环氧树脂增韧途径与机理
高性能基体树脂 复合材料增韧新途径
高性能基体树脂和复合材料增韧新途径前言:材料复合化是新材料技术的重要发展趋势之一。
所谓高性能复合材料,是指具有高比模量、高比强度、优异的耐高温性能及多功能的复合材料。
高性能复合材料主要以高性能纤维为增强体的复合材料为主,基体树脂作为高性能复合材料的重要组成部分,其性能及成本对高性能复合材料的设计、制备、性能、加工具有重要意义。
目前通用的高性能树脂基体通常可以分为两大类:热塑性和热固性树脂。
高性能热固性树脂是目前使用最广泛的先进复合材料基体,其复合材料具有优异的力学性能,可在恶劣的环境下长期使用。
环氧树脂是聚合物基复合材料中应用最广泛的基体树脂之一。
EP是一种热固性树脂,具有优异的粘接性、耐磨性、力学性能、电绝缘性能、化学稳定性、耐高低温性,以及收缩率低、易加工成型、较好的应力传递和成本低廉等优点。
但环氧树脂固化后交联密度高,呈三维网状结构,存在内应力、质脆、耐疲劳性、耐热性、耐冲击性差等不足,以及剥离强度、开裂应变低和耐湿热性差等缺点,加之表面能高,在很大程度上限制了它在某些高技术领域的应用。
因此,对环氧树脂的增韧研究一直是人们改性环氧树脂的重要研究课题之一。
一、高性能基体树脂及其复合1. 高性能基体树脂材料是先进科技发展的重要物质基础,以高科技含量的航空航天领域为例,新型航空、航天飞行器的诞生往往建立在先进新材料研制的基础上,航空、航天飞行器性能的突破很大程度上受到材料发展水平的制约[1]。
高性能树脂基复合材料以其轻质、高比强、高比模、高耐温和极强的材料一性能可设计性而成为发展中的高技术材料之一,其在航空、航天工业中的应用也显示出了独特的优势和潜力,是航空、航天材料技术进步的重要标志。
目前通用的高性能树脂基体通常可以分为两大类:热塑性和热固性树脂。
典型的高性能热塑性树脂包括热塑性聚酰亚胺、聚酰胺、聚醚砜、液晶聚酯、聚醚醚酮等。
由于高性能热塑性树脂一般具有高的熔点和熔体黏度,作为复合材料基体使用时成型工艺性差,高温使用时易发生蠕变,极大地限制了其作为复合材料基体树脂的使用[2]。
关于环氧树脂胶黏剂增韧改性的分析
关于环氧树脂胶黏剂增韧改性的分析[摘要]环氧树脂胶黏剂,它属于固化剂、基体树脂、溶剂、增韧剂、增塑剂、填料等各种组分经由化学及物理混合多种方法,所形成有着良好功能性、黏结性,在工程领域当中所需用到的黏胶剂。
那么,为更进一步了解此类黏胶剂的增韧改性具体方法及其情况,鉴于此,本文主要探讨环氧树脂胶黏剂自身增韧改性情况,仅供业内相关人士参考。
[关键词]胶黏剂;环氧树脂;增韧改性前言:因环氧树脂胶黏剂,它和其余胶黏剂所具备优势特点较为不同,故其现阶段在众多行业领域当中实现较为广泛的应用。
但因其呈较大脆性及较弱韧性,因而,对环氧树脂胶黏剂自身增韧改性情况开展综合分析较为必要。
1、简述环氧胶内部成分及其增韧改性基本机理情况1.1在主要成分层面针对环氧胶内部成分,通常以基体树脂、固化剂、增塑剂及增韧剂、溶剂为主。
针对基体树脂层面,现阶段以纯环氧树脂及改性之后的环氧树脂为主。
环氧树脂,其自身黏结强度及抗压性、黏结性及力学性能相对较好,但韧性弱;针对固化剂,其属于环氧胶内部重要成分。
生产过程当中,通常需结合生产条件及其性能指标等,合理选定固化剂;针对增塑剂即增韧剂,其主要是因基体树脂与固化剂相互间经化学反应之后所形成一种固化物,呈现出较脆质地、较差韧性及其抗冲强度。
故生产过程当中需要向着固化物内部添加一定量的增塑剂及增韧剂等,确保其韧性及耐冲性能可得到增强;针对溶剂层面,其属于聚合物的反应介质。
实际应用当中,可以与具体需求结合予以合理选用。
1.2在基本机理层面一是,针对分散相撕裂及塑性拉伸基本机理层面。
