:设底面长为acm,宽为bcm,正方形的边长为xcm,根据题意得:{2(x+b)=12 a+2x=10ab=24,解得a=10−2x,b=6−x,代入ab=24中,得:(10−2x)(6−x)=24,整理得:x2−11x+18=0,解得x=2或x=9(舍去),答;剪去的正方形的边长为2cm.故答案为:2.根据题意找到等量关系列出方程组,转化为一元二次方程求解即可.本题考查了一元二次方程的应用,解决本题的关键是根据题意找到等量关系列出方程组.17.【答案】4+2√5或4−2√5或4或−1【解析】解:当x=0时,y=−34x+3=3,则B(0,3),∵点P的横坐标为a,PQ//y轴,∴P(a,−12a2+2a+5),Q(a,−34a+3),∴PQ=|−12a2+2a+5−(−34a+3)|=|−12a2+114a+2|=|12a2−114a−2|,BQ=√a2+(−34a+3−3)2=|54a|,∵PQ=BQ,∴|12a2−114a−2|=|54a|,当12a2−114a−2=54a,整理得a2−8a−4=0,解得a1=4+2√5,a2=4−2√5;当12a2−114a−2=−54a,整理得a2−3a−4=0,解得a1=4,a2=−1.综上所述,a的值为4+2√5或4−2√5或4或−1.故答案为4+2√5或4−2√5或4或−1.先利用一次函数解析式求出B(0,3),再根据二次函数图象上点的坐标特征和一次函数图象上点的坐标特征,设P(a,−12a2+2a+5),Q(a,−34a+3),则可利用两点间的距离公式得到PQ=|1 2a2−114a−2|,BQ=|54a|,然后利用PQ=BQ得到|12a2−114a−2|=|54a|,讨论:12a2−114a−2=54a或12a2−114a−2=−54a,然后分别解一元二次方程即可得到a的值.本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和一次函数图象上点的坐标特征;理解坐标与图形的性质,记住两点间的距离公式;会解一元二次方程.18.【答案】15000【解析】解:根据题意得,一个A组合共2×200+4×150=1000元,一个B组合共3×200+8×150+1×1000=2800元,一个C组合共2×200+6×150+1×1000=2300元,设共销售A组合a个,B组合b个,C组合c个,∵当天销售这三种组合月饼共48500元,其中美心月饼的销售额为11600元, ∴{1000a +2800b +2300c =48500①200(2a +3b +2c)=11600②,①化简为10a +28b +23c =485③, ②化简为2a +3b +2c =58④, ③-④×5得,13b +13c =195, ∴b +c =15,∴当美心月饼的销售额为11600元,元祖月饼的销售额是1000b +1000c =1000(b +c)=15000元,故答案为:15000.先求出每个组合的单价,根据“当天销售这三种组合月饼共48500元,其中美心月饼的销售额为11600元”列出方程组求出b +c =15,即可求出答案.此题主要考查了销售额,单价,数量之间的关系,解题的关键是求出b +c.19.【答案】解:①2(x −1)2−6=0,(x −1)2=3, x −1=±√3,所以x 1=1+√3,x 2=1−√3; ②x(x −4)+x −4=0, (x −4)(x +1)=0, x −4=0或x +1=0, 所以x 1=4,x 2=−1.【解析】①先把方程变形为(x −1)2=3,然后利用直接开平方法解方程; ②利用因式分解法解方程.本题考查了解一元二次方程-因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.也考查了直接开平方法解一元二次方程.20.【答案】(1)解:根据题意得{1+b +c =−216+4b +c =1,解得{b =−4c =1,∴抛物线解析式为y =x 2−4x +1;(2)题目:已知二次函数y =x 2+bx +c 的图象经过点(1,−2)与(0,1),求这个二次函数的表达式; 解:根据题意得{1+b +c =−2c =1,解得{b =−4c =1,∴抛物线解析式为y =x 2−4x +1.【解析】(1)把已知点的坐标代入y=x2+bx+c中得到b、c的方程组,然后解方程组即可;(2)写出把(4,1)换成它关于直线x=2的对称点(0,1),只有利用待定系数法求出抛物线的解析式与(1)中的解析式相同.本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.21.【答案】解:(1)设2019年1月10日,该超市猪肉的价格为每千克x元,根据题意,得:2.5(1+40%)x≥140,解得:x≥40,答:2019年1月10日猪肉的最低价格为每千克40元;(2)设每千克猪肉降价y元,根据题意,得:(56−46−y)(100+20y)=1120,解得y=2或y=3,∵尽可能让利于顾客,∴y=3,∴56−y=53,答:每千克猪肉应该定价为53元.【解析】(1)设2019年1月10日.该超市猪肉的价格为每千克x元,根据“比去年同一天上涨了40%,某市民在今年1月10日这天购买2.5千克猪肉,至少要花140元钱”列方程求解可得;(2)设每千克猪肉降价y元,根据“平均每天有1120元的销售利润”列出方程求解可得.本题考查了一元二次方程的应用,一元一次不等式的应用,解题的关键是理解题意,找到题目蕴含的数量关系,并据此列出方程或不等式.22.【答案】0 函数图象关于y轴对称x>1时,y随x的增大而增大−1<a<0【解析】解:(1)将x=−2代入y=x2−2|x|得y=0,∴m=0,故答案为:0.(2)如图所示:(3)由函数图象知:①函数y=x2−2|x|的图象关于y轴对称;②当x>1时,y随x的增大而增大;(4)由图象可得当直线y=a与函数y=x2−2|x|的图象有4个交点时−1<a<0.