奥数抽屉原理

合集下载

三年级奥数之抽屉原理

三年级奥数之抽屉原理

抽屉原理是在集合中对元素分配的原则和方法之一,它在数学中有着重要的应用。

下面将从什么是抽屉原理、抽屉原理的应用以及抽屉原理的实例等方面进行介绍。

一、什么是抽屉原理抽屉原理(也称为鸽巢原理)是指当把若干个物品放入若干个抽屉中时,无论如何放,总有一个抽屉中要放至少两个物品。

这是因为如果有n+1个物品放入n个抽屉中,那么至少有一个抽屉里面放了两个物品。

抽屉原理的数学概念是一种常用的思考方法,它的核心是基于“物品数大于抽屉数”。

二、抽屉原理的应用抽屉原理在数学中有广泛的应用,特别是在组合数学、概率论和数论等领域。

它常常用来解决组合问题、分配问题以及概率问题等。

1.解决组合问题:例如,若有n+1个元素放入n个抽屉中,那么必然存在至少一个抽屉中有至少两个元素,这对于解决组合问题非常有用。

2.解决分配问题:例如,如果有n+1个待分配的任务和n个人来分配任务,那么必然存在至少一个人分配到了两个任务。

这对于资源的合理分配具有指导意义。

3.解决概率问题:例如,当从一个有限的集合中随机选择元素时,当元素的数目大于选择次数时,抽屉原理可以帮助我们理解为什么在多次实验中,一些结果出现的概率较高。

三、抽屉原理的实例以下是一些经典的抽屉原理的实例,以帮助大家更好地理解抽屉原理的应用。

1.生日原理:假设一个教室里有365个学生,那么他们中间有至少两个人的生日相同的概率是多少?根据抽屉原理,我们可以知道只要有366个学生,那么必然存在至少两个人的生日是相同的。

2.快乐数:快乐数是指一个正整数,将该数的每个数位上的数字的平方相加,再对得到的结果重复进行相同的操作,最终结果为1、根据抽屉原理,如果不是快乐数,那么一定存在循环的结果。

3.鸽巢原理:在一群鸽子和若干个鸽巢之间进行配对,如果鸽子的个数大于鸽巢的个数,那么至少有一个鸽巢中有两只以上的鸽子。

这个例子非常形象地展示了抽屉原理。

总之,抽屉原理作为一种思考方法和解决问题的原则,可以在数学问题中发挥重要的作用。

六年级《抽屉原理》奥数课件

六年级《抽屉原理》奥数课件

例题四
11名学生到老师家借书,老师的书房中有A、B、C、D 四类书,每名学生最多可借两本不同类的书,最少借一本。 试证明:必有两个学生所借的书的类型相同。
答:学生所借的书有10种可能:
A、B、C、D、AB、AC、AD、 BC、BD、CD。
11个学生借书必定有两个学生借 的书类型是相同的。
找抽屉
练习四
小结
最不利原则:从最不利条件发生的情况考虑。 原理1:把不少于n+1个的物体放到n个抽屉里,
则至少有一个抽屉里的东西不少于两个。
例题三
任意4个自然数,其中至少有两个数的 差是3的倍数。这是为什么?
n n12 33hh 1(2 整数 )1 答:可任能意:4个0、自1然、数2除,以因3此的至“余少数有”两有个3种
抽屉原理
10
10个苹果放到 9个抽屉(盒子 )里,一定有一 个抽屉(盒子) 至少有2个苹果

例题一
一个小组共有13名同学,其中至少有2 名同学同一个月过生日,为什么?
答:假设12个月都有1名同学过生日, 则多出来的1名同学一定与另1名同 学在同一个月过生日。
一年有12 个月。
练习一
在367个1996年出生的儿童中,至少有
n33h 3 2
自然数的“余数”是相同的。它们的 差定是3的倍数。
任意4个自然数中一定存在除以3的“余数”相同的两个自然数。
这两个自然数减去相同的“余数”后都是3的倍数。
这两个3的倍数的差一定也是3的倍数。
练习三
任取8个自然数,必有两个数的差是7的 倍数。为什么?
答:任意8个自然数除以7的“余数”有7种 可能:0、1、2、3、4、5、6,因此至少 有两个自然数的“余数”是相同的。它们的 差一定是7的倍数。

