表面粗糙度影响的因素及改善措施@

合集下载

《机械制造工艺学》教案 影响加工表面粗糙度的工艺因素及其改善措施

《机械制造工艺学》教案 影响加工表面粗糙度的工艺因素及其改善措施

编案时间:适用班级:0903、0904课时:2课时教学课题:影响加工表面粗糙度的工艺因素及其改善措施教学目标:掌握影响切削加工表面粗糙度的因素及改善表面粗糙度的方法;磨削加工表面粗糙度的因素及改善表面粗糙度的方法;教学重点:掌握影响切削加工表面粗糙度的因素及改善表面粗糙度的方法;教学难点:表面粗糙度的计算;教具仪器:多媒体第3章机械加工质量控制第一节影响加工表面粗糙度的工艺因素及其改善措施3.1影响加工表面粗糙度的工艺因素及其改善措施3.1.1切削加工表面粗糙度切削加工表面粗糙度主要取决于切削残留面积的高度,并与切削表面塑性变形及积屑瘤的产生有关。

影响切削残留面积高度的因素图4.47示出了车削加工残留面积的高度。

图a为使用直线刀刃切削的情况,其切削残留面积高度为:(4-34) 图b为使用圆弧刀刃切削的情况,其切削残余面积的高度为:(4-35)图4-60 残留面积高度Rmax从上面两式可知,影响切削残留面积高度的因素主要包括:刀尖圆弧半径、主偏角、副偏角及进给量f等。

影响切削表面塑性变形和积屑瘤的因素图4-61示出了加工塑性材料时切削速度对表面粗糙度的影响。

切削速度v处于20~50m/min 时,表面粗糙度值最大,这是由于此时容易产生积屑瘤或鳞刺。

积屑瘤已在3.4节中介绍,鳞刺是指切削加工表面在切削速度方向产生的鱼鳞片状的毛刺。

在切削低碳钢、中碳钢、铬钢、不锈钢、铝合金、紫铜等塑性金属时,无论是车、刨、钻、插、滚齿、插齿和螺纹加工工序中都可能产生鳞刺。

积屑瘤和鳞刺均使表面粗糙度值加大。

当切削速度超100m/min时,表面粗糙度值下降,并趋于稳定。

在实际切削时,选择低速宽刀精切和高速精切,往往可以得到较小的表面粗糙度值。

图4-61 切削45钢时切削速度与粗糙度关系一般说,材料韧性越大或塑性变形趋势越大,被加工表面粗糙度就越大。

切削脆性材料比切削塑性材料容易达到表面粗糙度的要求。

对于同样的材料,金相组织越是粗大,切削加工后的表面粗糙度值也越大。

浅论表面粗糙度及其影响因素

浅论表面粗糙度及其影响因素

C OCCUPATION2013 0180案例ASES浅论表面粗糙度及其影响因素高瑞兰摘 要:本文简要介绍了表面粗糙度对机械零件使用性能的影响,强调要获得好的工件表面质量,就必须降低表面粗糙度,并简要列举了降低表面粗糙度的几种措施。

关键词:表面粗糙度 工作精度 配合性质 加工参数 切削液表面粗糙度是指零件加工表面具有的较小间距和峰谷所形成的微观几何形状误差。

表面粗糙度越小,零件表面越光滑。

在机械加工过程中,工件表面粗糙度的大小,是衡量工件表面质量的重要标志,对机械零件的使用性能具有很大影响。

一、工件表面粗糙度对机械零件使用性能的影响1.加剧零件的摩擦和磨损机器做功时,许多零件的表面之间存在着相互运动,相互运动将产生摩擦,进而导致磨损。

由于零件表面粗糙度的存在,当两个零件表面接触时,它们的接触面不是整个零件表面,而仅仅是两加工表面上许多突出小峰的顶端,从而导致实际接触面积只是理论面积的一部分,而加剧了零件的磨损。

并且表面越粗糙,接触面积越小,越易磨损,也就是零件的耐磨性越差。

但同时也要注意并不是表面越光滑越好,当表面粗糙度值超过一定值后,会由于表面过于光滑不利于润滑液的储存,且使接触表面之间的分子亲和力增大,甚至发生分子粘合,使摩擦阻力增大,从而进入一个急剧磨损阶段。

2.影响机器和仪器的工作精度工件的粗糙表面易于磨损,使配合间隙增大,从而使运动件灵敏度下降,影响机器和仪器的工作精度。

3.对配合性质造成影响在间隙配合中,如果零件的配合表面粗糙,就会使配合件很快磨损而增大配合间隙,改变配合性质,降低配合精度;在过盈配合中,如果零件的配合表面粗糙,则装配后配合表面的凸峰被挤平,配合件间的有效过盈量减小,降低配合件间的连接强度,从而影响配合的有效性。

4.对零件强度造成影响零件表面越粗糙,对应力集中越敏感,特别是在交变载荷作用下,产生的交变应力在工件表面微观不平度凹谷处易造成应力集中,从而形成细小裂纹,甚至使工件损坏。

影响机械加工表面粗糙度的几个因素及措施

影响机械加工表面粗糙度的几个因素及措施

职教类影响机械加工表面粗糙度的几个因素及措施摘要:表面粗糙度是零件表面所具有的微小峰谷的不平程度,它是评价零件的一项重要指标。

一般说来,它的波距和波高都比较小,是一种微观的几何形状误差。

对机械加工表面,表面粗糙度是由切削时的刀痕,刀具和加工表面之间的摩擦,切削时的塑性变形,以及工艺系统中的高频振动等原因所造成的。

表面粗糙度是检验零件质量的主要依据,它的选择直接关系到生产成本、产品的质量、使用寿命。

关键词:机械加工表面粗糙度提高措施随着工业技术的飞速发展,机器的使用要求越来越高,一些重要零件在高压力、高速、高温等高要求条件下工作,表面层的任何缺陷,不仅直接影响零件的工作性能,而且还可能引起应力集中、应力腐蚀等现象,将进一步加速零件的失效,这一切都与加工表面质量有很大关系。