故答案为:−1<a<0.(1)将x=2代入函数解析式求解.(2)通过连线作图.(3)由函数图象求解.(4)根据函数图象与直线y=a有4个交点时求a的取值范围.本题考查二次函数的性质,解题关键是掌握函数与方程的关系.23.【答案】10001 136【解析】解:(1)根据材料可知,K(898)=62+82+62=136,故答案为:10001,136;(2)设四位的“对称数”B的各个数位上的数字分别2倍后取个位数字分别为a,b,b,a,(0≤a≤8,0≤b≤8的偶数),∵K(B)=8,∴a2+b2+b2+a2=8,即a2+b2=4,∴a=0,b=2或a=2,b=0,∴四位的“对称数”B的千位数字、百位数字、十位数字、个位数字分别为1、0、0、1或1、5、5、1或6、0、0、6或6、5、5、6或5、1、1、5或5、6、6、5∴B的所有值为1001、1551、6006、6556、5115或5665.(1)根据材料结合常识可直接写出答案;(2)设这位数字的每位数字乘2后分别为a,b,c,d,进而计算即可.本题考查数与式中的新定义问题,解题关键在于读懂题意.24.【答案】解:(1)设每部256G 的手机的售价为x 元,每部128G 的手机的售价为y 元,由题意得:{5x +3y =510003x +2y =31500,解得:{x =7500y =4500,答:每部256G 的手机的售价为7500元,每部128G 的手机的售价为4500元; (2)设9月128G 的手机的销量是m 部,则256G 的手机的销量是13m 部,根据题意得[(7500−1500)⋅(1−13a%)]×[13m(1+2a%)]+[(4500−500)⋅(1−a%)]×[m(1+23a%)]=[13m(7500−1500)+m(4500−500)]×(1+215a%),令t =a%,则2t 2−35t =0,∴t 1=0(不合题意,舍去),t 2=0.3, ∴a =30.【解析】(1)设每部256G 的手机的售价为x 元,每部128G 的手机的售价为y 元,由售出5部256G 的手机,3部128G 的手机的销售额为51000元;售出3部256G 的手机,2部128G 的手机的销售额为31500元,列出方程组可求解;(2)设9月128G 的手机的销量是m 部,则256G 的手机的销量是13m 部,由题意列出方程,可求解. 本题考查了一元二次方程的应用,二元一次方程组的应用,找到正确的数量关系是解题的关键.25.【答案】解:(1)设经过x 秒钟,△PBQ 的面积等于8cm 2,由题意得:12(6−x)2x =8, ∴x 1=2,x 2=4.答:经过2秒或4秒时面积为8平方厘米;(2)设经过y 秒,线段PQ 能将△ABC 分成面积为1:3的两部分,由题意得: ①12(6−y)⋅2y =12×6×8×14,∴y 2−6y +6=0,∴y 1=3+√3(不合题意,舍去),y 2=3−√3, ②12(6−y)⋅2y =12×6×8×34, ∴y 2−6y +18=0, ∵Δ=b 2−4ac <0,∴此方程无实数根,这种情况不存在.综上所述,经过3−√3秒时,线段PQ 能将△ABC 分成面积为1:3的两部分; (3)设经过t 秒,△PBQ 的面积为1cm 2,由题意可分三种情况: ①点P 在线段AB 上,点Q 在线段CB 上(0<x <4),由题意得:12(6−t)(8−2t)=1,∴t 2−10t +23=0,∴t 1=5+√2(舍去),t 2=5−√2;②点P 在线段AB 上,点Q 在线段CB 的延长线上时, ∴12(6−t)(2t −8)=1, ∴t 2−10t +25=0, ∴t 1=t 2=5,③点P 在线段AB 的延长线上,点Q 在线段CB 的延长线上时, ∴12(t −6)(2t −8)=1,∴t 2−10t +23=0,∴t 1=5+√2,t 2=5−√2(舍去),综上所述,经过(5−√2)秒或5秒或(5+√2)秒后,△PBQ 的面积为1cm 2. 【解析】(1)由三角形的面积公式可求解; (2)分两种情况讨论,由题意列出方程可求出答案;(3)分三种情况:①点P 在线段AB 上,点Q 在线段CB 上(0<x <4),②点P 在线段AB 上,点Q 在线段CB 的延长线上时,③点P 在线段AB 的延长线上,点Q 在线段CB 的延长线上时,由三角形面积公式可得出答案.本题是三角形综合题,考查了三角形的面积公式,一元二次方程的应用,灵活运用这些性质解决问题是解题的关键.26.【答案】解:(1)∵抛物线的对称轴为直线直线x =32,∴−b2a =32, ∴b =−3a ,∴y =ax 2−3ax +c , 将A(−1,0)、C(0,4)代入, ∴{c =4a +3a +c =0,解得{a =−1c =4,∴y =−x 2+3x +4;(2)连接OP ,设P(t,−t 2+3t +4)(32<t <4), ∵A(−1,0),B(4,0),C(0,4), ∴AB =5,OC =4,∴S△ABC=12×4×5=10,∴S△BCP=S△OBP+S△OCP−S△OBC=12×4×(−t2+3t+4)+12×4×t−12×4×4=35×10,∴t2−4t+3=0,解得t=3或t=1,∵P在对称轴的右侧,∴m−3,∴P(3,4);(3)设Q(m,−m2+3m+4),如图2,过点B作BM⊥x轴,过点Q作QM⊥BM交于M,∵BO=OC=4,∴∠OBC=45∘,∴∠CBM=45∘,∴∠CBQ=45∘−∠QBM,∵∠QBC=45∘−∠ACO,∴∠QBM=∠ACO,∴14=4−m−m2+3m+4,解得m=3或m=4(舍),∴Q(3,4);如图3,过点Q作QN⊥x轴交于N,∵∠OBC=45∘,∠QBC=45∘−∠ACO,∴∠QBN=∠ACO,∴14=−m2+3m+44−m,解得m=4(舍)或m=−34,∴Q(−34,916);综上所述:Q点坐标为(3,4)或(−34,9 16).【解析】(1)将A(−1,0)、C(0,4)代入y=ax2−3ax+c,即可求函数的解析式;(2)连接OP,设P(t,−t2+3t+4)(32<t<4),由S△BCP=S△OBP+S△OCP−S△OBC,可求t的值,从而求P点坐标即可;(3)设Q(m,−m2+3m+4),过点B作BM⊥x轴,过点Q作QM⊥BM交于M,则∠QBM=∠ACO,可得14=4−m−m2+3m+4,求出Q(3,4);过点Q作QN⊥x轴交于N,∠QBN=∠ACO,则14=−m2+3m+44−m,求出Q(−34,9 16).本题考查二次函数的图象及性质,熟练掌握二次函数的图象及性质,等腰直角三角形的性质,分类讨论,数形结合是解题的关键.。