小学奥数抽屉原理

小学奥数抽屉原理

小学奥数抽屉原理
小学奥数中的抽屉原理是指在一组物品中,如果物品的数量大于抽屉的数量,那么至少会有一个抽屉中放置了两个或以上的物品。

这个原理可以用一个简单的例子来解释。

假设有4只袜子和3
个抽屉,我们要将袜子放入这些抽屉中。

因为袜子的数量大于抽屉的数量,根据抽屉原理,至少有一个抽屉中会放置两只袜子。

我们可以用鸽巢原理(抽屉原理的另一种说法)来帮助我们理解。

想象一下,如果有4只鸽子要放在3个巢里,根据鸽巢原理,至少有一个巢会有两只鸽子。

在小学奥数中,经常会用到抽屉原理来解决问题。

例如,假设有10个苹果,我们要将它们放入9个抽屉中。

我们可以确定
至少有一个抽屉中会放置两个或以上的苹果。

通过理解抽屉原理,我们可以更好地解决一些有关数量关系的问题。

这个简单而重要的数学原理在日常生活中也有很多应用。

例如,在一个大班级中,如果学生的数量超过了座位的数量,必然会有至少两个学生坐在同一个座位上。

总之,小学奥数中的抽屉原理告诉我们,当物品的数量大于抽屉的数量时,一定会有至少一个抽屉中放置了两个或以上的物品。

这个原理可以帮助我们更好地理解数量关系,解决数学问题。

小学奥数抽屉原理

小学奥数抽屉原理

小学奥数抽屉原理小学奥数是小学生学习数学的一项重要内容,其中抽屉原理是一个非常有趣且实用的数学概念。

抽屉原理是指如果有n+1个物品放入n个抽屉中,那么至少有一个抽屉中至少有两个物品。

这个简单的原理在解决一些实际问题时非常有用,下面我们就来详细了解一下小学奥数中的抽屉原理。

首先,我们来看一个简单的例子。

假设有5个苹果和4个篮子,我们要把这些苹果放进篮子里,那么根据抽屉原理,至少有一个篮子里会有至少两个苹果。

这是因为5个苹果分别放入4个篮子,必然会有至少一个篮子里有两个或以上的苹果。

抽屉原理在解决实际问题时非常有用。

比如,在一个班级里,学生们的生日是随机分布的,如果班级有31个学生,那么根据抽屉原理,至少有两个学生会有相同的生日。

这是因为一年有365天,而学生的数量只有31个,必然会有至少两个学生生日在同一天。

除了生日问题,抽屉原理还可以应用在许多其它实际问题中。

比如在一副扑克牌中,如果抽出了5张牌,那么根据抽屉原理,至少会有一种花色的牌有两张或以上。

这是因为一副扑克牌只有4种花色,而抽出的牌有5张,必然会有至少一种花色的牌有两张或以上。

在小学奥数中,抽屉原理可以帮助学生更好地理解和解决一些问题。

通过抽屉原理,学生们可以培养逻辑思维能力,提高解决问题的能力。

同时,抽屉原理也可以帮助学生更好地理解数学知识,为他们打下坚实的数学基础。

总之,抽屉原理是小学奥数中非常重要的一个概念,它不仅能够帮助学生更好地理解数学知识,还能够在解决实际问题时发挥重要作用。

通过学习抽屉原理,学生们可以培养逻辑思维能力,提高解决问题的能力,为将来的学习打下坚实的基础。

希望学生们能够认真学习抽屉原理,将其运用到实际生活中,发挥出更大的作用。

小学六年级奥数抽屉原理含答案

小学六年级奥数抽屉原理含答案

小学六年级奥数抽屉原理含答案Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】抽屉原理知识要点1.抽屉原理的一般表述(1)假设有3个苹果放入2个抽屉中,必然有一个抽屉中至少有2个苹果。

它的一般表述为:第一抽屉原理:(mn+1)个物体放入n个抽屉,其中必有一个抽屉中至少有(m+1)个物体。

(2)若把3个苹果放入4个抽屉中,则必然有一个抽屉空着。

它的一般表述为:第二抽屉原理:(mn-1)个物体放入n个抽屉,其中必有一个抽屉中至多有(m-1)个物体。

2.构造抽屉的方法常见的构造抽屉的方法有:数的分组、染色分类、图形的分割、剩余类等等。

例1自制的一副玩具牌共计52张(含四种牌:红桃、红方、黑桃、黑梅,每种牌都有1点,2点,……13点牌各一张),洗好后背面朝上放。

一次至少抽取张牌,才能保证其中必定有2张牌的点数和颜色都相同。

如果要求一次抽出的牌中必定有3张牌的点数是相邻的(不计颜色),那么至少要取张牌。

点拨对于第一问,最不利的情况是两种颜色都取了1~13点各一张,此时再抽一张,这张牌必与已抽取的某张牌的颜色与点数都相同。

点拨对于第二问,最不利的情况是:先抽取了1,2,4,5,7,8,10,11,13各4张,此时再取一张,这张牌的点数是3,6,9,12中的一张,在已抽取的牌中必有3张的点数相邻。

解(1)13×2+1=27(张) (2)9×4+1=37(张)例2 证明:37人中,(1)至少有4人属相相同;(2)要保证有5人属相相同,但不保证有6人属相相同,那么人的总数应在什么范围内点拨可以把12个属相看做12个抽屉,根据第一抽屉原理即可解决。

解 (1)因为37÷12=3……1,所以,根据第一抽屉原理,至少有3+1=4(人)属相相同。

(2)要保证有5人的属相相同的最少人数为4×12+1=49(人)不保证有6人属相相同的最多人数为5×12=60(人)所以,总人数应在49人到60人的范围内。

奥数-18抽屉原理+答案

奥数-18抽屉原理+答案
解析:每个人最少交一个朋友,最多可以交 19 个朋友,20 大于 19,所以至少有 两名游客,他们的朋友人数一样多。 练习一 1. 把 9 条金鱼任意放在 8 个鱼缸里面,至少有一个鱼缸放有两条或两条以上金鱼,
请你说明理由。
2. 一个旅行团在北京游玩 5 天,他们想去 6 个景点游玩,导游说你们至少有一天游 玩两个景点,请你说明理由。
二、 解题方法
抽屉原理是组合数学中一个重要而又基本的数学原理,利用它可以解决很多有趣 的问题,许多看起来相当复杂,甚至无从下手的问题,在利用抽屉原则后,能很快使 问题得到解决。
1. 公式 苹果÷抽屉=商……余数 余数:① 余数=0,结论:至少有“商”个苹果在同一个抽屉里。 ② 余数>0,结论:至少有(商+1)个苹果在同一个抽屉里。
抽屉原理
一、 抽屉原理
桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,至少有一个抽 屉里面至少放两个苹果。如果把 n+1 个物体放到 n 个抽屉中,那么至少有一个抽屉 中放着 2 个或更多的物体,我们称这种现象为抽屉原理。
抽屉原理可以推广为:如果有 m 个抽屉,有 k×m+r(0<r≤m)个元素那么至 少有一个抽屉中要放(k+1)个或更多的元素。通俗地说,如果元素的个数是抽屉个 数的 k 倍多一些,那么至少有一个抽屉要放(k+1)个或更多的元素。
6. 四个连续的自然数分别被 3 除后,必有两个余数相同,请说明理由。
2
【例3】 一养鸽户有 10 只鸽笼,每天鸽子回家他都要数一数,并作记录。他发现 每天都会出现 3 只鸽子住同一个鸽笼,请问:他至少养了几只鸽子?
解析:本题需要求“苹果”的数量,需要反用抽屉原理,并结合最“坏”情况。 最坏的情况是每个笼子都有 2 只鸽子,出现 3 只鸽子住同一个鸽笼,是因为比这些 鸽子还至少多 1 只鸽子,所以至少需要养 21 只鸽子。