因而表面质量问题越来越受到各方面的重视。

一、机械加工表面粗糙度对零件使用性能的影响表面粗糙度对零件的配合精度,疲劳强度、抗腐蚀性,摩擦磨损等使用性能都有很大的影响。

1、表面质量对零件配合精度的影响(1)对间隙配合的影响由于零件表面的凹凸不平,两接触表面总有一些凸峰相接触。

表面粗糙度过大,则零件相对运动过程中,接触表面会很快磨损,从而使间隙增大,引起配合性质改变,影响配合的稳定性。

特别是在零件尺寸和公差小的情况下,此影响更为明显。

(2)对过盈配合的影响粗糙表面在装配压入过程中,会将相接触的峰顶挤平,减少实际有效过盈量,降低了配合的连接强度。

2、表面质量对疲劳强度的影响零件表面越粗糙,则表面上的凹痕就越深明,产生的应力集中现象就越严重。

当零件受到交变载荷的作用时,疲劳强度会降低,零件疲劳损坏的可能性增大。

3、表面质量对零件抗腐蚀性的影响零件表面越粗糙,则积聚在零件表面的腐蚀气体或液体也越多,且通过表面的微观凹谷向零件表层渗透,形成表面锈蚀。

4、表面质量对零件摩擦磨损的影响两接触表面作相对运动时,表面越粗糙,摩擦系数越大,摩擦阻力越大,因摩擦消耗的能量也越大,并且还影响零件相对运动的灵活性。

关于机械加工中表面粗糙度的成因及改进措施的分析

关于机械加工中表面粗糙度的成因及改进措施的分析

关于机械加工中表面粗糙度的成因及改进措施的分析【摘要】评定加工过的材料表面由峰、谷和间距等构成的微观几何形状误差的物理量即为粗糙度。

它主要是由机械加工形成的,加工后的表面质量直接影响被加工件的物理、化学及力学性能。

产品主要零件的表面质量很大程度上反映出工作性能、可靠性、寿命,如对零件的配合性质、抗腐蚀性、耐磨性、密封性、接触刚度及抗疲劳能力等都有影响。

研究机械加工表面质量的目的就是为了运用机械加工中各种工艺因素对加工表面质量影响的规律来控制加工过程,最终达到改善表面质量、提高产品使用性能的目的。

【关键词】粗糙度表面质量改进措施1 表面粗糙度概述1.1 表面粗糙度产生原因表面粗糙度是评定机器和机械零件质量的一个重要指标,在加工过程中,由于刀痕、切削分离时的塑性变形、刀具与已加工表面间的摩擦,以及工艺系统中高频振动等因素的作用,使被加工表面产生微观几何变形。

1.2 研究表面粗糙度的目的及意义现代化工业生产的快速发展,对产品的质量提出了越来越高的要求,如既要求产品经久耐用,也有利于能源的再生利用,协调发展。

各制造商竞相生产具有优势性的零缺陷产品,以增强市场竞争能力,对零件表面的物理和几何性能提出了非常苛刻的要求,这就使设备制造商生产性能更好、更全面,精度更高的检测设备。

元器件的智能化、小型化、高集成、高容量存储和超快传输等对材料的尺寸越来越小。

零件表面粗糙度的研究无疑是不可忽视的领域,对未来经济和社会发展具有非常重要的影响。

2 表面粗糙度的成因及改善措施2.1 控制目的表面粗糙度对零件的摩擦系数、密封性、耐磨性、抗腐蚀性、疲劳强度、接触刚度、配合性质以及导热、导电性能等均有影响,所以合理控制零件的表面粗糙度,对提高产品性能具有至关紧要的作用。

2.2 切削加工时表面粗糙度的成因物理因素即非正常原因造成的表面粗糙度。

多数情况下是在已加工表面的残留面积上叠加着一些不规则的金属生成物、粘附物或刻痕。

形成它们的原因有:(1)积屑瘤。

车床工件表面粗糙度的形成原因及解决措施

车床工件表面粗糙度的形成原因及解决措施

车床工件表面粗糙度的形成原因及解决措施表面粗糙度是机械加工中衡量加工质量的重要因素,表面粗糙度对零件和机器有着重要的意义。

但由于工件材料、切削加工方式、表面硬化等原因,造成了表面粗糙度值提高。

本文详细分析了车床工件表面粗糙度的形成原因,并提出相应的解决措施。

标签:车床工件:表面:粗糙度:原因:解决措施1.引言在实际的机械加工中,工件表面会存在许多高低不平的微小峰谷,这是因为切屑分离时塑性变形、工艺系统的振动以及刀具与已加工表面问的摩擦等因素的影响。

这些零件被加工表面上的微观几何形状误差称为表面粗糙度。

表面粗糙度对零件的耐磨性、耐腐蚀性、疲劳强度和配合性质都有很大影响。

本文详细分析了车床工件表面粗糙度的形成原因,并提出相应的解决措施,具有一定的实际意义。

2.影响工件表面粗糙度的原因2.1工件材料性能。

塑性金属材料在加工的过程中,刀具挤压金属材料,使其产生塑性变形,切屑和工件分离是由于刀具外力的挤压,表面出现撕裂现象,这严重影响表面粗糙度。

伴随着工件材料韧性的提高,在切屑过程中材料的塑性变形也就越大,加工表面粗糙度也就越差。

脆性材料在加工时,所切削形成的铁屑为颗粒状,在切屑崩碎的过程中,加工表面容易产生细小的坑点,提高表面粗糙度值。

2.2刀具切削加工。

在普通刀具在切屑过程中,切削表面势必会产生残留面积,残留面积的高度则是影响加工表面粗糙度的主要因素。

在整个加工过程中,刀具的进给量、主偏角、副偏角、圆弧半径则是造成切削残留面积的主要因素。

砂轮磨削加工过程中,砂轮上硬质颗粒断裂后形成微刃,其分布情况和外形对表面粗糙度有着直接的影响。

因为磨削加工表面是大量微刃在金属表面切削出细小的切削痕迹构成的,所形成的切削痕迹越细小、越密集则表面粗糙度就越好,相反切削痕迹粗大、分布疏散,则表面粗糙度越差。

2.3表面冷作硬化。

在普通刀具切削或砂轮磨削过程中,表面层金属由于刀具外在切削力和材料本身的塑性,使其晶格产生剪切、滑移、拉长、扭曲、破碎,宏观的表现特点则是材料表面层变硬,屈服点提高,延生率降低。

