湘教版八年级数学上学期期末考试试卷

合集下载

2024-2025学年湘教版数学八年级上册期末综合测试卷

2024-2025学年湘教版数学八年级上册期末综合测试卷

2024-2025学年湘教版数学八年级上册 期末综合测试卷一、单选题1.面积为4的正方形的边长是( )A .4的平方根B .4的算术平方根C .4开平方的结果D .4的立方根 2.分式13-x 可变形为( ) A .13x + B .-13x + C .13x - D .1-3x - 3.如图,墙上钉着三根木条,,a b c ,量得170=︒∠,2100∠=︒,那么木条,a b 所在直线所夹的锐角是( )A .5︒B .10︒C .30︒D .70︒4.实数a 、b 在数轴上的对应点的位置如图所示,下列式子成立的是( )A .a b >B .a b <C .0a b +>D .0a b < 5.把不等式组25322x x -≤⎧⎪⎨+<⎪⎩的解集在数轴上表示出来,正确的是( ) A .B .C .D .6.如图,在△ABC 中,AB=AC ,∠A=30°,直线a ∥b ,顶点C 在直线b 上,直线a 交AB 于点D ,交AC 于点E ,若∠1=145°,则∠2的度数是()A .30°B .35°C .40°D .45°7.下列运算正确的是( )A =B =C 2=-D =8.已知a =2b ,则a 与b 的关系是( ) A .a b = B .a b =- C .1a b = D .1ab =-9.如图,在ABC V 中,ACB ∠为钝角.用直尺和圆规在边AB 上确定一点 D .使AD C 2B ∠=∠,则符合要求的作图痕迹是( )A .B .C .D .10.有关部门规定,民用住宅居室的窗户面积必须小于该室内地面面积.采光标准是:窗户面积和地面面积的比不小于10%.显然,这个比值越大,住宅的采光条件越好.如果同时增加相等的窗户面积和地面面积,那么采光条件的变化情况是( )A .变好了B .变差了C .没变化D .不能判断11.已知AE AB ⊥且AE AB BC CD =⊥,且BC CD =,点E ,B ,D 到直线l 的距离分别为6,3,4,则图中凹多边形ABCDE 的面积是( )A .50B .62C .65D .6812.关于x 的方程3﹣2x =3(k ﹣2)的解为非负整数,且关于x 的不等式组2(1)323x x k x x --≤⎧⎪+⎨≥⎪⎩有解,则符合条件的整数k 的值之和为( )A .5B .4C .3D .2二、填空题130-=.14.如果三角形三边长分别为12,k ,72,则化简25-k 得15.如图,ABC V 中,AD 是BC 边上的高,AE ,BF 分别是BAC ∠,ABC ∠的平分线,50BAC ∠=︒,60ABC ∠=︒,则EAD ACD ∠+∠=.16.如图,ABC V 中,AB AC =,AD BC ⊥于D 点,DE AB ⊥于点E ,BF AC ⊥于点F ,3cm DE =,则BF =cm .17.若关于x 的不等式mx -n >0的解集是x <13,则关于x 的不等式(m +n )x >n -m 的解集是 18.为了美化校园环境,某中学今年春季购买了A ,B 两种树苗在校园四周栽种,已知A 种树苗的单价比B 种树苗的单价多10元,用600元购买A 种树苗的棵数恰好与用450元购买B 种树苗的棵数相同.若设A 种树苗的单价为x 元,则可列出关于x 的方程为.三、解答题19.(1)计算:20(2)|3|(6)----;(2)解分式方程:22511x x =--. 20.阅读材料:运用公式法分解因式,除了常用的平方差公式和完全平方公式以外,还可以应用其他公式,如立方和与立方差公式,其公式如下:立方和公式:()()3322x y x y x xy y +=+-+ ;立方差公式:()3322()x y x y x xy y -=-++ ; 根据材料和已学知识,先化简,再求值:22332428x x x x x x ++---,其中3x =. 21.如图,AB CD ∥,以点A 为圆心,小于AC 长为半径作弧,分别交AB AC ,于E ,F 两点,再分别以E ,F 为圆心,大于12EF 长为半径作弧,两弧相交于点P ,作射线AP ,交CD 于点M .(1)若124ACD ∠=︒,求MAB ∠的度数;(2)若CN AM ⊥,垂足为N ,延长CN 交AB 于点O ,连接OM ,求证:OA OM =.22. 一个三角形三边的长分别为a ,b ,c ,设p=12(a+b+c ),根据海伦公式S=a=4,b=5,c=6,求:(1)三角形的面积S ;(2)长为c 的边上的高h .23.对于不等式:a x >a y (a >0且a≠1),当a >1时,x >y ;当0<a <1时,x <y ,请根据以上信息,解答以下问题:(1)解关于x 的不等式:25x ﹣1>23x+1;(2)若关于x 的不等式:a x ﹣k <a 5x ﹣2(a >0且a≠1),在﹣2≤x≤﹣1上存在x 的值使其成立,求k 的取值范围24.对于一个关于x 的代数式A ,若存在一个系数为正数关于x 的单项式F ,使⋅A F 2x的结果是所有系数均为整数的整式,则称单项式F 为代数式A 的“整系单项式” ,例如:当==321A ,F 2x x 时,由于⋅=3212x x 12x,故32x 是21x 的整系单项式; 当==521A ,F 6x x 时,由于⋅=52216x x 3x 2x ,故56x 是21x 的整系单项式; 当=-=234A 3,F x 2x 3 时,由于⎛⎫- ⎪⎝⎭=-243x 332x 2x 12x,故243x 是-332x 的整系单项式; 当=-=43A 3,F 8x 2x 时,由于⎛⎫- ⎪⎝⎭=-43238x 32x 12x 6x 2x,故48x 是-332x 的整系单项式; 显然,当代数式A 存在整系单项式F 时,F 有无数个,现把次数最低,系数最小的整系单项式F 记为()F A ,例如:⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭322134F 2x ,F 3x 2x 3x . 阅读以上材料并解决下列问题:⑴.判断:当=1A x 时,=3F 2x A 的整系单项式(填“是”或“不是”); ⑵.当=-2A 2x时,()F A = ; ⑶.解方程:()+-=-⎛⎫-- ⎪⎝⎭F x 14112x 2F 12x . 25.某校计划组织240名师生到红色教育基地开展革命传统教育活动.旅游公司有A ,B 两种客车可供租用,A 型客车每辆载客量45人,B 型客车每辆载客量30人.若租用4辆A 型客车和3辆B 型客车共需费用10700元;若租用3辆A 型客车和4辆B 型客车共需费用10300元.(1)求租用A ,B 两型客车,每辆费用分别是多少元;(2)为使240名师生有车坐,且租车总费用不超过1万元,你有哪几种租车方案?哪种方案最省钱?26.如图,在 ABC V 中, 2AB AC ==,40B ∠=︒,点 D 在线段 BC 上运动(D 不与 B ,C 重合),连接AD ,作 40ADE ∠=︒,DE 与AC 交于点E .(1)当 115ADB ∠=︒时, BAD ∠=;当点 D 从 B 向 C 运动时,BAD ∠逐渐变(填大或小).(2)当2==时,ABDDC AB△与DCE△是否全等?请说明理由.(3)在点D的运动过程中,ADEV的形状可以是等腰三角形吗?若可以,请直接写出∠的度数;若不可以,请说明理由.BDA。

湘教版八年级数学上册期末试卷及答案

湘教版八年级数学上册期末试卷及答案

湘教版八年级数学上册期末试卷一、选择题(每题3分,共24分)1.点A 的位置如图所示,则点A 所表示的数可能是( ) A .-2.6 B .- 2 C .-23D .1.4 2.若x <y 成立,则下列不等式成立的是( )A .x -2<y -2B .4x >4yC .-x +2<-y +2D .-3x <-3y3.下列计算正确的是( )A .(a 2)3=a 5B .a 2·a =a 3C .a 9÷a 3=a 3D .a 0=14.若一个三角形的两边长分别是3和6,则第三边长不可能是( )A .6B .7C .8D .95.使式子3-x x有意义的实数x 的取值范围是( ) A .x ≤3 B .x ≤3且x ≠0 C .x <3 D .x <3且x ≠06.下列尺规作图,能判断AD 是△ABC 边上的高的是( )7.下列说法:①“两直线平行,同位角相等”与“同位角相等,两直线平行”互为逆命题;②命题“如果两个角相等,那么它们都是直角”的逆命题为假命题;③命题“如果-a =5,那么a =-5”的逆命题为“如果-a ≠5,那么a ≠-5”,其中正确的有( )A .0个B .1个C .2个D .3个8.将一副三角板按如图所示的方式放置,则∠CAF 等于( )A .50°B .60°C .75°D .85°二、填空题(每题4分,共32分)9.实数-3,-1,0,3中,最小的数是________.10.若分式x x 2+2的值为正数,则实数x 的取值范围是________. 11.化简x 1-x +1x -1的值为________. 12.不等式3(x -1)≤x +2的正整数解是________.13.已知0<a <2,化简:a +a 2-4a +4=________.14.已知射线OM .以点O 为圆心,任意长为半径画弧,与射线OM 交于点A ,再以点A 为圆心,AO 长为半径画弧,两弧交于点B ,画射线OB ,如图所示,则∠AOB =________度. 15.已知关于x 的不等式3x +mx >-5的解集如图所示,则m 的值为________.16.如图,BD 是∠ABC 的平分线,AD ⊥BD ,垂足为D ,∠DAC =20°,∠C =38°,则∠BAD =________.三、解答题(17题8分,18题9分,19题5分,20题6分, 21,22题每题8分,23,24题每题10分,共64分)17.计算:(1)16+⎝ ⎛⎭⎪⎫-12-1×(π-1)0-|7-3|+3-27;(2)(-2)2-9+(2-1)0+⎝ ⎛⎭⎪⎫13-1;(3)(3+1)(3-1)+12;(4)⎝ ⎛⎭⎪⎫2a 2-b 2-1a 2-ab ÷a a +b.18.解不等式(组)或分式方程:(1)3x +24≥2x -13-1;(2)⎩⎪⎨⎪⎧4-2x <7(2-x ),12x -2(x -2)≤4+3x ;(3)3x -1-2x +1=6x 2-1.19.先化简,再求值:⎝ ⎛⎭⎪⎫1-4x +3÷,其中x =2+1.20.如图,已知点A ,F ,E ,C 在同一直线上,AB ∥CD ,∠ABE =∠CDF ,AF=CE .求证:△ABE ≌△CDF .21.某商店用1 000元购进一种水果来销售,过了一段时间,又用2 800元购进这种水果,所购进的数量是第一次购进数量的2倍,但每千克的价格比第一次购进的贵了2元.(1)求该商店第一次购进水果多少千克;(2)该商店两次购进的水果按照相同的标价销售一段时间后,将最后剩下的50千克按照标价的半价出售,出售完全部水果后,利润不低于3 100元,则最初每千克水果的标价至少是多少元?22.如图,在△ABC中,AB=AC,∠A=36°,AB的垂直平分线DE分别交边AB,AC于点E,D,连接BD.(1)求∠DBC的度数;(2)若BC=4,求AD的长.23.在△ABC中,点Q是BC边上的中点,过点A作与线段BC相交的直线l,过点B作BN⊥l于N,过点C作CM⊥l于M.(1)如图①,若直线l经过点Q,求证:QM=QN.(2)如图②,若直线l不经过点Q,连接QM,QN,那么(1)中的结论是否成立?若成立,给出证明过程;若不成立,请说明理由.(提示:直角三角形斜边上的中线等于斜边的一半.)24.已知等边三角形ABC和等边三角形BDE,点D始终在射线AC上运动.(1)如图①,当点D在AC边上时,连接CE,求证:AD=CE.(2)如图②,当点D不在AC边上而在AC边的延长线上时,连接CE,(1)中的结论是否成立?并给予证明.(3)如图③,当点D不在AC边上而在AC边的延长线上时,条件中“等边三角形BDE”改为“以BD为斜边作Rt△BDE,且∠BDE=30°”,其余条件不变,连接CE并延长,与AB的延长线交于点F,求证:AD=BF.答案一、1.B 2.A 3.B 4.D 5.B 6.D 7.B 8.C二、9.-3 10.x >0 11.-112.1,2 点拨:去括号,得3x -3≤x +2,移项、合并同类项,得2x ≤5,系数化为1,得x ≤2.5,则不等式的正整数解为1,2.13.2 点拨:∵0<a <2,∴a -2<0,∴a +a 2-4a +4=a +|a -2|=a +(2-a )=2.14.6015.-12 点拨:合并同类项,得(3+m )x >-5,结合题图把系数化为1,得x >-53+m ,则有-53+m=-2,解得m =-12. 16.58° 点拨:设∠ABD =α,∠BAD =β,∵AD ⊥BD ,∴α+β=90°.① ∵BD 是∠ABC 的平分线,∴∠ABC =2∠ABD =2α.∵∠ABC +∠BAC +∠C =180°,∴2α+β+20°+38°=180°.②联立①②可得⎩⎨⎧α+β=90°,2α+β=122°,解得⎩⎨⎧α=32°,β=58°,∴∠BAD =58°. 三、17.解:(1)原式=4-2-3+7-3=7-4.(2)原式=4-3+1+3=5.(3)原式=3-1+2 3=2+2 3.(4)原式=⎣⎢⎡⎦⎥⎤2(a +b )(a -b )-1a (a -b )·a +b a =⎣⎢⎡⎦⎥⎤2a a (a +b )(a -b )-a +b a (a -b )(a +b )·a +b a=a -b a (a +b )(a -b )·a +b a =1a 2.18.解:(1)3x +24≥2x -13-1,去分母,得3(3x +2)≥4(2x -1)-12,去括号,得9x +6≥8x -4-12,移项,得9x -8x ≥-4-12-6,合并同类项,得x ≥-22.(2)⎩⎪⎨⎪⎧4-2x <7(2-x ),①12x -2(x -2)≤4+3x ,② 解①,得x <2,解②,得x ≥0.故不等式组的解集为0≤x <2.(3)3x -1-2x +1=6x 2-1, 去分母、去括号,得3x +3-2x +2=6,解得x =1,经检验x =1是增根,分式方程无解.19.解:⎝ ⎛⎭⎪⎫1-4x +3÷x 2-2x +12x +6=x +3-4x +3·2(x +3)(x -1)2 =2x -1,当x =2+1时,原式=22+1-1= 2. 20.证明:∵AB ∥CD ,∴∠BAC =∠DCA .∵AF =CE ,∴AF +EF =EF +CE ,即AE =CF .在△ABE 和△CDF 中,⎩⎨⎧∠BAE =∠DCF ,∠ABE =∠CDF ,AE =CF ,∴△ABE ≌△CDF (AAS).21.解:(1)设该商店第一次购进水果x 千克,则第二次购进这种水果2x 千克.由题意得1 000x +2=2 8002x ,解得x =200.经检验,x =200是所列分式方程的解.答:该商店第一次购进水果200千克.(2)设最初每千克水果的标价是 y 元,则(200+200×2-50)·y +50×12y -1 000-2800≥3 100,解得y ≥12.答:最初每千克水果的标价至少是12元.22.解:(1)∵AB =AC ,∠A =36°,∴∠ABC =∠C =12×(180°-36°)=72°.∵DE 垂直平分AB ,∴AD =BD ,∴∠DBA =∠A =36°,∴∠DBC =∠ABC -∠ABD =36°.(2)由(1)得∠DBC =36°,∠C =72°,∴∠BDC =180°-∠C -∠DBC =72°,∴∠C =∠BDC ,∴BC =BD .∵AD =BD ,∴AD =BC =4.23.(1)证明:∵点Q 是BC 边上的中点,∴BQ =CQ .∵BN ⊥l ,CM ⊥l ,∴∠BNQ =∠CM Q =90°.又∵∠BQN =∠CQM ,∴△BQN ≌△CQM (AAS).∴QM =QN .(2)解:仍然成立.证明:延长NQ 交CM 于E ,∵点Q 是BC 边上的中点,∴BQ =CQ ,∵BN ⊥l ,CM ⊥l ,∴BN ∥CM ,∴∠NBQ =∠ECQ ,又∵∠BQN =∠CQE ,∴△BQN ≌△CQE (ASA).∴QN =QE .∵CM ⊥l ,∴∠NME =90°,∴QM =QN .24.(1)证明:∵△ABC ,△BDE 都是等边三角形,∴AB =BC ,BD =BE ,∠ABC =∠DBE =60°,∴∠ABC -∠DBC =∠DBE -∠DBC ,即∠ABD =∠CBE .在△ABD 和△CBE 中,⎩⎨⎧AB =CB ,∠ABD =∠CBE ,BD =BE ,∴△ABD ≌△CBE (SAS),∴AD =CE .(2)解:成立.证明:∵△ABC ,△BDE 都是等边三角形,∴AB =BC ,BD =BE ,∠ABC =∠DBE =60°,∴∠ABC +∠CBD =∠DBE +∠CBD ,即∠ABD =∠CBE .在△ABD 和△CBE 中,⎩⎨⎧AB =CB ,∠ABD =∠CBE ,BD =BE ,∴△ABD ≌△CBE (SAS),∴AD =CE .(3)证明:如图,延长BE 至H 使EH =BE ,连接CH ,DH .∵BE =EH ,DE ⊥BH ,∴DB =DH ,∠BDE =∠HDE =30°,∴∠BDH =60°,∴△DBH 是等边三角形,∴BD =BH ,∠DBH =60°.∵△ABC 是等边三角形,∴∠ABC =60°,AB =CB .∴∠ABC +∠CBD =∠DBH +∠CBD ,即∠ABD =∠CBH .在△ABD 和△CBH 中,⎩⎨⎧AB =CB ,∠ABD =∠CBH ,BD =BH ,∴△ABD ≌△CBH (SAS),∴AD =CH ,∠A =∠HCB =∠ABC =60°,∴BF ∥CH ,∴∠F =∠ECH ,在△EBF 和△EHC 中,⎩⎨⎧∠BEF =∠HEC ,∠F =∠ECH ,BE =HE ,∴△EBF ≌△EHC (AAS),∴BF =CH ,∴AD =BF .湘教版八年级数学上册期末试卷2一、选择题(每题3分,共30分)1.若分式x 2-9x -3的值为0,则x 的值是( ) A .3 B .-3 C .±3 D .92.下列长度的三条线段能围成三角形的是( )A .1,2,3.5B .4,5,9C .20,15,8D .5,15,83.要使式子1+2x x -2有意义,则x 的取值范围是( ) A .x ≥12 B .x ≥-12 C .x ≥12且x ≠2 D .x ≥-12且x ≠24.化简a +1a 2-a ÷a 2-1a 2-2a +1的结果是( ) A.1a B .a C.a +1a -1 D.a -1a +15.如图,已知∠1=∠2,AC =AD ,添加下列条件:①AB =AE ;②BC =DE ;③∠C =∠D ;④∠B =∠E .其中能使△ABC ≌△AED 的条件有( )A .4个B .3个C .2个D .1个6.某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间与原计划生产450台机器所需时间相同.设原计划平均每天生产x 台机器,根据题意,下面所列方程正确的是( )A.600x +50=450xB.600x -50=450xC.600x =450x +50D.600x =450x -507.不等式x -72+1<3x -22的负整数解有( ) A .1个 B .2个 C .3个 D .4个8.已知m =⎝ ⎛⎭⎪⎫-33×(-221),则有( ) A .5<m <6 B .4<m <5 C .-5<m <-4 D .-6<m <-59.如图,过边长为1的等边三角形ABC 的边AB 上一点P ,作PE ⊥AC 于点E ,Q 为BC 延长线上一点,当AP =CQ 时,PQ 交AC 于点D ,则DE 的长为( ) A.13 B.12 C.23 D .不能确定10.如图,E ,D 分别是△ABC 的边AC ,BC 上的点,若AB =AC ,AD =AE ,则( )A .当∠B 为定值时,∠CDE 为定值B .当∠α为定值时,∠CDE 为定值C .当∠β为定值时,∠CDE 为定值D .当∠γ为定值时,∠CDE 为定值二、填空题(每题3分,共24分)11.计算:45-25×50=________. 12.⎝ ⎛⎭⎪⎫-120=________,⎝ ⎛⎭⎪⎫13-1=________,用科学记数法表示-0.000 005 03为__________.13.关于x 的不等式组⎩⎨⎧x >m -1,x >m +2的解集是x >-1,则m =________. 14.若317-a 与33a -1互为相反数,则3a 的值为________.15.若关于x 的分式方程3-2kx x -3=23-x-2有增根,则k =________. 16.等腰三角形的顶角大于90°,如果过它顶角的顶点作一直线能将它分成两个等腰三角形,则顶角的度数一定是________.17.如图,在△ABC 中,AB =AC ,DE 垂直平分AB 交AC 于点E ,垂足为点D .若△ABC 的周长为28,BC =8,则△BCE 的周长为________.18.如图,BD 是∠ABC 的平分线,AD ⊥BD ,垂足为D ,∠DAC =20°,∠C =38°,则∠BAD =________.三、解答题(20,21题每题6分,24,25题每题12分,其余每题10分,共66分)19.(1)计算:212+3113-513-2348;(2)已知x =2+3,y =2-3,求代数式⎝ ⎛⎭⎪⎫x +y x -y -x -y x +y ·⎝ ⎛⎭⎪⎫1x 2-1y 2的值.20.解分式方程:(1)2-x 3+x =12+1x +3; (2)2x +9x +3-1x -3=5-3x -2x .21.已知x =1是不等式组⎩⎪⎨⎪⎧3x -52≤x -2a ,3(x -a )<4(x +2)-5的解,求a 的取值范围.22.如图,在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,C,D,E三点在同一直线上,连接BD交AC于点F.(1)求证:△BAD≌△CAE;(2)猜想BD,CE有何特殊位置关系,并说明理由.23.如图,AD是△ABC的角平分线.(1)若AB=AC+CD,求证:∠ACB=2∠B;(2)当∠ACB=2∠B时,AC+CD与AB的数量关系如何?说说你的理由.24.某服装店用4 500元购进一批衬衫,很快售完.服装店老板又用2 100元购进第二批该款式的衬衫,进货量是第一次的一半,但进价每件比第一批降低了10元.(1)这两次各购进这种衬衫多少件?(2)若第一批衬衫的售价是200元/件,老板想让这两批衬衫售完后的总利润不低于1 950元,则第二批衬衫每件至少要售多少元?25.已知△ABC和△DEF均为等边三角形,点D在△ABC的边AB上,点F在直线AC上;(1)若点C和点F重合(如图①),求证:AE∥BC;(2)若点F在AC的延长线上(如图②),(1)中的结论还能成立吗?给出你的结论并证明.答案一、1.B2.C3.D点拨:根据二次根式和分式有意义的条件,即被开方数大于或等于0,分母不等于0,可以得到⎩⎨⎧1+2x ≥0,x -2≠0,解得x ≥-12且x ≠2.故选D. 4.A 点拨:原式=a +1a (a -1)·(a -1)2(a +1)(a -1)=1a . 5.B 6.A 7.A8.A 点拨:⎝ ⎛⎭⎪⎫-33×(-221)=233×21=27=28,因为25<28<36,所以5<28<6,故选A.9.B 点拨:过P 作PF ∥BC 交AC 于点F .由△ABC 为等边三角形,易得△APF也是等边三角形,∴AP =PF .∵AP =CQ ,∴PF =CQ .又∵PF ∥CQ ,∴易得△PFD ≌△QCD .∴DF =DC .∵PE ⊥AF ,且PF =P A ,∴AE =EF .∴DE =DF +EF =12CF +12AF =12AC =12×1=12.10.B 点拨:∵AB =AC ,∴∠B =∠C .∵AD =AE ,∴∠ADE =∠AED =∠γ=∠CDE +∠C .由∠ADC =∠ADE +∠CDE = ∠CDE +∠C +∠CDE =2∠CDE +∠C =∠B +∠BAD ,可得2∠CDE = ∠BAD =∠α,∴∠CDE =12∠α.故当∠α为定值时,∠CDE 也为定值.二、11. 512.1;3;-5.03×10-613.-3 点拨:因为m +2>m -1,所以m +2=-1,所以m =-3.14.-2 点拨:由题知317-a =-33a -1,可得17-a =-(3a -1),∴2a =-16,∴a =-8.∴3a =-2.15.56 点拨:因为原分式方程有增根,所以增根为x =3.原分式方程化为整式方程为3-2kx =-2-2(x -3),把x =3代入,解得k =56.16.108° 点拨:在△ABC 中,设∠B =∠C =α.如图①,若AC =CD ,DA =DB ,则∠DAB =α.∴∠CDA =2α=∠CAD ,∴∠BAC =3α.由α+α+3α=180°,得α=36°,∴∠BAC =3α=108°.如图②,若AD =CD ,AD =BD ,则∠BAD =∠CAD =α,∴4α=180°,∴α=45°,∴∠BAC =2α=90°,不合题意.17.18 点拨:因为△ABC 的周长为AB +AC +BC =AB +AC +8=28,AB =AC ,所以AB =AC =10.又因为DE 垂直平分AB ,所以AE =BE .所以△BCE 的周长为BE +EC +BC =AE +EC +BC =AC +BC =10+8=18. 18.58° 点拨:设∠ABD =α,∠BAD =β,∵AD ⊥BD ,∴α+β=90°.①∵BD 是∠ABC 的平分线,∴∠ABC =2∠ABD =2α.∵∠ABC +∠BAC +∠C =180°,∴2α+β+20°+38°=180°.②联立①②可得⎩⎨⎧α+β=90°,2α+β=122°, 解得⎩⎨⎧α=32°,β=58°,∴∠BAD =58°. 三、19.解:(1)原式=43+3×233-433-23×43=43+23-43=2 3.(2)原式=(x +y )2-(x -y )2(x +y )(x -y )·y 2-x 2x 2y 2=4xy -(x +y )(y -x )·(y +x )(y -x )x 2y 2=-4xy . 当x =2+3,y =2-3时,原式=-44-3=-4. 20.解:(1)方程两边同乘2(x +3),得2(2-x )=x +3+2.整理,得-3x =1,所以x =-13.经检验,x =-13是原分式方程的解.(2)方程两边同乘x (x +3)(x -3),得(2x +9)(x -3)x -x (x +3)=5x (x +3)(x -3)-(3x -2)(x +3)(x -3).整理,得-12x =-18,所以x =32.经检验,x =32是原分式方程的解.21.解:∵x =1是原不等式组的解,∴⎩⎪⎨⎪⎧3-52≤1-2a ,①3(1-a )<4×(1+2)-5,② 解不等式①,得a≤1,解不等式②,得a >-43.故a 的取值范围为-43<a ≤1.22.(1)证明:∵∠BAC =∠DAE =90°,∴∠BAC +∠CAD =∠DAE +∠CAD ,即∠BAD =∠CAE .在△BAD 和△CAE 中,AB =AC ,∠BAD =∠CAE ,AD =AE ,∴△BAD ≌△CAE.(2)解:BD ⊥CE .理由如下:由(1)可知△BAD ≌△CAE ,∴∠ABD =∠ACE .∵∠BAC =90°,∴∠ABD +∠AFB =90°.又∵∠AFB =∠DFC ,∴∠ACE +∠DFC =90°,∴∠BDC =90°,即BD ⊥CE .23.(1)证明:延长A C 至E ,使CE =CD ,连接DE .∵AB =AC +CD ,∴AB =AE .∵AD 平分∠BAC ,∴∠BAD =∠EAD .在△BAD 与△EAD 中,⎩⎨⎧AB =AE ,∠BAD =∠EAD ,AD =AD ,∴△BAD ≌△EAD .∴∠B =∠E.∵CD =CE ,∴∠CDE =∠E .∵∠ACB =∠CDE +∠E ,∴∠ACB =2∠E =2∠B .(2)解:AB =AC +CD .理由:在AC 的延长线上取点F ,使CF =CD ,连接DF . ∴∠CDF =∠F ,又∵∠ACB =∠CDF +∠F ,∴∠ACB =2∠F .∵∠ACB =2∠B ,∴∠B =∠F .在△BAD 与△F AD 中,⎩⎨⎧∠B =∠F ,∠BAD =∠F AD (角平分线的定义),AD =AD ,∴△BAD ≌△F AD .∴AB =AF =AC +CF =AC +CD .24.解:(1)设第一批这种衬衫购进了x 件,则第二批购进了12x 件.根据题意,可得4 500x -10=2 10012x,解得x =30,经检验,x =30是原方程的根,且符合题意.∴12x =12×30=15(件).答:两次分别购进这种衬衫30件,15件.(2)设第二批衬衫每件的售价为m 元.第一批衬衫每件的进价为4 500÷30=150(元),第二批衬衫每件的进价为150-10=140(元),∴(200-150)×30+15(m -140)≥1 950,解得m ≥170.答:第二批衬衫每件至少要售170元.25.(1)证明:∵△ABC 与△CDE 均为等边三角形,∴BC =AC ,DC =EC ,∠B =∠BCA =∠DCE =60°,∴∠BCD =∠ACE .易得△BCD ≌△ACE ,∴∠B =∠EAC .又∵∠B =∠ACB ,∴∠EAC =∠ACB .∴AE ∥BC .(2)解:若点F 在AC 的延长线上,(1)中的结论仍然成立,即AE ∥BC . 证明:过点F 作FM ∥BC 交AB 的延长线于点M .∵△ABC 为等边三角形,∴△AFM 也是等边三角形.∴∠M =∠AFM =60°.同(1)可证△FDM ≌△FEA ,∴∠EAF=∠M=60°. ∴∠AFM=∠EAF.∴AE∥FM.又∵FM∥BC,∴AE∥BC.。