小学奥数--抽屉原理

小学奥数--抽屉原理

⼩学奥数--抽屉原理⼩学奥数--抽屉原理抽屉原理(⼀)解题要点:要从最不利情况考虑,准确地建⽴抽屉和确定元素的总个数(如果将5个苹果放到3个抽屉中去,那么不管怎么放,⾄少有⼀个抽屉中放的苹果不少于2个。

道理很简单,如果每个抽屉中放的苹果都少于2个,即放1个或不放,那么3个抽屉中放的苹果的总数将少于或等于3,这与有5个苹果的已知条件相⽭盾,因此⾄少有⼀个抽屉中放的苹果不少于2个。

同样,有5只鸽⼦飞进4个鸽笼⾥,那么⼀定有⼀个鸽笼⾄少飞进了2只鸽⼦。

以上两个简单的例⼦所体现的数学原理就是“抽屉原理”,也叫“鸽笼原理”。

抽屉原理1:将多于n件的物品任意放到n个抽屉中,那么⾄少有⼀个抽屉中的物品不少于2件。

说明这个原理是不难的。

假定这n个抽屉中,每⼀个抽屉内的物品都不到2件,那么每⼀个抽屉中的物品或者是⼀件,或者没有。

这样,n个抽屉中所放物品的总数就不会超过n件,这与有多于n件物品的假设相⽭盾,所以前⾯假定“这n 个抽屉中,每⼀个抽屉内的物品都不到2件”不能成⽴,从⽽抽屉原理1成⽴。

从最不利原则也可以说明抽屉原理1。

为了使抽屉中的物品不少于2件,最不利的情况就是n个抽屉中每个都放⼊1件物品,共放⼊n 件物品,此时再放⼊1件物品,⽆论放⼊哪个抽屉,都⾄少有1个抽屉不少于2件物品。

这就说明了抽屉原理1。

例1 某幼⼉园有367名1996年出⽣的⼩朋友,是否有⽣⽇相同的⼩朋友,分析与解:1996年是闰年,这年应有366天。

把366天看作366个抽屉,将367名⼩朋友看作367个物品。

这样,把367个物品放进366个抽屉⾥,⾄少有⼀个抽屉⾥不⽌放⼀个物品。

因此⾄少有2名⼩朋友的⽣⽇相同。

例2在任意的四个⾃然数中,是否其中必有两个数,它们的差能被3整除, 分析与解:因为任何整数除以3,其余数只可能是0,1,2三种情形。

我们将余数的这三种情形看成是三个“抽屉”。

⼀个整数除以3的余数属于哪种情形,就将此整数放在那个“抽屉”⾥。

五年级奥数第12讲:抽屉原理-课件

五年级奥数第12讲:抽屉原理-课件

例题二
芭啦啦综合教育学校五年级有32名同学是在五月份出生 的,那么,其中至少有几名同学的生日在同一天?
抽屉原理1:将多 于n件的物品任意 放到n个抽屉里, 那么至少有一个 抽屉里的物品不 少于2件。
31天
32÷31=1(名)……1 (名) 1+1=2(名)
答:至少有2名同学的生日在同一天。
练习二
答:如果每个抽屉里都放一个苹果,那么6 个抽屉就有6个苹果,实际上有7个苹果, 说明至少有一个抽屉里至少有2个苹果。
练习一
5只鸽子飞进4个鸽笼,那么一定有一个鸽笼里至少飞进 2只鸽子,为什么?
5÷4=1(只)……1(只)
答:每个鸽笼里飞进一只鸽子,4个鸽笼就有4只鸽子, 实际上有5只鸽子,说明至少有1个鸽笼里至少飞 进2只。
共9种
1个足球1个排球、1个足球1个篮球、1个排球1个篮球
66÷9=7(名)……3(名) 7+1=8(名)
答:至少有8名同学所拿的球种类是完全相同的。
练习五(选做)
芭啦啦综合教育学校组织夏令营活动,游览北京颐和园、 故宫和长城三个景点,共有200名同学参加。规定每人至少去 1处,至多去2处,那么至少有几人游览的地方完全相同?




我们,还在路上……
某兴趣小组有13名同学,其中至少有几名同学是同一个 星座的?
12个
13÷12=1(名)……1 (名) 1+1=2(名)
答:至少有2名同学是同一星座的。
小结
抽屉原理1:将多于n件的物品任意放到n个 抽屉里,那么至少有一个抽屉里的物品不少于 2件。
例题三
有红、黄、蓝、白四色小球各10个,混合放在一个暗盒 里,从中摸球,一次至少摸出几个,才能保证有3个小球是同 色的?