影响加工表面粗糙度的工艺因素及其改善措施

影响加工表面粗糙度的工艺因素及其改善措施
2. 优化切削参数,如切削速度、进给量和切削深度,以降低切削力和减少刀具磨损。
3. 采用适当的冷却方法,如切削液,以降低切削温度和减少热量对刀具的影响。
4. 定期检查和更换刀具,以确保刀具处于良好状态,从而保证加工表面质量。
工件材料对表面粗糙度的影响
04
硬度过低的工件材料在加工过程中容易产生塑性变形,使得工件表面粗糙度增加。
刀具磨损对表面粗糙度的影响
03
总结词
随着刀具磨损的增加,切削力通常会增大。这主要是因为刀具磨损导致切削刃变钝,切削刃与工件之间的摩擦增大,切削力也随之增大。
详细描述
在切削过程中,刀具的切削刃会逐渐磨损,导致切削刃变钝。钝的切削刃与工件表面的摩擦增大,使得切削力增加。这不仅会影响切削过程的稳定性,还可能导致切削热增加,进一步加剧刀具磨损。
影响加工表面粗糙度的工艺因素及其改善措施
汇报人:
2024-01-04
切削用量对表面粗糙度的影响刀具几何参数对表面粗糙度的影响刀具磨损对表面粗糙度的影响工件材料对表面粗糙度的影响切削液对表面粗糙度的影响改善加工表面粗糙度的措施
目录
切削用量对表面粗糙度的影响
01
01
02
在切削塑性材料时,适当降低切削速度可以有效减小表面粗糙度值。在切削脆性材料时,切削速度对表面粗糙度的影响较小。
切削速度越高,切削力越大,切削温度越高,从而使得工件材料软化,容易产生塑性变形,导致表面粗糙度值增大。
进给量增大,切削厚度增加,切削力也相应增大,切削过程中工件材料的塑性变形增大,导致表面粗糙度值增大。
适当减小进给量,可以减小表面粗糙度值。但进给量过小会导致切削力过小,反而使得表面粗糙度值增大。因此,需要根据工件材料、刀具材料和加工要求等因素选择合适的进给量。

机械制造中的机械加工表面粗糙度工作原理

机械制造中的机械加工表面粗糙度工作原理

机械制造中的机械加工表面粗糙度工作原理机械加工是指通过削、切、磨等工艺将工件原有形状进行改变以满足一定尺寸、形状和粗糙度要求的加工方法。

在机械制造过程中,机械加工表面粗糙度的控制是十分重要的,它直接影响到零件的功能和使用寿命。

本文将介绍机械加工表面粗糙度的工作原理。

一、表面粗糙度的概念表面粗糙度是指工件表面上凹凸不平的程度,通常用Ra(平均粗糙度)来表示。

在机械加工中,我们常常要求工件表面光洁度高、粗糙度小,以确保零件的密封性、运动性和装配性能。

二、机械加工表面粗糙度的影响因素机械加工表面粗糙度受到多种因素的影响,主要包括以下几个方面:1.切削参数:切削速度、进给量、切削深度等切削参数直接影响到工件表面的质量。

一般来说,切削速度越大、进给量越小、切削深度越小,工件表面的粗糙度就越小。

2.切削工具状况:切削工具的磨损情况对工件表面质量有重要影响。

切削工具磨损过度会导致切削力增大、表面粗糙度加大。

所以,及时更换和修磨切削工具能够有效控制表面粗糙度。

3.工件材料:工件材料的硬度、韧性等性质会影响机械加工的精度和表面质量。

例如,硬度较高的材料可能导致切削刀具的磨损,从而影响表面的粗糙度。

4.切削方式:不同的切削方式,如车削、铣削、磨削等,对工件表面粗糙度的影响也有所不同。

三、机械加工表面粗糙度的控制方法为了能够控制机械加工表面的粗糙度,在实际操作中可以采取以下措施:1.选择合适的工艺参数:根据工件材料、形状和要求,合理选择切削速度、进给量、切削深度等参数,以获得较小的粗糙度。

2.使用高质量的切削工具:选择具有良好刚性和耐磨性的切削工具,并保持其锋利度,以便实现更好的切削效果。

3.优化切削方式:根据工件的特点,选择合适的切削方式。

有时候,可以采用一些先进的切削方式,如超声波切削、电火花加工等,以改善表面粗糙度。

4.后续加工工艺:有时候,机械加工的表面粗糙度无法满足要求,可以考虑通过后续加工工艺来改善。

例如,研磨、抛光等方法可以使工件表面更加光滑。

影响线切割加工表面粗糙度的因素及应对措施

影响线切割加工表面粗糙度的因素及应对措施

影响线切割加工表面粗糙度的因素及应对措施【摘要】阐述了影响线切割加工工件表面质量的原因以及相对应的改进措施,分析得出的结果对保证线切割加工工件的粗糙度有很大的参考价值。

【关键词】线切割;措施;粗糙度;钼丝线切割技术在现代模具加工中起着非常重要的作用,我国的模具产品也在向着大型和精密方向发展,加工的表面质量严重影响着模具的品质。

在线切割加工中除了人为因素以外,还有钼丝因素、机床因素、参数因素和工件因素影响着加工表面粗糙度。

现对这四个因素分别找出应对措施。

1、钼丝因素及应对措施1.1减少钼丝的震动保证贮丝筒和导轮的制造和安装精度,控制贮丝筒和导轮的轴向及径向跳动,导轮转动要灵活,防止导轮跳动和摆动,有利于减少钼丝的振动,促进加工过程的稳定。

