北师大版初中数学七年级下册教案
北师版七年级下册数学教案电子版4篇例文
北师版七年级下册数学教案电子版4篇例文北师版七年级下册数学教案电子版1教学目标1.能够根据具体问题中数量关系,列出一元一次不等式组,解决简单问题。
2.渗透“数学建模”思想。
化理论。
3.提高分析问题解决问题能力。
教学重点分析实际问题列不等式组。
教学难点1.找实际问题中的不等关系列不等式组。
2.有条理的表达思考过程。
教学过程一、创设问题情境。
本节课我们一起学习用一元一次不等式组解决一些简单的实际问题。
出示问题:某公园售出一次性使用门票,每张10元。
为吸引更多游客,新近推出购买“个人年票”的售票方法。
年票分A、B两类。
A类年票每张100元,持票者每次进入公园无需再购买门票。
B类年票每张50元,持票者进入公园时需再购买每次2元的门票。
你能知道某游客一年中进入该公园至少超过多少次,购买A类年票最合算吗?二、建立模形。
1.分析题意回答:①游客购买门票,有几种选取择方式?②设某游客选取择了某种门票,一年进入该公园x次,门票支出是多少?③买A类年票最合算,应满足什么关系?2.讨论交流,列出不等式组。
3.解不等式组,说出问题的答案。
三、应用。
学生讨论、交流。
1.什么情况下,购买每次10元的门票最合算。
2.什么情况下,购买B类年票最合算?学生清晰、有条理地表达自己的思考过程,且考虑问题要全面。
四、练习。
某校安排寄宿时,如果每项间宿舍住7人,那么有1间虽有人住,但没住满。
如果每间宿舍住4人,那么有100名学生住不下。
问该校有多少寄宿生?有多少间宿舍?(提示学生找到本题中的两个不等关系。
学生人数,宿舍间数都为整数。
解本题时,先独立思考,再小组交流)五、小结列一元一次不等式组,解决实际问题的基本步骤是什么?(讨论、交流,指名回答)北师版七年级下册数学教案电子版2教学目标:1、理解平行线之间的距离的概念。
2、能够测量两条平行线之间的距离,会画到已知直线已知距离的平行线。
3、通过平行线之间的距离转化为点到直线的距离,使学生初步体验转化的数学思想。
北师大版七年级下册数学教案初中数学七年级下册
北师大版七年级下册数学教案初中数学七年级下册对于数学老师而言,上课之前准备好一份教案既能保证上课质量,又可以使老师轻松很多。
下面小编为你整理的北师大版七年级下册数学教案,希望对你有所帮助!七年级下册数学教案篇一教学目标:1.理解和掌握多项式除以单项式的运算法则。
2.运用多项式除以单项式的法则,熟练、准确地进行计算.3.通过法则,培养学生的抽象概括能力.训练学生的综合解题能力和计算能力.4.培养学生耐心细致、严谨的数学思维品质.重点、难点:1.多项式除以单项式的法则及其应用.2.理解法则导出的根据。
课时安排:一课时.教具学具:投影仪、胶片.教学过程:1.复习导入(l)用式子表示乘法分配律.(2)单项式除以单项式法则是什么?(3)计算:①②③(4)填空:规律:多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.2.讲授新课例1 计算:(1)(2)解:(1)原式(2)原式注意:(l)多项式除以单项式,商式与被除式的项数相同,不可丢项,如(l)中容易丢掉最后一项.(2)要求学生说出式子每步变形的依据.(3)让学生养成检验的习惯,利用乘除逆运算,检验除的对不对.例2 化简:解:原式说明:注意弄清题中运算顺序,正确运用有关法则、公式。
练习:(1)P150 1,2,。
(2)错例辩析:有两个错误:第一,丢项,被除式有三项,商式只有二项,丢了最后一项1;第二项是符号上错误,商式第一项的符号为“-”,正确答案为3.小结1.多项式除以单项式的法则是什么?2.运用该法则应注意什么?正确地把多项式除以单项式问题转化为单项式除以单项式问题。
计算不可丢项,分清“约掉”与“消掉”的区别:“约掉”对乘除法则言,不减项;“消掉”对加减法而言,减项。
4.作业P152 A组1,2。
B组1,2。
七年级下册数学教案篇二一、教学目标1.理解并掌握零指数幂和负指数幂公式并能运用其进行熟练计算.2.培养学生抽象的数学思维能力.3.通过例题和习题,训练学生综合解题的能力和计算能力.4.渗透公式自向运用与逆向运用的辩证统一的数学思维观点.二、重点·难点1.重点理解和应用负整数指数幂的性质.2.难点理解和应用负整数指数幂的性质及作用,用科学记数法表示绝对值小于1的数.三、教学过程1.创造情境、复习导入(l)幂的运算性质是什么?请用式子表示.(2)用科学记数法表示:①*****②-5746(3)计算:①②③2.导向深入,揭示规律由此我们规定规律一:任何不等于0的数的0次幂都等于1.同底数幂扫除,若被除式的指数小于除式的指数,例如:可仿照同底数幂的除法性质来计算,得由此我们规定一般我们规定规律二:任何不等于0的数的-p(p是正整数)次幂等于这个数的p次幂的倒数.3.尝试反馈.理解新知例1 计算:(1)(2)(3)(4)解:(1)原式(2)原式(3)原式(4)原式例2 用小数表示下列各数:(1)(2)解:(1)(2)练习:P 141 1,2.例3 把100、1、0.1、0.01、0.0001写成10的幂的形式.由学生归纳得出:①大于1的整数的位数减1等于10的幂的指数.②小于1的纯小数,连续零的个数(包括小数点前的0)等于10的幂的指数的绝对值.问:把0.000007写成只有一个整数位的数与10的幂的积的形式.解:像上面这样,我们也可以把绝对值小于1的数用科学记数法来表示.例4 用科学记数法表示下列各数:0.008、0.000016、0.***-*****25解:例5 地球的质量约是吨,木星的质量约是地球质量的318倍,木星的质量约是多少吨?(保留2位有效数字) 解:(吨) 答:木星的质量约是吨.练习:P142 1,2.四总结、扩展1.负整数指数幂的性质:2.用科学记数法表示数的规律:(1)绝对值较大的数,n是非负整数,n=原数的整数部分位数减1. (2)绝对值较小的数,n为一个负整数,原数中第一个非零数字前面所有零的个数.(包括小数点前面的零)五、布置作业P143 A组4,5,6; B组1,2,3,4.点击下页还有更多北师大版七年级下册数学教案。
北师大版七年级数学下册第一章同底数幂的乘法(教案)
(五)总结回顾(用时5分钟)
今天的学习,我们了解了同底数幂乘法的基本概念、重要性和应用。通过实践活动和小组讨论,我们加深了对同底数幂乘法的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
4.在总结回顾时,我可以邀请学生分享他们如何将所学知识应用到自己的兴趣或生活中,以此来增强他们对数学实用性的认识。
4.应用问题:运用同底数幂算。
本章内容旨在帮助学生掌握同底数幂的乘法法则,培养他们在解决实际问题时运用幂运算的能力,提高数学运算技巧。
二、核心素养目标
1.培养学生的逻辑推理能力:通过同底数幂的乘法法则推导和应用,使学生能够理解数学知识之间的内在联系,提高逻辑推理能力。