此项理论观点,即外部力作用至改性树脂之后,使得裂纹形成,且处于环氧树脂内部持续增长情况下,橡胶会以颗粒形式渗入裂纹内部,连接好裂纹两端位置。
外力持续增强情况下,橡胶颗粒将部分能量吸收,其自身会被逐渐拉长或撕裂,对环氧树脂后期被撕裂整个进度可起到减缓作用,环氧树脂则更具韧性[1];二是,针对微裂纹的钝化增韧基本机理层面。
环氧树脂胶粘剂增韧改性的研究
环氧树脂胶粘剂增韧改性的研究一、本文概述Overview of this article环氧树脂胶粘剂是一种广泛应用于工业生产和日常生活中的重要材料,因其优异的机械性能、良好的化学稳定性和较强的粘附力而备受关注。
然而,随着科技的发展和应用领域的不断拓展,传统的环氧树脂胶粘剂在某些特定场合下已无法满足使用需求,尤其是在需要更高柔韧性和抗冲击性的场合。
因此,对环氧树脂胶粘剂进行增韧改性研究具有重要的现实意义和应用价值。
Epoxy resin adhesive is an important material widely used in industrial production and daily life, which has attracted attention due to its excellent mechanical properties, good chemical stability, and strong adhesion. However, with the development of technology and the continuous expansion of application fields, traditional epoxy resin adhesives can no longer meet the usage needs in certain specific situations, especially in situations where higher flexibility and impact resistance are required. Therefore, studying the tougheningmodification of epoxy resin adhesives has important practical significance and application value.本文旨在探讨环氧树脂胶粘剂的增韧改性方法,以提高其柔韧性和抗冲击性。
环氧树脂的增韧改性方法
环氧树脂的增韧改性方法摘要:环氧树脂(EP)是聚合物基复合材料应用最广泛的基体树脂。
EP是一种热固性树脂,具有优异的粘接性、耐磨性、力学性能、电绝缘性能、化学稳定性、耐高低温性,以及收缩率低、易加工成型、较好的应力传递和成本低廉等优点,在胶粘剂、电子仪表、轻工、建筑、机械、航天航空、涂料、粘接以及电子电气绝缘材料、先进复合材料基体等领域得到广泛应用[1-3]。
因此,对EP增韧增强一直是人们改性EP的重要研究课题之一。
一般的EP填充剂和增韧剂都存在增强相与树脂基体间的界面粘接性较差的问题,韧性的改善是以牺牲材料强度、模量及耐热性为代价的,使其物理、力学和热性能的提高受到限制。
笔者对国内EP增韧增强改性方法的最新进展做了简单的综述。
关键词:环氧树脂增韧改性1环氧树脂的增韧改性1.1橡胶弹性体改性利用橡胶弹性体增韧EP的实践始于上世纪60年代,主要通过调节两者的溶解度参数,控制胶化过程中相分离所形成的海岛结构,以分散相存在的橡胶粒子就可以起到中止裂纹、分枝裂纹、诱导剪切变形的作用,从而提高EP的韧性.用于EP增韧的橡胶和弹性体必须具备2个基本条件:首先,所用的橡胶在固化前必须能与EP相容,这就要求橡胶的相对分子质量不能太大;而EP固化时,橡胶又要能顺利地析出来,形成两相结构,因此橡胶分子中两反应点之间的相对分子质量又不能太小[4]。