九年级数学上学期第三次月考试题试题 2_1
2021届九年级数学上学期第三次月考试题一、本卷贰O 贰贰年贰月捌日编写; 出题人:令狐学复;欧阳化语;令狐理总。
二、选择题〔每一小题3分,一共30分〕1、以下图形中既是轴对称又是中心对称图形的是〔 〕A. B. C. D.2、的根的情况是的方程关于0122=-+x x x 〔 〕 A.方程有两个相等的实数根 B.方程没有实数根C.方程有两个不相等的实数根D.无法判断3、鸡公山“樱花节〞欣赏人数逐年增加,据有关部门统计,2021年约为20万人次,2021年约为万人次,设欣赏人数年均增长率为x ,那么以下方程中正确的选项是〔 〕A. 20〔1+2x 〕B. 〔1+x 〕2=20C. 20〔1+x 〕2D. 20+20〔1+x 〕+20〔1+x 〕24、:如图,在⊙O 中,OA ⊥BC ,∠AOB =70°, 那么∠ADC 的度数为〔 〕A. 30°B. 35°C. 45°D. 70°5、二次函数y =ax 2+bx +c 的y 与x 的局部对应值如下表:x -1 0 1 3 y-3131以下结论:①抛物线的开口向下;②其图象的对称轴为x =1;③当x <1时,函数值y 随x 的增大而增大;④方程ax 2+bx +c =0有一个根大于4,其中正确的结论有〔 〕A. 1个B. 2个C. 3个D. 4个6、直角三角形三边长分别为3、4、5,那么此三角形的内切圆半径为〔 〕A. 1B. 1.5C. 2D.2.57、如图,将半径为2,圆心角为120°的扇形OAB 绕点A 逆时针旋转60°,点O ,B 的对应点分别为O ′,B ′,连接BB ′,那么图中阴影局部的面积是〔 〕A.π32 B. 332π- C. 3232π-D. 3234π-8、一元二次方程ax 2+bx +c =0,假设a +b +c =0,那么抛物线y =ax 2+bx +c 必过点〔 〕A. 〔2,0〕B. 〔0,0〕C. 〔-1,0〕D. 〔1,0〕9、如图,⊙O 中,直径AB =10,AC =6,CD 平分∠ACB 交圆于点D ,那么CD =〔 〕A. 7B. 27C.28D.910、如图,边长为8的等边三角形ABC 中,E 是对称轴AD 上的一个动点,连接EC 将线段EC 绕点C 逆时针旋转60°得到FC ,连接DF ,那么在点E 运动过程中,DF 的最小值是〔 〕A. 4 B. 3 C.2 D. 1二、填空题〔每一小题3分,一共15分〕11、在平面直角坐标系中,点P 〔-2,3〕和点P ’关于原点对称,那么点P ’的坐标是_______;12、:如图,圆锥的底面直径是10cm ,高为12cm ,那么它的侧面展开图的面积是 ______ cm 2.13、如图,是一个圆心人工湖的平面图,弦AB 是湖上的一座桥,桥长100m ,测得圆周角∠ACB =30°,那么这个人工湖的直径为 ______ m .〔第10题图〕 〔第12题图〕 〔第13题图〕 〔第14题图〕14、如下图,边长为2的正方形ABCD 的顶点A 、B 在一个半径为2的圆上,顶点C 、D 在该圆内,将正方形ABCD 绕点A 逆时针旋转,当点D 第一次落在圆上时,点C 运动的道路长为 ______ .15、如图,用3个边长为8的正方形拼成一个“品〞字形,且所拼图形为轴对称图形,假设用一个圆将其完全覆盖, 那么可以恰好覆盖住这个“品〞字形的最小圆的半径是_______三、解答题〔本大题一一共8个小题,一共75分〕)4)(2121(2-++-x x x17、〔8分〕如图,在单位长度为1的正方形网格图中,一条圆弧经过网格点A (0,4)、B(4,4)、C(6,2)三点,请在网格中进展以下操作:16、先化简,再求值 的根。
2022-2023学年初中九年级上数学湘教版月考试卷(含解析)
2022-2023学年初中九年级上数学月考试卷学校:____________ 班级:____________ 姓名:____________ 考号:____________考试总分:134 分考试时间: 120 分钟注意事项:1.答题前填写好自己的姓名、班级、考号等信息;2.请将答案正确填写在答题卡上;卷I(选择题)一、选择题(本题共计 10 小题,每题 3 分,共计30分)1. 下列两个变量之间的关系为反比例关系的是()A.汽车匀速行驶过程中,行驶路程与时间的关系B.体积一定时,物体的质量与密度的关系C.质量一定时,物体的体积与密度的关系D.一个玻璃容器的容积为30L时,所盛液体的质量m与所盛液体的体积V之间的关系2. 若一元二次方程ax2+bx+c=0,满足a−b+c=0,则方程必有一根为( )A.0B.1C.−1D.23. 如图,设△ABC的边BC=y,BC边上的高AD=x,若△ABC的面积为3,则y与x的函数图像大致是( )A.B.C.D.4. 边长为5米的正方形,要使它的面积扩大到原来的4倍,则正方形的边长要增加( )A.2米B.4米C.5米D.6米5. 已知反比例函数y=3x,下列结论中不正确的是( )A.其图象经过点(3,1)B.其图象分别位于第一、第三象限C.当x>0时,y随x的增大而减小D.当x>1时,y>36. 下列方程是一元二次方程的是( )A.ax2+bx+c=0B.x2+1x=3C.x2−3x+1=3D.xy=17. 如图,A为反比例函数y=kx图像上一点,AB⊥x轴,垂足为B点,若S△AOB=2,则k的值为( )A.4B.