2.提升数学运算能力:让学生掌握同底数幂的乘法运算,培养他们在数学计算中的准确性、快速性,增强数学运算能力。
3.培养学生的数学建模素养:引导学生运用同底数幂的乘法解决实际问题,学会将现实问题抽象为数学模型,提高数学建模素养。
4.增强数学抽象能力:通过同底数幂的学习,帮助学生从具体实例中抽象出数学规律,提升数学抽象思维能力。
-实际问题的幂运算建模:将现实问题转化为同底数幂的乘法运算,如计算一个正方体的表面积时,将每个面的面积看作2^2,整个表面积即为6个面的同底数幂乘法。
2.教学难点
-理解同底数幂乘法法则的原理:学生需要理解指数相加的实质,即幂的乘法是指数的加法,这对于初次接触幂运算的学生来说可能是个难点。
-指数相加的运用:在计算过程中,学生可能会混淆指数的相加和数的相乘,例如2^3•2^2不等于2^(3×2),而应等于2^(3+2)。
(完整版)新北师大版七年级数学下册全册教案
周次日期教学内容课时备注1 2.15---2.16 同底数幂的乘法 12 2.17---2.21 幂的乘方与积的乘方法—同底数幂的除 52015—2016 学年度第二学期教学进度任课教师:学科:数学年(班)级:3 2.24---2.28 整式的乘法—平方差公式 54 3.3—3.7 完全平方公式—回顾与思考 55 3.10---3.14 两条直线的位置关系—探索直线平 5行的条件6 3.17---3.21 探索直线平行的条件—平行线的性质 57 3.24—3.28 回顾与思考—认识三角形 58 3.31---4.4 图形的全等—探索三角形全等的条件 4 清明节9 4.7---4.11 探索三角形全等的条件—用尺规作三 5角形10 4.14---4.18 利用三角形全等测距离—回顾与思考 511 4.21—4.25 复习期中考试 312 4.28---5.2 用表格表示的变量间关系—用关系 4 劳动节式表示的变量间关系13 5.5---5.9 用图象表示的变量间关系—回顾与 5思考14 5.12---5.16 轴对称现象—探索轴对称的性质 515 5.19---5.23 简单的轴对称图形 516 5.26---5.30 利用轴对称进行设计—回顾与思考 517 6.2---6.6 感受可能性—概率的稳定性 518 6.9---6.13 等可能事件发生的概率—回顾与思考 519 6.16—6.20 总复习 520 6.23---6.27 期末考试 5本学期总目标:培养学生良好的学习习惯,提高他们学习数学的热情,力争取得一个比较优异的学习成绩教研组长签字:说明:此表一式两份,一份作为教案附件之一粘贴在教案本上,一份上交教务处。
1.1 同底数幂的乘法教学目标:知识与技能:使学生在了解同底数幂乘法意义的基础上,掌握幂的运算性质(或称法则),进行基本运算。
过程与方法:在推导“性质”的过程中,培养学生观察、概括与抽象的能力。
北师大七年级下册数学教案3篇
北师大七年级下册数学教案3篇北师大七年级下册数学教案1[教学目标]1. 理解垂线、垂线段的概念,会用三角尺或量角器过一点画已知直线的垂线。
2. 掌握点到直线的距离的概念,并会度量点到直线的距离。
3. 掌握垂线的性质,并会利用所学知识进行简单的推理。
[教学重点与难点]1.教学重点:垂线的定义及性质。
2.教学难点:垂线的画法。
[教学过程设计]一. 复习提问:1、叙述邻补角及对顶角的定义。
2、对顶角有怎样的性质。
二.新课:引言:前面我们复习了两条相交直线所成的角,如果两条直线相交成特殊角直角时,这两条直线有怎样特殊的位置关系呢?日常生活中有没有这方面的实例呢?下面我们就来研究这个问题。
(一)垂线的定义当两条直线相交的四个角中,有一个角是直角时,就说这两条直线是互相垂直的,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
如图,直线AB、CD互相垂直,记作,垂足为O。
请同学举出日常生活中,两条直线互相垂直的实例。
注意:1、如遇到线段与线段、线段与射线、射线与射线、线段或射线与直线垂直,特指它们所在的直线互相垂直。
2、掌握如下的推理过程:(如上图)反之,(二)垂线的画法探究:1、用三角尺或量角器画已知直线l的垂线,这样的垂线能画出几条?2、经过直线l上一点A画l的垂线,这样的垂线能画出几条?3、经过直线l外一点B画l的垂线,这样的垂线能画出几条?画法:让三角板的一条直角边与已知直线重合,沿直线左右移动三角板,使其另一条直角边经过已知点,沿此直角边画直线,则这条直线就是已知直线的垂线。
注意:如过一点画射线或线段的垂线,是指画它们所在直线的垂线,垂足有时在延长线上。
(三)垂线的性质经过一点(已知直线上或直线外),能画出已知直线的一条垂线,并且只能画出一条垂线,即:性质1 过一点有且只有一条直线与已知直线垂直。
练习:教材第7页探究:如图,连接直线l外一点P与直线l上各点O,A,B,C,……,其中 (我们称PO为点P到直线l的垂线段)。
北师大版七年级数学下册《三角形全等的条件》优秀教学案例
(三)情感态度与价值观
1.培养学生对数学学科的兴趣,激发学生学习数学的积极性。
2.培养学生的自主学习能力,提高学生解决问题的自信心。
3.引导学生认识到数学与生活的紧密联系,培养学生的数学应用意识。
三、教学策略
(一)情景创设
本节课通过生活实际问题引入,创设情境,激发学生的学习兴趣。例如,在讲解三角形全等条件时,可以引入建筑设计中的实际问题,让学生思考如何在建筑设计中判断两个三角形是否全等。这样既能引发学生的思考,又能让学生明白三角形全等条件在实际生活中的应用。
五、案例亮点
1.生活情境导入:通过建筑设计图的生活情境导入新课,激发了学生的学习兴趣,引发了学生的思考。这种生活情境的导入使学生能够更好地理解三角形全等的条件在实际生活中的应用,提高了学生的学习积极性。
2.问题导向教学:在教学过程中,我以问题为导向,引导学生主动探究三角形全等的条件。通过提出一系列具有启发性的问题,激发学生的思维,培养学生的解决问题能力。这种问题导向的教学方法使学生在思考和讨论中逐渐掌握了三角形全等的条件。
本节课采用小组合作的学习方式,让学生在合作中发现问题、解决问题。教师将学生分成若干小组,每组学生共同探讨三角形全等的条件,并完成相应的实践操作。在合作过程中,学生互相交流、互相学习,提高团队协作能力。同时,教师巡回指导,针对不同层次的学生给予个性化的指导,使他们在课堂上都能得到有效的锻炼。
(四)反思与评价
(四)总结归纳
在学生小组讨论结束后,我进行了课堂总结。我让学生分享他们在小组讨论中的发现和认识,然后我对他们的回答进行了归纳和总结。我强调了三角形全等条件的重要性,并提醒学生在解题时要注意合理运用这些条件。通过总结归纳,学生能够更加清晰地掌握三角形全等的条件。
北师大版数学七年级下册全套备课优秀教学案例:1.1同底数幂的乘法
1.让学生理解同底数幂的乘法概念,掌握同底数幂的乘法法则。