湘教版八年级数学上册期末考试卷【加答案】

湘教版八年级数学上册期末考试卷【加答案】

湘教版八年级数学上册期末考试卷【加答案】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1的算术平方根为( )A. BC .2±D .22.若()(1)x m x +-的计算结果中不含x 的一次项,则m 的值是( )A .1B .-1C .2D .-2.3.对于函数y =2x ﹣1,下列说法正确的是( )A .它的图象过点(1,0)B .y 值随着x 值增大而减小C .它的图象经过第二象限D .当x >1时,y >04.《孙子算经》中有一道题,原文是:“今有木,不知长短.引绳度之,余绳四足五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺.将绳子对折再量长木,长木还剩余1尺,问木长多少尺,现设绳长x 尺,木长y 尺,则可列二元一次方程组为( )A . 4.5112y x y x -=⎧⎪⎨-=⎪⎩B . 4.5112x y y x -=⎧⎪⎨-=⎪⎩C . 4.5112x y x y -=⎧⎪⎨-=⎪⎩D . 4.5112y x x y -=⎧⎪⎨-=⎪⎩ 512a =-,则a 的取值范围是( )A .12a <B .12a ≤C .12a >D .12a ≥ 6.下列二次根式中能与)ABCD7.老师设计了接力游戏,用合作的方式完成分式化简,规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图所示:接力中,自己负责的一步出现错误的是()A.只有乙B.甲和丁C.乙和丙D.乙和丁8.如图,已知点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A.48 B.60C.76 D.808.如图,在矩形AOBC中,A(–2,0),B(0,1).若正比例函数y=kx的图象经过点C,则k的值为()A.–12B.12C.–2 D.210.如图,已知BD是ABC的角平分线,ED是BC的垂直平分线,90BAC∠=︒,3AD=,则CE的长为()A.6 B.5 C.4 D.33二、填空题(本大题共6小题,每小题3分,共18分)116的平方根是.2x1-有意义,则x的取值范围是▲.3.分解因式6xy2-9x2y-y3 = _____________.4.如图,在△ABC中,BO、CO分别平分∠ABC、∠ACB.若∠BOC=110°,则∠A=________.5.如图,在平面直角坐标系中,△AOB≌△COD,则点D的坐标是__________.6.如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则△ABC的面积是________.三、解答题(本大题共6小题,共72分)2.解方程组(1)43524x yx y+=⎧⎨-=⎩(2)12163213x yx y--⎧-=⎪⎨⎪+=⎩2.化简求值:[4(xy-1)2-(xy+2)(2-xy)]÷14xy,其中x=-2, y=15.3.已知a23+,求229443a a aa--+-4.如图,过点A (2,0)的两条直线1l ,2l 分别交y 轴于B ,C ,其中点B 在原点上方,点C 在原点下方,已知AB=13.(1)求点B 的坐标;(2)若△ABC 的面积为4,求2l 的解析式.5.如图,直线l 1:y 1=﹣x+2与x 轴,y 轴分别交于A ,B 两点,点P (m ,3)为直线l 1上一点,另一直线l 2:y 2=12x+b 过点P . (1)求点P 坐标和b 的值;(2)若点C 是直线l 2与x 轴的交点,动点Q 从点C 开始以每秒1个单位的速度向x 轴正方向移动.设点Q 的运动时间为t 秒.①请写出当点Q 在运动过程中,△APQ 的面积S 与t 的函数关系式; ②求出t 为多少时,△APQ 的面积小于3;③是否存在t 的值,使△APQ 为等腰三角形?若存在,请求出t 的值;若不存在,请说明理由.6.某经销商从市场得知如下信息:他计划用4万元资金一次性购进这两种品牌手表共100块,设该经销商购进A 品牌手表x块,这两种品牌手表全部销售完后获得利润为y元.(1)试写出y与x之间的函数关系式;(2)若要求全部销售完后获得的利润不少于1.26万元,该经销商有哪几种进货方案;(3)选择哪种进货方案,该经销商可获利最大;最大利润是多少元.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、A3、D4、B5、B6、B7、D8、C9、A10、D二、填空题(本大题共6小题,每小题3分,共18分)1、±2.2、x1≥.3、-y(3x-y)24、40°5、(-2,0)6、12三、解答题(本大题共6小题,共72分)1、(1)21xy=⎧⎨=-⎩;(2)53xy=⎧⎨=⎩.2、20xy-32,-40.3、7.4、(1)(0,3);(2)112y x=-.5、(1)b=72;(2)①△APQ的面积S与t的函数关系式为S=﹣32t+272或S=32t﹣272;②7<t<9或9<t<11,③存在,当t的值为3或或9﹣或6时,△APQ为等腰三角形.6、(1)y=140x+6000;(2)三种,答案见解析;(3)选择方案③进货时,经销商可获利最大,最大利润是13000元.。

湘教版数学八年级上册期末测试卷及答案(共4套)

湘教版数学八年级上册期末测试卷及答案(共4套)

湘教版数学八年级上册期末测试卷(一)(时间:120分分值:150分)一、选择题:(每小题4分,共40分)1.(4分)若,则2a+b﹣c等于()A.0 B.1 C.2 D.32.(4分)已知甲、乙、丙三数,甲=6+,乙=2+,丙=,则甲、乙、丙的大小关系为()A.甲=乙=丙 B.丙<甲<乙C.甲<丙<乙D.丙<乙<甲3.(4分)解不等式中,出现错误的一步是()A.6x﹣3<4x﹣4 B.6x﹣4x<﹣4+3 C.2x<﹣1 D.4.(4分)不等式的正整数解有()A.2个B.3个C.4个D.5个5.(4分)如果有意义,那么x的取值范围是()A.x>1 B.x≥1 C.x≤1 D.x<16.(4分)的相反数是()A.﹣B.C.﹣D.7.(4分)设,a在两个相邻整数之间,则这两个整数是()A.1和2 B.2和3 C.3和4 D.4和58.(4分)已知a<b,则化简二次根式的正确结果是()A.B.C.D.9.(4分)已知实数a,b,c在数轴上的位置是:a在b的左边,b在0的左边,c在0的右边,则计算a+|b﹣a|+|b﹣c|的结果是()A.c B.2b+c C.2a﹣c D.﹣2b+c10.(4分)如图所示,数轴上表示3、的对应点分别为C、B,点C是AB的中点,则点A表示的数是()A.B.C.D.二、填空题:(每小题4分,共32分)11.(4分)用不等式表示“6与x的3倍的和大于15”.12.(4分)不等式的最大正整数解是,最小正整数解是.13.已知:2a﹣4、3a﹣1是同一个正数的平方根,则这个正数是.14.一个负数a的倒数等于它本身,则=;若一个数a的相反数等于它本身,则﹣5+2=.15.(4分)比较大小:﹣3﹣2.16.(4分)如果最简二次根式与是同类二次根式,那么a=.17.(4分)与的关系是.18.(4分)观察下列各式:①;②=3;③,…请用含n(n≥1)的式子写出你猜想的规律:.三、解答题:(共6小题,共78分)19.(32分)计算:(1);(2);(3);(4).20.(8分)x取什么值时,代数式5(x﹣1)﹣2(x﹣2)的值大于x+2的相反数.21.(10分)先化简,再求值:(﹣)÷,其中x=2.22.(10分)解方程组,并求的值.23.(10分)已知2a﹣1的平方根是±3,3a+b﹣9的立方根是2,c是的整数部分,求a+2b+c的算术平方根.24.(8分)阅读下面问题:;;.试求:(1)的值;(2)(n为正整数)的值.(3)计算:.参考答案:一、选择题。

2024年湘教版初二上学期期末数学试题与参考答案

2024年湘教版初二上学期期末数学试题与参考答案

2024年湘教版数学初二上学期期末模拟试题(答案在后面)一、选择题(本大题有10小题,每小题3分,共30分)1、一个长方形的长是8cm,宽是5cm,那么它的面积是()平方厘米。

A、40B、32C、30D、252、下列数中,哪个数是负数?()A、-3B、0C、3D、-53、下列四个命题中,正确的个数是:A、2B、3C、4D、53.三角形的三条中线相交于一点。

(正确)4.在同一平面内,垂直于同一条直线的两条直线互相平行。

(正确)5.三角形的一个外角等于不相邻的两个内角之和。

(正确)4、一个等腰三角形的两边长分别为4和8,那么这个等腰三角形的周长为:A、12B、20C、16D、12或205、小明一家去公园游玩,他们乘坐公交车去,票价是每人3元,回家时改乘出租车,出租车起步价是7元,之后每行驶1公里收费1.5元。

若他们往返共行驶了5公里,则他们回家的打车费用是:A. 12元B. 15元C. 17.5元D. 20元6、一个二次函数的图象开口向上,顶点坐标为(-2,1),且过点(1,4)和(4,0)。

则该二次函数的解析式是:A. y = -(x+2)² + 1B. y = (x+2)² + 1C. y = (x-2)² - 1D. y = -(x-2)² + 17、已知函数(y=2x2−4x+3)的图像的顶点坐标是:A. (1, 1)B. (2, 1)C. (1, -1)D. (2, -1)8、在等腰三角形(ABC)中,底边(BC)的长度为 6,腰(AB=AC=8)。

则该三角形的面积(S)为:A. 18B. 24C. 30D. 369、计算:(√16−√9)。

A、1B、2C、3D、4 10、下列哪个图形不是中心对称图形?A、正方形B、圆C、等边三角形D、菱形二、填空题(本大题有5小题,每小题3分,共15分)1、小明用直尺和量角器画了一个直角三角形,测得其两个锐角的度数分别为45°和x°。