六年级奥数思维训练专题9 抽屉原理

六年级奥数思维训练专题9  抽屉原理

第九讲抽屉原理一、知识点介绍抽屉原理有时也被称为鸽笼原理,它由德国数学家狄利克雷首先明确提出来并用来证明一些数论中的问题,因此,也被称为狄利克雷原则.抽屉原理是组合数学中一个重要而又基本的数学原理,利用它可以解决很多有趣的问题,并且常常能够起到令人惊奇的作用.许多看起来相当复杂,甚至无从下手的问题,在利用抽屉原则后,能很快使问题得到解决.二、抽屉原理的定义(1)举例桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,有的抽屉可以放一个,有的可以放两个,有的可以放五个,但最终我们会发现至少我们可以找到一个抽屉里面至少放两个苹果。

(2)定义一般情况下,把 n+1 或多于 n+1 个苹果放到 n 个抽屉里,其中必定至少有一个抽屉里至少有两个苹果。

我们称这种现象为抽屉原理。

三、抽屉原理的解题方案(一)、利用公式进行解题苹果÷抽屉=商……余数余数:(1)余数=1,结论:至少有(商+1)个苹果在同一个抽屉里(2)余数= x 1<x <(n-1),结论:至少有(商+1)个苹果在同一个抽屉里(3)余数=0,结论:至少有“商”个苹果在同一个抽屉里(二)、利用最值原理解题将题目中没有阐明的量进行极限讨论,将复杂的题目变得非常简单,也就是常说的极限思想“任我意”方法、特殊值方法1【例题一】某校六年级有学生367人,请问有没有两个学生的生日是同一天?为什么?【拓展训练】某校有30名学生是2月份出生的,能否至少有两个学生生日是在同一天?【例题二】六(1)班有49名学生,数学高老师了解到期中考试该班英语成绩除3人外,均在86分以上后就说:“我可以断定,本班至少有4人成绩相同”。

王老师说的对吗?为什么【拓展训练】一次中环杯比赛,满分为100 分,参赛学生中,最高分为83分,最低分为30分(所有的分数都是整数),一共有8000个学生参加,那么至少有几个学生的分数相同。

【例题三】某班共有46名学生,他们都参加了课外兴趣小组。

小学奥数抽屉原理题型及答案解析

小学奥数抽屉原理题型及答案解析

小学奥数抽屉原理题型及答案解析一、抽屉原理解释抽屉原理,也被称为鸽巢原理,是组合数学中的一个重要原理。

这个原理的基本含义是:如果n+1个物体被放到n个抽屉里,那么至少有一个抽屉中会放有2个或更多的物体。

这个原理可以用来解决很多看似复杂的问题。

原理解释:假设有3个抽屉和4个苹果,我们要把这4个苹果放进3个抽屉里。

无论我们怎么放,总会有至少一个抽屉里放了2个或更多的苹果。

这是因为每个抽屉最多只能放1个苹果的话,3个抽屉只能放3个苹果,但我们有4个苹果,所以至少有一个抽屉里会有2个苹果。

同样的,如果有n个抽屉和n+1个物体,无论我们怎么分配这些物体到抽屉里,至少会有一个抽屉里会有2个或更多的物体。

二、抽屉原理应用举例属相问题:中国有12个属相,如果问任意37个人中,至少有几个人属相相同?我们可以把12个属相看作12个抽屉,37个人看作37个物体。

根据抽屉原理,至少有一个抽屉里有4个或更多的物体,也就是说,至少有4个人的属相是相同的。

自然数问题:在任意的100个自然数中,是否可以找到一些数(可以是一个数),它们的和能被100整除?这个问题也可以通过抽屉原理来解决。

如果我们把这100个自然数对100取余,那么余数只能是0到99之间的数,也就是有100个“抽屉”。

根据抽屉原理,至少有一个“抽屉”里有多于一个的数,这两个数的差就是100的倍数,因此它们的和也能被100整除。

三、抽屉原理解题思路和方法首先,需要理解抽屉原理的基本含义,即如果把n+1个物体放在n个抽屉里,那么至少有一个抽屉中至少放有2个物体。

这是解题的基础。

其次,在解题过程中,需要找出隐藏的抽屉数和物体数,并将问题转化为抽屉问题。

这通常需要对问题进行仔细分析,找出其中的规律和特点。

接下来,可以利用平均分的方法来确定每个抽屉中的物体数。

如果物体数不能被抽屉数整除,那么至少有一个抽屉中的物体数会多于平均值。

这有助于确定至少有多少个物体是相同或满足某种条件的。

六年级奥数讲义第29讲抽屉原理

六年级奥数讲义第29讲抽屉原理

抽屉原理是数学中的一种基本原理,也称为鸽巢原理。

它的主要内容是:将n+1个物体放入n个抽屉中,至少有一个抽屉中至少有两个物体。

这个原理虽然听起来很简单,但在解决各种问题时非常有用。

在奥数竞赛中,经常会遇到需要运用抽屉原理的问题。

下面我们来介绍一下抽屉原理的基本思想和应用。

首先,我们来看一下抽屉原理的基本思想。

假设有n+1个物体要放入n个抽屉中,我们先将第一个物体放入第一个抽屉,第二个物体放入第二个抽屉,以此类推,第n+1个物体放入第n+1个抽屉。

根据原理,至少有一个抽屉中放入了两个物体,因为抽屉的个数比物体的个数要少1、这是因为对于任意一个抽屉来说,它只能放1个物体,物体多了就必然会出现一个抽屉中放入两个物体的情况。