1.2降低走丝速度必要时可适当降低钼丝的走丝速度,增加钼丝正反换向及走丝时的平稳性。

1.3加大钼丝的有效长度根据线切割工作的特点,钼丝的高速运动需要频繁地换向来进行加工,钼丝在换向的瞬间会造成其松紧不一,钼丝张力不均匀,从而引起钼丝振动,直接影响加工表面粗糙度,所以应尽量减少钼丝运动的换向次数。

试验证明,在加工条件不变的情况下,加大钼丝的有效工作长度,可减少钼丝的换向次数,减少钼丝的抖动,促进加工过程的稳定,提高加工表面质量。

1.4调整钼丝的张力采用专用机构张紧的方式将钼丝缠绕在贮丝筒上,可确保钼丝排列松紧均匀。

尽量不采用手工张紧方式缠绕,因为手工缠绕很难保证钼丝在贮丝筒上排列均匀及松紧一致。

松紧不均匀,钼丝各段的张力不一样,就会引起钼丝在工作中抖动,从而增大加工表面粗糙度。

2、参数因素及应对措施2.1工件的进给速度要适当因为在线切割过程中,如工件的进给速度过大,则被腐蚀的金属微粒不易全部排出,易引起钼丝短路,加剧加工过程的不稳定;如工件的进给速度过小,则生产效率低。

2.2减小脉冲宽度和减小峰值电流脉冲电源同样是影响加工表面粗糙度的重要因素。

脉冲电源采用矩形波脉冲,因为它的脉冲宽度和脉冲间隔均连续可调,不易受各种因素干扰。

切削工艺参数对铣削表面粗糙度的影响及优化

切削工艺参数对铣削表面粗糙度的影响及优化

切削工艺参数对铣削表面粗糙度的影响及优化概述:在金属加工中,铣削是一种常见的切削加工方法,用于加工各种复杂形状的零件。

铣削表面粗糙度是衡量加工质量的重要指标之一,对于提高零件的功能性和耐久性至关重要。

本文将探讨切削工艺参数对铣削表面粗糙度的影响,并提出优化方案。

1. 切削工艺参数对表面粗糙度的影响1.1 切削速度切削速度是指铣刀在单位时间内切削材料的线速度。

增加切削速度可以提高金属材料的切削效率,但过高的切削速度会导致刀具磨损加剧,形成较大的切削力,从而使铣削表面粗糙度增加。

1.2 进给速度进给速度是指铣刀在切削过程中,每刀具齿与工件接触一次时向前移动的距离。

过大或过小的进给速度都会影响表面粗糙度。

过大的进给速度会导致切削过程中碎屑堆积,增加表面的毛刺,导致表面粗糙度增加。

而过小的进给速度则会造成过度切削,形成较大的切削力,同样会使表面粗糙度增加。

1.3 切削深度切削深度是指切削刀具与工件接触时切削部分的最大厚度。

增加切削深度可以提高加工效率,但过大的切削深度会导致切削力增加,刀具磨损严重,从而增加表面粗糙度。

2. 优化切削工艺参数的方法2.1 切削速度的优化通过实验方法确定最适合的切削速度,一般根据材料的硬度、韧性和机械特性来选择。

较硬材料可采用较高的切削速度,较软材料则应选择较低的切削速度。

同时,及时更换磨损严重的刀具也是保持切削速度的关键。

2.2 进给速度的优化进给速度的优化主要目标是控制金属屑的去向和形态,以减少毛刺和表面质量降低。

实践证明,选择适当的进给速度可以达到较好的切削效果。

一般而言,较硬材料可选择较大的进给速度,较软材料则应选择较小的进给速度。

2.3 切削深度的优化切削深度的优化是保证表面质量和加工效率的重要因素。

根据材料硬度、切削轴向力等参数来确定最佳切削深度。

一般而言,较硬材料可选择较浅的切削深度,较软材料则可以选择较大的切削深度。

3. 其他影响表面粗糙度的因素除了切削工艺参数之外,还有一些其他因素也会影响铣削表面的粗糙度。

机械加工影响表面粗糙度的因素及应对措施

机械加工影响表面粗糙度的因素及应对措施

机械加工影响表面粗糙度的因素及措施!1、机械加工零件表面粗糙度的概述那么为了较好的提高零件的性能就需要减小零件表面粗糙度,其方法是针对影响零件粗糙度的因素而采取相应的措施,这样会取得更好的效果。

2、影响表面粗糙度的因素在零件的加工过程中会使得零件表面形成一定的粗糙程度,这非常不利于零件的正常使用。

影响零件表面粗糙度的因素有刀具几何形状的影响、积削瘤的影响、工件材料的影响、加工条件的影响以及振动的影响,下面将详述影响零件表面粗糙度的因素。

2.1刀具几何形状的影响刀具是用来切割零件的工具,在切割的过程中刀具与零件的接触最为充分,那么刀具对零件的表面粗糙度影响也最大,适当的增加刀具几何形状的前角可以在较大程度上减小零件表面粗糙度,但是过度增加刀具几何形状的前角反而会使得表面粗糙度增加。

这在实际的过程中很难进行控制,容易使得零件的表面粗糙度受到较大的影响。

当前角一定时,后角越大刀具就越锋利,也更加容易进行切割。

适当的增加后角可以减小刀面与零件表面的摩擦和挤压,这样就可以有效的减小零件的表面摩擦度。

但是后角过大时就会发生切削振动,从而使得零件的表面摩擦度增加。

但是适当的后角在实际操作中也很难进行把握,所以在实际的操作中容易使得零件的表面粗糙度增加。

此外刀具的前刀面与后刀面对零件的表面粗糙度也有一定的影响,如果刀具的前刀面和后刀面粗糙值较小,那么零件的表面粗糙度就越小。

因为刀具的前后刀面越光滑就越锋利,在切割的过程中就不容易产生缺口,从而使得零件的表面粗糙度减小。

由此可见刀具的几何形状对于零件表面粗糙度的大小有着非常重要的影响,所以在降低零件表面粗糙度的过程中药着重考虑这个影响因素。

2.2积削瘤的影响积削瘤所指的是在金属切削过程中,会有一些从工件上掉下来的金属冷焊并层积在前刀面上,这样就会形成一个非常坚硬的金属堆积物,这个金属堆积物的硬度是工件硬度的2~3倍,能够代替刀刃进行切削,但是在不断的切削过程中会逐渐掉落,这个金属堆积物所指的就是积削瘤。