2.培养学生运用同底数幂的乘法解决实际问题的能力。
3.培养学生的逻辑思维能力和团队合作能力。
针对这些教学目标,我设计了以下教学活动和教学策略,以期达到良好的教学效果。
二、教学目标
(一)知识与技能
1.理解同底数幂的乘法概念,掌握同底数幂的乘法法则。
2.能够运用同底数幂的乘法法则进行计算,解决相关数学问题。
3.了解同底数幂的乘法在实际生活中的应用,提高运用数学知识解决实际问题的帮助学生掌握同底数幂的乘法法则。同时,我会设计一些实际问题,让学生在解决这些问题过程中,运用同底数幂的乘法知识,提高学生的应用能力。
三、教学策略
(一)情景创设
1.生活情境:设计一些与生活密切相关的问题,让学生在解决问题的过程中,自然引入同底数幂的乘法概念。
2.数学情境:通过展示一些数学问题或数学现象,引发学生的好奇心,激发学生探究同底数幂的乘法法则的兴趣。
3.实验情境:设计一些简单的实验,让学生直观地感受同底数幂的乘法过程,帮助学生理解乘法法则。
在导入环节,我会根据学生的实际情况,选择合适的导入方式。通过生活实例、数学情境和实验情境的创设,让学生在自然、有趣的环境中,接触和理解同底数幂的乘法概念。
(二)讲授新知
1.讲解同底数幂的乘法概念:通过讲解,让学生理解同底数幂的乘法是指指数相同或底数相同的幂相乘。
2.阐述同底数幂的乘法法则:讲解同底数幂的乘法法则,让学生掌握同底数幂的乘法运算方法。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣,激发学生学习数学的积极性。
北师版七年级数学下册教案
北师版七年级数学下册教案北师版七年级数学下册教案在教学工作者开展教学活动前,有必要进行细致的教案准备工作,教案是教材及大纲与课堂教学的纽带和桥梁。
那要怎么写好教案呢?下面是小编为大家收集的北师版七年级数学下册教案,仅供参考,希望能够帮助到大家。
北师版七年级数学下册教案1一、学习与导学目标:知识与技能:会求出一个数的绝对值,能利用数轴及绝对值的知识,比较两个有理数的大小;过程与方法:经历绝对值概念的形成,初步体会数形结合的思想方法,丰富解决问题的策略;情感态度:通过创设情境,初步感悟学习绝对值的必要性,促进责任心的形成。
二、学程与导程活动:A、创设情境(幻灯片或挂图)1、两辆汽车,其一向东行驶10km,另一向西行驶8km。
为了区别,可规定向东行驶为正,则分别记作+10km和-8km。
但在计算出租车收费,汽车行驶所耗的汽油,起主要作用的是汽车行驶的路程,而不是行驶的方向。
此时,行驶路程则分别记作10km和8km。
再如测量误差问题、排球重量谁更接近标准问题……2、在讨论数轴上的点与原点的距离时,只需要观察它与原点相隔多少个单位长度,与位于原点何方无关。
B、学习概念:1、我们把在数轴上表示数a的点与原点的距离叫做数a的绝对值(absolutevalue),记作︱a︱(幻灯片)。
因此,上述+10,-8的绝对值分别是10,8。
如在数轴上表示数-6的点和表示数6的点与原点的距离都是6,所以,-6和6的绝对值都是6,记作︱-6︱=6,︱6︱=6。
(互为相反数的两个数的绝对值相同)2、尝试回答(1)︱+2︱=,︱1/5︱=,︱+8.2︱=;(2)︱-3︱=,︱-0.2︱=,︱-8.2︱=;(3)︱0︱=。
(幻灯片)思考:你能从中发现什么规律引导学生得出:(幻灯片)性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;零的绝对值是零。
如果用字母a表示有理数,上述性质可表述为:当a是正数时,︱a︱=a;当a是负数时,︱a︱=-a;当a=0时,︱a︱=0。
北师大版七年级(下)数学全册教案
北师大版七年级(下)数学全册教案一、教学目标1. 知识目标•熟悉直角三角形、集合、比例、百分数等基础概念;•学会解决基础的数学问题;•熟悉各种图形的性质及其运用;2. 能力目标•培养学生的逻辑思维能力和动手能力;•培养学生的解决问题能力;•培养学生的观察、分析和归纳能力;3. 情感目标•培养学生的自信心和发现问题的兴趣;•培养学生的创新能力和合作精神;•培养学生的勤奋精神和团结互助意识;二、教学重难点1. 教学重点•直角三角形的数学概念及其性质;•集合的概念、运算及其应用;•百分数的概念、应用及其计算方法;2. 教学难点•理解直角三角形的性质及其运用;•掌握集合的应用和差集、交集、并集的计算方法;•熟练掌握百分数的计算方法和应用领域;三、教学过程1. 导入环节通过案例分析引导学生了解三角形、集合、百分数等基本概念,培养学生发现问题和解决问题的能力。
2. 讲授环节第一节:直角三角形1.通过视频教学和图片演示,讲解直角三角形的定义、性质、勾股定理等基础知识;2.给学生进行直角三角形的绘制和测量,帮助学生掌握直角三角形的性质和计算方法;3.给学生练习相关题型,加深对直角三角形的理解和掌握。
第二节:集合1.通过实例演示,讲解集合、子集、交集、并集、差集等概念和相关运算;2.给学生进行集合的绘制和计算,帮助学生掌握集合的操作方法;3.给学生练习常规题型,加强对集合的理解和掌握。
第三节:百分数1.通过实例解题,讲解百分数概念和百分数的计算方法;2.帮助学生理解百分数的意义及其在实际中的应用;3.给学生练习各种应用场景下的百分数计算,强化对百分数知识的运用。
3. 练习环节在课程末尾,安排一定数量的练习题,让学生运用课程所学知识进行解答。
考察学生对于课程的掌握程度。
4. 总结环节回顾本节课所学知识,让学生进行整体性的掌握和总结。
同时也可以引导学生思考和反思自己的学习过程,发现不足的地方,并加以改进。
四、教学资源•北京师范大学出版社七年级数学教材和配套习题册•视频教学资料、图片展示•课件、教具、练习册等五、教学评估通过课堂练习、作业分析、小测试等方式,对学生的数学学科能力进行评估,检验教学效果。
北师大版七年级数学下册教案(全册)
北师大版七年级数学下册教案(全册)
北师大版七年级数学下册教案(全册)
6.1从实际问题到方程
教学目的
1.通过对多个实际问题的分析,使学生体会到一元一次方程作为实际问题的数学模型的作用。
2.使学生会列一元一次方程解决一些简单的应用题。
3.会判断一个数是不是某个方程的解。
重点、难点
1.重点:会列一元一次方程解决一些简单的应用题。
2.难点:弄清题意,找出“相等关系”。
教学过程
一、复习提问
小学里已经学过列方程解简单的应用题,让我们回顾一下,如何列方程解应用题?
例如:一本笔记本1.2元。
小红有6元钱,那么她最多能买到几本这样的笔记本呢?
解:设小红能买到工本笔记本,那么根据题意,得
1.2x=6
因为1.2×5=6,所以小红能买到5本笔记本。
二、新授:
我们再来看下面一个例子:
问题1:某校初中一年级328名师生乘车外出春游,已有2
你能否用方程的方法来解呢?
通过分析,列出方程:13+x=(45+x)(2)
问:你会解这个方程吗?你能否从小敏同学的解法中得到启发?