抽屉原理的应用非常广泛,下面我们来举几个例子。

例1:在一个学校的排球队中,有20名男生和15名女生。

如果要从中选出5名男生和3名女生为代表出战,那么根据抽屉原理,至少有一种情况是两名或两名以上的代表选择的性别相同的。

解析:根据抽屉原理,我们可以将男生视为一个抽屉,将女生视为另一个抽屉。

我们要从男生中选择5名,从女生中选择3名,而男生的人数比女生多。

根据抽屉原理,至少有一种情况是两名或两名以上的代表选择的性别相同的。

这是因为男生的抽屉里有20个物体,女生的抽屉里有15个物体,而我们一共要从抽屉中选取8个物体。

由于男生的抽屉里物体的个数比女生的抽屉里的物体个数多,所以根据抽屉原理,至少有一种情况是两名或两名以上的代表选择的性别相同的。

例2:假设有27只猴子要选择出最重的猴子,请问最少需要进行几次称重?解析:将27只猴子分成9组,每组3只猴子。

然后对这9组进行一次比较,可以得到每组中最重的猴子。

这样,我们从9组中选择出最重的猴子,剩下的8组中每组还有2只猴子未被称重。

将剩下的8组分成4组,每组2只猴子进行一次比较,得到每组中最重的猴子。

这样,我们从4组中选择出最重的猴子,剩下的4组中每组还有1只猴子未被称重。

四年级奥数抽屉原理

四年级奥数抽屉原理

四年级奥数抽屉原理抽屉原理一、知识点介绍抽屉原理,又称鸽笼原理或XXX原则,是德国数学家XXX首先提出的数学原理,用于解决组合数学中的问题。

该原理可以解决许多看似复杂的问题,常常能够起到令人惊奇的作用。

二、抽屉原理的定义1)举例如果将十个苹果放到九个抽屉里,无论怎样放,必定会有至少一个抽屉里面至少放两个苹果。

这种现象被称为抽屉原理,也被称为鸽巢原理。

2)定义将n+1或多于n+1个物品放到n个抽屉里,其中必定至少有一个抽屉里至少有两个物品。

三、抽屉原理的解题方案一)利用公式进行解题将物品数量除以抽屉数量,得到商和余数。

余数为1时,至少有(商+1)个物品在同一个抽屉里;余数为x时,至少有(商+1)个物品在同一个抽屉里;余数为0时,至少有“商”个物品在同一个抽屉里。

二)利用最值原理解题通过极限讨论,将复杂的问题变得简单,利用特殊值方法解决问题。

四、应用抽屉原理解题的具体步骤第一步:分析题意,确定“物品”和“抽屉”。

第二步:构造抽屉,根据题目结论和数学知识,设计和确定解决问题所需的“物品”及其数量。

第三步:运用抽屉原理,结合题设条件,恰当运用原理或综合多个原理,解决问题。

例题精讲例1】6只鸽子要飞进5个笼子,每个笼子里都必须有1只,一定有一个笼子里有2只鸽子。

解析】将6只鸽子放入5个笼子,至少有一个笼子里有2只鸽子。

因为6只鸽子减去5个笼子最多只能放1只鸽子,所以必定有一个笼子里有2只鸽子。

巩固】教室里有5名学生正在做作业,现在只有数学、英语、语文、地理四科作业。

这5名学生中,至少有两个人在做同一科作业。

解析】将5名学生分配到4个科目的作业中,至少有两个人在做同一科作业。

因为5名学生减去4个科目最多只能有1个人没有做作业,所以必定有两个人在做同一科作业。

例2】XXX有730个学生,至少有几个学生的生日是同一天?解析】将730个学生的生日分配到365个天数中,至少有两个学生的生日是同一天。

因为730减去365最多只能有365个不同的生日,所以必定有两个学生的生日是同一天。

小学抽屉原理公式

小学抽屉原理公式

小学奥数抽屉原理公式及经典例题解答分析第一抽屉原理原理1:把多于n个的物体放到n个抽屉里,则至少有一个抽屉里的东西不少于两件。

证明(反证法):如果每个抽屉至多只能放进一个物体,那么物体的总数至多是n,而不是题设的n+k(k≥1),故不可能。

原理2 :把多于mn(m乘以n)个的物体放到n个抽屉里,则至少有一个抽屉里有不少于m+1的物体。

证明(反证法):若每个抽屉至多放进m个物体,那么n个抽屉至多放进mn个物体,与题设不符,故不可能。

原理3 :把无穷多件物体放入n个抽屉,则至少有一个抽屉里有无穷个物体。

原理1 、2 、3都是第一抽屉原理的表述。

例:把4个物体放在3个抽屉里,也就是把4分解成三个整数的和,那么就有以下四种情况:①4=4+0+0②4=3+1+0③4=2+2+0④4=2+1+1观察上面四种放物体的方式,我们会发现一个共同特点:总有那么一个抽屉里有2个或多于2个物体,也就是说必有一个抽屉中至少放有2个物体。