零件制造中的表面粗糙度与润滑性能研究

零件制造中的表面粗糙度与润滑性能研究

零件制造中的表面粗糙度与润滑性能研究随着现代制造业的发展,零件制造的质量要求越来越高。

其中,表面粗糙度和润滑性能是两个重要的研究方向。

本文将探讨零件制造中的表面粗糙度与润滑性能研究。

一、表面粗糙度的影响因素在零件制造过程中,各种因素都会对表面粗糙度产生影响。

首先是材料的选择,不同的材料会有不同的表面特性,进而影响到制造出的零件表面的粗糙度。

其次是制造方式,如铣削、车削或线切割等,都会产生不同的表面质量。

第三是刀具的选择和加工参数的调整,包括进给速度、切削速度和刀具磨损等。

二、表面粗糙度与摩擦粗糙表面在摩擦过程中会引起能量损耗,增加摩擦力,导致能源的浪费。

所以,在一些特殊的应用中,对于零件表面粗糙度的要求尤为严格。

如机械密封件的表面粗糙度与润滑性能直接相关,不良的表面质量可能会导致泄漏等问题的产生。

三、改善表面粗糙度的方法为了提高零件表面的质量,需要采用多种方法来改善表面粗糙度。

其中,最常见的方法是研磨和抛光。

研磨是利用磨削工具将表面颗粒削除,从而得到较为光洁的表面。

抛光则是利用磨料将表面去除细微凸起,在润滑性能方面会产生显著的改善。

另外,还可以采用化学处理、喷砂等方法,根据不同的需求选择合适的工艺。

四、润滑性能的研究润滑性能是指零件表面在接触过程中所具有的减小摩擦阻力的能力。

在零件制造过程中,润滑性能的研究至关重要。

改善润滑性能不仅可以减小零件在运动过程中的磨损,还能提高零件的寿命和工作效率。

润滑性能的研究主要从润滑膜的形成和润滑剂的性质两个方面展开。

润滑膜是指在零件表面上形成的一层固体或液体薄膜,可以减小接触面的摩擦。

例如,在发动机汽缸套的制造过程中,涂层的选择和涂覆工艺的优化可以显著改善零件的润滑性能。

润滑剂则是指用于减少零件接触面摩擦的物质,不同的润滑剂在润滑性能方面有着不同的效果。

五、未来的研究方向随着制造技术的不断发展,零件制造中的表面粗糙度与润滑性能的研究也在不断深入。

未来的研究方向主要集中在以下几个方面:1. 表面纳米加工技术的研究,探索更加精细的加工方式,进一步提高零件表面的质量。

影响磨床加工表面粗糙度的因素及改善措施

影响磨床加工表面粗糙度的因素及改善措施

影响磨床加工表面粗糙度的因素及改善措施曙光磨床主要铸件使用高级耐磨铸件,并经退火处理及自然时效处理以确保不变形及耐磨,前后使用双“V”道轨,提高磨削时的稳定性及精确度。

那么我们在使用时加工表面粗糙的原因是什么呢?我们又该如何解决呢?下面我们就一起来看看吧!1、与磨削砂轮有关的因素主要是砂轮的粒度、硬度以及对砂轮的修整等。

砂轮的粒度越细,则砂轮单位面积上的磨粒数越多,磨削表面的刻痕越细,表面粗糙度值越小。

但粒度过细,砂轮易堵塞,使表面粗糙度值增大,同时还易产生波纹和引起烧伤。

砂轮的硬度是指磨粒受磨削力后从砂轮上脱落的难易程度。

砂轮太硬,磨粒磨损后还不能脱落,使工件表面受到强烈的摩擦和挤压,增加了塑性变形,表面粗糙度值增大,同时还容易引起烧伤;砂轮太软,磨粒易脱落,磨削作用减弱,也会增大表面粗糙度值,所以要选合适的砂轮硬度。