−4C.2D.−28. 关于x的一元二次方程x2+4x+k=0有两个实数根,则k的取值范围是()A.k≤−4B.k<−4C.k≤4D.k<49. 若点(−1,y1),(2,y2),(3,y3)在反比例函数y=kx(k<0)的图象上,则y1,y2,y3的大小关系是( )A.y1>y3>y2B.y3>y2>y1C.y1>y2>y3D.y2>y3>y110. 函数y=k(x−1)与y=−kx在同一直角坐标系内的图象大致是( )A.B.C.D.卷II(非选择题)二、填空题(本题共计 8 小题,每题 3 分,共计24分)11. 已知A(−1,y1),B(2,y2)两点在双曲线y=3+2mx上,且y1>y2,则m的取值范围是________.12. 若关于x的一元二次方程(m+1)x2+5x+m2−2m−3=0的常数项为0,则m的值等于________.13. 如图,正比例函数y=ax的图象与反比例函数y=kx的图象相交于点A,B,若点A的坐标为(−2,3),则点B的坐标为________.14. 学校课外生物小组的同学准备自己动手,用旧围栏建一个面积为24平方米的矩形饲养场.设它的一边长为x(米),则另一边的长y(米)与x的函数关系式为________,自变量x的取值范围为________.15. 我们知道,同底数幂的乘法法则为: a m⋅a n=a n+n(其中a≠0,m,n为正整数),类似地我们规定关于任意正整数m,n的一种新运算:h(m+n)=h(m)⋅h(n),请根据这种新运算填空:若h(1)=12,则h(3)=________.16. 如图,已知△AOB面积为6,则过点A的反比例函数图像的表达式为________.17. 已知x=2是关于x的一元二次方程kx2+(k2−2)x+2k+4=0的一个根,则k的值为________.18. 如图,一次函数y=x与反比例函数y=1x(x>0)的图象交于点A,过点A作AB⊥OA,交x轴于点B;作BA1//OA,交反比例函数图象于点A1;过点A1作A1B1⊥A1B交x轴于点B;再作B1A2//BA1,交反比例函数图象于点A2,依次进行下去,则点A2021的横坐标为________.三、解答题(本题共计 8 小题,每题 10 分,共计80分)19. 解下列方程(1)3x2−7x+2=0(2)(x−2)(x−3)=1220. 已知反比例函数y=kx,当x=1时,y=3;试先求k值,再解关于t的方程.tt−1−1=kt2−1.21. 已知点A(−4,2),B(n,−4)是一次函数y=kx+b和反比例函数y=mx(k≠0)图象的两个交点.(1)求一次函数和反比例函数的解析式;(2)求△AOB的面积.22. 已知:关于x的一元二次方程x2−6x−m=0有两个不相等的实数根.(1)求m的取值范围;(2)如果m取符合条件的最小整数,且一元二次方程x2−6x−m=0与x2+nx+1=0有一个相同的根,求常数n的值.23. 如图,一次函数y=kx+b的图象与反比例函数y=mx的图象相交于A(1,2),B(n,−1)两点.(1)求一次函数和反比例函数的表达式;(2)直线AB交x轴于点C,点P是x轴上的点,若△ACP的面积是4,求点P的坐标.24. 某商品的进价为每件40元.当售价为每件60元时,每星期可卖出300件,现降价处理,经市场调查:每降价1元,每星期可多卖出20件.在确保盈利的前提下:(1)若设每件降价x元、每星期售出商品的利润为y元,请写出y与x的函数关系式,并求出自变量x的取值范围;(2)当降价多少元时,每星期的利润最大?最大利润是多少?25. 已知关于x的一元二次方程x2−4x+c=0有一个根是x=3,求c与另一个根.26. 如图,在四边形ABCD中, AD//BC,∠B=90∘, AB=8cm,AD=12cm,BC=18cm,点P从点A出发,以1cm/s的速度向点D运动;点Q从点C同时出发,以2cm/s的速度向点B运动.规定其中一个动点到达端点时,另一个动点也随之停止运动.设点P,Q运动的时间为ts.(1)CD边的长度为________cm,t的取值范围为________.(2)从运动开始,当t取何值时, PQ//CD?(3)从运动开始,当t取何值时,PQ=CD?(4)在整个运动过程中是否存在t值,使得四边形PQCD是菱形?若存在,请求出t值;若不存在,请说明理由.参考答案与试题解析2022-2023学年初中九年级上数学月考试卷一、 选择题 (本题共计 10 小题 ,每题 3 分 ,共计30分 )1.【答案】C【考点】反比例函数的定义【解析】此题暂无解析【解答】此题暂无解答2.【答案】C【考点】一元二次方程的解【解析】由ax 2+bx +c =0,可得:当x =1时,有a +b +c =0;当x =−1时,有a −b +c =0,故问题可求.【解答】解:由题意,一元二次方程ax 2+bx +c =0,满足a −b +c =0,∴当x =−1时,一元二次方程ax 2+bx +c =0即为:a ×(−1)2+b ×(−1)+c =0;∴a −b +c =0.综上可知,方程必有一根为−1.故选C .3.【答案】A【考点】反比例函数的应用反比例函数的图象【解析】根据三角形的面积公式得到x 和y 的关系式,再判断是何种函数,由自变量的取值范围进而的得到函数的图象.【解答】解:∵三角形ABC 的面积为3,则3=12x ⋅y ,∴y =6x ,为反比例函数.∵x >0,y >0,∴该反比例函数的图像位于第一象限.故选A .4.【答案】C【考点】一元二次方程的应用——几何图形面积问题【解析】利用图形的面积比,列解方程得解.【解答】解:设边长增加x 米,所以(5+x)2=4×52,解得:x =5(米).故选C.5.【答案】D【考点】反比例函数的性质反比例函数的图象【解析】根据反比例函数的性质及图象上点的坐标特点对各选项进行逐一分析即可.