第二抽屉原理把(mn——1)个物体放入n个抽屉中,其中必有一个抽屉中至多有(m—1)个物体。

证明(反证法):若每个抽屉都有不少于m个物体,则总共至少有mn个物体,与题设矛盾,故不可能。

例:①k=[n/m]+1个物体:当n不能被m整除时。

②k=n/m个物体:当n能被m整除时。

理解知识点:[X]表示不超过X的最大整数。

例[4.351]=4;[0.321]=0;[2.9999]=2;关键问题:构造物体和抽屉。

也就是找到代表物体和抽屉的量,而后依据抽屉原则进行运算。

抽屉原理经典例题:1、30名学生参加数学竞赛,已知参赛者中任何10人里都至少有一名男生,那么男生至少有______人。

答案:30-(10-1)=30-9,=21(人)。

答:男生至少有21人。

2、一副扑克牌有54张,至少抽取______张扑克牌,方能使其中至少有两张牌有相同的点数。

(大小鬼不相同)答案:建立抽屉:54张牌,根据点数特点可以分别看做15个抽屉,考虑最差情况:每个抽屉都摸出了1张牌,共摸出15张牌,此时再任意摸出一张,无论放到哪个抽屉,都会出现有两张牌在同一个抽屉,即两张牌点数相同,15+1=16(张),答:至少抽取16张扑克牌,方能使其中至少有两张牌有相同的点数。

小学六年级奥数-抽屉原理(含答案)

小学六年级奥数-抽屉原理(含答案)

抽屉原理学问要点1.抽屉原理的一般表述(1)假设有3个苹果放入2个抽屉中,必定有一个抽屉中至少有2个苹果。

它的一般表述为:第一抽屉原理:(mn+1)个物体放入n个抽屉,其中必有一个抽屉中至少有(m+1)个物体。

(2)若把3个苹果放入4个抽屉中,则必定有一个抽屉空着。

它的一般表述为:第二抽屉原理:(mn-1)个物体放入n个抽屉,其中必有一个抽屉中至多有(m-1)个物体。

2.构造抽屉的方法常见的构造抽屉的方法有:数的分组、染色分类、图形的分割、剩余类等等。

例1自制的一副玩具牌共计52张(含四种牌:红桃、红方、黑桃、黑梅,每种牌都有1点,2点,……13点牌各一张),洗好后反面朝上放。

一次至少抽取张牌,才能保证其中必定有2张牌的点数与颜色都一样。

假如要求一次抽出的牌中必定有3张牌的点数是相邻的(不计颜色),那么至少要取张牌。

点拨对于第一问,最不利的状况是两种颜色都取了1~13点各一张,此时再抽一张,这张牌必与已抽取的某张牌的颜色与点数都一样。

点拨对于第二问,最不利的状况是:先抽取了1,2,4,5,7,8,10,11,13各4张,此时再取一张,这张牌的点数是3,6,9,12中的一张,在已抽取的牌中必有3张的点数相邻。

解(1)13×2+1=27(张) (2)9×4+1=37(张)例2 证明:37人中,(1)至少有4人属相一样;(2)要保证有5人属相一样,但不保证有6人属相一样,那么人的总数应在什么范围内?点拨可以把12个属相看做12个抽屉,依据第一抽屉原理即可解决。

解(1)因为37÷12=3……1,所以,依据第一抽屉原理,至少有3+1=4(人)属相一样。

(2)要保证有5人的属相一样的最少人数为4×12+1=49(人)不保证有6人属相一样的最多人数为5×12=60(人)所以,总人数应在49人到60人的范围内。

例3有一副扑克牌共54张,问:至少摸出多少张才能保证:(1)其中有4张花色一样?(2)四种花色都有?点拨首先我们要弄清晰一副扑克牌有2张王牌,四种花色,每种有13张。

奥数群 抽屉原理和数的整除

奥数群  抽屉原理和数的整除

奥数,抽屉原理和数的整除抽屉原理1:将多于n件物品任意放到n个抽屉中,那么至少有一个抽屉中的物品不少于2件。

抽屉原理2:将多于m×n件的物品任意放到n个抽屉中,那么至少有一个抽屉中的物品的件数不少于m+1。

理解抽屉原理要注意几点: (1)抽屉原理是讨论物品与抽屉的关系,要求物品数比抽屉数或抽屉数的倍数多,至于多多少,这倒无妨。

(2)“任意放”的意思是不限制把物品放进抽屉里的方法,不规定每个抽屉中都要放物品,即有些抽屉可以是空的,也不限制每个抽屉放物品的个数。

(3)抽屉原理只能用来解决存在性问题,“至少有一个”的意思就是存在,满足要求的抽屉可能有多个,但这里只需保证存在一个达到要求的抽屉就够了。

(4)将a件物品放入n个抽屉中,如果a÷n= m……b,其中b是自然数,那么由抽屉原理2就可得到,至少有一个抽屉中的物品数不少于(m+1)件。

四年级第61天:某幼儿班有40名小朋友,现有各种玩具122件,把这些玩具全部分给小朋友,是否会有小朋友得到4件或4件以上的玩具?分析与解:将40名小朋友看成40个抽屉。

今有玩具122件,122=3×40+2。

应用抽屉原理2,取n=40,m=3,立即知道:至少有一个抽屉中放有4件或4件以上的玩具。

也就是说,至少会有一个小朋友得到4件或4件以上的玩具。

四年级第62天:篮子里有苹果、梨、桃和桔子,现有81个小朋友,如果每个小朋友都从中任意拿两个水果,那么至少有多少个小朋友拿的水果是相同的?分析与解:首先应弄清不同的水果搭配有多少种。