其次,橡胶应能与EP 发生化学反应,才可产生牢固的化学交联点。
因此EP增韧用的橡胶一般都是RLP (反应性液态聚合物)型的,相对分子质量在1000~10000,且在端基或侧基上带有可与环氧基反应的官能团[5]。
近年来,随着高分子相容性理论的发展和增容技术的进步,环氧树脂与热塑性树脂的合金化增韧改性获得了长足的发展,有效地克服了橡胶弹性体改性环氧树脂体系的不足。
用于环氧树脂增韧改性的热塑性树脂主要有聚砜(PSF)、聚醚砜(PES)、聚醚酮(PEK)、聚醚醚酮(PEEK)、聚醚酰亚胺(PEI)、聚苯醚(PPO)、聚碳酸酯(PC)等。
环氧树脂的增韧改性
环氧树脂增韧改性的研究摘要:介绍了环氧树脂通过共聚共混法增韧改性的一些新方法,包括热塑性树脂增韧、互穿网络聚合物增韧、热致液晶聚合物增韧、刚性高分子增韧、核壳结构聚合物增韧等,并分别对其增韧机理作了总结分析。
关键词:环氧树脂;增韧;改性The study on toughening methods and mechanism of epoxy**** **** ***(College of Chemistry and Chemical Engineering, Qingdao university, Qingdao 266071, China) Abstract: The new methods of toughening epoxy resins, including toughing using thermoplastic resin, thermoset liquid crystal polymer and core-shell latex polymer and forming interpenetrating networks polymer were introduced and their mechanisms was discussed as well. The other methods of toughening epoxy resins were also studied.Key words: epoxy resin; toughening; modification0 引言由于具有良好的力学性能、粘接能力、化学稳定性、易加工性以及价格低廉等优点,环氧树脂被广泛应用于绝缘材料、结构材料、涂料及胶粘剂等领域。
但环氧树脂也存在质脆及韧性不足的缺点,所以在过去的几十年中,对环氧树脂进行增韧改性一直是科学家们努力的方向,这方面也有很多出色的成果。
目前,环氧树脂增韧途径有以下几种[1]:a.用弹性体、热塑性树脂或刚性颗粒等第二相来增韧改性;b.用热塑性树脂连续地贯穿于热固性树脂中形成互穿网络来增韧改性;c.通过改变交联网络的化学结构以提高网链分子的活动能力来增韧;d.控制分子交联状态的不均匀性形成有利于塑性变形的非均匀结构来实现增韧。
环氧树脂的增强增韧
李健民:环氧树脂的增强增韧第29卷第12期粘接 Adhesi on i n Ch i na环氧树脂的增强增韧李健民 编译中图分类号:TQ 433.4+37 文献标识码:B文章编号:1001-5922(2008)12-0050-031 前言环氧树脂(EP)问世60年以来以其优异性能至今保持着高性能高分子材料的地位。
但是与热塑性树脂相比,环氧树脂最大缺点是其脆性。
所以对EP 的增韧研究由来已久,改性方法也多种多样,如用液态弹性体增韧;用交联的橡胶粒子增韧;用有机弹性体 无机填料复合改性;用核/壳型橡胶粒子改性;用热塑性工程合金塑料改性等。