砂轮的修整质量与所用修整工具、修整砂轮的纵向进给量等有密切关系。

砂轮的修整是用石除去砂轮外层已钝化的磨粒,使磨粒切削刃锋利,降低磨削表面的表面粗糙度值。

另外,修整砂轮的纵向进给量越小,修出的砂轮上的切削微刃越多,等高性越好,从而获得较小的表面粗糙度值。

2、工件材质有关的因素包括材料的硬度、塑性、导热性等。

工件材料的硬度、塑性、导热性对表面粗糙度有显著影响。

铝、铜合金等软材料易堵塞砂轮,比较难磨。

塑性大、导热性差的耐热合金易使砂粒早期崩落,导致磨削表面粗糙度值增大。

3、加工条件有关的因素包括磨削用量、冷却条件及工艺系统的精度与抗振性等。

磨削用量有砂轮速度、工件速度、磨削深度和纵向进给量等。

提高砂轮速度,就可能使表层金属塑性变形的传播速度跟不上磨削速度,材料来不及变形,从而使磨削表面的表面粗糙度值降低示。

工件速度增加,塑性变形增加,表面粗糙度值增大。

磨削深度和纵向进给量越大,塑性变形越大,从而增大了表面粗糙度值。

砂轮磨削时温度高,热的作用占主导地位,因此切削液的作用十分重要。

采用切削液可以降低磨削区温度,减少烧伤,冲去落的砂粒和切屑,以免划伤工件,从而降低表面粗糙度值。

探讨机械加工影响表面粗糙度的因素及改善措施

探讨机械加工影响表面粗糙度的因素及改善措施
正 像 在 切 削加 工 时 表 面 粗 糙 度 的形 成 过程 一样 , 磨 削加 工 表面 粗 糙 度 的 形 成 由几 何 因素 、表 面 金 属 的 塑性 变 形 来 决 定 。 影 响 磨 削
2 . 6防止或减 小机械加工工艺 系统产生的振动 在工件和刀具 之间产生振动 时, 加工 工艺系统的 正常切削过程 便受到干扰 和破坏, 从而使零件加工表面 出现振纹, 降低 了零件 的加 工精度和表面质量。 为了减 少振动对机械加 工表面 质量 的影 响, 可采 取减小或消除振源的激振力、 隔振, 提高工艺系统的刚度及增大阻尼 等措施。 3 结 束 语
减小进给量、进行高速切削易获得 小的表面粗糙度值 。
2 改善 机 械 加 工表 面 粗 糙 度 的 措 施
产 生机械加工零件表面 粗糙度 的因素很多, 形成表面粗糙度 的
主 要 原 因可 归 纳 为 几 个 方 面 : 一是切削刀具几何因素, 主 要 指 刀 刃 和 工件 相 对 运 动 轨 迹 所 形 成 的残 留面 积 : 二是工件材料的因素, 主 要 指
【 摘
要】 表 面粗糙 度是判断一个零件加工制造是否合格的一
项 重要 的 指 标 ,它 对 你 零 件 在 使 用 过 程 中的 耐 磨 性 、 配 合 质 量 、运
动精度以及使用寿命等方 面都具有很大的影响 。因此 ,获得 正确的 表面粗糙度值 ,降低机械加工表 面粗糙度是机械加 工过程 中必须着 重考虑的 问题 。本 文对机械加 工影响表 面粗糙度 的因素进行 了简要 的 阐述 ,提 出了降低机械加 工表 面粗糙 度的方法和措 施 ,从而达到 改善零件表 面质量 ,提 高产品性能和经济效益的 目的。
【 关键词 】 机械加 工;表 面粗糙度 ;影响 因的积屑瘤 、 鳞刺和振动等 : 三是加工零件

机械加工中影响表面粗糙度的因素及解决方法(附:进给量与粗糙度换算表)

机械加工中影响表面粗糙度的因素及解决方法(附:进给量与粗糙度换算表)

机械加工影响表面粗糙度的因素及解决方法很多机加工产品由于其使用条件的需要,对表面粗糙度提出很高的要求。

那么在实际的生产加工过程中,究竟有哪些因素会影响到表面粗糙度呢?其实简单来说无非是切削刀具、加工材料、加工参数三个大的方面。

1.切削刀具1.1刀具几何形状前角的大小影响刀刃的锐利牢固程度,决定刀具的切削性能。

合理增加刀具的前角,可减少切削层的塑性变形,减少切屑流动时的摩擦阻力;提高刀刃锋利性,从而减少切削力、切削热、切削功率,提高铣削加工精度和已加工表面质量,从而提高了刀具的耐用度。

另外,刀具前角若太大,刃口和刀刃部分的强度恶化了散热条件,容易造成崩刃。

刀具的前角选择,大致可以遵循如下原则:(1)工件材料的强度、硬度高、前角应选得小一些;反之可取较大的前角;(2)加工塑性材料,应选取较大的前角;加工脆性材料,可选取较小的前角;(3)粗加工时,为了保证刀刃有较好的强度和散热条件,前角选小点;精加工时,为了提高加工表面质量,让刀刃锋利,应选较大的前角;(4)高速钢刀具抗弯强度、抗冲击韧性好,可选择较大的前角;硬质合金刀具这两方面差,应选较小前角;(5)当机床等刚性、功率不足时,应选较大的前角,来降低切削力和切削功率,减轻振动;刀具后角主要是减少切削刃及刀具后刀面,与工件加工表面之间的摩擦。

后角太大,会削弱刃口和刀刃部分的强度与散热条件,降低刀具耐用度,造成崩刃。

刀具后角的选用,可遵循如下原则;(1)加工塑性大或弹性大的材料,为减少后刀面之间的摩擦,取大后角;加工高强度、高硬度工件,为保证刃口强度,应取较小的后角;精加工切削力小,为减少摩擦,提高加工表面质量,可取大一点的后角;(2)粗加工时,切削力大,为保证刃口的强度,可取小一点的后角;精加工切削力小,为减少摩擦,提高加工表面质量,可取小一点的后角;(3)高速钢刀具后角可比钨钢刀具后角大2~3度;(4)当铣刀的径向磨损会影响加工精度时,如键槽铣刀的圆周齿磨损后,直径减少,直接影响键槽的宽度,后角应适当减少(一般为8度)。