【解答】解:A、∵当x=3时,y=1,∴此函数图象过点(3,1),故本选项正确;B、∵k=3>0,∴此函数图象的两个分支位于一三象限,故本选项正确;C、∵k=3>0,∴当x>0时,y随着x的增大而减小,故本选项正确;D、∵当x=1时,y=3,∴当x>1时,0<y<3,故本选项错误.故选D.6.【答案】C【考点】一元二次方程的定义【解析】利用一元二次方程的定义判断即可.【解答】解:x 2−3x+1=3是一元二次方程,故选C7.【答案】B【考点】反比例函数系数k的几何意义【解析】过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S是个定值,即S=12|k|.【解答】解:由于点A是反比例函数图象上一点,则S△AOB=12|k|=2,又由于函数图象位于二、四象限,则k=−4.故选B.8.【答案】C【考点】根的判别式一元二次方程的定义【解析】【解答】解:∵x 2+4x+k=0有两个实数根,∴Δ=42−4×1×k≥0,解得,k≤4.故选C.9.【答案】A【考点】反比例函数图象上点的坐标特征【解析】因为k>0,所以函数图象(如图)在第一、三象限,在每个象限内,y随x的增大而减小,再根据其坐标特点解答即可.【解答】解:∵k<0,∴函数图象在第二,四象限,在每个象限内,y随x的增大而增大,而第二象限内点对应的函数值一定大于第四象限内的点对应的函数值.∵−1<2<3,∴y1>y3>y2.故选A.10.【答案】A【考点】反比例函数的图象一次函数的图象【解析】因为k的符号不确定,所以应根据k的符号及一次函数与反比例函数的特点解答.【解答】解:当k<0时,−k>0,反比例函数y=−kx的图象在一、三象限,一次函数y=k(x−1)的图象过一、二、四象限,选项A符合;当k>0时,−k<0,反比例函数y=−kx的图象在二、四象限,一次函数y=k(x−1)的图象过一、三、四象限,无选项符合.故选A.二、填空题(本题共计 8 小题,每题 3 分,共计24分)11.【答案】m<−32【考点】反比例函数的性质【解析】根据反比例函数的增减性即可得出结论.【解答】解:∵−1<2,y1>y2,∴3+2m<0,解得m<−32.故答案为:m<−32.12.【答案】3【考点】一元二次方程的一般形式【解析】根据一元二次方程成立的条件及常数项为0列出方程组,求出m的值即可.【解答】解:根据题意,知,m2−2m−3=0解得:m1=3,m2=−1又∵m+1≠0,∴m=3.故答案为:3.13.【答案】(2,−3)【考点】反比例函数与一次函数的综合反比例函数图象的对称性【解析】反比例函数的图象是中心对称图形,则经过原点的直线的两个交点一定关于原点对称.【解答】解:根据题意,知点A与B关于原点对称,∵点A的坐标是(−2,3),∴B点的坐标为(2,−3).故答案为:(2,−3).14.【答案】y=24x,x>0【考点】根据实际问题列反比例函数关系式【解析】根据矩形的面积=长×宽,结合题意即可得出另一边的长y(米)与x的函数关系式.【解答】解:由题意得,xy=24,故另一边的长y(米)与x的函数关系式为:y=24x(x>0),故答案为:y=24x,x>0.15.【答案】18【考点】同底数幂的乘法定义新符号【解析】根据定义新运算求得h(2)的值,进而利用新定义进行计算即可求得结果.【解答】解:根据题意可得h(2)=h(1+1)=h(1)⋅h(1)=12×12=14,因此h(3)=h(1+2)=h(1)⋅h(2)=12×14=18.故答案为:18.16.【答案】y=−12x【考点】反比例函数系数k的几何意义【解析】根据反比例函数y=kx(k≠0)系数k的几何意义得到 S△AOB=12|k|=6,然后根据k<0去绝对值得到k的值.【解答】解:设则过点A的反比例函数图象的表达式为:y=kx,∵S△AOB=12×AB×OB=12|k|=6,且k<0,∴k=−12,∴过点A的反比例函数图象的表达式为: y=−12x.故答案为: y=−12x.17.【答案】−3【考点】根与系数的关系一元二次方程的解【解析】【解答】解:将x =2代入方程kx 2+(k 2−2)x =2k +4=0中,得4k +2(k 2−2)+2k +4=0.即k 2+3k =0,解得k =0或−3.∵kx 2+(k 2−2)x +2k +4=0是关于x 的一元二次方程,∴k ≠0,∴k =−3.故答案为:−3.18.【答案】√2022−√2021【考点】一次函数图象上点的坐标特点反比例函数图象上点的坐标特征【解析】此题暂无解析【解答】解:过A n 作A n C n ⊥x 轴于点C n ,∵点A 是直线y =x 与双曲线y =1x 的交点,∴{y =xy =12解得{x =1y =1,∴A(1,1),∴OC =AC =1,∠AOC =45∘,∵ AB ⊥AO ,∴△AOB 是等腰直角三角形∴OB =2AC =2,∵ BA 1//OA ∴△BA 1B 1是等腰直角三角形,∴A 1C =BC 1.设A 1的纵坐标为m 1(m >0) ,则A 1的横坐标为2+m ,∵点A 1在双曲线上∴m 1(2+m 1)=1,解得m1=√2−1,设A2的纵坐标为m2(m>0),则A2的横坐标为2+2m1+m2=2√2+m2∴m2(2√2+m2)=1,解得m2=√3−√2,同理可得m3=√4−√3,由以上规律知:m n=√n+1−√n,∴m2021=√2022−√2021,即A2021的纵坐标为√2022−√2021√2022−√2021=√2022+√2021∴A2021的横坐标为1故答案为:√2022+√2021.三、解答题(本题共计 8 小题,每题 10 分,共计80分)19.【答案】解:(1)a=3,b=−7,c=2,b2−4ac=49−4×3×2=25,x=7±√252×3=7±56,x1=2,x2=13.(2)x2−3x−2x+6=12,x2−5x−6=0,(x−6)(x+1)=0,解得:x1=6,x2=−1.【考点】解一元二次方程-因式分解法解一元二次方程-公式法【解析】此题暂无解析【解答】解:(1)a=3,b=−7,c=2,b2−4ac=49−4×3×2=25,x=7±√252×3=7±56,x1=2,x2=13.