湘教版八年级上册数学期末考试试卷附答案

湘教版八年级上册数学期末考试试卷附答案

湘教版八年级上册数学期末考试试题一、选择题。

(每小题只有一个答案正确)1.已知a b <,下列式子成立的是( )A .22a b +>+B .44a b <C .33a b -<-D .如果0c <,那么a b c c< 2.如图,过△ABC 的顶点A ,作BC 边上的高,以下作法正确的是( ) A .B .C .D . 3.下列计算24(2)a -的结果中,正确的是( )A .616aB .68aC .816aD .88a4.三角形的两边长分别为5cm 和7cm ,则第三边长可能为( )A .1cmB .2cmC .5cmD .12cm5.若关于x 的分式方程3x x -=2﹣3-m x 有增根,则m 的值为( ) A .﹣3B .2C .3D .不存在 6.分式方程23121x x x --=+的解为( ) A .16x =- B .16x = C .13x = D .12x = 7.不等式组2351x x ⎧-≥⎪⎨⎪+<-⎩的解集为( )A .6x ≥-B .6x >-C .6x ≤-D .6x <-8.如图,在锐角△ABC 中,8AB =,16ABC S ∆=,BAC ∠的平分线交BC 于点D ,且AD BC ⊥,点,M N 分别是AD 和AB 上的动点,则BM MN +的最小值是( )A .4B .5C .6D .8二、填空题9.已知:△ABC ≌△A′B′C′,∠A=∠A′=80°,∠B=∠B′=60°,则∠C ′=_______度.10.如图,在△ABC 中,∠C =90°,点D 在AC 上,DE ∥AB ,若∠CDE =165°,则∠B 的度数为_______.11.化简2242()44224x x x x x x -+÷++++的结果是_______. 12.如图,△ABC 是等边三角形,延长BC 到点D ,使CD =AC ,连接AD .则CAD ∠=_______.13.已知:11x x -=,则221x x+=_______. 14.某市为绿化环境计划植树3000棵,实际劳动中每天植树的数量比原计划多30%,结果提前5天完成任务.若设原计划每天植树x 棵,则根据题意可列方程为_______. 15.如图,在Rt ABC 中,90C ∠=︒,22B ∠=︒,PQ 垂直平分AB ,垂足为Q ,交BC 于点P .按以下步骤作图:①以点A 为圆心,以适当的长为半径作弧,分别交边AC ,AB 于点D ,E ;②分别以点D ,E 为圆心,以大于12DE 的长为半径作弧,两弧相交于点F ;⑤作射线AF .若AF 与PQ 的夹角为α,则α=_______°.16.已知方程232a a a -+=,且关于x 的不等式组x a x b ≥⎧⎨≤⎩只有3个整数解,那么b 的取值范围是_______.三、解答题17.解方程4233x x x x -=--.1823(2)3-+-+.19.解不等式组2121533324()2x x x x --⎧+≥⎪⎪⎨⎪-≤-⎪⎩.20.先化简,再求值:2231693x x x x x x x x -++÷+-+-,其中x =21.如图,已知:AB =AC ,BD =CD ,点P 是AD 延长线上的一点.求证:PB =PC .22.如图,C 为线段AB 上一点,AD ∥EB ,AC =BE ,AD =BC .CF 平分∠DCE .(1)求证:△ACD ≌△BEC ;(2)问:CF 与DE 的位置关系?23.某商店准备购进A ,B 两种商品, A 种商品每件的进价比B 种商品每件的进价多20元,用3000元购进A 种商品和用1800元购进B 种商品的数量相同.(1)A 种商品每件的进价和B 种商品每件的进价各是多少元?(2)商店计划用不超过1560元的资金购进A ,B 两种商品共40件,其中A 种商品的数量不低于B 种商品数量的一半,该商店有几种进货方案?24.在△ABC 中,AB =AC ,点D 是直线BC 上一点(不与B 、C 重合),以AD 为一边在AD 的右侧作△ADE ,使AD =AE ,∠DAE =∠BAC ,连接CE .(1)如图1,当点D 在线段BC 上,如果∠BAC =90°,则∠BCE 为多少?说明理由; (2)设∠BAC =α,∠BCE =β.①如图2,当点D 在线段BC 上移动,则α,β之间有怎样的数量关系?请说明理由; ②当点D 在直线BC 上移动,则α,β之间有怎样的数量关系?请直接写出你的结论,不需证明.参考答案1.B【分析】根据不等式的基本性质,注意判断选项,即可得到答案.【详解】∵a b <,∴22a b +<+,故A 不成立,∵a b <,∴44a b <,故B 成立,∵a b <,∴33a b ->-,故C 不成立,∵a b <,0c <, ∴a b c c>,故D 不成立. 故选B .【点睛】本题主要考查不等式的基本性质,熟练掌握不等式的基本性质,是解题的关键. 2.A【分析】经过一个顶点作对边所在的直线的垂线段,叫做三角形的高,根据概念即可得出.【详解】根据定义可得A 是作BC 边上的高,C 是作AB 边上的高,D 是作AC 边上的高. 故选A.考点:三角形高线的作法3.C【分析】根据积的乘方法则,即可得到答案.【详解】24(2)a -=(-2)4∙(a 2)4=816a ,故选C .【点睛】本题主要考查积的乘方法则,熟练掌握“积的乘方,等于各个因式的乘方的积”是解题的关键.4.C【分析】根据三角形的三边长关系,求出第三边长范围,进而即可得到答案.【详解】∵三角形的两边长分别为5cm 和7cm ,∴7-5<第三边<5+7,即:2<第三边<12,故选C .【点睛】本题主要考查三角形的三边长关系,熟练掌握三角形的任意两边之差小于第三边,任意两边之差大于第三边,是解题的关键.5.C【详解】解:方程两边都乘x -3,得x -2(x -3)=m∵原方程有增根,∴最简公分母x -3=0,解得x =3,当x =3时,m =3故m 的值是3故选C .6.B【分析】通过去分母,去括号,移项合并同类项,未知数系数化为1,即可求解.【详解】23121x x x--=+, 去分母得: (23)12(1)x x x x x --+=+,化简得:-6x=-1,解得:x=16, 经检验:x=16是方程的解, ∴分式方程的解为:x=16. 故选B .【点睛】本题主要考查解分式方程,熟练掌握解分式方程的步骤,是解题的关键,注意分式方程的解要检验.7.D【分析】分别求出每个不等式的解,再取公共部分,即可求解.【详解】2351x x ⎧-≥⎪⎨⎪+<-⎩①②, 由①得:x≤-6,由②得:x <-6,∴不等式组的解为:6x <-.故选D .【点睛】本题主要考查解一元一次不等式组,熟练掌握“大大取大,小小取小,大小小大中间找”,是解题的关键.8.A【分析】作BH ⊥AC ,垂足为H ,交AD 于M′点,过M′点作M′N′⊥AB ,垂足为N′,根据AD 是∠BAC 的平分线可知M′H =M′N′,则BM′+M′N′为所求的最小值,最小值为BH 的长,进而即可求解.【详解】解:如图,作BH ⊥AC ,垂足为H ,交AD 于M′点,过M′点作M′N′⊥AB ,垂足为N′, ∵AD 是∠BAC 的平分线,∴M′H =M′N′,则BM′+M′N′= BM′+ M′H=BH ,∴BH 是点B 到直线AC 上各个点的最短距离,∴BM MN +的最小值= BH ,∵BAC ∠的平分线交BC 于点D ,且AD BC ⊥,∴∠BAD=∠CAD ,∠ADC=∠ADB=90°,AD=AD ,∴∆BAD ≅∆CAD ,∴AC=AB=8, ∴12AC∙BH=16ABC S ∆=, ∴BH=4,即BM MN +的最小值是4.【点睛】本题考查的是最短路线问题,解答此类问题时要从已知条件结合图形认真思考,通过角平分线性质,垂线段最短,化两条线段的和的最小值为一条垂线段的长.9.40°【分析】根据全等三角形的性质以及三角形内角和定理,即可求解.【详解】∵△ABC≌△A′B′C′,∠A=∠A′=80°,∠B=∠B′=60°,∴∠C′=∠C=180°-80°-60°=40°,故答案是:40°.【点睛】本题主要考查全等三角形的性质以及三角形内角和定理,熟练掌握上述性质和定理是解题的关键.10.75°【分析】利用平角的定义可得∠ADE=15°,再根据平行线的性质知∠A=∠ADE=15°,再由内角和定理可得答案.【详解】解:∵∠CDE=165°,∴∠ADE=15°,∵DE∥AB,∴∠A=∠ADE=15°,∴∠B=180°−∠C−∠A=180°−90°−15°=75°.故答案是:75°.本题考查的是平行线的性质以及三角形内角和定理的运用,解题时注意:两直线平行,内错角相等.11.2【分析】先约分,再算加法,然后把除法化为乘法,进而即可求解.【详解】原式=2(2)(2)2(2)224x x x x x x ⎡⎤+-+÷⎢⎥+++⎣⎦ =()222222x x x x x -⎡⎤+÷⎢⎥+++⎣⎦ =()222222x x x x x +-⎡⎤+⋅⎢⎥++⎣⎦ =()222x x x x+⋅+ =2,故答案是:2.【点睛】本题主要考查分式的化简,掌握分式的四则混合运算法则,是解题的关键.12.30°【分析】AB =AC =BC =CD ,即可求出∠CAD =∠D ,,进而即可求解.【详解】解:∵△ABC 是等边三角形,∴∠B =∠BAC =∠ACB =60°,∵CD =AC ,∴∠CAD =∠D ,∵∠ACB =∠CAD +∠D =60°,∴∠CAD =∠D =30°,故答案是:30°.【点睛】本题考查了等边三角形的性质,等腰三角形的性质,熟练掌握等腰三角形和等边三角形的性质,是解题的关键.13.3【分析】根据完全平方公式的变形公式,即可求解.【详解】 ∵11x x-=, ∴221x x +=2212123x x ⎛⎫-+=+= ⎪⎝⎭, 故答案是:3.【点睛】本题主要考查完全平方公式的变形公式,熟练掌握222()2a b a b ab +=-+,是解题的关键. 14.3000300051.2x x-= 【分析】设原计划每天植树x 棵,则实际每天植树(1+20%)x =1.2x ,根据“原计划所用时间−实际所用时间=5”列方程即可.【详解】解:设原计划每天植树x 棵,则实际每天植树(1+20%)x =1.2x , 根据题意可得:3000300051.2x x -=, 故答案为:3000300051.2x x -=. 【点睛】本题主要考查由实际问题抽象出分式方程,解题的关键是找到题目蕴含的相等关系. 15.56°【分析】根据直角三角形两锐角互余得∠BAC =68°,由角平分线的定义得∠BAM =34°,由线段垂直平分线可得△AQM 是直角三角形,故可得∠AMQ +∠BAM =90°,即可求出α.【详解】解:∵△ABC 是直角三角形,∠C =90°,∴∠B +∠BAC =90°,∵∠B=22°,∴∠BAC=90°−∠B=90°−22°=68°,由作图知:AM是∠BAC的平分线,∴∠BAM=12∠BAC=34°,∵PQ是AB的垂直平分线,∴△AMQ是直角三角形,∴∠AMQ+∠BAM=90°,∴∠AMQ=90°−∠BAM=90°−34°=56°,∴α=∠AMQ=56°.故答案为:56°.【点睛】此题考查了直角三角形两锐角互余,角平分线的定义,线段垂直平分线的定义,对顶角相等等知识,熟练掌握相关定义和性质是解题的关键.16.3≤b<4【分析】首先解分式方程求得a的值,然后根据不等式组的解集确定x的范围,再根据只有3个整数解,确定b的范围.【详解】解:解方程232aa a-+=,两边同时乘以a得:2-a+2a=3,解得:a=1,∴关于x的不等式组x ax b≥⎧⎨≤⎩,则解集是1≤x≤b ,∵不等式组只有3个整数解,则整数解是1,2,3,∴3≤b <4.故答案是:3≤b <4.【点睛】此题考查的是一元一次不等式组的解法和解分式方程,求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.17.2x =-【分析】通过去分母,去括号、移项、合并同类项,即可求解.【详解】解:方程两边同乘()3x -,得()423x x x --=-,去括号、移项、合并同类项,得36x =-,解得2x =-.检验:2x =-时,30x -≠,∴2x =-是原分式方程的解.【点睛】本题主要考查解分式方程,熟练掌握去分母,去括号、移项、合并同类项,未知数系数化为1是解题的关键.18.1【分析】先算立方根,乘方以及绝对值,再算加减法,即可求解.【详解】原式=243-+-=1【点睛】本题主要考查实数的混合运算,熟练掌握立方根,乘方以及绝对值,是解题的关键. 19.28117x -≤≤ 【分析】分别求出各个不等式的解,再取各个解的公共部分,即可得到答案.【详解】 解:2121533324()2x x x x --⎧+≥⎪⎪⎨⎪-≤-⎪⎩①②, 由①得:3(2x-1)+15≥5(2-x),即:11x≥-2,解得:211x ≥-, 由②得:3x-2≤6-4x ,即:7x≤8,解得:87x ≤, ∴不等式组的解为:28117x -≤≤. 【点睛】 本题主要考查解一元一次不等式组,熟练掌握“大大取大,小小取小,大小小大中间找”是解题的关键.20.11x -,【分析】通过约分和通分对分式进行化简,再代入求值,即可求解.【详解】原式=()23(1)133x xx x x x x -++÷+-- =()2331(1)3x x x x x x x ---⋅++- =11(1)x x x x -++ =21(1)(1)x x x x x -++ =(1)(1)(1)x x x x +-+ =1x x- =11x-,当x=1. 【点睛】 本题主要考查分式的化简求值,熟练掌握分式的通分和约分,是解题的关键.21.见详解【分析】先证明△ABD ≌△ACD ,得∠BAP =∠CAP ,再证明△ABP ≌△ACP ,即可得到结论.【详解】证明:在△ABD 和△ACD 中,AB AC AD AD BD CD ⎧⎪⎨⎪⎩===,∴△ABD ≌△ACD ,∴∠BAP =∠CAP ,在△ABP 和△ACP 中,AB AC BAP CAP AP AP ⎧⎪∠∠⎨⎪=⎩==,∴△ABP ≌△ACP ,∴PB =PC .【点睛】本题考查全等三角形的判定和性质,,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.22.(1)证明见解析;(2)CF ⊥DE .【分析】(1)根据平行线性质求出∠A =∠B ,根据SAS 推出即可;(2)根据全等三角形的性质推出CD =CE ,根据等腰三角形性质可得CF ⊥DE.【详解】证明:(1)∵AD ∥BE ,∴∠A =∠B ,在△ACD 和△BEC 中,AD BC A B AC BE ⎧⎪∠∠⎨⎪⎩===,∴△ACD ≌△BEC (SAS );(2)∵△ACD ≌△BEC ,∴CD =CE ,又∵CF 平分∠DCE ,∴CF ⊥DE .【点睛】本题考查了平行线性质,全等三角形的性质和判定,等腰三角形性质的应用,注意:全等三角形的判定定理有SAS 、ASA 、AAS 、SSS ,全等三角形的对应边相等,对应角相等. 23.(1)A 种商品每件的进价为50元,B 种商品每件的进价是30元;(2)该商店有5种进货方案.【分析】(1)设A 种商品每件的进价为x 元,则B 种商品每件的进价是(x−20)元,由题意得关于x 的分式方程,求解并检验,然后作答即可;(2)设购进A 种商品a 件,则购进B 种商品(40−a )件,由题意得关于a 的不等式组,解得a 的取值范围,再取整数解,则方案数可得.【详解】解:(1)设A 种商品每件的进价为x 元,则B 种商品每件的进价是(x−20)元, 由题意得:3000180020x x =-, 解得:x =50,经检验,x =50是原方程的解且符合实际意义.50−20=30(元),答:A 种商品每件的进价为50元,B 种商品每件的进价是30元;(2)设购进A 种商品a 件,则购进B 种商品(40−a )件,由题意得:()5030401560402a a a a ⎧+-≤⎪⎨-≥⎪⎩, 解得:403≤a≤18, ∵a 取整数,∴a 可为14,15,16,17,18,答:该商店有5种进货方案.【点睛】本题考查了分式方程和一元一次不等式组在实际问题中的应用,理清题中的数量关系是解题的关键.24.(1)90°;(2)①α+β=180°,理由见详解;②点D 在直线BC 上移动,α+β=180°或α=β.【分析】(1)由等腰直角三角形的性质可得∠ABC =∠ACB =45°,由“SAS”可证△BAD ≌△CAE ,可得∠ABC =∠ACE =45°,可求∠BCE 的度数;(2)①由“SAS”可证△ABD ≌△ACE 得出∠ABD =∠ACE ,再用三角形的内角和即可得出结论;②分两种情况画出图形,由“SAS”可证△ABD ≌△ACE 得出∠ABD =∠ACE ,再用三角形的内角和即可得出结论.【详解】解:(1)∵AB =AC ,∠BAC =90°,∴∠ABC =∠ACB =45°,∵∠DAE =∠BAC ,∴∠BAD =∠CAE ,且AB =AC ,AD =AE ,∴△BAD ≌△CAE (SAS )∴∠ABC =∠ACE =45°,∴∠BCE =∠ACB +∠ACE =90°;(2)①α+β=180°,理由:∵∠BAC =∠DAE ,∴∠BAC−∠DAC =∠DAE−∠DAC .即∠BAD =∠CAE .在△ABD 与△ACE 中,AB AC BAD CAE AD AE ⎧⎪∠∠⎨⎪⎩===,∴△ABD ≌△ACE (SAS ),∴∠B =∠ACE .∴∠B +∠ACB =∠ACE +∠ACB .∵∠ACE +∠ACB =β,∴∠B +∠ACB =β,∵α+∠B +∠ACB =180°,∴α+β=180°;②如图1:当点D 在射线BC 上时,α+β=180°,连接CE ,∵∠BAC =∠DAE ,∴∠BAD =∠CAE ,在△ABD 和△ACE 中,AB ACBAD CAE AD AE⎧⎪∠∠⎨⎪⎩===,∴△ABD ≌△ACE (SAS ),∴∠ABD =∠ACE ,在△ABC 中,∠BAC +∠B +∠ACB =180°,∴∠BAC +∠ACE +∠ACB =∠BAC +∠BCE =180°,即:∠BCE +∠BAC =180°,∴α+β=180°,如图2:当点D 在射线BC 的反向延长线上时,α=β.连接BE ,∵∠BAC=∠DAE,∴∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,∴∠ABD=∠ACE=∠ACB+∠BCE,∴∠ABD+∠ABC=∠ACE+∠ABC=∠ACB+∠BCE+∠ABC=180°,∵∠BAC=180°−∠ABC−∠ACB,∴∠BAC=∠BCE.∴α=β;综上所述:点D在直线BC上移动,α+β=180°或α=β.【点睛】此题是三角形综合题,主要考查了全等三角形的判定和性质,三角形的内角和定理,证明△ABD≌△ACE是解本题的关键.。