了解3D打印技术的表面粗糙度与光滑度

了解3D打印技术的表面粗糙度与光滑度

了解3D打印技术的表面粗糙度与光滑度3D打印技术是一种近年来快速发展的先进制造技术,通过逐层堆叠材料来创建复杂的物体。

在3D打印过程中,表面粗糙度和光滑度是评估打印品质量的重要指标之一。

本文将介绍3D打印技术中表面粗糙度和光滑度的定义、影响因素以及改善方法。

首先,表面粗糙度是指物体表面的不均匀程度,即表面的凹凸不平程度。

而光滑度是指物体表面的平整程度,即表面的光洁度。

在3D打印中,表面粗糙度和光滑度的水平会直接影响到打印品的外观质量、摩擦性能以及其它特性。

因此,提高3D打印产品的表面粗糙度和光滑度是一个重要的技术挑战。

接下来,我们来看一下影响3D打印表面粗糙度和光滑度的因素。

首先是材料的选择。

不同材料具有不同的物理特性和加工特性,这会直接影响到打印品的表面质量。

例如,某些材料更容易形成光滑的表面,而另一些材料则容易形成粗糙的表面。

其次是打印参数的设置。

打印参数包括打印速度、温度、层高等等。

这些参数的选择会对打印品的表面质量产生影响。

通常情况下,较高的打印速度和较大的层高会导致表面粗糙度增加,而较低的打印速度和较小的层高会导致表面光滑度提高。

此外,3D打印中所使用的打印设备也会对表面质量产生影响。

不同的打印设备具有不同的精度和分辨率,这会直接影响到打印品的表面质量。

通常情况下,具有较高精度和分辨率的打印设备会打印出更光滑的表面。

针对3D打印中的表面粗糙度和光滑度问题,我们可以采取一些改善方法。

首先是优化材料选择。

选择合适的材料可以提高表面质量。

目前市场上有许多专门用于高质量表面打印的材料,使用这些材料可以明显改善表面粗糙度和光滑度。

其次是调整打印参数。

通过适当调整打印速度、温度、层高等参数,可以改善表面质量。

一般来说,减少打印速度和层高可以提高表面光滑度,但会增加打印时间。

因此,在选择参数时需要权衡光滑度和打印效率之间的关系。

另外,使用后处理技术也可以改善表面粗糙度和光滑度。

例如,可以通过打磨、抛光、喷涂等方法对打印品进行后处理,使其表面更加光滑。

影响磨削表面粗糙度的因素及改善措施

影响磨削表面粗糙度的因素及改善措施

影响磨削表面粗糙度的因素及改善措施
1.磨削条件:
⑴提高砂轮速度ν或降低工件速度νω,使νω/ν的比值减小可获得较小数值的粗糙度
⑵采用较小的纵向进给量f a,减小f a/B的比值,使工件表面上某一点被磨的次数越多,则能获得较低数值的粗糙度
⑶径向进给量f r减小,能按一定比例降低的数值,例如磨削18CrNiW A时,若f r=0.02mm,R a=0.6μm;若f r=0.03mm,R a≈0.75μm。

最后进行5次以上的无进给光磨,可较好地改善表面粗糙度
⑷正确使用切削液的种类、配比、压力、流量和清洁度
⑸提高砂轮的平衡精度、磨床主轴的回转精度、工作台的运动平稳性及整个工艺系统的刚度,消减磨削时的振动,可使表面粗糙度大大改善
2.砂轮特性及修整:
⑴一般地说,砂轮粒度愈细,粗糙度数值就愈小,但超过80#时,则R a值的变化甚微
⑵应选择与工件材料亲和力小的磨料。

例如磨削高速钢时,宜选用白刚玉、单晶刚玉或绿碳化硅;磨削硬质合金时,则宜选用绿碳化硅或碳化硼。

一般地说碳化硅的磨料不适于加工钢材,但适于非铁金属Zn、Pb、Cu和非金属材料。

立方氮化硼为磨削不锈钢、高温合金和钛合金的好磨料
⑶磨具的硬度,工件材料软、粘时,应该选较硬的磨具;工件材料硬、脆时,应该选较软的磨具。

νω/ν愈大则磨具应硬些。

磨削难加工材料应选J~V的硬度
⑷采用直径较大的砂轮,增大砂轮宽度皆可降低表面粗糙度
⑸采用耐磨性好的金刚笔,合适的刃口形状和安装角度,当修整用量合适时(纵向进给量应小些),能使磨粒切削刃获得良好的等高性,降低表面粗糙度。

影响不锈钢加工表面粗糙度的因素及改善措施

影响不锈钢加工表面粗糙度的因素及改善措施

影响加工表面粗糙度的因素及改善措施一、切削加工中影响表面粗糙度的因素机械加工中,形成表面粗糙度的主要原因可归纳为三个方面:一是刀刃和工件相对运动轨迹所形成的残留面积——几何因素;二是加工过程中在工件表面产生的塑性变形、积屑瘤、鳞刺和振动等物理因素;三是与加工工艺相关的工艺因素。

1.几何因素在理想切削条件下,由于切削刃的形状和进给量的影响,在加工表面上遗留下来的切削层残留面积就形成了理论表面粗糙度。

由图5— 3中的关系可得:刀尖圆弧半径为零时,刀尖圆弧半径为rε时,由上式可见,进给量f、刀具主偏角Кr、副偏角Кr'越大、刀尖圆弧半径rε越小,则切削层残留面积就越大,表面就越粗糙。