(2)x2−3x−2x+6=12,x2−5x−6=0,(x−6)(x+1)=0,解得:x1=6,x2=−1.20.【答案】解:把x=1,y=3代入y=kx得:3=k1,解得:k=3,tt−1−1=3t2−1,去分母得:t(t+1)−(t 2−1)=3,t2+t−t2+1=3,t=2,检验:把t=2代入最简公分母t 2−1≠0,∴原分式方程的解为t=2,因此:k=3,t=2.【考点】待定系数法求反比例函数解析式反比例函数图象上点的坐标特征反比例函数的性质【解析】首先把x=1,y=3代入y=kx得k的值,再把k的值代入分式方程解方程可得t的值.【解答】解:把x=1,y=3代入y=kx得:3=k1,解得:k=3,tt−1−1=3t2−1,去分母得:t(t+1)−(t 2−1)=3,t2+t−t2+1=3,t=2,检验:把t=2代入最简公分母t 2−1≠0,∴原分式方程的解为t=2,因此:k=3,t=2.21.【答案】解:(1)把A(−4,2)代入y=mx,得m=2×(−4)=−8,所以反比例函数解析式为y=−8x.把B(n,−4)代入y=−8x,得−4n=−8,解得n=2.把A(−4,2)和B(2,−4)代入y=kx+b,得{−4k+b=2,2k+b=−4,解得{k=−1,b=−2,所以一次函数的解析式为y=−x−2.(2)在y=−x−2中,令y=0,解得x=−2,即直线y=−x−2与x轴交于点C(−2,0),所以S△AOB=S△AOC+S△BOC=12×2×2+12×2×4=6.【考点】待定系数法求一次函数解析式待定系数法求反比例函数解析式函数的综合性问题三角形的面积【解析】此题暂无解析【解答】解:(1)把A(−4,2)代入y =mx ,得m =2×(−4)=−8,所以反比例函数解析式为y =−8x .把B(n,−4)代入y =−8x ,得−4n =−8,解得n =2.把A(−4,2)和B(2,−4)代入y =kx +b ,得{−4k +b =2,2k +b =−4,解得{k =−1,b =−2,所以一次函数的解析式为y =−x −2.(2)在y =−x −2中,令y =0,解得x =−2,即直线y =−x −2与x 轴交于点C(−2,0),所以S △AOB =S △AOC +S △BOC =12×2×2+12×2×4=6.22.【答案】解:(1)∵关于x 的一元二次方程x 2−6x −m =0有两个不相等的实数根,∴Δ=(−6)2−4×1×(−m)>0,∴m >−9.(2)∵m >−9,∴m 的最小整数值为−8,∴一元二次方程为x 2−6x +8=0,即(x −2)(x −4)=0,解得∵x 1=2,x 2=4,将x =2代入x 2+nx +1=0,得:22+2n +1=0,解得:n =−52;将x =4代入x 2+nx +1=0,得:42+4n +1=0解得:n =−174,∴常数n 的值为−52或−174.【考点】根的判别式一元二次方程的解解一元二次方程-因式分解法【解析】(1)根据方程的系数结合根的判别式Δ>0,即可得出关于m 的一元一次不等式,解之即可得出m 的取值范围;(2)由(1)的结论可得出m 的值,利用因式分解法解一元二次方程可求出一元二次方程x 2−6x −m =0的解,再分别将x 的值代入方程x 2+nx +1=0中可求出n 的值.【解答】解:(1)∵关于x 的一元二次方程x 2−6x −m =0有两个不相等的实数根,∴Δ=(−6)2−4×1×(−m)>0,∴m >−9.(2)∵m >−9,∴m 的最小整数值为−8,∴一元二次方程为x 2−6x +8=0,即(x −2)(x −4)=0,解得∵x 1=2,x 2=4,将x =2代入x 2+nx +1=0,得:22+2n +1=0,解得:n =−52;将x =4代入x 2+nx +1=0,得:42+4n +1=0解得:n =−174,∴常数n 的值为−52或−174.23.【答案】解:(1)将点A(1,2)代入y =mx ,得m =2,∴y =2x ,当y =−1时,x =−2,∴B(−2,−1),将A(1,2),B(−2,−1)代入y =kx +b ,得{k +b =2,−2k +b =−1,解得{k =1,b =1,∴y =x +1,∴一次函数表达式为y =x +1,反比例函数表达式为y =2x .(2)在y =x +1中,当y =0时,x =−1,∴C(−1,0),设P(m,0),则PC =|−1−m|,∵S △ACP =12⋅PC ⋅y A =4,∴12×|−1−m|×2=4,解得m =3或−5,∴点P 的坐标为(3,0)或(−5,0).【考点】反比例函数与一次函数的综合待定系数法求一次函数解析式待定系数法求反比例函数解析式【解析】(1)先根据点A 坐标求出反比例函数解析式,再求出点B 的坐标,继而根据点A 、B 坐标可得直线解析式;(2)先根据直线解析式求出点C 的坐标,再设P(m,0),知PC =|−1−m|,根据S △ACP =12⋅PC ⋅y A =4求出m 的值即可得出答案.【解答】解:(1)将点A(1,2)代入y =mx ,得m =2,∴y =2x ,当y =−1时,x =−2,∴B(−2,−1),将A(1,2),B(−2,−1)代入y =kx +b ,得{k +b =2,−2k +b =−1,解得{k =1,b =1,∴y =x +1,∴一次函数表达式为y =x +1,反比例函数表达式为y =2x .(2)在y =x +1中,当y =0时,x =−1,∴C(−1,0),设P(m,0),则PC =|−1−m|,∵S △ACP =12⋅PC ⋅y A =4,∴12×|−1−m|×2=4,解得m =3或−5,∴点P 的坐标为(3,0)或(−5,0).24.【答案】解:(1)y =(60−x)(300+20x)−40(300+20x),即y =−20x 2+100x +6000.因为降价要确保盈利,所以40<60−x ≤60(或40<60−x <60也可).