最近又出现了介晶体(m esogen ic)为主链的EP ,由于其网络链的取向而使自身增韧,介晶型环氧结构如式(1)。
(1)本文介绍EP 增强增韧的方法、机理,及新近取得的进展。
2 EP 通过弹性体增强增韧2.1 CTBN 增韧EP 中加入弹性体增韧的同时,为防止其耐热性降低,应使弹性体在EP 中是呈亚微米粒子分布。
A F YEE 等人研究过用CTB N 改性EP 的机理。
认为:1)在裂缝附近,橡胶相由于应力集中而向着裂纹的前端膨胀并引起空穴化;2)与膨胀的CTBN 橡胶相连接的EP 基体发生剪切变形;3)EP 基体相的交联密度越低,CTBN 改性效果越好;4)在断裂面周边可观察到空穴化及剪切变形,从而可证明韧性得以提高。
此结果说明,增韧的原因不仅靠橡胶分散相而且靠EP 相的剪切变形。
2.2 中空粒子增韧由于增韧机理是因EP 基体的变形,不难想象,就不一定非要弹性体不可。
Baghere 和Ke ifer 等人,通过在EP 体系中引入微细的中空粒子增韧,加入了这种中空粒子的EP 破坏韧性与粒子间基体的厚度间的关系见图1。
引入中空粒子的EP 与加入弹性体的EP 破坏韧性值基本相同,两者的破坏断面的形态也基本相同。
这一结果表明,EP 的增强增韧不一定非加弹性体不可,假若能把EP 基体横向的约束解除,也是能够增强增韧的。
环氧树脂的固化机理及常用固化剂
环氧树脂的固化机理及其常用固化剂反应机理酸催化反应机理催化剂:质子给予体,促进顺序:酸>酚>水>醇固化剂分类1反应型固化剂▪可与EP分子进行加成,通过逐步聚合反应交联成体型网状结构▪一般含有活泼氢,反应中伴随氢原子转移,如多元伯胺、多元羧酸、多元硫醇和多元酚2催化型固化剂▪环氧基按阳离子或阴离子聚合机理进行固化,如叔胺、咪唑、三氟化硼络合物常见固化剂▪脂肪胺固化剂▪芳香族多元胺▪改性多元胺▪多元硫醇▪酸酐类固化剂1脂肪胺固化剂脂肪胺固化特点:▪活性高,可室温固化▪反应剧烈放热,适用期短▪一般需后固化,室温7d再80-100℃2h ▪固化物热形变温度低,一般80-90℃▪固化物脆性大▪挥发性及毒性大2芳香族多元胺芳香族多胺特点:▪固化物耐热性好,耐化学性机械强度均优于脂肪族多元胺▪活性低,大多加热固化▪氮原子因苯环导致电子云密度降低,碱性减弱,以及苯环位阻效应▪多为固体,熔点高,工艺性差▪液化,低共熔点混合,多元胺与单缩水甘油醚加成3改性多元胺a、环氧化合物加成:▪加成物分子量变大,沸点粘度增加,挥发性与毒性减弱,改善原有脆性b、迈克尔加成:▪丙烯腈与多元胺▪胺的活泼氢对α,β不饱和键能迅速加成▪腈乙基化物降低活性,改善与EP相容性特别有效c、曼尼斯加成:曼尼斯反应(Mannich reaction)为多元胺和甲醛、苯酚缩合三分子缩合。
▪产物能在低温、潮湿、水下施工固化EP▪典型产品T-31:二乙烯三胺+甲醛+苯酚▪适应土木工程用于混凝土、钢材、瓷砖等材料▪粘结的快速修复和加固d、硫脲-多元胺缩合:▪硫脲与脂肪族多元胺加热至100℃缩合放出氨气▪能在极低温下(0℃以下)固化EPe、聚酰胺化:▪9,11-亚油酸与9,12-亚油酸二聚反应▪然后2分子与DETA(二乙烯三胺)进行酰胺化反应挥发性毒性很小▪与EP相容性良好,化学计量要求不严▪固化物有很好的增韧效果▪放热效应低,适用期长,固化物耐热性较低,HDT为60℃左右4多元硫醇▪类似于羟基▪聚硫醇化合物(液体聚硫橡胶)就是典型多元硫醇,单独使用活性很低,室温反应及其缓慢几乎不能进行▪适当催化剂作用下固化反应以数倍多元胺速度进行▪在低温固化更为明显5酸酐类固化剂▪反应速率很慢,不能生成高交联产物,一般不作为固化剂▪低挥发性,毒性低,刺激性低▪反应缓慢,放热量小,适用期长▪固化物收缩率低,耐热性高