两个水果是相同的有4种,两个水果不同有6种:苹果和梨、苹果和桃、苹果和桔子、梨和桃、梨和桔子、桃和桔子。

所以不同的水果搭配共有4+6=10(种)。

将这10种搭配作为10个“抽屉”。

81÷10=8……1(个)。

根据抽屉原理2,至少有8+1=9(个)小朋友拿的水果相同。

四年级第63天:学校开办了语文、数学、美术三个课外学习班,每个学生最多可以参加两个(可以不参加)。

五年级奥数:抽屉原理

五年级奥数:抽屉原理

抽屉原理【鸽巢原理】抽屉原理的一般含义为:“如果每个抽屉代表一个集合,每一个苹果就可以代表一个元素,假如有n+1或多于n+1个元素放到n个集合中去,其中必定至少有一个集合里至少有两个元素。

”原理1 :把多于n个的物体放到n个抽屉里,则至少有一个抽屉里有2个或2个以上的物体。

原理2:把多于m×n个的物体放到n个抽屉里,则至少有一个抽屉里有m+1个或多于m+1 个的物体。

常用计算公式:A、计算其中一个抽屉至少有几个元素= 总数÷抽屉数+ 1B、计算总数= (其中一个抽屉至少有几个元素- 1)×抽屉数+ 1例1:400人中至少有两个人的生日相同抽屉:366(一年算366天),苹果:400,400 ÷366=1……1+1=2例2:幼儿园买来了不少白兔、熊猫、长颈鹿塑料玩具,每个小朋友任意选择两件,那么不管怎样挑选,在任意七个小朋友中总有两个彼此选的玩具都相同抽屉:6(有6种选玩具的方法),7÷6=1……1+1=2练习:1、木箱里装有红色球3个、黄色球5个、蓝色球7个,若蒙眼去摸,为保证取出的球中有两个球的颜色相同,则最少要取出多少个球?【4】2、一幅扑克牌有54张,最少要抽取几张牌,方能保证其中至少有2张牌有相同的点数?【16】3、11名学生到老师家借书,老师是书房中有A、B、C、D四类书,每名学生最多可借两本不同类的书,最少借一本。

试证明:必有两个学生所借的书的类型相同。

4、有50名运动员进行某个项目的单循环赛,如果没有平局,也没有全胜,试证明:一定有两个运动员积分相同。

5、体育用品仓库里有许多足球、排球和篮球,某班50名同学来仓库拿球,规定每个人至少拿1个球,至多拿2个球,问至少有几名同学所拿的球种类是一致的?【6】6.某校有55个同学参加数学竞赛,已知将参赛人任意分成四组,则必有一组的女生多于2人,又知参赛者中任何10人中必有男生,则参赛男生的人数为多少人。

三年级奥数(22)抽屉原理

三年级奥数(22)抽屉原理

三年级奥数(19)抽屉原理【类型一:最不利原则】 【例1】粗心的小明将他的2双黑袜子和3双白袜子散乱地放在了衣箱里,如果取得时候不看颜色,至少要取出几只袜子,才能确保组成颜色相同的一双袜子?两双袜子呢?变式1:一个口袋里有红、白、黑3色玻璃球各10个,一次最少摸出多少个,才能保证有5个玻璃球是相同颜色的?变式2:丽英小学共有684个学生,其中至少有几个学生的生日是同一天?【例2】一副扑克牌共54张,其中有2张王牌,还有黑桃、红心、草花和方块4种花色的牌各13张。

那么至少从中摸出多少张牌,才能保证在摸出的牌中有黑桃?变式1:一幅扑克牌有54张,最少要抽取几张牌,方能保证其中至少有2张牌有相同的点数?变式2:一副扑克牌共54张,其中有2张王牌,还有黑桃、红心、草花和方块4种花色的牌各13张。

那么至少从中摸出多少张牌,才能保证至少有3张牌是红桃?变式3:一副扑克牌共54张,其中有2张王牌,还有黑桃、红心、草花和方块4种花色的牌各13张。

那么至少从中摸出多少张牌,才能保证有5张牌是同一花色的?【例3】会议室某排有15个座位,小宇去时部分座位已有人就座,他无论坐在何处都要与已坐的人相邻,那么小宇就座之前,这一排至少已坐了_______人。

抽屉原理一:多于n 个“苹果”任意放入n 个抽屉中,那么至少有一个抽屉里的“苹果”有2个或2个以上。

抽屉原理二:将多于m ×n 个“苹果”任意放入n 个抽屉中,那么至少有一个抽屉的“苹果”有(m+1)个或(m+1)个以上。

运用抽屉原理解题,可以分为以下几步:(1)确定什么是“抽屉”(2)确定什么是“苹果”(3)根据抽屉原理一或抽屉原理二得出结论变式1:圆桌周围恰好有12把椅子,现在已经有一些人在桌边就坐。

当再有一人入座时,就必须和已就坐的某人相邻。

问:已就坐的最少有多少人?变式2:31个同学围成一个圆圈,坐好后发现任何两个男生之间至少有两个女生,那么男生最多有多少人?变式3:(2007年第五届“小机灵杯”复赛第4题)一根电缆包括20根缆线,每种相同颜色的缆线有4根。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