解得:0≤x <20(或0<x <20).(2)当x =−1002×(−20)=2.5时,y 有最大值4×(−20)×6000−10024×(−20)=6125,即当降价2.5元时,利润最大且为6125元.【考点】一元二次方程的应用——利润问题由实际问题抽象出一元二次方程【解析】(2)根据x =−b2a 时,y 有最大值即可求得最大利润.【解答】解:(1)y =(60−x)(300+20x)−40(300+20x),即y =−20x 2+100x +6000.因为降价要确保盈利,所以40<60−x ≤60(或40<60−x <60也可).解得:0≤x <20(或0<x <20).(2)当x =−1002×(−20)=2.5时,y 有最大值4×(−20)×6000−10024×(−20)=6125,即当降价2.5元时,利润最大且为6125元.25.【答案】解:把x =3代入原方程,得32−4×3+c =0,解得:c =3,把c =3代入原方程,得x 2−4x +3=0(x −1)(x −3)=0x −1=0或x −3=0,∴x 1=1,x 2=3,∴另一根为x =1.【考点】解一元二次方程-因式分解法一元二次方程的解【解析】本题考查一元二次方程的解法.先把x =3代入原方程,得关于c 的方程,求解即可得c 值;再把c =3代入原方程,得x 2−4x +3=0,最后利用因式分解法解方程求出其解即可得.【解答】解:把x =3代入原方程,得32−4×3+c =0,解得:c =3,把c =3代入原方程,得x 2−4x +3=0(x −1)(x −3)=0x −1=0或x −3=0,∴x 1=1,x 2=3,∴另一根为x=1.26.【答案】(1)10,0≤t≤9解:(2)∵AD//BC,∴当PQ//CD时,四边形PQCD为平行四边形,∴PD=CQ,由题意,得PD=(12−t)cm,CQ=2tcm,∴12−t=2t,解得t=4,∴当t=4时,PQ//CD.(3)情况①:由(2)可知,当t=4时,四边形PQCD为平行四边形此时PQ=CD,情况②:如图,当P,Q运动到对应位置时,连接PQ,过点P作PE⊥BC于点E,此时PQ=CD=10cm,PE=DH=AB=8cm,则PD=EH=(12−t)cm.在Rt△PQE和Rt△DCH中,{PQ=DC,PE=DH,∴Rt△PQE≅Rt△DCH(HL),∴QE=CH=6cm,∵QE+EH+HC=CQ,即6+(12−t)+6=2t,∴t=8.综上所述,当t的值为4或8时,PQ=CD.(4)不存在. 理由如下:要使四边形PQCD为菱形,则四边形PQCD一定是平行四边形,由(2)可知,当t=4s时,四边形PQCD是平行四边形,此时PD=12−4=8≠10,即PD≠CD,则四边形PQCD不是菱形,故不存在t的值,使四边形PQCD为菱形.【考点】动点问题勾股定理平行线的性质平行四边形的性质与判定平行四边形的性质全等三角形的性质与判定菱形的判定【解析】(1)建立辅助线DH⊥BC,根据矩形的判定得出四边形ABHD是矩形,根据矩形的性质得到DH=AB,由题干得到CH的值,根据勾股定理,求得CD的值;由题干中“一个动点到达端点时,另一个动点也随之停止运动”,取用时更短的端点的时间范围即可;(2)假设PQ//CD成立,由题干AD//BC,可证四边形PQCD为平行四边形;根据平行四边形的性质得PD=CQ,由已知条件建立关于t的等式,求t的值即可;(3)①题(2)为四边形PQCD为平行四边形的情况;②四边形PQCD为等腰梯形时,也能满足PQ=CD,作图连接PQ,建立辅助线PE,DF,通过三角形全等的性质,求出QE的值,以此求出CQ的值,再通过CQ=2tcm,求出t的值即可;(4)根据菱形拥有一切平行四边形的性质,在题(2)平行四边形DQCD的基础上,经过运算得到PD≠CD,证明菱形PQCD不存在.【解答】解:(1)如图,过点D作DH⊥BC于点H,∴∠DHB=∠DHC=90∘,∵∠B=90∘,AD//BC,∴∠A=90∘,∴四边形ABHD是矩形,∴AB=DH=8cm,BH=AD=12cm,∴CH=BC−BH=18−12=6cm,在Rt△DHC中,∠DHC=90∘,∴CD=√DH2+CH2=√82+62=10cm,∴点P从点A运动到点D用12s,点Q从点C运动到点B用9s,∴t的取值范围是0≤t≤9.故答案为:10;0≤t≤9.解:(2)∵AD//BC,∴当PQ//CD时,四边形PQCD为平行四边形,∴PD=CQ,由题意,得PD=(12−t)cm,CQ=2tcm,∴12−t=2t,解得t=4,∴当t=4时,PQ//CD.(3)情况①:由(2)可知,当t=4时,四边形PQCD为平行四边形此时PQ=CD,情况②:如图,当P,Q运动到对应位置时,连接PQ,过点P作PE⊥BC于点E,此时PQ=CD=10cm,PE=DH=AB=8cm,则PD=EH=(12−t)cm.在Rt△PQE和Rt△DCH中,{PQ=DC,PE=DH,∴Rt△PQE≅Rt△DCH(HL),∴QE=CH=6cm,∵QE+EH+HC=CQ,即6+(12−t)+6=2t,∴t=8.综上所述,当t的值为4或8时,PQ=CD.(4)不存在. 理由如下:要使四边形PQCD为菱形,则四边形PQCD一定是平行四边形,由(2)可知,当t=4s时,四边形PQCD是平行四边形,此时PD=12−4=8≠10,即PD≠CD,则四边形PQCD不是菱形,故不存在t的值,使四边形PQCD为菱形.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020学年重庆重庆九年级上数学月考试卷
一、选择题
1. 2的相反数是()
A.−2
B.−1
2C.1
2
D.2
2. 下列图形中一定是轴对称图形的是( )
A.直角三角形
B.四边形
C.平行四边形
D.矩形
3. 下列调查中,最适合采用抽样调查(抽查)的是()
A.调查“神州十一号飞船”各部分零件情况
B.调查旅客随身携带的违禁物品