▪固化物机械强度高,电性能优良▪需加热固化,时间长▪EP常用固化剂,仅次于多元胺主要酸酐:▪顺酐>苯酐>四氢苯酐>甲基四氢苯酐▪六氢苯酐>甲基六氢苯酐▪甲基纳迪克酸酐▪均苯四甲酸二酐▪改性酸酐▪酸酐分子中负电性取代基则活性增强阴/阳离子型催化剂▪催化剂仅仅起催化作用,本身不参与交联▪用量主要以实验值为准▪催化环氧开环形成链增长1常用阴离子催化剂1、叔胺类多用DMP-10(二甲氨基苯酚),DMP-30,酚羟基显著加速树脂固化速率,放热量大适用期短,EP快速固化(24h/25℃)2、咪唑类多用液态2-乙基-4-甲基咪唑(仲胺活泼氢和叔胺),适用期长(8-10h),中温固化,热形变温度高,与芳香胺耐热水平(100℃)相当阳离子型固化剂,路易斯酸链终止于离子对复合2常用阳离子催化剂▪路易斯酸:BF3,SnCl4,AlCl3等,为电子接受体▪BF3使用最多,具有腐蚀性,反应活性非常高一般与胺类或醚类络合物,如三氟化硼-乙胺络合物, BF3:400,为87℃结晶物质,室温稳定,离解温度90℃,离解后活性增大环氧树脂固化的三个阶段▪液体-操作时间:树脂/固化剂混合物仍然是液体适合应用▪凝胶-进入固化:混合物开始进入固化相(也称作熟化阶段),这时它开始凝胶或“突变”成软凝胶物。
环氧树脂增韧途径与机理
环氧树脂增韧途径与机理环氧树脂(EP)是一种热固性树脂,因其具有优异的粘结性、机械强度、电绝缘性等特性,而广泛应用于电子材料的浇注、封装以及涂料、胶粘剂、复合材料基体等方面。
由于纯环氧树脂具有高的交联结构,因而存在质脆、耐疲劳性、耐热性、抗冲击韧性差等缺点,难以满足工程技术的要求,使其应用受到一定限制。
因此对环氧树脂的共聚共混改性一直是国内外研究的热门课题。
一、序言目前环氧树脂增韧途径,据中国环氧树脂行业协会专家介绍,主要有以下几种:用弹性体、热塑性树脂或刚性颗粒等第二相来增韧改性;用热塑性树脂连续地爨穿于热固性树脂中形成互穿网络米增韧改性;通过改变交联网络的化学结构以提高网链分子的活动能力来增韧;控制分子交联状态的不均匀性形成有利于塑性变形的非均匀结构来实现增韧。
近年来国内外学者致力于研究一些新的改性方法,如用耐热的热塑性工程塑料和环氧树脂共混;使弹性体和环氧树脂形成互穿网络聚合物(IPN)体系;用热致液晶聚合物对环氧树脂增韧改性;用刚性高分子原位聚合增韧环氧树脂等。
这些方法既可使环氧捌脂的韧性得到提高,同时又使其耐热性、模量不降低,甚至还略有升高。
随着电气、电子材料及其复合材料的飞速发展,环氧树脂正由通用型产品向着高功能性、高附加值产品系列的方向转化。
中国环氧树脂行业协会专家表示,这种发展趋势使得对其增韧机理的研究H益深入,增韧机理的研究对于寻找新的增韧方法提供了理论依据,因此可以预测新的增韧方法及增韧剂将会不断出现。
采用热塑性树脂改性环氧树脂,其研究始于20世纪80年代。
使用较多的有聚醚砜(PES)、聚砜(PSF)、聚醚酰亚胺(PEI)、聚醚醚酮(PEEK)等热塑性工程塑料,人们发现它们对环氧树脂的改性效果显著。
据中国环氧树脂行业协会专家介绍,这些热塑性树脂不仪具有较好的韧性,而且模量和耐热性较高,作为增韧剂加入到环氧树脂中同样能形成颗粒分散相,它们的加入使环氧树脂的韧性得到提高,而且不影响环氧固化物的模量和耐热性。
环氧树脂增韧改性技术的研究进展
3 刚性纳 米粒 子增韧 环氧树 脂 利用 化 学 、物 理 方法 ,在 环氧 树脂 中引人 细
有 比原来 较好 的拉 伸 强度 : 同时体 系形成 刚 柔相
问、密 度较 高的 网络 ,提高 了冲击 强度 。 张 宏 元 等 l合 成 了 一 种 侧 链 型 液 晶聚 合 物 5 】