P70页做一做:7只鸽子飞回5
个鸽舍,至少有( )只鸽 子要飞进同一个鸽舍里。为什 么?
如果每个鸽舍飞进1只,最多飞了5只. 剩下的2只还要分别飞进两个鸽舍里.所 以至少有2只要飞进同一个鸽舍里。
如果把9个抽屉放进的苹果数分别是10个、 11个、12个……18个,无论怎样放,的到 的结论是至少有一个抽屉有2个或两个2个 以上的苹果。 如果有9个抽屉,19个苹果(多于9×2), 那么至少有一个抽屉的苹果是3个或3个以上。 如果有9个抽屉,苹果多于9×3个,那么 至少有一个抽屉苹果是4个,或4个以上。 如果把多于n×k个物体任意分成n类,那么至 少有一类的物体有(k+1)个或(k+1)个以上
练习2 某班小图书库有诗歌、童话、画册 三类课外读物,规定每位同学最多 可以借阅两种不同类型的数。问: 至少有几位同学来借书,即可断定 必有两位同学借阅的书的类型相同? 想:反着运用抽屉原理,知道抽屉数 求物体数。借阅这3种书有6种情想况, 抽屉数:6;物体数:6+1=7
练习3 袋子里有红、黄、黑、白珠子足够多, 闭上眼睛要想摸出颜色相同的6粒珠 子,至少要摸出几粒柱子,才能保证 达到目的?
反过来的问题 苹果数÷抽屉(4)=商(6-1=5)……余数 (最小1) 5×4+1=21粒
还可以用极端原理考虑,最倒霉是每样 抓到5粒,再抓一个就可以了5×4+1=21
练习4、一付扑克牌共有54张(包括 大、小王),问至少要取多少张,才 能保证其中必有4种花色?
4种抽屉,每个抽屉里有13个物体;从最不利 的极端考虑,假设取出3种花色的全部和大、 小王,共13×3+2=41张,再从剩下的任意取 一张,保证必有4中花色。
把3枝铅笔放在2个文具盒里,可以 怎么放,有几种方法?你有什么发现?
不管怎么放, 总有一个文具盒 里至少放进了2枝铅笔.
把4枝铅笔放在3个文具盒里,可以 怎么放,有几种方法?你有什么发现?
不管怎么放,总有一个文具盒里 至少放进了2枝铅笔。
把5枝铅笔放在4个文具盒里,还是 不管怎么放,总有一个文具盒里至少放进 了2枝铅笔吗?
智慧城堡
把13只小兔子关在5个笼 子里,至少有( )只兔子 要关在同一个笼子里。
智慧城堡 我校六年级男生有30人,至少 有( )名男生的生日是在同一个 月。 30÷12 = 2……6 2+1 = 3(名)
抽屉问题按以下思考:什么对象看作苹果, 什么对象看着抽屉,苹果数应多于抽屉数,对 于不够明显的问题,需要设计制造抽屉,制造 抽屉,要根据题目的需要,综合运用多方面的 知识。
某班有32名学生是五月份出生的,那么, 其中至少有两名学生的生日是在同一天, 为什么?
32÷31=1……1 1+1=2(名)
练习 有一只口袋中有红色与黄色球各4只, 现在有4个小朋友,每人可以从口袋 中随意取出2个球,必有两个小朋友, 他们取出的两个球的颜色完全一样。
两种色3种形式搭配(红红、 黄黄、红黄),有3个抽屉。 4÷3=1……1 1+1=2(个)
苹果数÷抽屉(n)=商(k)……余数,只要余数不是0, 无论余数是几,都将余数看成1,商+1=最小数
P71页做一做:
少有( 里。 为什么?
8只鸽子飞回3个鸽舍里,至 )只鸽子要飞进同一个鸽舍
如果每个鸽舍里飞进2只鸽子,最 多飞进6只鸽子,剩下的2只还要分 别飞进2个鸽舍里,所以至少有3只
鸽子要飞进同一个鸽舍里。
13×3+2+1=42(张)
练习5、有一个班的学生,每人都订阅 了《小朋友》、《少年报》、《儿童 时代》中的一种或几种,已知他们中 至少有6个定的报刊杂志完全相同, 那么,这个班最少有多少人? 订阅报刊杂志一种有3种情况; 两种有3中情况;三种有1种情况。 共7种(7个抽屉)。6-1=5 ( )÷7=5……1 ;5×7+1=36人
抽屉原理
如果把3个苹果放进2个抽屉里,有 无论怎样放, 几种不同的方法? 3 3 3 3 苹果个数 至少有一个抽 0 1 2 3 抽屉一 屉里有两个或 3 2 1 0 抽屉二 方法 一 二 三 四 两个以上苹果
假设结论不成立,那么每个抽屉最多有一个 苹果,那么两个抽屉最多共有两个苹果,这 与3个苹果矛盾。 4个苹果放入3个抽屉,或10个苹果放9个抽 屉,有同样的结论。由此可得一般规律叫抽 屉原理。
什么是抽屉原理和鸽巢原理呢?

桌上有十个苹果,要把这十个苹果放到九个抽屉里, 无论怎样放,我们会发现至少会有一个抽屉里面放 两个苹果。这一现象就是我们所说的“抽屉原理”。 抽屉原理的一般含义为:“如果每个抽屉代表一个 集合,每一个苹果就可以代表一个元素,假如有n +1或多于n+1个元素放到n个集合中去,其中必定 至少有一个集合里有两个元素。” 抽屉原理有时也 被称为鸽巢原理(“如果有五个鸽子笼,养鸽人养 了6只鸽子,那么当鸽子飞回笼中后,至少有一个 笼子中装有2只鸽子”)。它是组合数学中一个重 要的原理。
为什么会有这样 的结果?
这样分实际上是怎样在分? 怎样列式?
平均分Байду номын сангаас
讨论:
把6枝铅笔放在4个文具 盒里,会有什么结果呢?
最先发现这些规律的人是谁呢? 他就是德国数学家“狄里克雷”, 后来人们为了纪念他从这么平凡 的事情中发现的规律,就把这个 规律用他的名字命名,叫“狄里 克雷原理”,又把它叫 做“鸽巢原 理”,还把它 叫做 “抽屉原理”。
通过今天的学习 你有什么收获?
相关文档
最新文档