这个方程不像例l中的方程(1)那样容易求出它的解,小敏同学的方法启发了我们,可以用尝试,检验的方法找出方程(2)的解。
也就是只要将x=1,2,3,4,……代人方程(2)的两边,看哪个数能使两边的值相等,这个数就是这个方程的解。
把x=3代人方程(2),左边=13+3=16,右边=(45+3)=×48=16,。
2023最新-北师大七年级数学下册教案8篇
北师大七年级数学下册教案8篇作为一名优秀的教育工作者,可能需要进行教案编写工作,教案是实施教学的主要依据,有着至关重要的作用。
来参考自己需要的教案吧!下面是辛苦为朋友们带来的8篇《北师大七年级数学下册教案》,在大家参考的同时,也可以分享一下给您的好友哦。
北师大七年级数学下册教案篇一教学目标:1.知识与技能结合具体实例,进一步认识三角形的概念,掌握三角形三条边的关系。
2.过程与方法通过观察、操作、想象、推理、交流等活动,发展空间观念,推理能力和有条理地表达能力。
3.情感、态度与价值观联系学生的生活环境、创设情景,帮助学生树立几何知识源于实际、用于实际的观念,激发学生的学习兴趣。
教学重点难点:1.重点让学生掌握三角形的概念及三角形的三边关系,并能运用三边关系解决生活中的实际问题。
2.难点探究三角形的三边关系应用三边关系解决生活中的实际问题。
教学设计:本节课件设计了以下几个环节:回顾与思考、情境引入、三角形的`概念、探索三角形三边关系、练习应用、课堂小结、探究拓展思考、布置作业。
第一环节回顾与思考1、如何表示线段、射线和直线?2、如何表示一个角?第二环节情境引入活动内容:让学生收集生活中有关三角形的图片,课上让学生举例,并观察图片。
活动目的:让学生能从生活中抽象出几何图形,感受到我们生活在几何图形的世界之中。
培养学生善于观察生活、乐于探索研究的学习品质,从而更大地激发学生学习数学的兴趣第三环节三角形概念的讲解(1)你能从中找出四个不同的三角形吗?(2)与你的同伴交流各自找到的三角形。
(3)这些三角形有什么共同的特点?通过上题的分析引出三角形的概念、三角形的表示方法及三角形的边角的表示方法。
并出两道习题加以练习,从练习中归纳出三角形的三要素和注意事项。
北师大七年级数学下册教案篇二一、教学目标1、知识目标:掌握数轴三要素,会画数轴。
2、能力目标:能将已知数在数轴上表示,能说出数轴上的点表示的数,知道有理数都可以用数轴上的点表示;3、情感目标:向学生渗透数形结合的思想。
北师大版七年级下册数学教案全册
三、提高练习:1、1、计算 5(P3)4·(-P2)3+2[(-P)2]4·(-P5)2[(-1)m]2n+1m-1+02002―(―1)19902、若(x2)n=x8,则m=_____________.3、、若[(x3)m]2=x12,则m=_____________。
4、若x m·x2m=2,求x9m的值。
5、若a2n=3,求(a3n)4的值。
6、已知a m=2,a n=3,求a2m+3n的值.板书设计:课后体会:1.4 积的乘方教学目的:1、经历探索积的乘方的运算的性质的过程,进一步体会幂的意义,发展推理能力和有条理的表达能力。
2、了解积的乘方的运算性质,并能解决一些实际问题。
教学重点:积的乘方的运算教学难点:正确区别幂的乘方与积的乘方的异同。
教学方法:探索、猜想、实践法教学用具:课件教学过程:一、课前练习:1、计算下列各式:4 整式的乘法(3)——多项式乘以多项式 教学目标1.理解和掌握单项式与多项式乘法法则及其推导过程.2.熟练运用法则进行单项式与多项式的乘法计算.3.通过用文字概括法则,提高学生数学表达能力.4.通过反馈练习,培养学生计算能力和综合运用知识的能力.5.渗透公式恒等变形的和谐美、简洁美. 教学重点、多项式与多项式乘法的法则及应用. 教学难点:多项式乘法法则的推导过程以及法则的应用 教学过程: 一、 课前练习:1、 计算:(1)________)3(3=-xy (2)________)23(23=-y x (3)________)102(47=⨯- (4)_________)()(2=-⋅-x x(5)_________)(62=-⋅-a a (6)_____)(53=-x(7)______)(532=⋅-a a (8)______)()2(2532=-⋅-bc a b a2、计算:(1))132(22---x x x(2))6)(1253221(xy y x --+-二、 探索练习:如图,计算此长方形的面积有几种方法?如何计算? 小组讨论 你从计算中发现了什么?多项式与多项式相乘, 三、 巩固练习: 1、计算下列各题:(1))3)(2(++x x (2))1)(4(+-a a (3))31)(21(+-y y(4))436)(42(-+x x (5))3)(3(n m n m -+ (6)2)2(+x5 平方差公式(二)教学目的:进一步使学生理解掌握平方差公式,并通过小结使学生理解公式数学表达式与文字表达式在应用上的差异.教学重点和难点:公式的应用及推广教学过程一、复习提问1.(1)用较简单的代数式表示下图纸片的面积.(2)沿直线裁一刀,将不规则的右图重新拼接成一个矩形,并用代数式表示出你新拼图形的面积.讲评要点:沿HD、GD裁开均可,但一定要让学生在裁开之前知道HD=BC=GD=FE=a-b,这样裁开后才能重新拼成一个矩形.希望推出公式:2.(1)叙述平方差公式的数学表达式及文字表达式;(2)试比较公式的两种表达式在应用上的差异.说明:平方差公式的数学表达式在使用上有三个优点.(1)公式具体,易于理解;(2)公式的特征也表现得突出,易于初学的人“套用”;(3)形式简洁.但数学表达式中的a与b有概括性及抽象性,这样也就造成对具体问题存在一个判定a、b的问题,否则容易对公式产生各种主观上的误解.依照公式的文字表达式可写出下面两个正确的式子:经对比,可以让人们体会到公式的文字表达式抽象、准确、概括.因而也就“欠”明确(如结果不知是谁与谁的平方差).故在使用平方差公式时,要全面理解公式的实质,灵活运用公式的两种表达式,比如用文字公式判断一个题目能否使用平方差公式,用数学公式确定公式中的a与b,这样才能使自己的计算即准确又灵活.3.判断正误:(1)(4x+3b)(4x-3b)=4x2-3b2;(×) (2)(4x+3b)(4x-3b)=16x2-9;(×)(3)(4x+3b)(4x-3b)=4x2+9b2;(×) (4)(4x+3b)(4x-3b)=4x2-9b2;(×)二、新课例1 运用平方差公式计算:(1)102×98; (2)(y+2)(y-2)(y2+4).解:(1)102×98 (2)(y+2)(y-2)(y2+4)=(100+2)(100-2) =(y2-4)(y2+4)=1002-22=10000-4 =(y2)2-42=y4-16.=9996;2.运用平方差公式计算:(1)103×97;(2)(x+3)(x-3)(x2+9);(3)59.8×60.2;3.请每位同学自编两道能运用平方差公式计算的题目.例2 填空:(1)a2-4=(a+2)( );(2)25-x2=(5-x)( );(3)m2-n2=( )( );思考题:什么样的二项式才能逆用平方差公式写成两数和与这两数的差的积?(某两数平方差的二项式可逆用平方差公式写成两数和与这两数的差的积)练习空:1.x2-25=( )( );2.4m2-49=(2m-7)( );3.a4-m4=(a2+m2)( )=(a2+m2)( )( );例3 计算:(1)(a+b-3)(a+b+3); (2)(m2+n-7)(m2-n-7).