以上两式是理论计算结果,称为理论粗糙度。

切削加工后表面的实际粗糙度与理论粗糙度有较大的差别,这是由于存在着与被加工材料的性能及与切削机理有关的物理因素的缘故。

2.物理因素切削过程中由于刀具的刃口圆角及后刀面的挤压与摩擦使金属材料发生塑性变形,从而使理论残留面积挤歪或沟纹加深,促使表面粗糙度恶化。

在加工塑性材料而形成带切屑时,在前刀面上容易形成硬度很高的积屑瘤。

它可以代替前刀面和切削刃进行切削,是刀具的几何角度、背吃刀量发生变化。

其轮廓很不规则,因而使工件表面上出现深浅和宽窄不断变化的刀痕,有些积屑瘤嵌入工件表面,增加了表面粗糙度。

切削加工时的振动,使工件表面粗糙度值增大,有关切削加工时振动的内容将在本章第四节加以说明。

3.工艺因素与表面粗糙度有关的工艺因素有:切削用量、工件材质及与切削刀具有关的因素。

二、降低表面粗糙度值的工艺措施由于表面粗糙度的成因与切削刀具之间的特殊关系,现就切削加工和磨削加工分别叙述降低表面粗糙度值的工艺措施。

1.选择合理的切削用量(1)切削速度切削速度对表面粗糙度的影响比较复杂,一般情况下在低速或高速切削时,不会产生积屑瘤,故加工后表面粗糙度值较小。

在切削速度为20~50m/min加工塑性材料(如低碳钢、铝合金等)时,常容易出现积屑瘤和鳞刺,再加上切屑分离时的挤压变形和撕裂作用,使表面粗糙度更加恶化。

影响机械加工表面粗糙度的原因及改进措施

影响机械加工表面粗糙度的原因及改进措施
表面加工质量 : 部分积屑瘤存留在工件表面 , 导致其表面粗糙度较大。 ( 三)工件材神 陛质因素
加工工艺系统的正常切 削过程 会受到振动影响 ,因此 ,设置 隔振 设施或 教振力设施 , 提高机械加工刚度 , 轻振动对机械加工表面相糙度的影响。
( 五)减 少加工表 面残余应力方面
性,提高加工质量。
( 四) 防止加工工艺系统产生振动方面
摩擦会引起工件材料 出现一定 的塑性变形,增加工件表面相糙 度。在进 行塑性工件材料切削作业时,在切削刀具前刀面中容 易出现硬度较高的 积屑瘤 , 积屑瘤的存在会改变切削刀具几何角度及背吃刀量 , 且 因积屑 瘤多不规格 ,导致工件在加工后表面存在着深浅、宽窄刀痕 ,影响工件
削液可 以使工艺系统 的刚度增加,进而提高机床 的动态稳定性 ,因此 , 要合理选择切削冷却液 ,如在工件铰孔作业时可 以选择煤油、硫化油作 为切削冷却液 ,这样才能获得较好的工件表面质量。
㈡ 在切 削刀具方面
具几 何形状 、切削刀具材料、切削i 拟
存在着紧密关系。
机械力 O I等因素影响 ,同时与
度。从而增加工件表面粗糙度。 ( 四)机 械 加工工件切削用量因素 在进行工件加工时 ,其切削用量参数选择 十分重要 ,对表面粗糙 度存在着极 为重要的影响。在工件切削速度在一定范围时,机械加工塑
汽车制造中 ,对零部件 mm精度 、表面质量及应用性能存在着较
高要求 ,为保障工件加工质量,对影响机械加工表面粗糙度的原 因进行
探索。切削刀具几何因素、工件材料因素、机械 加工工艺、切削用量参 数及切削冷却液的选择等属于影响机械加工表面粗糙度主要因素。在分
析影响表面粗糙度的基础上 , 提 出改进措施,以降低工件机械加工表面 相糙度 ,提高工件表面加工质量 ,实现工件加工综合效益。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

转速越高,单位时间内通过被磨表面的磨粒数越多,表面粗糙度值就越小。工件速度对表面粗糙度值的影响刚好与砂轮转速的影响相反。工件的速度增大,通过加工表面的磨粒数减少,因此表面粗糙度值增大。砂轮的纵向进给量小于砂轮的宽度时,工件表面将被重叠切削,而被磨次数越多,工件表面粗糙度值就越小。为提高磨削效率,通常在开始磨削时采用较大的径向进给量,而在磨削后期采用较小的径向进给量或无进给量磨削,以减小表面粗糙度值。
与切削机理有关的物理因素——刀瘤和鳞刺的影响
切削用量的影响
刀具材料的影响
刀瘤切削过程中切屑底层和前刀面发生冷焊的结果。
鳞刺的产生:切屑在前刀面上的摩擦和冷焊作用造成周期性的停留,代替刀具推挤切削层,造成切削层和工件之间出现撕裂现象。
①工件材料的影响
韧性材料:工件材料韧性愈好,金属塑性变形愈大,加工表面愈粗糙。故对中碳钢和低碳钢材料的工件,为改善切削性能,减小表面粗糙度,常在粗加工或精加工前安排正火或调质处理。 Βιβλιοθήκη 2磨削加工后表面粗糙度的形成
工件的磨削表面是由砂轮上大量磨粒刻划出无数极细的刻痕形成的,工件单位面积上通过的砂粒数越多,则刻痕越多,刻痕的等高性越好,表面粗糙度值越小。磨削速度比一般切削速度高得多,且磨粒大多数是负前角,切削刃又不锐利,大多数磨粒在磨削过程中只是对被加工表面挤压,没有切削作用。加工表面在多次挤压下出现沟槽与隆起,又由于磨削时的高温更加剧了塑性变形,故表面粗糙度值增大。
(4)工件材料太硬易磨粒磨钝→Ra↑太软易堵塞砂轮→Ra↑韧性太大热导率差会使磨粒早崩落→Ra ↑
(1)磨粒在砂轮上的分布越均匀、磨粒越细,刃口的等高性越好。则砂轮单位面积上参加磨削的磨粒越多,磨削表面上的刻痕就越细密均匀,表面粗糙度值就越小。
(2)砂轮修整除了使砂轮具有正确的几何形状外,更重要的是使砂轮工作表面形成排列整齐而又锐利的微刃。因此,砂轮修整的质量对磨削表面的粗糙度影响很大。
(3)磨削用量:砂轮
减小进给量f固然可以减小表面粗糙度值,但进给量过小,表面粗糙度会有增大的趋势。
④其它因素的影响
合理使用冷却润滑液,适当增大刀具的前角,提高刀具的刃磨质量等,均能有效减小表面粗糙度值。
(3)工艺系统振动
工艺系统的低频振动,一般在工件的已加工表面上产生表面波度,而工艺系统的高频振动将对已加工表面的粗糙度产生影响。为降低加工表面的粗糙度,则必须采取相应措施防止加工过程中产生高频振动。
脆性材料:加工粗糙度接近理论值。加工脆性材料时,其切削呈碎粒状,由于切屑的崩碎而在加工表面留下许多麻点,使表面粗糙。
②切削速度的影响
积屑瘤和鳞刺仅在低速时产生。切削速度越高,塑性变形越不充分,表面粗糙度值越小;选择低速宽刀精切和高速精切,可以得到较小的表面粗糙度。
③进给量的影响
1、 切削加工表面粗糙度的形成
原因大致可归纳为(1)几何因素刀尖圆弧半径rε、主偏角kr、副偏角kr′、进给量f
(2)物理力学
被加工材料的性能——塑性变形的影响
切削过程中刀具的刃口圆角及后刀面对工件挤压与摩擦而产生塑性变形。
相关文档
最新文档