树 脂粘接 性 强度 高 ,电绝缘 性优 良,机械 强度 高, 收缩 率低 ,尺 寸稳定 ,耐化 学试 剂 以及 加 工性 良
好 。总之环 氧树 脂 具有优 良的综 合性 能 ,因而 在
中,而 导致材料 模量 和玻璃 化温 度 的下 降。
武渊 博等 【 用端 环氧 基丁腈 橡胶 ( T N) 1 1 采 EB 对环 氧 树脂 进行 增韧 ,研 究 了增 韧环氧 树 脂浇注
有 序 、深度 分 子交 联 的聚合 物 网络 ,它 融合 了液 晶有序 与 网络 交联 的优 点 ,具有 更高 的力 学性 能 和 耐热 性 。 L P增韧 环氧树 脂 是通过 原位复 合 的 TC 方法 来 实施 的 , 其机 理可概括 为银 纹一 剪切带 的银
但液氮 温度 下可 使冲 击韧性 增加 5%。液 氮温 度 9
析 ( C)和 偏光 显微镜 ( O )对聚合 物 结构 DS PM 和液 晶性 能进行 表 征 ,探 讨其 对环 氧 树脂共 混 物 力学 性 能的影 响 , 并分 析共混 物 的微 相分 离结 构 。 结果 表 明, T 1 固化剂 时 , L P对环 氧树脂 用 3作 SC
有较 好 的增 强增 韧效 果 ,在 强度和 玻璃 化温 度不 降低 的情 况 下 ,断裂伸 长 度 比未 改性 固化物 最大 提高 26倍 ,但用 三 乙醇胺作 固化 剂 时,S C . L P对
端羧基丁腈橡胶增韧改性环氧树脂的研究
端羧基丁腈橡胶增韧改性环氧树脂的研究1. 引言1.1 研究背景端羧基丁腈橡胶增韧改性环氧树脂作为一种新型复合材料,在航空航天、汽车、电子等领域具有广泛的应用前景。
目前,随着科技的不断进步和工业制造的高速发展,对于材料性能和功能的要求也越来越高,传统的环氧树脂由于其脆性和缺乏韧性而难以满足现代工业的需求。
因此,开展端羧基丁腈橡胶增韧改性环氧树脂的研究具有重要意义。
通过将端羧基丁腈橡胶引入环氧树脂体系中,可以有效提高环氧树脂的韧性和强度,同时具有较好的耐热性和耐化学腐蚀性能。
这种复合材料的研究将为高性能材料的开发提供新的思路和方法,促进材料科学领域的进步。
因此,深入研究端羧基丁腈橡胶增韧改性环氧树脂的性能与应用具有重要的理论和实际意义,对推动材料科学的发展和提升我国在高性能材料领域的竞争力具有积极的促进作用。
1.2 研究目的研究目的是为了探究端羧基丁腈橡胶在环氧树脂中的增韧效果及机理,进一步提高环氧树脂的性能和应用范围。
通过深入研究端羧基丁腈橡胶与环氧树脂之间的相互作用,实现对环氧树脂的改性,从而提高其强度、韧性和耐热性等性能。
研究目的还在于探讨端羧基丁腈橡胶在环氧树脂中的最佳添加比例和改性方法,为工业生产提供技术支持和指导。
通过此研究,我们可以更好地认识端羧基丁腈橡胶增韧改性环氧树脂的作用机理,为材料工程领域的发展提供新的解决方案,推动端羧基丁腈橡胶在环氧树脂中的应用和开发。
1.3 研究意义端羧基丁腈橡胶增韧改性环氧树脂是目前研究领域中备受关注的热点之一。
其研究意义主要体现在以下几个方面:1. 提高环氧树脂的性能:传统的环氧树脂在某些应用领域下存在着脆性和强度不足的问题,而端羧基丁腈橡胶作为增韧剂,可以有效地提高环氧树脂的韧性和强度,从而使其更加适用于工程领域。
2. 拓展环氧树脂的应用范围:通过端羧基丁腈橡胶增韧改性,可以使环氧树脂在航空航天、汽车制造、建筑材料等领域得到更广泛的应用。
这将推动相关行业的发展,提升产品的性能和竞争力。
环氧树脂建筑结构胶粘剂的增韧机理
环氧树脂建筑结构胶粘剂的增韧机理张炜刘宇星赵世琦摘要简述了环氧树脂建筑结构胶增韧的必要性;环氧树脂增韧与传统的增柔之间的区别,环氧树脂增韧的结构特征;综述了环氧树脂增韧的历史及现状,并对不同弹性体增韧方法的特点进行了评述;通过具体实例论述了胶粘剂本体韧性的提高与粘接强度的提高的对应关系,举例介绍了在建筑结构胶中广泛使用的典型环氧树脂/胺类固化剂体系的增韧方法,并简要说明了使用原位分相型增韧技术时的注意事项。