三、小结1.什么是平方差公式?一般两个二项式相乘的积应是几项式?2.平方差公式中字母a、b可以是那些形式?3.怎样判断一个多项式的乘法问题是否可以用平方差公式?四、布置作业P39知1问1补充运用平方差公式计算:(1)(a2+b)(a2-b);(2)(-4m2+5n)(4m2+5n);(3)(x2-y2)(x2+y2);(4)(9a2+7b2)(7b2-9a2).2.运用平方差公式计算:板书设计:课后体会:6完全平方公式(1)教学目标:知识与技能:完全平方公式的推导及其应用过程与方法经历探索完全平方公式的过程,进一步发展符号感和推理能力情感态度与价值观:在灵活应用公式的过程中激发学生学习数学的兴趣,培养创新能力和探索精神教学重点:完全平方公式的推导过程、结构特点、几何解释,灵活应用教学难点:理解完全平方公式的结构特征并能灵活应用公式进行计算教学方法与手段:探究与讲练相结合一、准备活动:利用整式的乘法计算下列各题:(1)(m + n)2(2)(m - n)2 (3)(a + 2b)2(4)(a - 2b)2二、巩固引入:1、叙述平方差公式的内容,使用的条件,得出的结果。
北师大七年级下册数学北师大版七年级数学下册教案
北师大七年级下册数学北师大版七年级数学下册教案北师大版七年级数学下册教案(一)1.5同底数幂的除法教学目标:1.了解同底数幂除法的运算性质,并解决一些实际问题。
2.理解零指数幂和负指数幂的意义。
3.在进一步体会幂的意义的过程中,发展学生的推理能力和有条理的表达能力;提高学生观察、归纳、类比、概括等能力。
4.在解决问题的过程中了解数学的价值,发展“用数学”的信心,提高数学素养。
教学重点:会进行同底数幂的除法运算。
教学难点:同底数幂的除法法则的及运用。
教学方法:尝试练习法,讨论法,归纳法。
教学过程:一、情境引入活动内容:一种液体每升含有10个有害细菌,为了试验某种杀菌剂的效果,科学家们进行了实验,9发现1滴杀虫剂可以杀死10个此种细菌,要将1升液体中的有害细菌全部杀死,需要这种杀菌剂多少滴你是怎样计算的12二、了解同底数幂除法的运算及应用活动内容:活动1先让学生作“做一做”:计算下列各式,并说明理由(m>n)(1)108105;(2)10m10n;(3)(3)m(3)n;从中归纳出同底数幂除法的运算性质。
从上面的练习中你发现了什么规律mn猜一猜:a a a0,m,n都是正整数,且m>n。
三、同底数幂除法运算的应用活动内容:例1计算:1)a7a4;(2)(某)6(某)3;(3)(某y)4(某y);(4)b2m2b2;(5)(m n)8(n m)3;(6)(m)4(m)2.例2:地震的强度通常用里克特震级表示,描绘地震级数的数字表示地震的强度是10的若干次幂。
例如用里克特震级表示地震是8级,说明地震的强度是10。
1992年4月荷兰发生了5级地震,12天后,加利福尼亚发生了7级地震。
加利福尼亚地震强度是荷兰地震强度的多少倍(学生先想一想,再进行小组讨论,互相补充完善,并派代表回答)7四、探索零指数幂和负整数指数幂的意义活动内容:想一想:10000=104,16=241000=10(),8=2()100=10(),4=2()10=10(),2=2()猜一猜:1=10()1=2()0.1=10()1=2()21()=241=2()80.01=10()0.001=10()例3计算:用小数或分数分别表示下列各数:(1)103(2)7082;(3)1.6104北师大版七年级数学下册(二)1.6整式的乘法(一)教学目标:1.经历探索单项式乘法法则的过程,在具体情境中了解单项式乘法的意义,理解单项式乘法法则。
北师大版七年级数学教案下册全套.doc
【北师大版】七年级下册数学教案全套【七年级下教案|全套】目录第一章整式的运算 (1)1.1整式 (2)1.2 整式的加减(1) (6)1.2整式的加减(2) (9)1.3 同底数幂的乘法(一) (11)1.4幂的乘方与积的乘方(1) (16)1.4 积的乘方 (19)1.5同底数幂的除法 (21)1.6 单项式的乘法 (23)1.6整式的乘法(2) (26)1.6 整式的乘法(3)——多项式乘以多项式 (29)1.7平方差公式(1)(P29~P30) (31)1.7 平方差公式(二) (33)1.8完全平方公式(1) (37)1.8完全平方公式(2) (39)1.9整式的除法(1)(P39~P41) (41)1.9 多项式除以单项式 (43)第二章平行线与相交线 (48)2.1台球桌面上的角 (48)2.2探索直线平行的条件(1) (51)2.2探索直线平行的条件(2) (53)2.3 平行线的性质(1) (55)2.4用尺规作线段和角(1) (60)2.4 用尺规作角 (63)第三章生活中的数据 (67)3.2 近似数与有效数字 (69)3.3世界新生儿图(1) (72)3.3世界新生儿图(2)(P88~P89) (75)第四章概率 (77)4.1 游戏公平吗(1) (77)4.1游戏公平吗(2) (79)4.2摸到红球的概率 (81)4.3停留在黑砖上的概率 (84)第五章三角形 (87)5.1认识三角形(1) (87)5.2 认识三角形(2) (89)5.1认识三角形(3) (95)5.1 认识三角形(4) (98)5、2图形的全等 (100)5、3图案设计 (102)5.4全等三角形 (104)5.5探索三角形全等的条件(1) (108)5.5探索三角形全等的条件(2) (111)5.5《边角边》第1课时 (116)5.6作三角形 (120)5.7利用三角形全等测距离 (124)5.8探索直角三角形全等的条件 (127)第六章变量之间的关系 (132)6、1小车下滑的时间 (132)6.2变化中的三角形 (135)6.3 温度的变化 (137)6.4速度的变化 (139)第七章生活中的轴对称 (144)7、1轴对称现象 (144)7.2简单的轴对称图形 (146)7.2简单的轴对称图形 (150)7.3探索轴对称的性质 (153)7.4利用轴对称设计图案 (155)7.5 镜子改变了什么 (159)7.6镶边与剪纸 (162)北师大版实验教科书七年级下册第一章整式的运算一、值得讨论的问题:1、符号感的含义是什么?如何培养学生的符号感?符号感主要表现在“能从具体情境中抽象出数量关系和变化规律,并用符号来表示;理解符号所代表的数量关系和变化规律;会进行符号间的转换;能选择适当的程序和方法解决用符号所表示的问题”。
北师大版数学七年级下册2.1两条直线的位置关系(第1课时)对顶角、余角和补角优秀教学案例
一、案例背景
北师大版数学七年级下册2.1节“两条直线的位置关系(第1课时)”是学生学习几何初步知识的重要内容。本节课主要介绍对顶角、余角和补角的概念及它们之间的位置关系。对顶角、余角和补角是初中数学的基础知识,对于学生理解后续的几何知识具有重要意义。然而,对于七年级的学生来说,这些概念较为抽象,需要通过具体的教学案例来帮助学生理解和掌握。
本案例旨在通过实际教学情境,引导学生观察、思考和探究,使学生能够理解和掌握对顶角、余角和补角的概念,并能够运用这些知识解决实际问题。同时,通过本案例的实施,培养学生的观察能力、思考能力和解决问题的能力,.理解对顶角、余角和补角的概念,掌握它们的定义和性质;