湘教版八年级上册数学期末考试试卷附答案

湘教版八年级上册数学期末考试试卷附答案

八年级上册数学期末考试试题一、选择题(每小题3分,共12小题,满分36分.请把表示正确答案的字母填入下表中对应的题号下.)1.(3分)下列分式中,是最简分式的是()A.B.C.D.2.(3分)当分式的值为0时,字母x的取值应为()A.﹣1 B.1 C.﹣2 D.23.(3分)下列计算正确的是()A.2﹣3=﹣8 B.20=1 C.a2•a3=a6D.a2+a3=a54.(3分)(﹣8)2的立方根是()A.4 B.﹣4 C.8 D.﹣85.(3分)若代数式有意义,则x必须满足条件()A.x≠﹣B.x>C.x>﹣D.x≥﹣6.(3分)已知一个等腰三角形的一个内角是50°,则这个等腰三角形的另外两个内角度数分别是()A.50°,80°B.65°,65°C.50°,80°或65°,65°D.无法确定7.(3分)下列命题是假命题的是()A.实数与数轴上的点一一对应B.如果两个数的绝对值相等,那么这两个数必定也相等C.对顶角相等D.三角形的重心是三角形三条中线的交点8.(3分)下列长度的三根线段,能构成三角形的是()A.3cm,10cm,5cm B.4cm,8cm,4cmC.5cm,13cm,12cm D.2cm,7cm,4cm9.(3分)不等式组的解集为()A.x>﹣1 B.x≤3 C.1<x≤3 D.﹣1<x≤310.(3分)计算÷×的结果估计在()A.5至6之间B.6至7之间C.7至8之间D.8至9之间11.(3分)已知关于x的方程﹣=0的增根是1,则字母a 的取值为()A.2 B.﹣2 C.1 D.﹣112.(3分)用反证法证明命题“三角形中至少有一个角大于或等于60°”时,首先应假设这个三角形中()A.有一个内角大于60°B.有一个内角小于60°C.每一个内角都大于60°D.每一个内角都小于60°二、填空题(每小题3分,共6小题,满分18分)13.(3分)最小刻度为0.2nm(1nm=10﹣9m)的钻石标尺,可以测量的距离小到不足头发丝直径的十万分之一,这也是目前世界上刻度最小的标尺,用科学记数法表示这一最小刻度为m.14.(3分)分式方程=﹣4的解是x= .15.(3分)计算:•= .16.(3分)如图,将三角尺的直角顶点放在直尺的一边上,使∠1=60°,∠2=100°,则∠3= °.17.(3分)如图,已知∠BAC=∠DAC,则再添加一个条件,可使△ABC≌△ADC.18.(3分)如图,已知在△ABC中,AB=7,BC=6,AC的垂直平分线DE交AC于点E,交AB于点D,连接CD,则△BCD的周长为.三、解答题:(19题每小题8分,20题6分,满分14分)19.(8分)(1)计算:﹣(2)计算:(2﹣5)﹣(﹣)20.(6分)解下列不等式≤﹣1,并将解集在数轴上表示出来.四、分析与说理:(每小题8分,共2小题,满分16分)21.(8分)已知:如图所示,AB=AC,CE与BF相交于点D,且BD=CD.求证:DE=DF.22.(8分)已知:如图所示,在边长为4的等边△ABC中,AD为BC 边上的中线,且AD=2,以AD为一边向左作等边△ADE.(1)求:△ABC的面积;(2)判断AB与DE的位置关系是什么?请予以证明.五、实践与应用(每小题8分,共2小题,满分16分)23.(8分)已知北海到南宁的铁路长210千米.动车投入使用后,其平均速度达到了普通火车的平均速度的3倍,这样由北海到南宁的行驶时间缩短了1.75小时.求普通火车的平均速度是多少?(列方程解答)24.(8分)张华老师揣着200元现金到星光文具店购买学生期末考试的奖品.他看好了一种笔记本和一种钢笔,笔记本的单价为每本5元,钢笔的单价为每支2元.张老师计划购买两种奖品共50份,求他最多能买笔记本多少本?(列不等式解答)六、阅读与探究(每小题10分,共2小题,满分20分)25.(10分)先阅读下列材料,再解决问题:阅读材料:数学上有一种根号内又带根号的数,它们能通过完全平方公式及二次根式的性质化去一层根号.例如:====|1+|=1+解决问题:①在括号内填上适当的数:====| |=②根据上述思路,试将予以化简.26.(10分)已知:在△ABC中,∠BAC=90°,∠ABC=45°,点D为线段BC上一动点(点D不与B、C重合),以AD为边向右作正方形ADEF,连接FC,探究:无论点D运动到何处,线段FC、DC、BC三者的长度之间都有怎样的数量关系?请予以证明.参考答案与试题解析一、选择题(每小题3分,共12小题,满分36分.请把表示正确答案的字母填入下表中对应的题号下.)1.(3分)(2016秋•娄星区期末)下列分式中,是最简分式的是()A.B.C.D.【考点】最简分式.【分析】最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.【解答】解:A、的分子、分母都不能再分解,且不能约分,是最简分式;B、,不是最简分式;C、,不是最简分式;D、,不是最简分式;故选A【点评】此题考查最简分式问题,分式的化简过程,首先要把分子分母分解因式,互为相反数的因式是比较易忽视的问题.在解题中一定要引起注意.2.(3分)(2016秋•娄星区期末)当分式的值为0时,字母x的取值应为()A.﹣1 B.1 C.﹣2 D.2【考点】分式的值为零的条件.【分析】直接利用分式的值为零,则分子为零,且分母不为零,进而得出答案.【解答】解:由题意,得x+2=0且x﹣1≠0,解得x=﹣2,故选:C.【点评】此题考查分式的值为零的问题,若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.3.(3分)(2016秋•娄星区期末)下列计算正确的是()A.2﹣3=﹣8 B.20=1 C.a2•a3=a6D.a2+a3=a5【考点】同底数幂的乘法;合并同类项;零指数幂;负整数指数幂.【分析】根据同底数幂的乘法,零次幂,负整数指数幂,可得答案.【解答】解:A、2﹣3==,故A错误;B、20=1,故B正确;C、a2•a3=a2+3=a5,故C错误;D、不是同底数幂的乘法指数不能相加,故D错误;故选:B.【点评】本题考察了同底数幂的乘法,熟记法则并根据法则计算是解题关键.4.(3分)(2016秋•娄星区期末)(﹣8)2的立方根是()A.4 B.﹣4 C.8 D.﹣8【考点】立方根.【分析】先求出(﹣8)2,再利用立方根定义即可求解.【解答】解:∵(﹣8)2=64,64的立方根是4,∴(﹣8)2的立方根是4.故选:A.【点评】本题主要考查了平方和立方根的概念.如果一个数x的立方等于a,即x的三次方等于a(x3=a),那么这个数x就叫做a的立方根,也叫做三次方根,读作“三次根号a”.其中,a叫做被开方数,3叫做根指数.5.(3分)(2016秋•娄星区期末)若代数式有意义,则x必须满足条件()A.x≠﹣B.x>C.x>﹣D.x≥﹣【考点】二次根式有意义的条件.【分析】二次根式的被开方数是非负数.【解答】解:依题意得:2x+1≥0,解得x≥﹣.故选:D.【点评】此题考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.6.(3分)(2016秋•娄星区期末)已知一个等腰三角形的一个内角是50°,则这个等腰三角形的另外两个内角度数分别是()A.50°,80°B.65°,65°C.50°,80°或65°,65°D.无法确定【考点】等腰三角形的性质.【分析】本题可根据三角形的内角和定理求解.由于50°角可能是顶角,也可能是底角,因此要分类讨论.【解答】解:当50°是底角时,顶角为180°﹣50°×2=80°,当50°是顶角时,底角为(180°﹣50°)÷2=65°.故这个等腰三角形的另外两个内角度数分别是50°,80°或65°,65°.故选:C.【点评】本题主要考查了等腰三角形的性质,及三角形内角和定理.注意分类思想的应用.7.(3分)(2016秋•娄星区期末)下列命题是假命题的是()A.实数与数轴上的点一一对应B.如果两个数的绝对值相等,那么这两个数必定也相等C.对顶角相等D.三角形的重心是三角形三条中线的交点【考点】命题与定理.【分析】根据实数与数轴的关系,绝对值的性质,对顶角相等以及三角形重心的定义对各选项分析判断即可得解.【解答】解:A、实数与数轴上的点一一对应,是真命题,故本选项错误;B、如果两个数的绝对值相等,那么这两个数必定也相等,是假命题,应为如果两个数的绝对值相等,那么这两个数必定也相等或互为相反数,故本选项正确;C、对顶角相等,是真命题,故本选项错误;D、三角形的重心是三角形三条中线的交点,是真命题,故本选项错误.故选B.【点评】本题考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.8.(3分)(2016秋•娄星区期末)下列长度的三根线段,能构成三角形的是()A.3cm,10cm,5cm B.4cm,8cm,4cmC.5cm,13cm,12cm D.2cm,7cm,4cm【考点】三角形三边关系.【分析】根据“三角形任意两边之和大于第三边,任意两边之差小于第三边”对各选项进行进行逐一分析即可.【解答】解:根据三角形的三边关系,得A、5+3<10,不能组成三角形,不符合题意;B、4+4=8,不能够组成三角形,不符合题意;C、12+5>13,能够组成三角形,符合题意;D、2+4<8,不能够组成三角形,不符合题意.故选:C.【点评】此题主要考查了三角形三边关系,判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.9.(3分)(2016秋•娄星区期末)不等式组的解集为()A.x>﹣1 B.x≤3 C.1<x≤3 D.﹣1<x≤3【考点】解一元一次不等式组.【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:,∵解不等式①得:x>﹣1,解不等式②得:x≤3,∴不等式组的解集为﹣1<x≤3,故选D.【点评】本题考查了解一元一次不等式组,能根据不等式的解集求出不等式组的解集是解此题的关键.10.(3分)(2016秋•娄星区期末)计算÷×的结果估计在()A.5至6之间B.6至7之间C.7至8之间D.8至9之间【考点】估算无理数的大小.【分析】利用二次根式的乘除法得到原式=,然后根据算术平方根的定义得到<<.【解答】解:原式==,因为<<,所以6<<7.故选B.【点评】本题考查了估算无理数的大小:估算无理数大小要用逼近法.思维方法:用有理数逼近无理数,求无理数的近似值.11.(3分)(2016秋•娄星区期末)已知关于x的方程﹣=0的增根是1,则字母a的取值为()A.2 B.﹣2 C.1 D.﹣1【考点】分式方程的增根.【分析】去分母得出整式方程,把x=1代入整式方程,即可求出答案.【解答】解:﹣=0,去分母得:3x﹣(x+a)=0①,∵关于x的方程﹣=0的增根是1,∴把x=1代入①得:3﹣(1+a)=0,解得:a=2,故选A.【点评】本题考查了分式方程的增根,能理解增根的意义是解此题的关键.12.(3分)(2016秋•娄星区期末)用反证法证明命题“三角形中至少有一个角大于或等于60°”时,首先应假设这个三角形中()A.有一个内角大于60°B.有一个内角小于60°C.每一个内角都大于60°D.每一个内角都小于60°【考点】反证法.【分析】反证法的步骤中,第一步是假设结论不成立,反面成立,可据此进行判断.【解答】解:反证法证明命题“三角形中至少有一个角大于或等于60°”时,首先应假设这个三角形中每一个内角都小于60°,故选:D.【点评】本题考查的是反证法的应用,反证法的一般步骤是:①假设命题的结论不成立;②从这个假设出发,经过推理论证,得出矛盾;③由矛盾判定假设不正确,从而肯定原命题的结论正确.二、填空题(每小题3分,共6小题,满分18分)13.(3分)(2016秋•娄星区期末)最小刻度为0.2nm(1nm=10﹣9m)的钻石标尺,可以测量的距离小到不足头发丝直径的十万分之一,这也是目前世界上刻度最小的标尺,用科学记数法表示这一最小刻度为2×10﹣10m.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:用科学记数法表示这一最小刻度为2×10﹣10m,故答案为:2×10﹣10.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.14.(3分)(2016秋•娄星区期末)分式方程=﹣4的解是x= ﹣1 .【考点】解分式方程.【专题】计算题;分式方程及应用.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【解答】解:去分母得:3x﹣1=﹣4x﹣8,解得:x=﹣1,经检验x=﹣1是分式方程的解,故答案为:﹣1【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.15.(3分)(2016秋•娄星区期末)计算:•= .【考点】分式的乘除法.【专题】计算题;分式.【分析】原式变形后,约分即可得到结果.【解答】解:原式=•=,故答案为:【点评】此题考查了分式的乘除法,熟练掌握运算法则是解本题的关键.16.(3分)(2016秋•娄星区期末)如图,将三角尺的直角顶点放在直尺的一边上,使∠1=60°,∠2=100°,则∠3= 40 °.【考点】平行线的性质.【分析】根据两直线平行,同位角相等求出∠2的同位角,再根据三角形的外角性质求解即可.【解答】解:如图,∵∠2=100°,并且是直尺,∴∠4=∠2=100°(两直线平行,同位角相等),∵∠1=60°,∴∠3=∠4﹣∠1=100°﹣60°=40°.故答案为:40.【点评】本题主要考查了两直线平行,同位角相等的性质以及三角形的外角性质,熟练掌握性质定理是解题的关键.17.(3分)(2016秋•娄星区期末)如图,已知∠BAC=∠DAC,则再添加一个条件AB=AD(答案不唯一),可使△ABC≌△ADC.【考点】全等三角形的判定.【分析】根据SAS推出两三角形全等即可.【解答】解:添加AB=AD;理由如下:在△ABC和△ADC中,,∴△ABC≌△ADC;故答案为:AB=AD(答案不唯一).【点评】本题考查了全等三角形的判定的应用,能熟记全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.18.(3分)(2016秋•娄星区期末)如图,已知在△ABC中,AB=7,BC=6,AC的垂直平分线DE交AC于点E,交AB于点D,连接CD,则△BCD的周长为13 .【考点】线段垂直平分线的性质.【分析】根据线段垂直平分线得出AD=CD,推出CD+BD=AB,即可求出答案.【解答】解:∵DE是AC的垂直平分线,∴AD=DC,∵AB=7,∴AD+BD=7,∴CD+BD=7,∵BC=6,∴△BCD的周长是CD+BD+BC=7+6=13,故答案为:13【点评】本题考查了等腰三角形性质和线段垂直平分线性质的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等.三、解答题:(19题每小题8分,20题6分,满分14分)19.(8分)(2016秋•娄星区期末)(1)计算:﹣(2)计算:(2﹣5)﹣(﹣)【考点】二次根式的加减法;分式的加减法.【分析】(1)利用分式的通分、约分法则化简;(2)根据二次根式的性质吧原式化简,合并同类二次根式即可.【解答】解:(1)﹣=﹣=;(2)计算:(2﹣5)﹣(﹣)=4﹣10﹣3+3=﹣7.【点评】本题考查的是二次根式的加减法、分式的加减法,掌握分式的通分、约分法则、二次根式的性质是解题的关键.20.(6分)(2016秋•娄星区期末)解下列不等式≤﹣1,并将解集在数轴上表示出来.【考点】解一元一次不等式;在数轴上表示不等式的解集【分析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得解集,再根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则在数轴上将解集表示出来.【解答】解:去分母,得:4(2x﹣1)≤3(3x+2)﹣12,去括号,得:8x﹣4≤9x+6﹣12,移项,得:8x﹣9x≤6﹣12+4,合并同类项,得:﹣x≤﹣2,系数化为1,得:x≥2,解集在数轴上表示为:【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.四、分析与说理:(每小题8分,共2小题,满分16分)21.(8分)(2016秋•娄星区期末)已知:如图所示,AB=AC,CE与BF相交于点D,且BD=CD.求证:DE=DF.【考点】全等三角形的判定与性质【分析】欲证明DE=DF,只要证明△ABD≌△ACD(SSS),推出∠B=∠C再证明△BDE≌△CDF即可.【解答】证明:连接AD.在△ABD和△ACD中,,∴△ABD≌△ACD(SSS),∴∠B=∠C,在BDE和△CDF中,,∴△BDE≌△CDF(ASA),∴DE=DF.【点评】本题考查全等三角形的判定和性质,解题的关键是学会利用两次全等三角形解决问题,属于中考常考题型.22.(8分)(2016秋•娄星区期末)已知:如图所示,在边长为4的等边△ABC中,AD为BC边上的中线,且AD=2,以AD为一边向左作等边△ADE.(1)求:△ABC的面积;(2)判断AB与DE的位置关系是什么?请予以证明.【考点】全等三角形的判定与性质;等边三角形的性质【分析】(1)根据等边三角形的性质,可知∠DAC=30°,在RtADC中求出DC,再根据BC=2DC,由此即可解决问题.(2)通过计算只要证明∠AFD=90°即可.【解答】(1)解:∵△ABC是等边三角形,且AD为BC边上的中线∴AD⊥BC(三线合一),∠BAD=∠DAC=30°,在Rt△ADC中,∵AD=2,∴CD=BD=2,∴BC=4,∴△ABC的面积=×4×2=4(2)解:AB与DE的位置关系是AB⊥DE,理由如下:∵△ADE是等边三角形∴∠ADF=60°∵△ABC是等边三角形,AD为BC边上的中线∴AD为∠BAC的平分线(三线合一)∴∠FAD=∠BAC=×60°=30°∴∠AFD=180°﹣60°﹣30°=90°∴AB⊥DE(说明:或证∠BFD=90°或证∠AFE=90°也可以)【点评】本题考查等边三角形的性质,解题的关键是灵活应用等腰三角形的三线合一,属于基础题,中考常考题型.五、实践与应用(每小题8分,共2小题,满分16分)23.(8分)(2016秋•娄星区期末)已知北海到南宁的铁路长210千米.动车投入使用后,其平均速度达到了普通火车的平均速度的3倍,这样由北海到南宁的行驶时间缩短了1.75小时.求普通火车的平均速度是多少?(列方程解答)【考点】分式方程的应用【分析】设普通火车的平均速度为x千米/时,则动车的平均速度为3x千米/时,根据题意可得:由北海到南宁的行驶时间缩短了 1.75小时,列方程即可.【解答】解:设普通火车的平均速度为x千米/时,则动车的平均速度为3x千米/时,列方程得=+1.75,解得x=80,经检验,x=80是原分式方程的解,答:普通火车的平均速度是80千米/时.【点评】本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程.24.(8分)(2016秋•娄星区期末)张华老师揣着200元现金到星光文具店购买学生期末考试的奖品.他看好了一种笔记本和一种钢笔,笔记本的单价为每本5元,钢笔的单价为每支2元.张老师计划购买两种奖品共50份,求他最多能买笔记本多少本?(列不等式解答)【考点】一元一次不等式的应用【分析】根据题意可以得到相应的不等式,从而可以求出他最多能买笔记本多少本.【解答】解:设他买笔记本x本,5x+2(50﹣x)≤200,解得,x≤,即他最多能买笔记本33本.【点评】本题考查解一元一次不等式的应用,解题的关键是明确题意,找出所求问题需要的条件.六、阅读与探究(每小题10分,共2小题,满分20分)25.(10分)(2016秋•娄星区期末)先阅读下列材料,再解决问题:阅读材料:数学上有一种根号内又带根号的数,它们能通过完全平方公式及二次根式的性质化去一层根号.例如:====|1+|=1+解决问题:①在括号内填上适当的数:====|3+|= 3+②根据上述思路,试将予以化简.【考点】二次根式的性质与化简【专题】阅读型.【分析】①根据题目中的例子可以解答本题;②根据题目中的例子可以解答本题.【解答】解:①====|3+|=3+,故答案为:3+,3+;②===|5﹣|=5﹣.【点评】本题考查二次根式的性质与化简,解题的关键是明确题意,找出所求问题需要的条件.26.(10分)(2016秋•娄星区期末)已知:在△ABC中,∠BAC=90°,∠ABC=45°,点D为线段BC上一动点(点D不与B、C重合),以AD 为边向右作正方形ADEF,连接FC,探究:无论点D运动到何处,线段FC、DC、BC三者的长度之间都有怎样的数量关系?请予以证明.【考点】正方形的性质【分析】根据正方形的性质、全等三角形的判定定理证明△BAD≌△FAC,根据全等三角形的性质证明即可.【解答】解:无论点D运动到何处,都有BC=FC+DC,理由如下:在△ABC中,∵∠BAC=90°,∠ABC=45°,∴∠ACB=45°,∴AB=AC,∵四边形ADEF是正方形,∴AD=AF,∠DAF=90°,∵∠BAD+∠DAC=∠FAC+∠DAC=90°,∴∠BAD=∠FAC,∴△BAD≌△FAC(SAS)∴BD=FC,又∵BC=BD+DC,∴BC=FC+DC.【点评】本题考查的是正方形的性质,掌握全等三角形的判定定理和性质定理、正方形的性质定理是解题的关键.高效教学的诀窍高效教学,具体应该怎么说呢?我们很难精确地给它下一个定义,但大家都能清晰地感受到它。

湘教版八年级数学上册期末试卷(完整)

湘教版八年级数学上册期末试卷(完整)

湘教版八年级数学上册期末试卷(完整) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.一次函数()224y k x k =++-的图象经过原点,则k 的值为( )A .2B .2-C .2或2-D .32.估计7+1的值( )A .在1和2之间B .在2和3之间C .在3和4之间D .在4和5之间 3.解分式方程11222x x x-=---时,去分母变形正确的是( ) A .()1122x x -+=---B .()1122x x -=--C .()1122x x -+=+-D .()1122x x -=---4.若m n >,下列不等式不一定成立的是( )A .33m n ++>B .33m n ﹣<﹣C .33m n >D .22m n >5.下列各组数中,能构成直角三角形的是( )A .4,5,6B .1,1,2C .6,8,11D .5,12,23 6.已知1112a b -=,则ab a b-的值是( ) A .12 B .-12 C .2 D .-27.如图,点B 、F 、C 、E 在一条直线上,AB ∥ED ,AC ∥FD ,那么添加下列一个条件后,仍无法判定△ABC ≌△DEF 的是( )A .AB =DE B .AC =DF C .∠A =∠DD .BF =EC8.一次函数y=ax+b与反比例函数a byx-=,其中ab<0,a、b为常数,它们在同一坐标系中的图象可以是()A. B.C. D.9.如图,五边形ABCDE中有一正三角形ACD,若AB=DE,BC=AE,∠E=115°,则∠BAE的度数为何?()A.115 B.120 C.125 D.13010.如图在△ABC中,BO,CO分别平分∠ABC,∠ACB,交于O,CE为外角∠ACD 的平分线,BO的延长线交CE于点E,记∠BAC=∠1,∠BEC=∠2,则以下结论①∠1=2∠2,②∠BOC=3∠2,③∠BOC=90°+∠1,④∠BOC=90°+∠2正确的是()A.①②③B.①③④C.①④D.①②④二、填空题(本大题共6小题,每小题3分,共18分)11x-x的取值范围是_______.2.已知菱形ABCD的面积是12cm2,对角线AC=4cm,则菱形的边长是______cm.3.若分式1xx-的值为0,则x的值为________.4.在直线l上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是a,b,c,正放置的四个正方形的面积依次是S1,S2,S3,S4,则S1+S2+S3+S4=________.5.如图,在△ABC中,AB=5,AC=13,BC边上的中线AD=6,则△ABD的面积是________.6.如图,在平面直角坐标系中,在x轴、y轴的正半轴上分别截取OA、OB,使OA=OB;再分别以点A、B为圆心,以大于12AB长为半径作弧,两弧交于点P.若点C的坐标为(,23a a-),则a的值为________.三、解答题(本大题共6小题,共72分)1.解方程组(1)327413x yx y+=⎧⎨-=⎩(2)143()2()4xyx y x y⎧-=-⎪⎨⎪+--=⎩2.先化简,再求值:24211326x xx x-+⎛⎫-÷⎪++⎝⎭,其中21x=.3.已知22a b -=,且1a ≥,0b ≤.(1)求b 的取值范围(2)设2m a b =+,求m 的最大值.4.如图,在四边形ABCD 中,∠ABC=90°,AC=AD ,M ,N 分别为AC ,CD 的中点,连接BM ,MN ,BN .(1)求证:BM=MN ;(2)∠BAD=60°,AC 平分∠BAD ,AC=2,求BN 的长.5.某蔬菜生产基地的气温较低时,用装有恒温系统的大棚栽培一种新品种蔬菜.如图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度y (℃)与时间x (h )之间的函数关系,其中线段AB 、BC 表示恒温系统开启阶段,双曲线的一部分CD 表示恒温系统关闭阶段.请根据图中信息解答下列问题:(1)求这天的温度y 与时间x (0≤x ≤24)的函数关系式;(2)求恒温系统设定的恒定温度;(3)若大棚内的温度低于10℃时,蔬菜会受到伤害.问这天内,恒温系统最多可以关闭多少小时,才能使蔬菜避免受到伤害?6.为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.(1)求足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、D4、D5、B6、D7、C8、C9、C10、C二、填空题(本大题共6小题,每小题3分,共18分)1、1x≥23、1.4、a+c5、156、3三、解答题(本大题共6小题,共72分)1、(1)31xy=⎧⎨=-⎩;(2)4989xy⎧=-⎪⎪⎨⎪=⎪⎩.2.3、(1)12b-≤≤;(2)24、(1)略;(25、(1)y关于x的函数解析式为210(05)20(510)200(1024)x xy xxx⎧⎪+≤<⎪=≤<⎨⎪⎪≤≤⎩;(2)恒温系统设定恒温为20°C;(3)恒温系统最多关闭10小时,蔬菜才能避免受到伤害.6、(1)一个足球的单价103元、一个篮球的单价56元;(2)学校最多可以买9个足球.。