C.调査全国观众对湖南卫视综艺节目“声临其境”的满意情况
D.调查某中学九年级某班学生数学暑假作业检测成绩
4. 把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个三角形,第③个图案中有8个三角形,…,按此规律排下去,则第⑦个图案中三角形的个数为()
A.12
B.14
C.16
D.18
5. 将抛物线y=−5x2+1向左平移1个单位长度,再向下平移2个单位长度,所得到的抛物线为()
A.y=−5(x+1)2−1
B.y=−5(x−1)2−1
C.y=−5(x+1)2+3
D.y=−5(x−1)2+3
6. 下列命题正确的是( )
A.平行四边形的对角线互相垂直平分
B.矩形的对角线互相垂直平分
C.菱形的对角线互相平分且相等
D.正方形的对角线相等且互相垂直平分
的值应在()
7. 估计(2√30−√24)⋅√1
6
A.1和2之间
B.2和3之间
C.3和4之间
D.4和5之间
8. 按如图所示的运算程序,能使输出的结果为12的是()
A.x=3,y=3
B.x=−4,y=−2
C.x=2,y=4
D.x=4,y=2
9. 关于x的一元二次方程kx2−2x−1=0有两个不相等的实数根,则k的取值范围是()
A.k>−1
B.k>−1且k≠0
C.k<−1
D.k<−1且k=0
10. 某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映,如果调整商品售价,每降价1元,每星期可多卖出20件.设每件商品降价x元后,每星期售出商品的总销售额为y元,则y与x的关系式为()
A.y=60(300+20x)
B.y=(60−x)(300+20x)
C.y=300(60−20x)
D.y=(60−x)(300−20x)
11. 如图为二次函数y=ax2+bx+c(a≠0)的图象,则下列说法:①abc>0;
②2a+b=0;③a+b+c>0;④当−1<x<3时,y<0,其中正确的个数为( )
A.1
B.2
C.3
D.4
12. 若实数a使关于x的一元一次不等式组{
x−1
2
<1+x
3
,
5x−2≥x+a,
有且只有四个整数解,且
使关于y的分式方程y+a
y−1+2a
1−y
=2的解为非负数,则符合条件的所有整数a的和为( )
A.−3
B.−2
C.1
D.2
二、解答题
13. 如图,AB//CD,EF=EH,EH平分∠AEG,且∠GEH=30∘,求∠CFH的度数.
14.
某校要从王同学和李同学中挑选一人参加县知识竞赛,在五次选拔测试中他俩的成绩如下表:
根据上表解答下列问题:
(1)完成下表:
(2)在这五次测试中,成绩比较稳定的同学是谁?若将80分以上(含80分)的成绩视为优秀,则王同学、李同学在这五次测试中的优秀率各是多少?
(3)历届比赛表明,成绩达到80分以上(含80分)就很可能获奖,成绩达到90分以上(含90分)就很可能获得一等奖,那么你认为应选谁参加比赛比较合适?说明你的理由.
15.
(1)(x+2y)2−(x+y)(x−y);
(2)(x+2
x−3+x+2)÷x2−4x+4
x−3
.
16. 某校数学兴趣小组根据学习函数的经验,对函数y=1
2
|x|−1的图象和性质进行了探究,探究过程如下:
(1)自变量x的取值范围是全体实数,x与y的几组对应值如下表,其中m=________,n=________;
y…10.5m−0.5−1−0.50n1…
在平面直角坐标系xOy中,描出了上表中各对对应值为坐标的点,根据描出的点画出该函数的图象;
(2)结合函数图象,请写出函数y=1
2
|x|−1的一条性质;
(3)直线y=1
6x+5
3
与函数y=1
2
|x|−1的图象所围成的三角形的面积.
17. 我市“金科”房地产开发公司预计今年10月份将竣工一商品房小区,其中包括高层住宅区和别墅区一共60万平方米,且高层住宅区的面积不少于别墅区面积的3倍.
(1)别墅区最多多少万平方米?
(2)今年一月初,“金科”开始出售该小区,其中高层住宅区的销售单价为8000元/平方米,别墅区为12000元/平方米,并售出高层住宅区6万平方米,别墅区3万平方米,二月时,受最新政策“去库存,满足刚需”以及银行房贷利率打折的影响,该小区高层住宅区的销售单价比一月减少了a%,销售面积比一月增加了2a%;别墅区的销售单价不
变,销售面积比一月增加了a%,于是二月份该小区高层住宅区的销售总额比别墅区的销售总额多12000万元,求a的值.
18. “遥知兄弟登高处,遍插茱萸少一人”,我国自古以来就有重阳节登高的习俗,在数学学习中,我们定义:对于不小于100的自然数n,从个位起,左边数位上的数字均比它右边相邻数位上的数字多m(m为正整数),则称n为“登高数”.
例如:420是“登高数”,因为2−0=4−2;8642是“登高数”,因为4−2=6−4= 8−6=2;
643不是“登高数”,因为4−3≠6−4;246不是“登高数”,因为4−6=2−4=−2,不是正整数.
(1)判断963和1234是否是“登高数”?并说明理由
(2)求出所有不超过1000的“登高数”的个数.
19. 如图,平行四边形ABCD中,AE⊥BD于E.
(1)若BC=BD, AB=√10BE,AD=15,求△ABD的周长;
(2)若∠DBC=45∘ ,对角线AC,BD交于点O,F为AE上一点,且AF=2EO,
求证:CF=√2AB.
20. 如图,在直角坐标系中,抛物线经过点A(0, 4),B(1, 0),C(5, 0),其对称轴与x轴相交于点M.
(1)求抛物线的解析式和对称轴;
(2)在抛物线的对称轴上是否存在一点P,使△PAB的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由;
(3)连接AC,在直线AC的下方的抛物线上,是否存在一点N,使△NAC的面积最大?若存在,请求出△NAC的面积最大值,以及此时点N的坐标;若不存在,请说明理由.。