2.分配具有挑战性和实际意义的任务,让学生通过合作解决问题;
3.鼓励学生发挥各自的特长和优势,培养学生的团队合作能力和沟通能力;
4.引导学生进行小组反思和评价,鼓励学生提出建设性的意见和建议。
(四)反思与评价
1.引导学生对自己的学习过程进行反思,总结学习经验和教训;
2.鼓励学生互相评价和反馈,培养学生的评价能力和批判性思维;
3.引导学生进行交流和分享,培养学生的沟通能力和团队合作能力;
4.教师对学生的讨论和成果进行评价和指导,帮助学生提高解决问题的能力。
(四)总结归纳
1.引导学生对所学内容进行总结和归纳,帮助学生梳理知识体系;
2.强调对顶角、余角和补角的概念和性质,让学生掌握解题的关键和方法;
3.通过总结归纳,提高学生的思维能力和逻辑推理能力;
3.小组合作:教师组织了学生进行小组讨论和合作,鼓励学生相互交流和分享。通过合作解决问题,学生能够发挥各自的特长和优势,培养团队合作能力和沟通能力。同时,小组合作也能够促进学生的思考和探究,提高学习效果。
2024北师大版初中七年级数学上册下册全年级教案精写
2024北师大版初中七年级数学上册下册全年级教案精写一. 教材分析本教案为北师大版初中七年级数学上册和下册的全年级教案,以教材内容为基础,深入剖析每个知识点,结合学生实际情况,进行精心的设计和编写。
本教案力求让学生在掌握知识的同时,培养学生的数学思维能力和解决问题的能力。
二. 学情分析七年级的学生正处于青春期,思维活跃,好奇心强,但对数学学科有一定的恐惧心理。
因此,在教学过程中,需要充分调动学生的积极性,激发他们的学习兴趣,帮助他们建立自信心。
同时,七年级学生的学习习惯和方法还需要进一步培养和指导。
三. 教学目标1.知识与技能:使学生掌握初中七年级数学上册和下册的知识点,提高学生的数学素养。
2.过程与方法:培养学生独立思考、合作交流、解决问题的能力。
3.情感态度与价值观:激发学生对数学学科的兴趣,培养学生的自信心,使学生树立正确的数学观念。
四. 教学重难点1.教学重点:每个知识点的理解和运用。
2.教学难点:数学思维能力的培养,解决问题的方法。
五. 教学方法1.情境教学法:通过生活实例、故事等引入知识点,激发学生的学习兴趣。
2.启发式教学法:引导学生独立思考,培养学生解决问题的能力。
3.合作学习法:学生进行小组讨论,培养学生的团队合作意识。
4.反馈评价法:及时给予学生反馈,鼓励学生积极参与,提高学习效果。
六. 教学准备1.教具准备:教材、教案、PPT、黑板、粉笔等。
2.教学资源:互联网、教学视频、教学案例等。
3.学生准备:预习教材,了解基本知识点。
七. 教学过程1.导入(5分钟)通过一个生活实例或故事,引出本节课的知识点,激发学生的学习兴趣。
2.呈现(10分钟)利用PPT或板书,详细讲解本节课的知识点,重点突出,条理清晰。
在讲解过程中,注意引导学生思考,提问学生,确保学生能够理解和掌握。
3.操练(15分钟)根据本节课的知识点,设计一些练习题,让学生独立完成。
在学生练习过程中,教师及时给予指导和解答,帮助学生巩固知识点。
最新北师大版初中七年级数学下册全册教案(打印版
3.1认识三角形(1)教学目标:知识与技能:能证明出“三角形内角和等于180°”,能发现“直角三角形的两个锐角互余”;按角将三角形分成三类。
过程与方法:通过观察、想象、推理、交流等活动,发展空间观念、推理能力和有条理地表达能力。
情感、态度、价值观:通过学生解决问题的过程,激发学生的创新思维,培养学生学习的主动性。
教学重难点:三角形内角和定理推理和应用。
教学方法:演示、实验法,尝试练习法。
教学工具:一副三角板和三个剪好的三角形,课件。
教学过程:一、温故:1、填空:(1)当0°<α<90°时,α是角;(2)当α=°时,α是直角;(3)当90°<α<180°时,α是角;(4)当α=°时,α是平角。
2、如右图,∵AB∥CE,(已知)∴∠A=,()ABC DE123∴∠B=,()二、知新:(一)根据自己手中的一副特殊的三角板,知道三角形的三个内角和等于180°,那么是否对其他的三角形也有这样的一个结论呢?(提出问题,激发学生的兴趣)让学生用自己剪好的一个三角形,把三个角撕下来,拼在一块。
你发现了什么?小组交流。
结论:三角形三个内角和等于180°(几何表示)练习一:1、判断:(1)一个三角形的三个内角可以都小于60°;()(2)一个三角形最多只能有一个内角是钝角或直角;()2、在△ABC中,(1)∠C=70°,∠A=50°,则∠B= 度;(2)∠B=100°,∠A=∠C,则∠C= 度;(3)2∠A=∠B+∠C,则∠A= 度。
3、在△ABC中,∠A=x3°∠=x2°∠=x°求三个内角的度数。
(二)猜一猜一个三角形中三个内角可以是什么角?(提醒:一个三角形中能否有两个直角?钝角呢?)小组讨论。
按三角形内角的大小把三角形分为三类锐角三角形三个内角都是锐角直角三角形有一个内角是直角钝角三角形有一个内角是钝角练习二:1、观察三角形,并把它们的标号填入相应的括号内:锐角三角形( )直角三角形(Rt △)钝角三角形( )2、一个三角形两个内角的度数分别如下,这个三角形是什么三角形?(1)30°和60° ( )(2)40°和70° ( )(3)50°和30° ( )(4)45°和45° ( )思考:直角三角形中的两个锐角有什么关系?结论:直角三角形的两个锐角互余练习三:1、(图1) (图2)B C D EFG(1)图1中的直角三角形用符号写成,直角边是和,斜边是;(2)图2中的直角三角形用符号写成,直角边是和,斜边是;2、如下图,在Rt△CDE,∠C和∠E的关系是,其中∠C=55°,则∠E= 度3、如上图,在Rt△ABC中,∠A=2∠B,则∠A= 度,∠B= 度;三、课堂小结:1、三角形的三个内角的和等于180°;2、三角形按角分为三类:(1)锐角三角形(2)直角三角形(3)钝角三角形3、直角三角形的两个锐角互余四、作业设计:五、板书设计:六、教学后记:CDE AB C3.1认识三角形(2)教学目标:知识与技能:通过观察、操作、想象、推理、交流等活动,发掌空间,推理能力和有条理地表达能力。
北师大版数学七年级下册全册教案
北师大版数学七年级下册全册教案第一章整式的乘除同底数幂的乘法【教学目标】1.使学生在了解同底数幂乘法意义的基础上,掌握幂的运算性质(或称法则),进行基本运算;2.在推导“性质”的过程中,培养学生观察、概括与抽象的能力。
【教学重难点】幂的运算性质。
【教学过程】一、运用实例导入新课引例:一个长方形鱼池的长比宽多2米,如果鱼池的长和宽分别增加3米,那么这个鱼池的面积将增加39平方米,问这个鱼池原来的长和宽各是多少米?学生解答,教师巡视,然后提问:这个问题我们可以通过列方程求解,同学们在什么地方有问题?要解方程(x+3)(x+5)=x(x+2)+39必须将(x+3)(x+5)、x(x+2)展开,然后才能通过合并同类项对方程进行整理,这里需要用到整式的乘法。
(写出课题:第七章整式的乘除)本章共有三个单元,整式的乘法、乘法公式、整式的除法。
这与前面学过的整式的加减法一起,称为整式的四则运算。
学习这些知识,可将复杂的式子化简,为解更复杂的方程和解其它问题做好准备。
为了学习整式的乘法,首先必须学习幂的运算性质。
在此我们先复习乘方、幂的意义。