湘教版八年级上册数学期末考试试题及答案

湘教版八年级上册数学期末考试试题及答案

湘教版八年级上册数学期末考试试卷一、单选题1.下列各式中正确的是( )A 3=B 3=±C .3D 3- 2.生物学家发现了某种花粉的直径为0.0000036毫米,数据0.0000036用科学计数法表示正确的是( )A .53.610-⨯B .50.3610-⨯C .63.610-⨯D .73610-⨯ 3.下列命题中为真命题的是( )A .相等的角是对顶角B .一个角的补角大于这个角C .如果0a b +=,则 0a bD .两直线平行,内错角相等 4.下列等式成立的是( )A .123a b a b +=+B .2ab a ab b a b =--C .212a b a b =++D .a a a b a b =--++ 5.三角形的下列线段中,能将三角形的面积分成相等两部分的是( )A .中线B .角平分线C .高D .中位线6.不等式3551x x +<+的解集在数轴上表示正确的是( )A .B .C .D . 7.电动车每小时比自行车多行驶25千米,自行车行驶30千米比电动车行驶40千米多用了1小时,求两车的平均速度各为多少.设电动车的平均速度为x 千米/小时,应列方程为( ) A .3040125x x -=- B .3040125x x -=+ C .3040125x x -=- D .3040125x x +=- 8.如图,小明把一块三角形玻璃打碎成三块,现在要到玻璃店去配一块完全一样的玻璃,则最省事的方法是带第③块去,理由是根据全等的判定定理( )A .SASB .AASC .SSSD .ASA9.若关于x 的不等式组0521x m x -<⎧⎨-≤⎩,整数解共有2个,则m 的取值范围是( )A.3m4<<B.3m4<≤C.3m4≤≤D.3m4≤<10.如图,在正方形ABCD中,2AB=,延长BC到点E,使1CE=,连接DE,动点P从点A出发以每秒1个单位长度的速度沿AB BC CD DA→→→向终点A运动.设点P的运动时间为t秒.当ABP△和DCE全等时,t的值为()A.3 B.5 C.7 D.3或7二、填空题11与0.5______0.5.(填“>”、“=”、“<”)12.等腰三角形一腰上的高与另一腰的夹角为48,则该等腰三角形的底角的度数为______.13.已知2a=2b=22a b ab+的值为__________.14.当m=_________时,方程133x mx x-=--无解.15.若直角三角形的两条直角边为a,b|4|0-=b,则该直角三角形的面积是____________.16.如图,△ABC中,∠C=90°,∠CAB,∠CBA的平分线相交于点D,BD•的延长线交AC于E,则∠ADE的度数是_______.17.如图,ABC中,DE是AC的垂直平分线,AE4cm=,ABD的周长为16cm,则ABC 的周长为______.18.某校数学课外小组利用数轴为学校门口的一条马路设计植树方案如下:第k棵树种植在点k x 处,其中11x =,当2k ≥时,11255k k k k x x T T ---⎛⎫⎛⎫=+- ⎪ ⎪⎝⎭⎝⎭,()T a 表示非负实数a 的整数部分,例如(2.6)2,(0.2)0T T ==.按此方案,第6棵树种植点6x 为 ________;第2020棵树种植点2020x 为_______.三、解答题19.计算:(1)0(3)|1π--(2)(220.解方程:21311x x x+=-- 21.先化简,再求值:2532236x x x x x -⎛⎫+-÷ ⎪--⎝⎭,其中x 满足2310x x +-=. 22.ABC 为等边三角形,点M 是线段BC 上一点,点N 是线段CA 上一点,且BM=CN ,BN 与AM 相交于Q 点(1)求证:ABM ≌BCN ;(2)求∠AQN.23.某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同. (1)求每件甲种、乙种玩具的进价分别是多少元?(2)商场计划购进甲、乙两种玩具共48件,其中甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,求商场共有几种进货方案?24.如图所示,在△ABC 中:(1)下列操作中,作∠ABC 的平分线的正确顺序是怎样(将序号按正确的顺序写出). ①分别以点M 、N 为圆心,大于12MN 的长为半径作圆弧,在∠ABC 内,两弧交于点P ; ②以点B 为圆心,适当长为半径作圆弧,交AB 于点M ,交BC 于N 点;③画射线BP ,交AC 于点D .(2)能说明∠ABD =∠CBD 的依据是什么(填序号).①SSS.②ASA.③AAS.④角平分线上的点到角两边的距离相等.(3)若AB=18,BC=12,S△ABC=120,过点D作DE⊥AB于点E,求DE的长.25.观察下列各式及其验证过程:::=======验证验证()1按照上述两个等式及其验证过程的基本思路,猜想证;()2针对上述各式反应的规律,写出用(n n为任意自然数,且2)n≥表示的等式,并说明它成立.26.(1)如图1,ABC和DCE均为等边三角形,点A,D,E在同一直线上,连接BE,求证:ACD BCE≅△△.(2)如图2,ACB△和DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A 、D、E在同一直线上,CM为DCE中DE边上的高,连接BE.①求∠AEB的度数②猜想线段CM,AE,BE之间的数量关系,并说明理由.参考答案1.A【分析】根据算术平方根的非负性可以运算得到正确答案.【详解】933=.故选A .【点睛】本题考查了算术平方根的定义,掌握算术平方根的定义是解答本题的关键. 2.C【分析】用科学计数法表示绝对值小于1的数时,其形式为a×10-n ,其中1≤|a|<10,n 表示原数从左边起第一个非零数字前所有零的个数(包括小数点前的零),所以根据概念,3前面有6个0,故可以写成63.610-⨯,即可解决.【详解】解:∵科学计数法表示绝对值小于1的数时,其形式为a×10-n ,其中1≤|a|<10,n 表示原数从左边起第一个非零数字前所有零的个数(包括小数点前的零)∴0.0000036=63.610-⨯故选C .【点睛】本题主要考查了科学计数法,清楚科学计数法的表示形式是解决本题的关键. 3.D【分析】分别根据对顶角的性质、补角的定义、相反数的性质和平行线的性质逐项判断即得答案.【详解】解:A 、对顶角相等,但相等的角不一定是对顶角,所以本选项的命题是假命题,不符合题意;B 、一个角的补角不一定大于这个角,所以本选项的命题是假命题,不符合题意;C 、如果0a b +=,则a 与b 互为相反数,但不能得出0a b ,所以本选项的命题是假命题,不符合题意;D 、两直线平行,内错角相等,是真命题,本选项符合题意.故选:D .【点睛】本题考查了对顶角的性质、补角的定义、相反数的性质和平行线的性质以及真假命题等知识,熟练掌握上述基本知识是解题的关键.4.B【详解】A .221b b a aba +=+≠3ab + ,故A 不成立; B .2()ab ab ab b b a b =-- =a a b- ,故B 成立; C .22a b +不能约分,故C 错误; D .a a a b a b=--+- ,故D 不成立. 故选B .5.A【分析】根据等底等高的三角形的面积相等解答即可.【详解】∵三角形的中线把三角形分成两个等底同高的三角形,∴三角形的中线将三角形的面积分成相等两部分.故选A.【点睛】本题考查三角形的中线,角平分线,高和中位线的性质,熟练掌握三角形中线段的性质是关键.6.C【分析】将一元一次不等式进行求解,移项,合并同类项,系数化1,求出不等式的解集,再根据不等式解集在数轴上的表示方法,可以得出答案.【详解】解:∵3551x x +<+∴3515x x-<-∴2x>∵大于号解集往右,且是空心点∴C是正确的故选C.【点睛】本题主要考查了一元一次不等式的解法以及解集的表示方法,能够准确的解出不等式以及熟悉解集的表示方法是解决本题的关键.7.C【分析】设电动车的平均速度为x千米/小时,则自行车的平均速度为(x-25)千米/小时,根据自行车行驶30千米比电动车行驶40千米多用了1小时即可列出方程.【详解】解:设电动车的平均速度为x千米/小时,则自行车的平均速度为(x-25)千米/小时,根据题意,得3040125x x-=-.故选:C.【点睛】本题考查了分式方程的应用,属于常考题型,正确理解题意、找准相等关系是解题的关键.8.D【分析】根据全等三角形的判定,已知两角和夹边,就可以确定一个三角形.【详解】根据三角形全等的判定方法,根据角边角可确定一个全等三角形,只有第三块玻璃包括了两角和它们的夹边,只有带③去才能配一块完全一样的玻璃,是符合题意的.故选D【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS9.B【分析】首先解不等式组,利用m 表示出不等式组的解集,然后根据不等式组有2个整数解,即可确定整数解,进而求得m 的范围.【详解】解:0521x m x -<⎧⎨-≤⎩①②, 解①得x m <,解②得2x ≥. 则不等式组的解集是2x m ≤<.不等式组有2个整数解,∴整数解是2,3.则34m <≤.故选B .【点睛】本题考查了不等式组的整数解,求不等式组的解集应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.10.D【分析】分两种情况,①当点P 在BC 边上时,②当点P 在AD 边上时,找出对应的边列式计算即可.【详解】当点P 在BC 边上时,在ABP △与DCE 中,90AB DC ABP DCE BP CE =⎧⎪∠=∠=︒⎨⎪=⎩,∴()ABP DCE SAS ≌.由题意得21BP t =-=,∴3t =.当点P 在AD 上时,在ABP △与CDE △中,90AB CDBAP DCE AP CE=⎧⎪∠=∠=︒⎨⎪=⎩,∴()ABP CDE SAS ≌,由题意得81AP t =-=,解得7t =.当点P 在CD 上时,不满足条件.∴当t 的值为3或7时,ABP △和DCE 全等.故选D .【点睛】本题考查的是正方形的性质和全等三角形的性质,能够分情况讨论是解题的关键. 11.>【详解】解:12,2>0,0.故答案为:>12.69°或21°【详解】分两种情况讨论:①若∠A<90°,如图1所示:∵BD ⊥AC ,∴∠A+∠ABD=90°,∵∠ABD=48°,∴∠A=90°−48°=42°,∵AB=AC ,∴∠ABC=∠C=1(180°−42°)=69°;2②若∠A>90°,如图2所示:同①可得:∠DAB=90°−48°=42°,∴∠BAC=180°−42°=138°,∵AB=AC,(180°−138°)=21°;∴∠ABC=∠C=12综上所述:等腰三角形底角的度数为69°或21°.故答案为69°或21°.13.4【分析】由2a=2b=a+b=4,ab=1,再把22+因式分解可得ab(a+b),a b ab整体代入求值即可.【详解】∵2a=2b=∴a+b=4,ab=1∴22+=ab(a+b)=4.a b ab故答案为4.【点睛】本题考查了因式分解的应用,正确把22+进行因式分解是解决问题的关键.a b ab14.2.【分析】按照一般步骤解方程,用含有m的式子表示x,因为无解,所以x只能使最简公分母为0 的值,从而求出m.【详解】解:原方程化为整式方程得:x-1=m因为方程无解所以:x-3=0∴x=3当x=3时,m=3-1=2.考点:分式方程的解.15.6【分析】根据二次根式和绝对值都有非负性,所以两个非负数相加等于零,只可能每个式子都等于零,从而可以得到a2-6a+9=0,b-4=0,求出a和b的值,根据直角三角形面积公式,可以求出面积.【详解】解:|4|0-=bb-=|4|0∴a=3,b=4∵a和b是直角边×3×4=6∴S=12故答案为:6.【点睛】本题主要考查了直角三角形的面积、二次根式的概念和绝对值,对二次根式进行变形,联系非负性解出a和b的值是解决本题的关键.16.45°【分析】根据直角三角形两锐角互余和角平分线的定义求出∠BAD+∠ABD,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ADE=∠BAD+∠ABD.【详解】解:∵∠C=90°,∴∠CAB+∠CBA=90°,∵∠CAB,∠CBA的平分线交于点D,∴∠BAD+∠ABD=12×90°=45°,∴∠ADE=∠BAD+∠ABD=45°.故答案为45°. 【点睛】本题考查了三角形的外角性质与直角三角形的性质,解题的关键是熟练的掌握三角形的外角性质与直角三角形的性质.17.24cm【分析】由线段垂直平分线的性质可得AE EC =,AD CD =,结合条件可求得AB BC AC AB BD AD 2AE ++=+++,代入可求得答案.【详解】解: DE 是AC 的垂直平分线,DA CD ∴=,AE EC =, ABD 的周长为16cm ,AB BD AD 16cm ∴++=,()AB BC AC AB BD DC 2AE AB BD AD 2AE 16824cm ∴++=+++=+++=+=, 即ABC 的周长为24cm ,故答案为24cm .【点睛】考查线段垂直平分线的性质,利用线段垂直平分线上的点到线段两端点的距离相等把ABC 的周长转化成ABD 的周长与2AE 的和是解题的关键.18.2 404【分析】列举出数列的数值,找规律即可.数列{x n }为1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,…由此入手能够得到第6棵树种植点的坐标和第2020棵树种植点的坐标.【详解】解:∵1255k k T T --⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭组成的数列为0,0,0,0,1,0,0,0,0,1,0,0,0,0,1…, k=2,3,4,5,…代入计算得数列x n 为1,2,3,4,5,1,2,3,4,5,1,2,3,4,5,…数列{x n }为1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,… 即x n 的重复规律是x 5n+k =n ,0≤k <5.∴由题意可知第6棵树种植点应为(2);第2020棵树种植点应为(404),故答案为:2,404【点睛】本题主要考查了数字之间的关系,解题的关键是列举部分数字,找出其中规律即可.19.(1)2;(2)【分析】(1) 先计算零次幂、立方根、绝对值,化简二次根式,再计算二次根式的加减法即可; (2)根据二次根式的乘法法则计算即可.【详解】解:(1)0(3)|11212π-+-=++=(2)(222=-=【点晴】本题是二次根式的混合运算,考查了二次根式的化简、零次幂、立方根的有关知识. 20.2x =【分析】根据分式方程的解法,先化为整式方程,然后解整式方程,再检验即可求解.【详解】去分母得:213(1)x x -=-,化简解得:2x =,经检验2x =是原方程的解,∴原方程的解为x=2.【点睛】此题主要考查了分式方程的解法,关键是把方程化为整式方程求解,注意最后应定要进行检验是否为分式方程的解.21.3.【分析】先将括号里面进行通分,然后对分子分母进行因式分解,最后约分得到最简形式,再由x2+3x -1=0得到x2+3x=1,将x2+3x整体带入化简后的式子求值.【详解】原式=()()2252x xx+---÷()332xx x--=292xx--×()323x xx--=()()332x xx+--×()323x xx--=3x2+9x,∵x2+3x-1=0,∴x2+3x=1,∴原式=3x2+9x=3(x2+3x)=3×1=3.【点睛】(1)掌握分式的化简;(2)掌握整体的思想.22.(1)证明见解析;(2)60°【分析】(1)根据已知条件,利用SAS定理即可证明△ABM≌△BCN;(2)根据△ABM≌△BCN(已证),可得∠AMB=∠BNC,然后利用△BQM∽△BCN即可得出结论.【详解】(1)证明:∵△ABC为等边三角形,∴∠ABM=∠BCN=60°,AB=BC,在△ABM和△BCN中AB BCABM BCN BM CN=∠=∠=⎧⎪⎨⎪⎩,∴△ABM≌△BCN(SAS);(2)解:由(1)可得∠BAM=∠CBN ,∴∠AMB=∠BNC,∵∠MBQ=∠NBC(公共角),∴△BQM∽△BCN,∴∠BQM=∠C=60°∵∠BQM和∠AQN是对顶角,∴∠AQN=60°.【点睛】此题主要考查学生对等边三角形的性质,全等三角形的判定与性质,相似三角形的判定与性质等知识点的理解和掌握,此题涉及到的知识点较多,有点难度,属于中档题.23.(1)甲,乙两种玩具分别是15元/件,25元/件;(2)共有四种方案.【分析】(1)设甲种玩具进价x元/件,则乙种玩具进价为(40﹣x)元/件,根据已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同可列方程求解.(2)设购进甲种玩具y件,则购进乙种玩具(48﹣y)件,根据甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,可列出不等式组求解.【详解】解:设甲种玩具进价x元/件,则乙种玩具进价为(40﹣x)元/件,x=15,经检验x=15是原方程的解.∴40﹣x=25.甲,乙两种玩具分别是15元/件,25元/件;(2)设购进甲种玩具y件,则购进乙种玩具(48﹣y)件,,解得20≤y<24.因为y是整数,甲种玩具的件数少于乙种玩具的件数,∴y取20,21,22,23,共有4种方案.考点:分式方程的应用;一元一次不等式组的应用.24.(1)作∠ABC的平分线的正确顺序是②①③;(2)①;(3)DE=8.【分析】(1)根据基本作图方法即可得出;(2)证明△MBP≌△NBP即可;(3)过点D作DF⊥BC与F,由题意推出DE=DF,再由S△ABC=S△ABD+S△CBD即可求出DE的长度.【详解】(1)作∠ABC的平分线的正确顺序是②①③,故答案为②①③;(2)在△MBP和△NBP中,,∴△MBP≌△NBP(SSS),∴∠ABD=∠CBD,故答案为①;(3)过点D作DF⊥BC与F,∵∠ABD=∠CBD,DE⊥AB,DF⊥BC,∴DE=DF,S△ABC=S△ABD+S△CBD,即×AB×DE+×BC×DF=120,∴×18×DE+×12×DE=120,解得,DE=8.【点睛】本题考查的知识点是作图-基本作图及全等三角形,解题的关键是熟练的掌握作图-基本作图及全等三角形.25.()1==【分析】(1)通过观察,不难发现:等式的变形过程利用了二次根式的性质)0a a =≥,把根号外的移到根号内;再根据“同分母的分式相加,分母不变,分子相加”这一法则的倒用来进行拆分,同时要注意因式分解进行约分,最后结果中的被开方数是两个数相加,两个加数分别是左边根号外的和根号内的;(2)根据上述变形过程的规律,即可推广到般.表示左边的式子时,注意根号外的和根号内的分子、分母之间的关系;根号外的和根号内的分子相同,根号内的分子是分母的平方減去1.【详解】解:()1验证:=()2证明:= 【点睛】此题是一个找规律的题目,主要考查了二次根式的性质.观察时,既要注意观察等式的左右两边的联系,还要注意右边必须是一种特殊形式26.(1)证明见解析;(2)①90︒;②2AE BE CM =+,理由见解析.【分析】(1)先根据等边三角形的性质可得,,60AC BC CD CE ACB DCE ====︒∠∠,再根据角的和差可得ACD BCE ∠=∠,然后根据三角形全等的判定即可得证;(2)①先同(1)可证ACD BCE ≅△△,再根据三角形全等的性质可得,AD BE ADC BEC =∠=∠,然后根据等腰直角三角形的定义、三角形的外角性质可得45,135CDE CED BEC ADC ∠=∠=︒∠=∠=︒,最后根据角的和差即可得;②先根据等腰三角形的三线合一得出CM 为DE 边上的中线,再根据直角三角形斜边上的中线可得2DE CM =,然后结合AD BE =,根据线段的和差即可得.【详解】(1)∵ABC 和DCE 均为等边三角形,,,60AC BC CD CE ACB DCE ∴==∠=∠=︒,∴ACB DCB DCE DCB ∠-∠=∠-∠,即ACD BCE ∠=∠,在ACD △和BCE 中,AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,∴()ACD BCE SAS ≅;(2)①同(1)可证:ACD BCE ≅△△,∴,AD BE ADC BEC =∠=∠,又∵DCE 是等腰直角三角形,∴45,135CDE CED BEC ADC CED DCE ∠=∠=︒∠=∠=∠+∠=︒,∴1354590AEB BEC CED ∠=∠-∠=︒-︒=︒;②猜想2AE BE CM =+,理由如下:∵CM 为等腰直角DCE 中DE 边上的高,CM ∴为DE 边上的中线(等腰三角形的三线合一),2DE CM ∴=(直角三角形斜边上的中线等于斜边的一半),由①可知,AD BE =,2AE AD DE BE CM ∴=+=+.【点睛】本题考查了等边三角形的性质、三角形全等的判定定理与性质、直角三角形斜边上的中线等知识点,较难的是题(2)②,熟练掌握直角三角形斜边上的中线等于斜边的一半是解题关键.。

湘教版八年级数学上册期末考试卷及答案【新版】

湘教版八年级数学上册期末考试卷及答案【新版】

湘教版八年级数学上册期末考试卷及答案【新版】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.若999999a =,990119b =,则下列结论正确是( ) A .a <bB .a b =C .a >bD .1ab = 2.若12x y x -=有意义,则x 的取值范围是( ) A .1x 2≤且x 0≠ B .1x 2≠ C .1x 2≤ D .x 0≠3.式子12a a +-有意义,则实数a 的取值范围是( ) A .a ≥-1 B .a ≠2 C .a ≥-1且a ≠2 D .a >24.如图,在四边形ABCD 中,∠A=140°,∠D=90°,OB 平分∠ABC ,OC 平分∠BCD ,则∠BOC=( )A .105°B .115°C .125°D .135°5.已知a 与b 互为相反数且都不为零,n 为正整数,则下列两数互为相反数的是( )A .a 2n -1与-b 2n -1B .a 2n -1与b 2n -1C .a 2n 与b 2nD .a n 与b n6.欧几里得的《原本》记载,形如22x ax b +=的方程的图解法是:画Rt ABC ∆,使90ACB ∠=,2a BC =,AC b =,再在斜边AB 上截取2a BD =.则该方程的一个正根是( )A .AC 的长B .AD 的长C .BC 的长D .CD 的长7.一次函数y =kx +b (k ≠0)的图象经过点B (﹣6,0),且与正比例函数y=13x的图象交于点A(m,﹣3),若kx﹣13x>﹣b,则()A.x>0 B.x>﹣3 C.x>﹣6 D.x>﹣98.下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是()A.B.C.D.9.如图,过A点的一次函数的图象与正比例函数y=2x的图象相交于点B,则这个一次函数的解析式是()A.y=2x+3 B.y=x﹣3 C.y=2x﹣3 D.y=﹣x+3 10.如图,一艘海轮位于灯塔P的南偏东70°方向的M处,它以每小时40海里的速度向正北方向航行,2小时后到达位于灯塔P的北偏东40°的N处,则N处与灯塔P的距离为()A.40海里B.60海里C.70海里D.80海里二、填空题(本大题共6小题,每小题3分,共18分)1.已知直角三角形的两边长分别为3、4.则第三边长为________.2.计算:16=_______.3.若28n 是整数,则满足条件的最小正整数n 为________.4.如图,把△ABC 绕点C 按顺时针方向旋转35°,得到△A ’B ’C ,A ’B ’交AC 于点D ,若∠A ’DC=90°,则∠A= °.5.如图所示,把一张长方形纸片沿EF 折叠后,点D C ,分别落在点D C '',的位置.若65EFB ︒∠=,则AED '∠等于________.6.如图,AC 平分DCB ∠,CB CD =,DA 的延长线交BC 于点E ,若49EAC ∠=,则BAE ∠的度数为__________.三、解答题(本大题共6小题,共72分)1.用适当的方法解方程组(1)3322x y x y =-⎧⎨+=⎩ (2)353123x y x y -=⎧⎪⎨-=⎪⎩2.先化简,再求值:(1﹣11x -)÷22441x x x -+-,其中x 5 23.已知方程组713x y m x y m+=--⎧⎨-=+⎩的解满足x 为非正数, y 为负数. (1)求m 的取值范围;(2)化简:||32m m --+;(3)在m 的取值范围内,当m 为何整数时,不等式221mx x m +<+的解为1x >.4.已知:在ABC ∆中,AB AC = ,D 为AC 的中点,DE AB ⊥ ,DF BC ⊥ ,垂足分别为点,E F ,且DE DF =.求证:ABC ∆是等边三角形.5.如图,在△OBC 中,边BC 的垂直平分线交∠BOC 的平分线于点D ,连接DB ,DC ,过点D 作DF ⊥OC 于点F .(1)若∠BOC =60°,求∠BDC 的度数;(2)若∠BOC =α,则∠BDC = ;(直接写出结果)(3)直接写出OB ,OC ,OF 之间的数量关系.6.在“母亲节”前期,某花店购进康乃馨和玫瑰两种鲜花,销售过程中发现康乃馨比玫瑰销售量大,店主决定将玫瑰每枝降价1元促销,降价后30元可购买玫瑰的数量是原来购买玫瑰数量的1.5倍.(1)求降价后每枝玫瑰的售价是多少元?(2)根据销售情况,店主用不多于900元的资金再次购进两种鲜花共500枝,康乃馨进价为2元/枝,玫瑰进价为1.5元/枝,问至少购进玫瑰多少枝?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、A3、C4、B5、B6、B7、D8、B9、D10、D二、填空题(本大题共6小题,每小题3分,共18分) 1、52、43、74、55.5、50°6、82.︒三、解答题(本大题共6小题,共72分)1、(1) 47x y =-⎧⎨=⎩;(2) 831x y ⎧=⎪⎨⎪=⎩2、12x x +-,55+3、(1)23m -<≤;(2)12m -;(3)1m =-4、略.5、(1)120°;(2)180°-α;(3)OB +OC =2OF6、(1)2元;(2)至少购进玫瑰200枝.。

湘教版八年级数学上册期末测试题(附参考答案)

湘教版八年级数学上册期末测试题(附参考答案)

湘教版八年级数学上册期末测试题(附参考答案)一、选择题:本题共12个小题,每题3分,共36分。

每小题只有一个选项符合题目要求。

1. 计算:a 2−5aa−5=( )A.a-5 B.a+5C.5 D.a2.如图,数轴上的点P表示下列四个无理数中的一个,这个无理数是( )A.-√2B.√2C.√5D.π3.下列各组线段中,不能构成三角形的是( )A.1,2,3 B.2,3,4C.3,4,5 D.4,5,64.如图,∠A=40°,∠CBD是△ABC的外角,∠CBD=120°,则∠C的度数是( )A.90°B.80°C.60°D.40°5.如图,在∠AOB的边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同刻度分别与点M,N重合,则过角尺顶点C的射线OC是∠AOB的平分线,请说明此做法的依据是( )A.SAS B.ASAC.AAS D.SSS6.如图,在△ABC中,AD是角平分线,DE⊥AB于点E,△ABC的面积为15,AB =6,DE=3,则AC的长是( )A.8 B.6C.5 D.47.如图,在△ABC中,AC>BC,分别以点A,B为圆心,以大于12AB的长为半径画弧,两弧交于点D,E,经过点D,E作直线分别交AB,AC于点M,N,连接BN,下列结论正确的是( )A.AN=NC B.AN=BNC.MN=12BC D.BN平分∠ABC8.若x,y的值均扩大为原来的3倍,则下列分式的值保持不变的是( )A.2+xx−y B.2xx−yC.2+xxy D.x2x+y9.已知a-1>0,则下列结论正确的是( )A.-1<-a<a<1 B.-a<-1<1<a C.-a<-1<a<1 D.-1<-a<1<a10.若关于x的不等式组{4(x−1)>3x−1,5x>3x+2a的解集为x>3,则a的取值范围是( )A.a>3 B.a<3C.a≥3 D.a≤311.如图,在等边三角形ABC中,D,E分别是BC,AC的中点,P是线段AD上的一个动点,当△PCE的周长最小时,点P的位置在( )A .A 点处B .D 点处C .AD 的中点处D .△ABC 三条高的交点处12.在正数范围内定义一种运算 “※”,其规则为a ※b =1a +1b ,如2※4=12+14,根据这个规则,方程3※(x -1)=1的解为( ) A .x =52 B .x =-1 C .x =12D .x =-3二、填空题:本题共6个小题,每小题3分,共18分。

湘教版八年级上册数学期末测试卷及答案

湘教版八年级上册数学期末测试卷及答案

湘教版八年级上册数学期末测试卷及答案成绩好坏,不足为怪,只要努力,无愧天地!祝你八年级数学期末考试取得好成绩,期待你的成功!下面是店铺为大家整编的湘教版八年级上册数学期末测试卷,大家快来看看吧。