二、复习提问2.指出下列各式的底数与指数:(1)34;(2)a3;(3)(a+b)2;(4)(-2)3;(5)-23.其中,(-2)3与-23的含义是否相同?结果是否相等?(-2)4与-24呢?三、讲授新课1.利用乘方的意义,提问学生,引出法则计算103×102.解:103×102=(10×10×10)×(10×10)(幂的意义)=10×10×10×10×10 (乘法的结合律)=105.2.引导学生建立幂的运算法则将上题中的底数改为a,则有a3·a2=(aaa)·(aa)=aaaaa=a5,即a3·a2=a5=a3+2.用字母m,n表示正整数,则有即a m·a n=a m+n。
北师大七年级数学下册教案
北师大七年级数学下册教案北师大七年级数学下册教案 (合集12篇)作为一名优秀的教育工作者,通常需要用到教案来辅助教学,编写教案有利于我们科学、合理地支配课堂时间。
那要怎么写好教案呢?下面是小编帮大家整理的北师大七年级数学下册教案,仅供参考,大家一起来看看吧。
北师大七年级数学下册教案 1【知识讲解】一、本讲主要学习内容1、代数式的意义2、列代数式的注意点3、代数式值的意义其中列代数式是重点,也是难点。
下面讲述一下这三点知识的主要内容。
1、代数式的意义用基本的运算符号(包括加、减、乘、除以及后面所要学的乘方、开方)将数及表示数的字母连接而成的式子叫代数式。
单个的数字或字母也叫代数式。
如:5,a, 4x, ab, x+2y, , a2等2.列代数式的注意点⑴在代数式中出现的乘号“×”,通常写作“· ”或者省略不写。
如3×a可写作3· a或3a, 2×(x+y)可以写作2·(x+y)或2(x+y)。
⑵数字与数字相乘时乘号,仍然用“×”,不宜用“· ”,更不能省略不写。
⑶数字写在字母的前面。
⑷在代数式中出现除法运算时,一般按照分数的写法来写, 如s÷t写作。
⑸代数式中带分数与字母相乘时,应写成假分数与字母相乘的形式,如应写作。
(6)两个代数式相乘,应该用分数形式表示。
3.代数式值的意义用数值代替代数式里的字母,按照代数式指明的运算,计算出的结果,就叫做代数式的值。
二、典型例题例1 填空①棱长是acm 的正方体的体积是___cm3。
②温度由t°c下降2°c后是___°c。
③产量由m千克增长10%,就达到___千克。
④a和b 的倒数和是___。
⑤a和b的和的倒数是___。
解:① a3 ②(t-2) ③(1+10%)m ④ ⑤说明:⑴列代数式的关键在于仔细审题,弄清题意,正确找出题中的数量关系和运算顺序,对一些容易混淆的说法,要仔细进行对比,对一些比较复杂的数量关系,可先分段考虑,要正确地使用括号。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北师大版实验教科书七年级下册1.1整式教学目标:1.在现实情景中进一步理解用字母表示数的意义,发展符号感。
2.了解整式产生的背景和整式的概念,能求出整式的次数。
教学重点:整式的概念与整式的次数。
教学难点:整式的次数。
教学方法:尝试练习法,讨论法,归纳法。
教学用具:投影仪、常用的教学教具活动准备:1、分别求出下列图形的面积: 三角形的面积为_________; 长方形的面积为______ 正方形的面积为________;圆的面积为____________.2、代数式的系数、项的回顾:(1)代数式b a 231的系数是 代数式-24mn 的系数是(2)代数式42b a -的系数是 代数式543st 的系数是(3)代数式c b a ab 423-共有 项,它们的系数分别是 、 ,项是________________.(4)代数式z x xy y x 232741-+-共有 项,它们的系数分别是 、 、教学过程:1. 课前复习1的基础上求下列图形的面积:一个塑料三角尺如图所示,阴影部分所占的面积是_______2.小红、小兰和小明的房间的窗户从左到右如下图所示,其上方的装饰(它们的半径相同)(1) 装饰物所占的面积分别是_____ ______ _______(2) 窗户中能射进阳光的部分的面积分别是__________ _____a a二、单项式、多项式的概念与其次数注意:(1)区分判别字母在分子中与字母在分母中的式子是否整式。
(2)多项式是“几个单项式的和”中的和如何理解。
(3)单独一个数或一个字母也是单项式,而单独一个非零的次数是0。
(4)单独一个字母的次数是1。
(5)常见错误多项式的次数就是把多项式的所有字母的指数相加。
与单项式的次数混淆。
三、巩固练习:1、计算:1.在代数式-231a ,52243b a -,ab,)(1y x a +,)(21b a +,712+x 中,其中单项式有____________它们各自的系数分别为___________多项式有________________2.单项式的次数:3x225ab -bc a 2-rr 22π-3、多项式的次数:16b ab π-bc a 32-2212++y y xb ac ab -+2223三、整式的名称:根据单项式、多项式的次数与项数而命名。
(其中数字一定要大写)例:216b ab π- 是二次二项式巩固练习:1、单项式、多项式的名称:bc a 32- 是____次_____项式12212++y y x 是____次_____项式abc b a c ab -+2223 是____次_____项式小 结:(1)这节课,你学到了什么?(2)整式是指什么?(3)单项式、多项式的次数是怎样求的?(4)如何给单项式、多项式起个名字?作 业:课本P 5习题1.1:1,2,3。
教学后记:1.2 整式的加减(1)教学目的:1、经历及字母表示数量关系的过程,发展符号感。
2、会进行整式加减的运算,并能说明其中的算理,发展有条理的思考及语言表达能力。
教学重点:会进行整式加减的运算,并能说明其中的算理。
教学难点:正确地去括号、合并同类项,及符号的正确处理。
教学方法:尝试法,讨论法,归纳法。
教学用具:课件。
活动准备:准备好一个数字游戏。
教学过程:一、课前练习:1、填空:整式包括 和2、单项式322y x -的系数是 、次数是 3、多项式23523m m m +--是 次 项式,其中二次项系数是 一次项是 ,常数项是4、下列各式,是同类项的一组是( )(A )y x 222与231yx (B )n m 22与22mn (C )ab 32与abc 5、去括号后合并同类项:)47()25()3(b a b a b a +-++-二、探索练习:1、如果用a 、b 分别表示一个两位数的十位数字和个位数字,那么这个两位数可以表示为 交换这个两位数的十位数字和个位数字后得到的两位数为 这两个两位数的和为2、如果用a 、b 、c 分别表示一个三位数的百位数字、十位数字和个位数字,那么这个三位数可以表示为 交换这个三位数的百位数字和个位数字后得到的三位数为这两个三位数的差为●议一议:在上面的两个问题中,分别涉及到了整式的什么运算?说说你是如何运算的? ▲整式的加减运算实质就是运算的结果是一个多项式或单项式。