湘教版八年级上册数学期末测试题一、选择题(每小题3分,共12小题,满分36分.请把表示正确答案的字母填入下表中对应的题号下.)1.下列分式中,是最简分式的是( )A. B.C. D.2.当分式的值为0时,字母x的取值应为( )A.﹣1B.1C.﹣2D.23.下列计算正确的是( )A.2﹣3=﹣8B.20=1C.a2•a3=a6D.a2+a3=a54.(﹣8)2的立方根是( )A.4B.﹣4C.8D.﹣85.若代数式有意义,则x必须满足条件( )A.x≠﹣B.x>C.x>﹣D.x≥﹣6.已知一个等腰三角形的一个内角是50°,则这个等腰三角形的另外两个内角度数分别是( )A.50°,80°B.65°,65°C.50°,80°或65°,65°D.无法确定7.下列命题是假命题的是( )A.实数与数轴上的点一一对应B.如果两个数的绝对值相等,那么这两个数必定也相等C.对顶角相等D.三角形的重心是三角形三条中线的交点8.下列长度的三根线段,能构成三角形的是( )A.3cm,10cm,5cmB.4cm,8cm,4cmC.5cm,13cm,12cmD.2cm,7cm,4cm9.不等式组的解集为( )A.x>﹣1B.x≤3C.110.计算÷ × 的结果估计在( )A.5至6之间B.6至7之间C.7至8之间D.8至9之间11.已知关于x的方程﹣ =0的增根是1,则字母a的取值为( )A.2B.﹣2C.1D.﹣112.用反证法证明命题“三角形中至少有一个角大于或等于60°”时,首先应假设这个三角形中( )A.有一个内角大于60°B.有一个内角小于60°C.每一个内角都大于60°D.每一个内角都小于60°二、填空题(每小题3分,共6小题,满分18分)13.最小刻度为0.2nm(1nm=10﹣9m)的钻石标尺,可以测量的距离小到不足头发丝直径的十万分之一,这也是目前世界上刻度最小的标尺,用科学记数法表示这一最小刻度为m.14.分式方程 =﹣4的解是x= .15.计算:• =.16.如图,将三角尺的直角顶点放在直尺的一边上,使∠1=60°,∠2=100°,则∠3=°.17.如图,已知∠BAC=∠DAC,则再添加一个条件,可使△ABC≌△ADC.18.如图,已知在△ABC中,AB=7,BC=6,AC的垂直平分线DE 交AC于点E,交AB于点D,连接CD,则△BCD的周长为.三、解答题:(19题每小题8分,20题6分,满分14分)19.(1)计算:﹣(2)计算:(2 ﹣5 )﹣( ﹣ )20.解下列不等式≤ ﹣1,并将解集在数轴上表示出来.四、分析与说理:(每小题8分,共2小题,满分16分)21.已知:如图所示,AB=AC,CE与BF相交于点D,且BD=CD.求证:DE=DF.22.已知:如图所示,在边长为4的等边△ABC中,AD为BC边上的中线,且AD=2 ,以AD为一边向左作等边△ADE.(1)求:△ABC的面积;(2)判断AB与DE的位置关系是什么?请予以证明.五、实践与应用(每小题8分,共2小题,满分16分)23.已知北海到南宁的铁路长210千米.动车投入使用后,其平均速度达到了普通火车的平均速度的3倍,这样由北海到南宁的行驶时间缩短了1.75小时.求普通火车的平均速度是多少?(列方程解答)24.张华老师揣着200元现金到星光文具店购买学生期末考试的奖品.他看好了一种笔记本和一种钢笔,笔记本的单价为每本5元,钢笔的单价为每支2元.张老师计划购买两种奖品共50份,求他最多能买笔记本多少本?(列不等式解答)六、阅读与探究(每小题10分,共2小题,满分20分)25.先阅读下列材料,再解决问题:阅读材料:数学上有一种根号内又带根号的数,它们能通过完全平方公式及二次根式的性质化去一层根号.例如:= = = =|1+ |=1+解决问题:①在括号内填上适当的数:= = = =| |=②根据上述思路,试将予以化简.26.已知:在△ABC中,∠BAC=90°,∠ABC=45°,点D为线段BC 上一动点(点D不与B、C重合),以AD为边向右作正方形ADEF,连接FC,探究:无论点D运动到何处,线段FC、DC、BC三者的长度之间都有怎样的数量关系?请予以证明.湘教版八年级上册数学期末测试卷参考答案一、选择题(每小题3分,共12小题,满分36分.请把表示正确答案的字母填入下表中对应的题号下.)1.下列分式中,是最简分式的是( )A. B.C. D.【考点】最简分式.【分析】最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.【解答】解:A、的分子、分母都不能再分解,且不能约分,是最简分式;B、,不是最简分式;C、,不是最简分式;D、,不是最简分式;故选A2.当分式的值为0时,字母x的取值应为( )A.﹣1B.1C.﹣2D.2【考点】分式的值为零的条件.【分析】直接利用分式的值为零,则分子为零,且分母不为零,进而得出答案.【解答】解:由题意,得x+2=0且x﹣1≠0,解得x=﹣2,故选:C.3.下列计算正确的是( )A.2﹣3=﹣8B.20=1C.a2•a3=a6D.a2+a3=a5【考点】同底数幂的乘法;合并同类项;零指数幂;负整数指数幂.【分析】根据同底数幂的乘法,零次幂,负整数指数幂,可得答案.【解答】解:A、2﹣3= = ,故A错误;B、20=1,故B正确;C、a2•a3=a2+3=a5,故C错误;D、不是同底数幂的乘法指数不能相加,故D错误;故选:B.4.(﹣8)2的立方根是( )A.4B.﹣4C.8D.﹣8【考点】立方根.【分析】先求出(﹣8)2,再利用立方根定义即可求解.【解答】解:∵(﹣8)2=64,64的立方根是4,∴(﹣8)2的立方根是4.故选:A.5.若代数式有意义,则x必须满足条件( )A.x≠﹣B.x>C.x>﹣D.x≥﹣【考点】二次根式有意义的条件.【分析】二次根式的被开方数是非负数.【解答】解:依题意得:2x+1≥0,解得x≥﹣ .故选:D.6.已知一个等腰三角形的一个内角是50°,则这个等腰三角形的另外两个内角度数分别是( )A.50°,80°B.65°,65°C.50°,80°或65°,65°D.无法确定【考点】等腰三角形的性质.【分析】本题可根据三角形的内角和定理求解.由于50°角可能是顶角,也可能是底角,因此要分类讨论.【解答】解:当50°是底角时,顶角为180°﹣50°×2=80°,当50°是顶角时,底角为÷2=65°.故这个等腰三角形的另外两个内角度数分别是50°,80°或65°,65°.故选:C.7.下列命题是假命题的是( )A.实数与数轴上的点一一对应B.如果两个数的绝对值相等,那么这两个数必定也相等C.对顶角相等D.三角形的重心是三角形三条中线的交点【考点】命题与定理.【分析】根据实数与数轴的关系,绝对值的性质,对顶角相等以及三角形重心的定义对各选项分析判断即可得解.【解答】解:A、实数与数轴上的点一一对应,是真命题,故本选项错误;B、如果两个数的绝对值相等,那么这两个数必定也相等,是假命题,应为如果两个数的绝对值相等,那么这两个数必定也相等或互为相反数,故本选项正确;C、对顶角相等,是真命题,故本选项错误;D、三角形的重心是三角形三条中线的交点,是真命题,故本选项错误.故选B.8.下列长度的三根线段,能构成三角形的是( )A.3cm,10cm,5cmB.4cm,8cm,4cmC.5cm,13cm,12cmD.2cm,7cm,4cm【考点】三角形三边关系.【分析】根据“三角形任意两边之和大于第三边,任意两边之差小于第三边”对各选项进行进行逐一分析即可.【解答】解:根据三角形的三边关系,得A、5+3<10,不能组成三角形,不符合题意;B、4+4=8,不能够组成三角形,不符合题意;C、12+5>13,能够组成三角形,符合题意;D、2+4<8,不能够组成三角形,不符合题意.故选:C.9.不等式组的解集为( )A.x>﹣1B.x≤3C.1【考点】解一元一次不等式组.【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:,∵解不等式①得:x>﹣1,解不等式②得:x≤3,∴不等式组的解集为﹣1故选D.10.计算÷ × 的结果估计在( )A.5至6之间B.6至7之间C.7至8之间D.8至9之间【考点】估算无理数的大小.【分析】利用二次根式的乘除法得到原式= ,然后根据算术平方根的定义得到 < < .【解答】解:原式= = ,因为 < < ,所以6< <7.故选B.11.已知关于x的方程﹣ =0的增根是1,则字母a的取值为( )A.2B.﹣2C.1D.﹣1【考点】分式方程的增根.【分析】去分母得出整式方程,把x=1代入整式方程,即可求出答案.【解答】解:﹣ =0,去分母得:3x﹣(x+a)=0①,∵关于x的方程﹣ =0的增根是1,∴把x=1代入①得:3﹣(1+a)=0,解得:a=2,故选A.12.用反证法证明命题“三角形中至少有一个角大于或等于60°”时,首先应假设这个三角形中( )A.有一个内角大于60°B.有一个内角小于60°C.每一个内角都大于60°D.每一个内角都小于60°【考点】反证法.【分析】反证法的步骤中,第一步是假设结论不成立,反面成立,可据此进行判断.【解答】解:反证法证明命题“三角形中至少有一个角大于或等于60°”时,首先应假设这个三角形中每一个内角都小于60°,故选:D.。

湘教版数学八年级上册期末考试试卷及答案

湘教版数学八年级上册期末考试试卷及答案

湘教版数学八年级上册期末考试试题一、选择题(每小题3分,共30分.每小题只有一项是正确的)1.的算术平方根为()A.B.C.D.2.若a<b,下列各式中,正确的是()A.﹣5a<﹣5b B.C.D.a+4<b+43.在,,,,中,分式的个数是()A.2B.3C.4D.54.下列各式中,能与合并的二次根式是()A.B.C.D.5.如图,在△ABC中,AB=AC,D是BC的中点,下列结论不一定正确的是()A.∠B=∠C B.AB=2BD C.∠1=∠2D.AD⊥BC 6.将一副直角三角板如图放置,使两直角重合,则∠DFB的度数为()A.145°B.155°C.165°D.175°7.下列命题中,属于真命题的是()A.如果ab=0,那么a=0B.是最简分式C.直角三角形的两个锐角互余D.不是对顶角的两个角不相等8.观察下列作图痕迹,△ABC中,CD为AB边上的中线是()A.B.C.D.9.如图,点B,E,C,F在同一条直线上,AB=DE,要使△ABC≌△DEF,则需要再添加的一组条件不可以是()A.AB⊥AC,DE⊥DF B.BC=EF,AC=DFC.∠A=∠D,∠B=∠DEF D.BE=CF,∠B=∠DEF10.若不等式组无解,则a的取值范围为()A.a>4B.a≤4C.0<a<4D.a≥4二、填空题(本大题共5小题,每小题3分,满分15分)11.在0,5,π,这些数中,无理数是.12.式子有意义时a的取值范围是.13.比较大小:﹣﹣2.(填“>”或“<”号)14.已有两根长度分别为4cm、7cm的木棒,请你再选取一根木棒,使得三根木棒首尾相接可以拼成一个三角形,你选取的木棒长度是cm.15.如图,DE垂直平分AC,交BC于点D,交AC于点E,AC=4cm,△ABD的周长为12cm,则△ABC的周长是cm.三、解答题(本大题共8小题,满分55分,解答应写出必要的文字说明、演算步骤或推理过程)16.(5分)计算:﹣()﹣1++(π﹣3)0.17.(5分)解不等式,并将解集在数轴上表示出来.18.(7分)解分式方程:=.19.(7分)计算:÷﹣×+.20.(7分)先化简:(﹣1)÷,然后从0,2,3中选择一个合适的数代入求值.21.(8分)某中学八年级同学到野外开展数学综合实践活动,在营地看到一池塘,同学们想知道池塘两端的距离.某同学设计了如下测量方案:先取一个可直接到达池塘的两端的点A,B的点E,连接AE,BE,分别延长AE至点D,BE至点C,使得ED=AE,EC =BE.再测出CD的长度即可知道AB之间的距离.他的方案可行吗?请说明理由.22.(8分)今年学校购买了A、B两种不同型号的口罩,已知A型口罩的单价比B型口罩的单价多1.5元,且用8000元购买A型口罩的数量与用5000元购买B型口罩的数量相同.(1)求A、B两种型号口罩的单价各是多少元?(2)根据疫情发展情况,学校还需要增加购买一些口罩,增加购买B型口罩数量是A 型口罩数量的2倍,若总费用不超过7200元,求增加购买A型口罩的数量最多是多少个?23.(8分)如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC上,且BD=CE,BE=CF.(1)求证:△DEF是等腰三角形;(2)猜想:当∠A满足什么条件时,△DEF是等边三角形?并说明理由.答案与解析一、选择题(每小题3分,满分30分.每小题只有一项是正确的)1.的算术平方根为()A.B.C.D.【分析】根据算术平方根的定义解答.【解答】解:∵()2=,∴的算术平方根为.故选:A.【点评】本题考查了算术平方根的定义,注意分数的平方要加括号.2.若a<b,下列各式中,正确的是()A.﹣5a<﹣5b B.C.D.a+4<b+4【分析】根据不等式的性质逐一进行判断即可.【解答】解:A.因为a<b,所以﹣5a>﹣5b,故本选项不合题意;B.因为a<b,所以,故本选项不合题意;C.因为a<b,所以,故本选项不合题意;D.因为a<b,所以a+4<b+4,故本选项符合题意;故选:D.【点评】本题考查了不等式的性质,解决本题的关键是掌握不等式的性质.3.在,,,,中,分式的个数是()A.2B.3C.4D.5【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【解答】解:,,这三个式子分母中含有字母,因此是分式.其它式子分母中均不含有字母,是整式,而不是分式.故选:B.【点评】本题主要考查分式的概念,分式与整式的区别主要在于:分母中是否含有字母.4.下列各式中,能与合并的二次根式是()A.B.C.D.【分析】先将各选项二次根式化简,再利用同类二次根式的概念判断即可.【解答】解:A.=2与不是同类二次根式,此选项不符合题意;B.=2与不是同类二次根式,此选项不符合题意;C.=2与不是同类二次根式,此选项不符合题意;D.=3与是同类二次根式,此选项符合题意;故选:D.【点评】本题主要考查同类二次根式,解题的关键是掌握同类二次根式的定义:把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.5.如图,在△ABC中,AB=AC,D是BC的中点,下列结论不一定正确的是()A.∠B=∠C B.AB=2BD C.∠1=∠2D.AD⊥BC【分析】根据等腰三角形“三线合一”的性质解答.【解答】解:∵△ABC中,AB=AC,D是BC中点,∴∠B=∠C(故A正确)∠1=∠2(故C正确)AD⊥BC(故D正确)无法得到AB=2BD,(故B不正确).故选:B.【点评】此题主要考查了等腰三角形的性质,本题关键熟练运用等腰三角形的三线合一性质.6.将一副直角三角板如图放置,使两直角重合,则∠DFB的度数为()A.145°B.155°C.165°D.175°【分析】利用三角形的外角性质可求出∠AFD的度数,再利用邻补角互补可求出∠DFB 的度数.【解答】解:∵∠CDF=∠A+∠AFD,∴∠AFD=∠CDF﹣∠A=45°﹣30°=15°.又∵∠DFB+∠AFD=180°,∴∠DFB=180°﹣∠AFD=180°﹣15°=165°.故选:C.【点评】本题考查了三角形的外角性质以及邻补角,利用三角形外角的性质,求出∠AFD 的度数是解题的关键.7.下列命题中,属于真命题的是()A.如果ab=0,那么a=0B.是最简分式C.直角三角形的两个锐角互余D.不是对顶角的两个角不相等【分析】对各个命题逐一判断后找到正确的即可确定真命题.【解答】解:A、如果ab=0,那么a=0或b=0,原命题是假命题;B、,不是最简分式,原命题是假命题;C、直角三角形的两个锐角互余,是真命题;D、不是对顶角的两个角也可能相等,原命题是假命题;故选:C.【点评】此题主要考查了命题与定理,熟练利用相关定理以及性质进而判定举出反例即可判定出命题正确性.8.观察下列作图痕迹,△ABC中,CD为AB边上的中线是()A.B.C.D.【分析】根据三角形中线的定义判断即可.【解答】解:根据作图可知,选项B中,点D是AB的中点,故线段CD是△ABC的中线,故选:B.【点评】本题考查作图﹣基本作图,线段的垂直平分线的性质,三角形的中线等知识,解题的关键是理解题意,灵活运用所学知识解决问题.9.如图,点B,E,C,F在同一条直线上,AB=DE,要使△ABC≌△DEF,则需要再添加的一组条件不可以是()A.AB⊥AC,DE⊥DF B.BC=EF,AC=DFC.∠A=∠D,∠B=∠DEF D.BE=CF,∠B=∠DEF【分析】根据全等三角形的判定方法进行判断即可.【解答】解:A、无法判定两个三角形全等;B、根据SSS能判定两个三角形全等;C、可用ASA判定两个三角形全等;D、可用SAS判定两个三角形全等.故选:A.【点评】本题考查全等三角形的判定,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.10.若不等式组无解,则a的取值范围为()A.a>4B.a≤4C.0<a<4D.a≥4【分析】不等式组整理后,根据不等式组无解确定出a的范围即可.【解答】解:不等式组整理得:,由不等式组无解,得到a≥4.故选:D.【点评】此题考查了解一元一次不等式组,熟练掌握不等式组的解法是解本题的关键.二、填空题(本大题共5小题,每小题3分,满分15分)11.在0,5,π,这些数中,无理数是π.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:0,5是整数,属于有理数;是分数,属于有理数;无理数π.故答案为:π.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.12.式子有意义时a的取值范围是a≥4.【分析】利用二次根式有意义的条件可得a﹣4≥0,再解不等式即可.【解答】解:由题意得:a﹣4≥0,解得:a≥4,故答案为:a≥4.【点评】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.13.比较大小:﹣>﹣2.(填“>”或“<”号)【分析】先求出2=,再根据两个负数比较大小,其绝对值大的反而小比较即可.【解答】解:∵2==>,∴﹣>﹣2,故答案为:>.【点评】本题考查了算术平方根和实数的大小比较,能熟记实数的大小比较法则是解此题的关键.14.已有两根长度分别为4cm、7cm的木棒,请你再选取一根木棒,使得三根木棒首尾相接可以拼成一个三角形,你选取的木棒长度是4(答案不唯一)cm.【分析】根据三角形三边关系,在三角形中任意两边之和大于第三边,任意两边之差小于第三边解答即可.【解答】解:根据三角形三边关系,∴三角形的第三边x满足:7﹣4<x<4+7,即3<x<11,∴x可以取4,5,6,7,8,9,10等无数个,故答案为:4(答案不唯一).【点评】此题主要考查了三角形三边关系,根据第三边的范围是:大于已知的两边的差,而小于两边的和是解决问题的关键.15.如图,DE垂直平分AC,交BC于点D,交AC于点E,AC=4cm,△ABD的周长为12cm,则△ABC的周长是16cm.【分析】根据线段垂直平分线的性质得到DA=DC,根据三角形的周长公式计算,得到答案.【解答】解:∵DE垂直平分AC,∴DA=DC,∵△ABD的周长为12cm,∴AB+BD+DA=AB+BD+DC=AB+BC=12(cm),∵AC=4cm,∴△ABC的周长=AB+BC+AC=16(cm),故答案为:16.【点评】本题考查的是线段垂直平分线的性质,掌握线段垂直平分线上的点到线段两端点的距离相等是解题的关键.三、解答题(本大题共8小题,满分55分,解答应写出必要的文字说明、演算步骤或推理过程)16.(5分)计算:﹣()﹣1++(π﹣3)0.【分析】直接利用二次根式的性质、立方根的定义、负整数指数幂的性质、零指数幂的性质分别化简得出答案.【解答】解:原式=2﹣2﹣+1=﹣.【点评】此题主要考查了实数运算,正确化简各数是解题关键.17.(5分)解不等式,并将解集在数轴上表示出来.【分析】两边同乘以6,去分母,去括号,移项,合并,系数化为1即可求解.【解答】解:2(x+4)﹣3(3x﹣1)>62x+8﹣9x+3>6﹣7x+11>6﹣7x>﹣5.【点评】在数轴上表示不等式的解集时,大于向右,小于向左,有等于号的画实心原点,没有等于号的画空心圆圈.18.(7分)解分式方程:=.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:3(x+2)=7x,去括号得:3x+6=7x,解得:x=,检验:当x=时,x(x+2)≠0,∴分式方程的解为x=.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.19.(7分)计算:÷﹣×+.【分析】先计算乘法和除法,再合并即可得.【解答】解:原式=﹣+2=4+【点评】本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的性质和运算法则.20.(7分)先化简:(﹣1)÷,然后从0,2,3中选择一个合适的数代入求值.【分析】先根据分式混合运算的法则把原式进行化简,再选取合适的x的值代入进行计算即可.【解答】解:原式===,∵a=0,a=2时,原式没有意义,∴当a=3时,原式==1.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.21.(8分)某中学八年级同学到野外开展数学综合实践活动,在营地看到一池塘,同学们想知道池塘两端的距离.某同学设计了如下测量方案:先取一个可直接到达池塘的两端的点A,B的点E,连接AE,BE,分别延长AE至点D,BE至点C,使得ED=AE,EC =BE.再测出CD的长度即可知道AB之间的距离.他的方案可行吗?请说明理由.【分析】根据全等三角形的判定和性质定理即可得到结论.【解答】解:在△AEB和△DEC中,,∴△AEB≌△DEC(SAS);∴AB=CD.【点评】本题考查了全等三角形的应用;解答本题的关键是设计三角形全等,巧妙地借助两个三角形全等,寻找所求线段与已知线段之间的等量关系.22.(8分)今年学校购买了A、B两种不同型号的口罩,已知A型口罩的单价比B型口罩的单价多1.5元,且用8000元购买A型口罩的数量与用5000元购买B型口罩的数量相同.(1)求A、B两种型号口罩的单价各是多少元?(2)根据疫情发展情况,学校还需要增加购买一些口罩,增加购买B型口罩数量是A 型口罩数量的2倍,若总费用不超过7200元,求增加购买A型口罩的数量最多是多少个?【分析】(1)设B型口罩的单价是x元,则A型口罩的单价是(x+1.5)元,根据数量=总价÷单价,结合用8000元购买A型口罩的数量与用5000元购买B型口罩的数量相同,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设增加购买A型口罩的数量是y个,则增加购买B型口罩数量是2y个,根据总价=单价×数量,结合总价不超过7200元,即可得出关于y的一元一次不等式,解之取其中的最大值即可得出结论.【解答】解:(1)设B型口罩的单价是x元,则A型口罩的单价是(x+1.5)元,依题意得:=,解得:x=2.5,经检验,x=2.5是原方程的解,且符合题意,∴x+1.5=4.答:A型口罩的单价是4元,B型口罩的单价是2.5元.(2)设增加购买A型口罩的数量是y个,则增加购买B型口罩数量是2y个,依题意得:4y+2.5×2y≤7200,解得:y≤800.答:增加购买A型口罩的数量最多是800个.【点评】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式.23.(8分)如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC上,且BD=CE,BE=CF.(1)求证:△DEF是等腰三角形;(2)猜想:当∠A满足什么条件时,△DEF是等边三角形?并说明理由.【分析】(1)首先根据条件证明△DBE≌△ECF,根据全等三角形的性质可得DE=FE,进而可得到△DEF是等腰三角形;(2)∠A=60°时,△DEF是等边三角形,首先根据△DBE≌△ECF,再证明∠DEF=60°,可以证出结论.【解答】(1)证明:∵AB=AC,∴∠B=∠C,在△DBE和△ECF 中,,∴△DBE≌△ECF,∴DE=FE,∴△DEF是等腰三角形;(2)当∠A=60°时,△DEF是等边三角形,理由:∵△BDE≌△CEF,∴∠FEC=∠BDE,∴∠DEF=180°﹣∠BED﹣∠EFC=180°﹣∠DEB﹣∠EDB=∠B要△DEF是等边三角形,只要∠DEF=60°.所以,当∠A=60°时,∠B=∠DEF=60°,则△DEF是等边三角形.【点评】此题主要考查了等腰三角形的判定,等边三角形的判定,关键是证明△DBE≌△ECF.11。

湘教版八年级数学上册期末测试卷及答案【完美版】

湘教版八年级数学上册期末测试卷及答案【完美版】

湘教版八年级数学上册期末测试卷及答案【完美版】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.多项式2mx m -与多项式221x x -+的公因式是( )A .1x -B .1x +C .21x -D .()21x - 2.将抛物线22y x =向上平移3个单位长度,再向右平移2个单位长度,所得到的抛物线为( ).A .22(2)3y x =++;B .22(2)3y x =-+;C .22(2)3y x =--;D .22(2)3y x =+-.3.如果线段AB =3cm ,BC =1cm ,那么A 、C 两点的距离d 的长度为( )A .4cmB .2cmC .4cm 或2cmD .小于或等于4cm ,且大于或等于2cm4.已知-10m 是正整数,则满足条件的最大负整数m 为( )A .-10B .-40C .-90D .-1605.为考察甲、乙、丙、丁四种小麦的长势,在同一时期分别从中随机抽取部分麦苗,获得苗高(单位:cm )的平均数与方差为:x 甲=x 丙=13,x 乙=x 丁=15:s 甲2=s 丁2=3.6,s 乙2=s 丙2=6.3.则麦苗又高又整齐的是( )A .甲B .乙C .丙D .丁 6.菱形不具备的性质是( )A .四条边都相等B .对角线一定相等C .是轴对称图形D .是中心对称图形7.如图,将矩形ABCD 沿GH 折叠,点C 落在点Q 处,点D 落在AB 边上的点E 处,若∠AGE=32°,则∠GHC 等于( )A .112°B .110°C .108°D .106°8.如图是一张直角三角形的纸片,两直角边AC =6 cm 、BC =8 cm ,现将△ABC 折叠,使点B 与点A 重合,折痕为DE ,则BE 的长为( )A .4 cmB .5 cmC .6 cmD .10 cm9.如图,两个不同的一次函数y=ax+b 与y=bx+a 的图象在同一平面直角坐标系的位置可能是( )A .B .C .D .10.若b >0,则一次函数y =﹣x +b 的图象大致是( )A .B .C .D .二、填空题(本大题共6小题,每小题3分,共18分)1.若22(3)16x m x +-+是关于x 的完全平方式,则m =__________.2.以正方形ABCD 的边AD 作等边△ADE ,则∠BEC 的度数是__________.3.已知x 、y 满足方程组2524x y x y +=⎧⎨+=⎩,则x y -的值为________. 4.如图,▱ABCD 中,AC 、BD 相交于点O ,若AD=6,AC+BD=16,则△BOC 的周长为________.5.如图,OP 平分∠MON ,PE ⊥OM 于点E ,PF ⊥ON 于点F ,OA =OB ,则图中有__________对全等三角形.6.如图,AC 平分DCB ∠,CB CD =,DA 的延长线交BC 于点E ,若49EAC ∠=,则BAE ∠的度数为__________.三、解答题(本大题共6小题,共72分)1.解下列方程组:(1)75331x y x y +=⎧⎨+=⎩; (2)()346126x y y x y y ⎧+-=⎪⎨+-=⎪⎩.2.先化简,再求值:2222222a ab b a ab a b a a b-+-÷--+,其中a ,b 满足2(2)10a b -+=.3.已知关于x 的不等式组5x 13(x-1),13x 8-x 2a 22+>⎧⎪⎨≤+⎪⎩恰有两个整数解,求实数a 的取值范围.4.已知:如图所示△ACB 和△DCE 都是等腰直角三角形,∠ACB=∠DCE=90°,连接AE ,BD .求证:AE=BD .5.如图,在△ABC中,∠ACB=90°,点D,E分别是边BC,AB上的中点,连接DE并延长至点F,使EF=2DE,连接CE、AF(1)证明:AF=CE;(2)当∠B=30°时,试判断四边形ACEF的形状并说明理由.6.为了抓住梵净山文化艺术节的商机,某商店决定购进A、B两种艺术节纪念品.若购进A种纪念品8件,B种纪念品3件,需要950元;若购进A种纪念品5件,B种纪念品6件,需要800元.(1)求购进A、B两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,但不超过7650元,那么该商店共有几种进货方案?(3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、B3、D4、A5、D6、B7、D8、B9、C10、C二、填空题(本大题共6小题,每小题3分,共18分)1、7或-12、30°或150°.3、14、145、36、82.︒三、解答题(本大题共6小题,共72分)1、(1)52xy=⎧⎨=⎩;(2)2xy=⎧⎨=⎩2、1a b-+,-13、-4≤a<-3.4、略.5、(1)略;(2)四边形ACEF是菱形,理由略.6、(1)A种纪念品需要100元,购进一件B种纪念品需要50元(2)共有4种进货方案(3)当购进A种纪念品50件,B种纪念品50件时,可获最大利润,最大利润是2500元。

湘教版八年级上册数学期末考试试卷带答案

湘教版八年级上册数学期末考试试卷带答案

湘教版八年级上册数学期末考试试卷带答案(总18页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--八年级上册数学期末考试试题一.填空题:(本大题10小题,每小题3分,满分30分)1.(3分)64的平方根是.2.(3分)分式方程的解为.3.(3分)如图,已知AB、CD相交于点P,AP=BP,请增加一个条件,使△ADP≌△BCP(不能添加辅助线),你增加的条件是.4.(3分)如图,在直角△ABC中,斜边AB上的垂直平分线交直角边BC于D,交AB于E,若BC=10cm,AC=6cm,则△ADC的周长为cm.5.(3分)已知△ABC的三个内角的度数之比∠A:∠B:∠C=2:3:5,则∠B=°,∠C=°.6.(3分)化简:= .7.(3分)满足不等式4x﹣1<x﹣7的解集是.8.(3分)计算|﹣|+2的结果是.9.(3分)如图:在等腰直角△ABC中,CA=CB,CD⊥AB于D,AB=10,则CD= .10.(3分)观察下列各等式:=﹣,=﹣,=﹣,…,根据你发现的规律计算:+++…+= .二.选择题:(每题4分,满分40分)11.(4分)使分式有意义的x的取值范围为()A.x≠2B.x≠﹣2 C.x>﹣2 D.x<212.(4分)小明和小张两人练习电脑打字,小明每分钟比小张少打6个字,小明打120个字所用的时间和小张打180个字所用的时间相等.设小明打字速度为x个/分钟,则列方程正确的是()A.B. C.D.13.(4分)下列命题,是真命题的是()A.直角三角形的一个内角为32°,则另外一个锐角为68°B.如果ab=0,那么a=0C.如果a2=b2,那么a=bD.直角三角形中的两个锐角不能都大于45°14.(4分)等腰三角形的两条边长分别是2cm和5cm,则该三角形的周长为()A.9cm B.12cm C.9cm或12cm D.7cm15.(4分)在﹣35,,…,,,,这六个实数中无理数有()A.2个B.3个C.4个D.5个16.(4分)有游客m人,如果每n个人住一个房间,结果还有一个人无房住,这客房的间数为()A.B.C.D.17.(4分)不等式x﹣2≤0的解集在数轴上表示正确的是()A.B.C.D.18.(4分)将一副三角板按如图所示摆放,图中∠α的度数是()A.75°B.90°C.105°D.120°19.(4分)下列计算错误的是()A.×=7B.(﹣1)2016(+1)2016=1C.=﹣8 D.3﹣=320.(4分)若关于x的不等式组的整数解共有4个,则m的取值范围是()A.6<m<7 B.6≤m<7 C.6<m≤7D.3≤m<4三.解答题(本题满分50分,解答需写出必要的解题步骤)21.(6分)计算:|﹣2|+(π﹣2016)0+﹣(﹣)﹣2.22.(6分)解不等式组:.23.(6分)如图所示,CD=CA,∠1=∠2,EC=BC,求证:△ABC≌△DEC.24.(6分)阅读理解:大家知道:是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部写出来,因为的整数部分是1,所以我们可以用来表示的小数部分.请你解答:已知:x是的整数部分,y是的小数部分,求x﹣y+的值.25.(8分)先化简,再求值:(﹣)+,其中a=2,b=.26.(8分)某校准备组织290名师生进行野外考察活动,行李共有100件.学校计划租用甲、乙两型号的汽车共8辆,经了解,甲种汽车每辆最多能载40人(不含司机)和10件行礼,乙种汽车每辆最多能载30人(不含司机)和20件行礼.设租用甲种汽车x辆,请你帮助学校设计所有可能的租车方案.27.(10分)已知某项工程由甲、乙两队合做12天可以完成,共需工程费用27720元.乙队单独完成这项工程所需时间是甲队单独完成这项工程所需时间的倍,且甲队每天的工程费用比乙队多250元.(1)求甲、乙两队单独完成这项工程各需多少天?(2)若工程管理部门决定从这两个队中选一个队单独完成此项工程,从节约资金的角度考虑,应选择哪个工程队?请说明理由.参考答案与试题解析一.填空题:(本大题10小题,每小题3分,满分30分)1.(3分)(2010•婺源县校级模拟)64的平方根是±8.【考点】平方根.【分析】直接根据平方根的定义即可求解.【解答】解:∵(±8)2=64,∴64的平方根是±8.故答案为:±8.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.2.(3分)(2016秋•湘潭期末)分式方程的解为x=4 .【考点】解分式方程.【专题】计算题;分式方程及应用.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x+2=6,解得:x=4,经检验x=4是分式方程的解.故答案为:x=4【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.3.(3分)(2016秋•湘潭期末)如图,已知AB、CD相交于点P,AP=BP,请增加一个条件,使△ADP≌△BCP(不能添加辅助线),你增加的条件是CP=DP .【考点】全等三角形的判定【分析】全等三角形的判定定理有SAS,ASA,AAS,SSS,根据定理添加一个条件即可.【解答】解:CP=DP,理由是:∵在△ADP和△BCP中∴△ADP≌△BCP(SAS),故答案为:CP=DP.【点评】本题考查了全等三角形的判定定理的应用,能熟记判定定理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.4.(3分)(2016秋•湘潭期末)如图,在直角△ABC中,斜边AB上的垂直平分线交直角边BC于D,交AB于E,若BC=10cm,AC=6cm,则△ADC的周长为16 cm.【考点】勾股定理;线段垂直平分线的性质【分析】由线段的垂直平分线的性质知BD=AD,结合三角形的周长可得答案.【解答】解:∵DE是边AB的垂直平分线,BC=10cm,AC=6cm,∴AD=BD,∴△ADC的周长=AD+DC+AC=BD+DC+AC=BC+AC=17cm;故答案为:16.【点评】此题主要考查线段的垂直平分线的性质等几何知识:线段的垂直平分线上的点到线段的两个端点的距离相等.做题中,对线段进行等量代换是正确解答本题的关键.5.(3分)(2016秋•湘潭期末)已知△ABC的三个内角的度数之比∠A:∠B:∠C=2:3:5,则∠B=54 °,∠C=90 °.【考点】三角形内角和定理.【分析】根据三角形内角和定理得出∠A+∠B+∠C=180°,求出∠C、∠B即可.【解答】解:∵∠A+∠B+∠C=180°,∠A:∠B:∠C=2:3:5,∴∠C=×180°=90°,∠B=×180°=54°,故答案为:54,90.【点评】本题考查了三角形内角和定理的应用,能正确运用定理进行计算是解此题的关键,注意:三角形的内角和等于180°.6.(3分)(2016•广东模拟)化简:= 1 .【考点】分式的加减法.【专题】计算题.【分析】先将第二项变形,使之分母与第一项分母相同,然后再进行计算.【解答】解:原式=.故答案为1.【点评】本题考查了分式的加减运算,要注意将结果化为最简分式.7.(3分)(2016秋•湘潭期末)满足不等式4x﹣1<x﹣7的解集是x<﹣2 .【考点】解一元一次不等式【分析】移项、合并同类项、系数化成1即可求解.【解答】解:移项,得4x﹣x<﹣7+1,合并同类项,得3x<﹣6,系数化成1得x<﹣2.故答案是:x<﹣2.【点评】本题考查了一元一次不等式的解法,基本操作方法与解一元一次方程基本相同,都有如下步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.以上步骤中,只有①去分母和⑤化系数为1可能用到性质3,即可能变不等号方向,其他都不会改变不等号方向.8.(3分)(2016秋•湘潭期末)计算|﹣|+2的结果是+.【考点】二次根式的加减法.【分析】由于<,故|﹣|=﹣.【解答】解:原式=﹣+2=+.【点评】合并同类二次根式实际是把同类二次根式的系数相加,而根指数与被开方数都不变.9.(3分)(2016秋•湘潭期末)如图:在等腰直角△ABC中,CA=CB,CD⊥AB于D,AB=10,则CD= 5 .【考点】等腰直角三角形.【分析】由已知可得Rt△ABC是等腰直角三角形,得出AD=BD=AB=5,再由直角三角形斜边的中线等于斜边的一半得出CD=BD=5.【解答】解:∵∠ACB=90°,CA=CB,∴∠A=∠B=45°,∵CD⊥AB,∴AD=BD=AB=5,∠CDB=90°,∴CD=BD=5.故答案为5【点评】本题主要考查了等腰直角三角形,解题的关键是灵活运用等腰直角三角形的性质求角及边的关系.10.(3分)(2016秋•湘潭期末)观察下列各等式:=﹣,=﹣,=﹣,…,根据你发现的规律计算:+++…+= .【考点】规律型:数字的变化类【分析】根据等式的变化找出变化规律“=﹣”,依此规律将原式展开即可得出结论.【解答】解:∵=﹣,=﹣,=﹣,…,∴=﹣,∴+++…+=1﹣+﹣+﹣+…+﹣=1﹣=.故答案为:.【点评】本题考查了规律型中数字的变化类,根据等式的变化找出变化规律“=﹣”是解题的关键.二.选择题:(每题4分,满分40分)11.(4分)(2007•河南)使分式有意义的x的取值范围为()A.x≠2B.x≠﹣2 C.x>﹣2 D.x<2【考点】分式有意义的条件【分析】本题主要考查分式有意义的条件:分母不等于0,故可知x+2≠0,解得x的取值范围.【解答】解:∵x+2≠0,∴x≠﹣2.故选B.【点评】本题考查的是分式有意义的条件.当分母不为0时,分式有意义.12.(4分)(2016秋•湘潭期末)小明和小张两人练习电脑打字,小明每分钟比小张少打6个字,小明打120个字所用的时间和小张打180个字所用的时间相等.设小明打字速度为x个/分钟,则列方程正确的是()A.B. C.D.【考点】由实际问题抽象出分式方程【专题】应用题.【分析】有工作总量180或120,求的是工作效率,那么一定是根据工作时间来列等量关系的.关键描述语是:“小明打120个字所用的时间和小张打180个字所用的时间相等”.等量关系为:小明打120个字所用的时间=小张打180个字所用的时间.【解答】解:小明打字速度为x个/分钟,那么小明打120个字所需要的时间为:;易得小张打字速度为(x+6)个/分钟,小张打180个字所需要的时间为:;∴可列方程为:,故选C.【点评】解决本题的关键是根据不同的工作量用的时间相等得到相应的等量关系.13.(4分)(2016秋•湘潭期末)下列命题,是真命题的是()A.直角三角形的一个内角为32°,则另外一个锐角为68°B.如果ab=0,那么a=0C.如果a2=b2,那么a=bD.直角三角形中的两个锐角不能都大于45°【考点】命题与定理【分析】根据命题的正确和错误进行判断解答即可.【解答】解:A、直角三角形的一个内角为32°,则另外一个锐角为58°,错误;B、如果ab=0,那么a=0或b=0,错误;C、如果a2=b2,那么a=b或a=﹣b,错误;D、直角三角形中的两个锐角不能都大于45°,正确;故选D【点评】此题考查命题问题,解答此题的关键是要熟知真命题与假命题的概念.14.(4分)(2016秋•湘潭期末)等腰三角形的两条边长分别是2cm和5cm,则该三角形的周长为()A.9cm B.12cm C.9cm或12cm D.7cm【考点】等腰三角形的性质;三角形三边关系【分析】根据2cm和5cm可分别作等腰三角形的腰,结合三边关系定理,分别讨论求解.【解答】解:当2cm为腰时,三边为2cm,2cm,5cm,由三角形三边关系定理可知,不能构成三角形,当5cm为腰时,三边为5cm,5cm,2cm,符合三角形三边关系定理,周长为:5+5+2=12cm.故选B.【点评】本题考查了等腰三角形的性质,三角形三边关系定理.关键是根据2,5,分别作为腰,由三边关系定理,分类讨论.15.(4分)(2016秋•湘潭期末)在﹣35,,…,,,,这六个实数中无理数有()A.2个B.3个C.4个D.5个【考点】无理数【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:…,,是无理数,故选:B.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像…,等有这样规律的数.16.(4分)(2016秋•湘潭期末)有游客m人,如果每n个人住一个房间,结果还有一个人无房住,这客房的间数为()A.B.C.D.【考点】列代数式(分式)【专题】应用题.【分析】房间数=住进房间人数÷每个房间能住的人数;一人无房住,那么住进房间的人数为:m﹣1.【解答】解:住进房间的人数为:m﹣1,依题意得,客房的间数为,故选A.【点评】解决问题的关键是读懂题意,找到关键描述语,找到所求的量的等量关系.17.(4分)(2016秋•湘潭期末)不等式x﹣2≤0的解集在数轴上表示正确的是()A.B.C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式.【分析】先求此不等式的解集,再根据不等式的解集在数轴上表示方法画出图示即可求得.【解答】解:x﹣2≤0,解得x≤2,故B正确.故选:B.【点评】本题考查了在数轴上表示不等式的解集不等式的解集,在数轴上表示出来的方法:“>”空心圆点向右画折线,“≥”实心圆点向右画折线,“<”空心圆点向左画折线,“≤”实心圆点向左画折线.18.(4分)(2012•聊城)将一副三角板按如图所示摆放,图中∠α的度数是()A.75°B.90°C.105°D.120°【考点】三角形的外角性质;三角形内角和定理【专题】探究型.【分析】先根据直角三角形的性质得出∠BAE及∠D的度数,再由三角形外角的性质即可得出结论.【解答】解:∵图中是一副直角三角板,∴∠BAE=45°,∠D=60°,∠DAE=90°,∴∠DAF=90°﹣∠BAE=90°﹣45°=45°,∴∠α=∠DAF+∠D=45°+60°=105°.故选C.【点评】本题考查的是三角形内角和定理,即三角形内角和是180°.19.(4分)(2016秋•湘潭期末)下列计算错误的是()A.×=7B.(﹣1)2016(+1)2016=1C.=﹣8 D.3﹣=3【考点】立方根;算术平方根.【分析】根据立方根和二次根式的乘法的计算方法进行计算,即可解答.【解答】解:A,原式=7,故本选项不符合题意;B,原式=[(﹣1)(+1)]2016=(2﹣1)2016=1,故本选项不符合题意;C,原式=﹣8,故本选项不符合题意;D,原式=2,故本选项符合题意;故选:D.【点评】本题考查了立方根和算术平方根,熟练掌握立方根和算术平方根的计算方法是解题的关键.20.(4分)(2016秋•湘潭期末)若关于x的不等式组的整数解共有4个,则m的取值范围是()A.6<m<7 B.6≤m<7 C.6<m≤7D.3≤m<4【考点】一元一次不等式组的整数解【分析】首先解不等式组,利用m表示出不等式组的解集,然后根据不等式组只有1个整数解即可求得m的范围.【解答】解:,解①得x<m,解②得x≥3.则不等式组的解集是3≤x<m.∵不等式组有4个整数解,∴不等式组的整数解是3,4,5,6.∴6<m≤7.【点评】本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.三.解答题(本题满分50分,解答需写出必要的解题步骤)21.(6分)(2016秋•湘潭期末)计算:|﹣2|+(π﹣2016)0+﹣(﹣)﹣2.【考点】二次根式的混合运算;零指数幂;负整数指数幂【分析】根据实数的混合运算顺序和法则依次计算可得.【解答】解:原式=2﹣+1+3﹣4=2﹣.【点评】本题主要考查实数的混合运算,熟练掌握实数的混合运算顺序和法则是解题的关键.22.(6分)(2016秋•湘潭期末)解不等式组:.【考点】解一元一次不等式组【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:x﹣1≥0得:x≥1;解4﹣2x>0得:x<2所以不等式组的解集为:1≤x<2【点评】本题考查了一元一次不等式组的解法,解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,确定解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.23.(6分)(2016•同安区一模)如图所示,CD=CA,∠1=∠2,EC=BC,求证:△ABC≌△DEC.【考点】全等三角形的判定【专题】证明题.【分析】根据三角形全等的判定,由已知先证∠ACB=∠DCE,再根据SAS可证△ABC≌△DEC.【解答】证明:∵∠1=∠2,∴∠ACB=∠DCE,在△ABC和△DEC中,,∴△ABC≌△DEC(SAS).【点评】本题考查了三角形全等的判定方法和性质,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.结合图形做题,由∠1=∠2得∠ACB=∠DCE是解决本题的关键.24.(6分)(2016秋•湘潭期末)阅读理解:大家知道:是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部写出来,因为的整数部分是1,所以我们可以用来表示的小数部分.请你解答:已知:x是的整数部分,y是的小数部分,求x﹣y+的值.【考点】估算无理数的大小.【分析】根据11<10+<12,可得的整数部分和小数部分,再进一步求x﹣y+的值即可.【解答】解:∵11<10+<12,∴x=11,y=,所以可得x﹣y+=11﹣=12.【点评】此题考查估算无理数的大小,估算出10+的大小是解决问题的关键.25.(8分)(2016•长沙)先化简,再求值:(﹣)+,其中a=2,b=.【考点】分式的化简求值.【专题】探究型.【分析】先对所求式子进行化简,然后根据a=2,b=可以求得化简后式子的值,本题得以解决.【解答】解:(﹣)+===,当a=2,b=时,原式=.【点评】本题考查分式的化简求值,解题的关键是会对所求的式子化简并求值.26.(8分)(2011•运河区二模)某校准备组织290名师生进行野外考察活动,行李共有100件.学校计划租用甲、乙两型号的汽车共8辆,经了解,甲种汽车每辆最多能载40人(不含司机)和10件行礼,乙种汽车每辆最多能载30人(不含司机)和20件行礼.设租用甲种汽车x辆,请你帮助学校设计所有可能的租车方案.【考点】一元一次不等式组的应用【分析】设租用甲种汽车x辆,则租用乙种汽车(8﹣x)辆,根据有290名老师和100件行李,以及甲种汽车每辆最多能载40人(不含司机)和10件行李,乙种汽车每辆最多能载30人(不含司机)和20件行李可列方程求解.【解答】解:(1)由租用甲种汽车x辆,则租用乙种汽车(8﹣x)辆.由题意得:解得:5≤x≤6.即共有2种租车方案:第一种是租用甲种汽车5辆,乙种汽车3辆;第二种是租用甲种汽车6辆,乙种汽车2辆.【点评】本题考查一元一次不等式组的应用,关键是根据人数和行李数作为不等量关系列不等式组求解.27.(10分)(2016秋•湘潭期末)已知某项工程由甲、乙两队合做12天可以完成,共需工程费用27720元.乙队单独完成这项工程所需时间是甲队单独完成这项工程所需时间的倍,且甲队每天的工程费用比乙队多250元.(1)求甲、乙两队单独完成这项工程各需多少天?(2)若工程管理部门决定从这两个队中选一个队单独完成此项工程,从节约资金的角度考虑,应选择哪个工程队?请说明理由.【考点】分式方程的应用.【分析】(1)设甲需要x天,则乙需要天,根据甲、乙两队合做12天可以完成整个工作任务列出方程求解可得;(2)设甲每天的费用是y元;乙每天的费用是(y﹣250)元,根据总工程费用为27720元列出方程求解可得y的值,再分别计算可得.【解答】解:(1)设甲需要x天,则乙需要天,根据题意可得:,解得:x=20,经检验x=20是原分式方程的解,则=30,答:甲单独完成这项工程需20天,乙队单独完成这项工程各需30天;(2)设甲每天的费用是y元;乙每天的费用是(y﹣250)元根据题意可得:12y+12(y﹣250)=27720解得:y=1280元.1280﹣250=1030 元甲单独完成共需要费用:1280×20=25600元乙单独完成共需要费用:1030×30=30900元.因此甲单独完成需要的费用低.选甲工程队单独完成.【点评】本题主要考查分式方程的应用,理解题意找到题目蕴含的相等关系并列出方程式解题的关键.。