三、巩固练习:1、填空:(1)b a -2与b a -的差是(2)、单项式y x 25、y x 22-、22xy 、y x 24-的和为(3)如图所示,下面为由棋子所组成的三角形,一个三角形需六个棋子,三个三角形需( )个棋子,n 个三角形需 个棋子2、计算:(1))134()73(22+-++k k k k(2))2()2123(22x xy x x xy x +---+ (3)[]14)2(53-++--a a a3、(1)求272--x x 与1422-+-x x 的和(2)求k k 742+与132-+-k k 的差4、先化简,再求值:[]224)32(235x x x x ---- 其中21-=x 四、提高练习:1、若A 是五次多项式,B 是三次多项式,则A+B 一定是(A ) 五次整式 (B )八次多项式(C )三次多项式 (D )次数不能确定2、足球比赛中,如果胜一场记3a 分,平一场记a 分,负一场记0分,那么某队在比赛胜5场,平3场,负2场,共积多少分?3、一个两位数与把它的数字对调所成的数的和,一定能被11整除,请证明这个结论。
4、如果关于字母x 的二次多项式3322+-++-x nx mx x 的值与x 的取值无关,试求m 、n 的值。
五、小结:整式的加减运算实质就是去括号和合并同类项。
六、作业:第8页习题1、2、31.2整式的加减(2)教学目标:1.会进行整式加减的运算,并能说明其中的算理,发展有条理的思考及其语言表达能力。
2.通过探索规律的问题,进一步体会符号表示的意义,发展符号感,发展推理能力。
教学重点:整式加减的运算。
教学难点:探索规律的猜想。
教学方法:尝试练习法,讨论法,归纳法。
教学用具:投影仪活动准备:计算:(1)(-x +2x 2+5)+(-3+4x 2-6x )(2)求下列整式的值:(-3a 2-ab +7)-(-3a 2-ab +9),其中a =21,b =3 教学过程:一、探索练习:……摆第1个“小屋子”需要5枚棋子,摆第2个需要 枚棋子,摆第3个需要 枚棋子。
按照这样的方式继续摆下去。
(1)摆第10个这样的“小屋子”需要 枚棋子(2)摆第n 个这样的“小屋子”需要多少枚棋子?你是如何得到的?你能用不同的方法解决这个问题吗?小组讨论。
二、例题讲解:三、巩固练习:1、计算:(1)(11x 3-2x 2)+2(x 3-x 2) (2)(3a 2+2a -6)-3(a 2-1)(3)x -(1-2x +x 2)+(-1-x 2) (4)(8xy -3x 2)-5xy -2(3xy -2x 2)2、已知:A=x 3-x 2-1,B=x 2-2,计算:(1)B -A (2)A -3B3、列方程解应用题:三角形三个内角的和等于180°,如果三角形中第一个角等于第二个角的3倍,而第三个角比第二个角大15°,那么(1)第一个角是多少度?(2)其他两个角各是多少度?四、提高练习:1、已知A =a 2+b 2-c 2,B =-4a 2+2b 2+3c 2,并且A +B +C =0,问C 是什么样的多项式?2、设A =2x 2-3xy +y 2-x +2y ,B =4x 2-6xy +2y 2-3x -y ,若│x -2a │+(y +3)2=0,且B -2A =a ,求A 的值。
3、已知有理数a 、b 、c 在数轴上(0为数轴原点)的对应点如图:试化简:│a│-│a+b│+│c-a│+│b+c│小结:要善于在图形变化中发现规律,能熟练的对整式加减进行运算。
作业:课本P11习题1.3:1(2)、(3)、(6),2。
教学后记:1.3 同底数幂的乘法(一)教学目标1.使学生在了解同底数幂乘法意义的基础上,掌握幂的运算性质(或称法则),进行基本运算;2.在推导“性质”的过程中,培养学生观察、概括与抽象的能力.教学重点和难点幂的运算性质.课堂教学过程设计一、运用实例导入新课引例一个长方形鱼池的长比宽多2米,如果鱼池的长和宽分别增加3米,那么这个鱼池的面积将增加39平方米,问这个鱼池原来的长和宽各是多少米?学生解答,教师巡视,然后提问:这个问题我们可以通过列方程求解,同学们在什么地方有问题?要解方程(x+3)(x+5)=x(x+2)+39必须将(x+3)(x+5)、x(x+2)展开,然后才能通过合并同类项对方程进行整理,这里需要用到整式的乘法.(写出课题:第七章整式的乘除)本章共有三个单元,整式的乘法、乘法公式、整式的除法.这与前面学过的整式的加减法一起,称为整式的四则运算.学习这些知识,可将复杂的式子化简,为解更复杂的方程和解其它问题做好准备.为了学习整式的乘法,首先必须学习幂的运算性质.(板书课题:7.1 同底数幂的乘法)在此我们先复习乘方、幂的意义.二、复习提问2.指出下列各式的底数与指数:(1)34;(2)a3;(3)(a+b)2;(4)(-2)3;(5)-23.其中,(-2)3与-23的含义是否相同?结果是否相等?(-2)4与-24呢?三、讲授新课1.利用乘方的意义,提问学生,引出法则计算103×102.解:103×102=(10×10×10)×(10×10)(幂的意义)=10×10×10×10×10(乘法的结合律)=105.2.引导学生建立幂的运算法则将上题中的底数改为a,则有a3·a2=(aaa)·(aa)=aaaaa=a5,即a3·a2=a5=a3+2.用字母m,n表示正整数,则有即a m·a n=a m+n.3.引导学生剖析法则(1)等号左边是什么运算?(2)等号两边的底数有什么关系?(3)等号两边的指数有什么关系?(4)公式中的底数a可以表示什么(5)当三个以上同底数幂相乘时,上述法则是否成立?要求学生叙述这个法则,并强调幂的底数必须相同,相乘时指数才能相加.四、应用举例变式练习例1计算:(1)107×104;(2)x2·x5.解:(1)107×104=107+4=1011;(2)x2·x5=x2+5=x7.提问学生是否是同底数幂的乘法,要求学生计算时重复法则的语言叙述.例2 计算:(1)-a2·a6;(2)(-x)·(-x)3 ;(3)y m·y m+1.解:(1)-a2·a6=-(a2·a6)=-a2+6=-a8;(2)(-x)·(-x)3=(-x)1+3=(-x)4=x4;(3)y m·y m+1=y m+(m+1)=y2m+1.师生共同解答,教师板演,并提醒学生注意:(1)中-a2与(-a)2的差别;(3)中的指数有字母,计算方法与数字相同,计算后指数要合并同类项.(2)中(-x)4=x4学生如不理解,可先引导学生回忆学过的有理数的乘方.课堂练习计算:(1)105·106;(2)a7·a3;(3)y3·y2;(4)b5·b;(5)a6·a6;(6)x5·x5.对于第(2)小题,要指出y的指数是1,不能忽略.计算:(1)y12·y6;(2)x10·x;(3)x3·x9;(4)10·102·104;(5)y4·y3·y2·y;(6)x5·x6·x3.(1)-b3·b3;(2)-a·(-a)3;(3)(-a)2·(-a)3·(-a);(4)(-x)·x2·(-x)4;五、小结1.同底数幂相乘,底数不变,指数相加,对这个法则要注重理解“同底、相乘、不变、相加”这八个字.2.解题时要注意a的指数是1.3.解题时,是什么运算就应用什么法则.同底数幂相乘,就应用同底数幂的乘法法则;整式加减就要合并同类项,不能混淆.4.-a2的底数a,不是-a.计算-a2·a2的结果是-(a2·a2)=-a4,而不是(-a)2+2=a4.5.若底数是多项式时,要把底数看成一个整体进行计算教后记:教学时不要生硬地提出问题,应力求顺乎自然、水到渠成.讲课要注意联系过去尚不甚巩固的知识,将新旧知识有机地融合在一起.这节课就是以此为宗旨引入新课的.1.4幂的乘方与积的乘方(1)教学目标:1、经历探索幂的乘方与积的乘方的运算性质的过程,进一步体会幂的意义,发展推理能力和有条理的表达能力。