湘教版八年级数学上册期末考试卷(参考答案)

湘教版八年级数学上册期末考试卷(参考答案)

湘教版八年级数学上册期末考试卷(参考答案) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.估计7+1的值在( )A .2和3之间B .3和4之间C .4和5之间D .5和6之间2.在平面直角坐标系的第二象限内有一点M ,点M 到x 轴的距离为3,到y 轴的距离为4,则点M 的坐标是( )A .(3,4)-B .(4,3)-C .(4,3)-D .()3,4-3.若229x kxy y -+是一个完全平方式,则常数k 的值为( )A .6B .6-C .6±D .无法确定4.实数a ,b ,c ,d 在数轴上的位置如图所示,下列关系式不正确的是( )A .|a|>|b|B .|ac|=acC .b <dD .c+d >05.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是 ( )A .20{3210x y x y +-=--=, B .210{3210x y x y --=--=, C .210{3250x y x y --=+-=, D .20{210x y x y +-=--=, 6.如图,正方形ABCD 中,AB=12,点E 在边CD 上,且BG=CG ,将△ADE 沿AE 对折至△AFE ,延长EF 交边BC 于点G ,连接AG 、CF ,下列结论:①△ABG ≌△AFG;②∠EAG=45°;③CE=2DE;④AG∥CF;⑤S△FGC =725.其中正确结论的个数是()A.2个B.3个C.4个D.5个7.下列说法中错误的是()A.12是0.25的一个平方根B.正数a的两个平方根的和为0C.916的平方根是34D.当0x≠时,2x-没有平方根8.如图,△ABC中,AD为△ABC的角平分线,BE为△ABC的高,∠C=70°,∠ABC=48°,那么∠3是()A.59°B.60°C.56°D.22°9.如图,点P是∠AOB内任意一点,且∠AOB=40°,点M和点N分别是射线OA和射线OB上的动点,当△PMN周长取最小值时,则∠MPN的度数为()A.140°B.100°C.50°D.40°10.下列选项中,不能判定四边形ABCD是平行四边形的是()A .AD//BC ,AB//CDB .AB//CD ,AB CD =C .AD//BC ,AB DC =D .AB DC =,AD BC =二、填空题(本大题共6小题,每小题3分,共18分)1.已知a 、b 为两个连续的整数,且11a b <<,则a b +=__________.2.计算1273-=___________. 3.若2|1|0a b -++=,则2020()a b +=_________.4.如图,在Rt △ACB 中,∠ACB =90°,∠A =25°,D 是AB 上一点,将Rt △ABC 沿CD 折叠,使点B 落在AC 边上的B ′处,则∠ADB ′等于_____5.如图,圆柱形玻璃杯高为14cm ,底面周长为32cm ,在杯内壁离杯底5cm 的点B 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm 与蜂蜜相对的点A 处,则蚂蚁从外壁A 处到内壁B 处的最短距离为___________cm (杯壁厚度不计).6.如图,四边形ABCD 中,∠A=90°,3,AD=3,点M ,N 分别为线段BC ,AB 上的动点(含端点,但点M 不与点B 重合),点E ,F 分别为DM ,MN 的中点,则EF 长度的最大值为 .三、解答题(本大题共6小题,共72分)1.解方程23111x x x -=--.2.先化简,再求值:(x +2)(x -2)+x(4-x),其中x =14.3.已知关于x 的方程220x ax a ++-=.(1)当该方程的一个根为1时,求a 的值及该方程的另一根;(2)求证:不论a 取何实数,该方程都有两个不相等的实数根.4.如图,在Rt △ABC 中,∠ACB=90°,∠A=40°,△ABC 的外角∠CBD 的平分线BE 交AC 的延长线于点E .(1)求∠CBE 的度数;(2)过点D 作DF ∥BE ,交AC 的延长线于点F ,求∠F 的度数.5.如图,△ABC中,AB=AC,∠BAC=90°,点D,E分别在AB,BC上,∠EAD=∠EDA,点F为DE的延长线与AC的延长线的交点.(1)求证:DE=EF;(2)判断BD和CF的数量关系,并说明理由;(3)若AB=3,AE=5,求BD的长.6.某超市计划购进甲、乙两种商品,两种商品的进价、售价如下表:商品甲乙进价(元/件)60x+x售价(元/件)200 100若用360元购进甲种商品的件数与用180元购进乙种商品的件数相同.(1)求甲、乙两种商品的进价是多少元?(2)若超市销售甲、乙两种商品共50件,其中销售甲种商品为a件(30a≥),设销售完50件甲、乙两种商品的总利润为w元,求w与a之间的函数关系式,并求出w的最小值.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、C4、B5、D6、D7、C8、A9、B10、C二、填空题(本大题共6小题,每小题3分,共18分)1、723、14、40°.5、206、3三、解答题(本大题共6小题,共72分)1、2x =2、-3.3、(1)12,32-;(2)略.4、(1) 65°;(2) 25°.5、(1)略;(2略;(3)BD=1.6、(1)分别是120元,60元;(2)402000w a =+(30)a ≥,当a=30件时,w 最小值=3200元。

湘教版八年级上册数学期末考试卷附答案

湘教版八年级上册数学期末考试卷附答案

湘教版八年级上册数学期末考试试题一.选择题:(每小题4分,满分40分)1.在下列各数中,无理数是A .0B .21C .2D .72.若x >y ,则下列不等式成立的是A .3-x <3-y B .5+x >5+y C .3x <3y D .x 2->y2-3.若等腰三角形的一个底角的度数为72°,则顶角的度数为A .108°B .72°C .54°D .36°4.当2015=x 时,分式211xx--的值是A .20151B .20151-C .20161D .20161-5.已知△ABC 中,2(∠B+∠C )=3∠A,则∠A 的度数是A .54°B .72°C .108°D .144°6.一个不等式组的解集在数轴上表示如图,则这个不等式组可能是A .41x x >⎧⎨-⎩,≤B .41x x <⎧⎨-⎩,≥C .41x x >⎧⎨>-⎩,D .41x x ⎧⎨>-⎩≤,7.不等式组43128164x x x+⎧⎨-≤-⎩>的最小整数解是A .0B .-1C .1D .28.如图,AB ∥EF ∥DC ,∠ABC =90°,AB =DC ,那么,图中的全等三角形共有A .1对B .2对C .3对D .4对9.若关于x 的方程322=-x a ax 的解为1=x ,则a 等于AFBCED40-1A .21B .2C .2-D .21-10.若2121-=+=b a ,则代数式ab b a 322-+的值为A .3B .±3C .5D .9二.填空题:(每小题3分,满分24分)11.=-xx 12_____.12.计算5155⨯÷的结果为_____.13.金园小区有一块长为m 18,宽为m 8的长方形草坪,计划在草坪面积不变的情况下,把它改造成正方形,则这个正方形的边长是_____m .14.已知不等式+x 2★>2的解集是x >4-,则“★”表示的数是_____.15.一个工程队计划用6天完成300土方的工程,实际上第一天就完成了60方土,因进度需要,剩下的工程所用的时间不能超过3天,那么以后几天平均至少要完成的土方数是_____.16.如图,在△ABC 中,∠A=30°,∠B=50°,延长BC 到D,则∠ACD=_____.17.如图,在△ADC 中,AD=BD=BC,∠C=30°,则∠ADB=_____.18.A 、B 两地相距km 60,甲骑自行车从A 地到B 地,出发h 1后,乙骑摩托车从A 地到B 地,且乙比甲早到h 3,已知甲、乙的速度之比为1:3,则甲的速度是_____.三.解答题:(请写出主要的推导过程)19.(本题满分7分)CD ABCDAB第16题图第17题图解不等式组2328x x x ≤+⎧⎨⎩<并将其解集在数轴上表示出来.20.(本题满分7分)已知12+=x ,12-=y ,试求xyy x -的值.21.(本题满分7分)已知:72++y x 的立方根是3,16的算术平方根是y x -2,求:(1)x 、y 的值;(2)22y x +的平方根.22.(本题满分8分)若不等式组3224x a x b -⎧⎨-⎩<>的解集为23x -<<,求b a +的值.23.(本题满分8分).如图,在△ABC 中,AD 是BC 上的高,AE 平分∠BAC,∠B=75°,∠C=45°.求∠DAE 与∠AEC 的度数.24.(本题满分9分).金瑞公司决定从厂家购进甲、乙两种不同型号的显示器共50台,购进显示器的总金额不超过77000元,已知甲、乙型号的显示器价格分别为1000元/台、2000元/台.(1)求金瑞公司至少购进甲型显示器多少台?(2)若甲型显示器的台数不超过乙型显示器的台数,则有哪些购买方案?25.(本题满分10分)如图,在△ABC 中,AB=AC,点D、E、F 分别在AB、BC、AC 上,且BE=CF,AD+EC=AB.(1)求证:△DEF 是等腰三角形;(2)当∠A=40°时,求∠DEF 的度数;(3)△DEF 可能是等腰直角三角形吗?为什么?CBD AEAF BCED参考答案一.选择题:(每小题4分,满分40分)1.C 2.B3.D 4.C 5.B 6.B 7.A 8.C 9.D 10.A二.填空题:(每小题3分,满分24分)11.x112.113.1214.1015.8016.80°17.60°18.hkm /10三.解答题:19.(7分)解:不等式组⎩⎨⎧+≤8232 x x x 的解集为x ≤-3<4.20.(7分)解:241222))((22=⨯-+=-=-xy y x y x xy y x x y y x 21.(7分)解:(1)依题意⎩⎨⎧=-=++422772y x y x 解得:⎩⎨⎧==86y x (2)22y x +的平方根是10±22.(8分)解:由⎩⎨⎧--4223 b x a x 得⎪⎪⎩⎪⎪⎨⎧++2432b x a x ∴⎪⎪⎩⎪⎪⎨⎧-=+=+224332b a 解得⎩⎨⎧-==87b a ∴1-=+b a 23.(8分).解:∵∠B=75°,∠C=45°,∴∠BAC=60°.又AE 平分∠BAC.∴∠BAE=∠EAC=30°.⊙又AD⊥BC ∴∠DAE=∠BAD=15°,∠AEC=180°-∠EAC-∠C=180°-30°-45°=105°24.(9分)解:(1)设金瑞公司购进甲型显示器x 台,则购进乙型显示器)50(x -台.依题意得)50(20001000x x -+≤77000解得x ≥23即金瑞公司至少购进甲型显示器23台;(2)依题意可得不等式x ≤-50x ,解是x ≤25,∴23≤x ≤25.∵x 为整数,∴x 可取23、24、25.①购进甲型显示器23台,乙型显示器27台;②购进甲型显示器24台,乙型显示器26台;③购进甲型显示器25台,乙型显示器25台.25.(10分)(1)∵AD +EC=AB=AD+DB,∴EC =DB.又AB =AC∴∠B =∠C 又BE =CF∴△BED≌△ECF∴DE =EF∴△DEF 是等腰三角(2)∵∠A=40°∴∠B =∠C =70°由(1)知∠BDE =∠FE C ∴∠DEF=∠B =70°(3)若△DEF 是等腰直角三角形,则∠DEF=90°∴∠DEB+∠BDE=90°,∴∠B=90°因而∠C=90°∴△DEF 不可能是等腰直角三角形.。

湘教版八年级数学上册期末测试卷(及参考答案)

湘教版八年级数学上册期末测试卷(及参考答案)

湘教版八年级数学上册期末测试卷(及参考答案)班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.3-的倒数是( ) A .3B .13C .13-D .3-2.已知a 、b 、c 是△ABC 的三条边长,化简|a +b -c|-|c -a -b|的结果为( ) A .2a +2b -2c B .2a +2bC .2cD .03.已知23a b=(a ≠0,b ≠0),下列变形错误的是( ) A .23a b = B .2a=3b C .32b a = D .3a=2b4.关于x 的一元一次不等式≤﹣2的解集为x ≥4,则m 的值为( )A .14B .7C .﹣2D .25.下列方程中,是关于x 的一元二次方程的是( ) A .ax 2+bx+c =0(a ,b ,c 为常数) B .x 2﹣x ﹣2=0 C .211x x+﹣2=0 D .x 2+2x =x 2﹣16.已知a=2012x+2011,b=2012x+2012,c=2012x+2013,那么a 2+b 2+c 2—ab -bc -ca 的值等于( ) A .0B .1C .2D .37.实数a 、b 在数轴上的位置如图所示,且|a|>|b|,则化简2a a b -+的结果为( )A .2a+bB .-2a+bC .bD .2a-b8.如图,过△ABC 的顶点A ,作BC 边上的高,以下作法正确的是( )A .B .C. D.9.李大爷要围成一个矩形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长应恰好为24米.要围成的菜园是如图所示的矩形ABCD.设BC边的长为x米,AB边的长为y米,则y与x之间的函数关系式是( )A.y=-2x+24(0<x<12) B.y=-x+12(0<x<24)C.y=2x-24(0<x<12) D.y=x-12(0<x<24)10.若b>0,则一次函数y=﹣x+b的图象大致是()A.B.C.D.二、填空题(本大题共6小题,每小题3分,共18分)1.若关于x,y的二元一次方程组3133x y ax y+=+⎧⎨+=⎩的解满足x+y<2,则a的取值范围为________.2.如果一个直角三角形的两条直角边的长分别为5、12,则斜边上的高的长度为__________.3.如果实数a,b满足a+b=6,ab=8,那么a2+b2=________.4.在直线l上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是a,b,c,正放置的四个正方形的面积依次是S1,S2,S3,S4,则S1+S2+S3+S4=________.5.一大门栏杆的平面示意图如图所示,BA 垂直地面AE 于点A ,CD 平行于地面AE ,若∠BCD=150°,则∠ABC=________度.6.如图,∠AOB=60°,OC 平分∠AOB ,如果射线OA 上的点E 满足△OCE 是等腰三角形,那么∠OEC 的度数为________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

湘教版八年级数学上学期期末考试试卷
时间:120分钟 总分:120 分
一.选择题: (每小题4分,满分40分,请将正确答案的序号填写在选择题的答题栏内)
1.在下列各数中,无理数是 A .0 B .
2
1
C .2
D .7 2.若x >y ,则下列不等式成立的是
A .3−x < 3−y
B .5+x > 5+y
C .3x < 3
y
D .x 2−> y 2−
3.若等腰三角形的一个底角的度数为72°,则顶角的度数为 A .108° B .72° C .54°
D . 36° 4.当2015=x 时,分式
2
11x
x
−−的值是 A .20151 B .20151− C .20161 D . 2016
1−
5.已知△ABC 中,2(∠B +∠C )=3∠A ,则∠A 的度数是 A .54° B .72° C .108° D .144° 6.一个不等式组的解集在数轴上表示如图,则这个不等式组可能是
A .41x x >⎧⎨−⎩
,≤
B .41x x <⎧⎨−⎩

≥ C .41x x >⎧⎨>−⎩,
D .41x x ⎧⎨>−⎩
≤,
7.不等式组431
28164x x x +⎧⎨−≤−⎩
> 的最小整数解是
A .0
B .-1
C .1
D . 2
8.如图,AB ∥EF ∥DC ,∠ABC =90°,AB =DC ,那么,图中的全等三角形共有
A .1 对
B .2对
C .3对
D .4对 9.若关于x 的方程
3
2
2=−x a ax 的解为1=x ,则a 等于 A .21 B .2 C .2− D .2
1−
10.若21,21−=+=b a ,则代数式ab b a 322−+的值为 A .3 B .± 3 C .5 D .9
一.选择题答题栏: 题次 1
2
3
4
5
6
7
8
9
10
答案
二.填空题答题栏: 11. 12. 13. 14. 15. 16.
17.
18.
A
F
B
C
E
D
4
-1
二.填空题: (每小题3分,满分24分,请将答案填写在填空题的答题栏内) 11.
=−x
x 1
2_____. 12.计算5
155⨯
÷ 的结果为_____.
13.金园小区有一块长为m 18 ,宽为m 8的长方形草坪,计划在草坪面积不变的情况下,把它改造成正方形,则这个正方形的边长是_____m .
14.已知不等式+x 2★>2的解集是x >4−,则“★” 表示的数是_____. 15.一个工程队计划用6天完成300土方的工程,实际上第一天就完成了60方土,因进度需要,剩下的工程所用的时间不能超过3天,那么以后几天平均至少要完成的土方数是_____.
16.如图,在△ABC 中,∠A =30°,∠B =50°,延长BC 到D ,则∠ACD =_____.
17.如图,在△ADC 中,AD =BD =BC,∠C =30°,则∠ADB =_____.
18.A 、B 两地相距km 60,甲骑自行车从A 地到B 地,出发h 1后,乙骑摩托车从A 地到B 地,且乙比甲早到h 3,已知甲、乙的速度之比为1:3,则甲的速度是 _____.
三.解答题: (请写出主要的推导过程) 19.(本题满分7分)
解不等式组 2328x x x ≤+⎧⎨⎩
<并将其解集在数轴上表示出来.
C
D A
B
C
D
A
B
第16题图
第17题图
20.(本题满分7分)已知12+=x ,12−=y ,试求x
y
y x −的值.
21.(本题满分7分)已知:72++y x 的立方根是3,16的算术平方根是y x −2,求:(1)x 、y 的值; (2)22y x +的平方根.
22.(本题满分8分)若不等式组3224
x a x b −⎧⎨−⎩<>的解集为23x −<<,求b a +的值.
23.(本题满分8分).如图,在△ABC 中,AD 是BC 上的高,AE 平分∠BAC, ∠B =75°, ∠C =45°.求∠DAE 与∠AEC 的度数.
C
B
D
A
E
24.(本题满分9分).金瑞公司决定从厂家购进甲、乙两种不同型号的显示器共50台,购进显示器的总金额不超过77000元,已知甲、乙型号的显示器价格分别为1000元/台、2000元/台.
(1)求金瑞公司至少购进甲型显示器多少台?
(2)若甲型显示器的台数不超过乙型显示器的台数,则有哪些购买方案?
25.(本题满分10分)
如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC上,且BE=CF,AD+EC=AB.
(1)求证:△DEF是等腰三角形;
(2)当∠A=40°时,求∠DEF的度数;
(3)△DEF可能是等腰直角三角形吗?为什么?
A
F
B C
E
D
2015年下学期期末考试 八年级数学参考答案
一.选择题: (每小题4分,满分40分)
1.C 2.B 3.D 4.C 5.B 6.B 7.A 8.C 9.D 10.A 二.填空题: (每小题3分,满分24分) 11.
x
1
12. 1 13. 12 14.10 15.80 16.80° 17.60° 18.h km /10 三.解答题:
19.(7分)解:不等式组 ⎩⎨⎧+≤8
23
2 x x x 的解集为x ≤−3<4.
20.( 7分)
解: 241
2
22)
)((22=⨯−+=−=−xy y x y x xy y x x y y x 21.( 7分)解:(1)依题意⎩⎨⎧=−=++422772y x y x 解得:⎩⎨⎧==8
6
y x
(2)22y x +的平方根是10±
22.( 8分)
解:由⎩⎨⎧−−4223 b x a x 得⎪⎪⎩⎪⎪⎨⎧++243
2b x a x ∴⎪⎪⎩⎪⎪⎨⎧−=+=+2
2
4332b a 解得⎩⎨⎧−==87b a
∴1−=+b a 23.( 8分).
解:∵∠B =75°,∠C =45°, ∴∠BAC =60°. 又AE 平分∠BAC. ∴∠BAE =∠EAC =30°.

又AD⊥BC ∴∠DAE=∠BAD=15°,
∠AEC=180°-∠EAC-∠C=180°-30°-45°=105°
24.(9分)解:(1)设金瑞公司购进甲型显示器x台,则购进乙型显示器)

(x
50台.依题意得)
x−
+≤77000
1000x
2000
(
50
解得x≥23即金瑞公司至少购进甲型显示器23台;
(2)依题意可得不等式x≤−
50x,解是x≤25,
∴23≤x≤25.
∵x为整数,∴x可取23、24、25.
①购进甲型显示器23台,乙型显示器27台;
②购进甲型显示器24台,乙型显示器26台;
③购进甲型显示器25台,乙型显示器25台.
25.(10分)
(1)∵AD+EC=AB=AD+DB,∴EC=DB.又AB=AC∴∠B=∠C 又BE=CF∴△BED≌△ECF∴DE=EF∴△DEF是等腰三角(2)∵∠A=40°∴∠B=∠C=70°由(1)知∠BDE=∠FE C
∴∠DEF=∠B=70°
(3)若△DEF是等腰直角三角形,则∠DEF=90°∴∠DEB+∠BDE=90°,
∴∠B=90°因而∠C=90°∴△DEF不可能是等腰直角三角形.。

相关文档
最新文档