关键词 环氧树脂;建筑结构胶;增韧;原位分相一、建筑结构胶增韧的必要性许多双酚A型环氧树脂/胺类固化剂组成的配方体系可以在室温条件下固化,因而被广泛用做建筑结构胶粘剂的基料。
但是目前的建筑工程对建筑结构胶粘剂提出了越来越高的性能要求,不仅希望结构胶具有更高的粘接强度(拉伸剪切强度、正拉强度),更好的耐低温、耐疲劳性能,而且不能使结构胶的耐热性、抗压强度等下降过多。
通常双酚A型环氧树脂固化物质地硬脆,耐开裂和冲击性能较差,如果仅在环氧树脂、固化剂种类、配比方面进行调配是难于满足以上要求的。
采用环氧树脂增韧技术,将环氧树脂均相固化物转变为具有多相结构的环氧树脂合金,是当前制备高性能建筑结构胶粘剂的极为有力的技术手段,受到了广泛的重视。
二、环氧树脂的增韧提到增加韧性,往往令人想到向树脂中加邻苯二甲酸二丁酯或邻苯二甲酸二辛酯等非活性的增塑剂,它们与树脂间没有任何化学键相连接,存在于树脂交联网络中,在分子链段相互运动之中起某种“润滑”作用,因而使树脂固化物柔化,而且增塑剂有可能会随时间慢慢迁移到树脂固化物的表面。
此外,使用一些具有柔性分子链的固化剂如长链脂肪族胺类、柔性环氧树脂如聚丙二醇二缩水甘油醚等,它们能够通过反应连接到交联网络之中,从而增加交联网链的柔性,这一类物质不会象二丁酯、二辛酯那样有迁移析出到固化物表面的可能。
这些物质都是使材料整体的分子结构柔性化,而且柔化后的树脂仍然是均相体系,胶粘剂增加了柔性粘接强度虽有了某种程度的提高,但耐热性例如热变形温度HDT或玻璃化转变温度T g往往下降几十度,所以也就大大降低了高温下的性能。
环氧树脂的固化机理及其常用固化剂
环氧树脂得固化机理及其常用固化剂反应机理酸催化反应机理催化剂:质子给予体,促进顺序:酸〉酚>水>醇固化剂分类反应型固化剂▪可与EP分子进行加成,通过逐步聚合反应交联成体型网状结构▪一般含有活泼氢,反应中伴随氢原子转移,如多元伯胺、多元羧酸、多元硫醇与多元酚催化型固化剂▪环氧基按阳离子或阴离子聚合机理进行固化,如叔胺、咪唑、三氟化硼络合物常见固化剂▪脂肪胺固化剂▪芳香族多元胺▪改性多元胺▪多元硫醇▪酸酐类固化剂脂肪胺固化剂脂肪胺固化特点:▪活性高,可室温固化▪反应剧烈放热,适用期短▪一般需后固化,室温7d再80-100℃2h ▪固化物热形变温度低,一般80—90℃▪固化物脆性大▪挥发性及毒性大芳香族多元胺芳香族多胺特点:▪固化物耐热性好,耐化学性机械强度均优于脂肪族多元胺▪活性低,大多加热固化▪氮原子因苯环导致电子云密度降低,碱性减弱,以及苯环位阻效应▪多为固体,熔点高,工艺性差▪液化,低共熔点混合,多元胺与单缩水甘油醚加成改性多元胺a、环氧化合物加成:▪加成物分子量变大,沸点粘度增加,挥发性与毒性减弱,改善原有脆性b、迈克尔加成:▪丙烯腈与多元胺▪胺得活泼氢对α,β不饱与键能迅速加成▪腈乙基化物降低活性,改善与EP相容性特别有效c、曼尼斯加成:曼尼斯反应(Mannich reaction)为多元胺与甲醛、苯酚缩合三分子缩合。
▪产物能在低温、潮湿、水下施工固化EP▪典型产品T-31:二乙烯三胺+甲醛+苯酚▪适应土木工程用于混凝土、钢材、瓷砖等材料▪粘结得快速修复与加固d、硫脲—多元胺缩合:▪硫脲与脂肪族多元胺加热至100℃缩合放出氨气▪能在极低温下(0℃以下)固化EPe、聚酰胺化:▪9,11—亚油酸与9,12—亚油酸二聚反应▪然后2分子与DETA(二乙烯三胺)进行酰胺化反应挥发性毒性很小▪与EP相容性良好,化学计量要求不严▪固化物有很好得增韧效果▪放热效应低,适用期长,固化物耐热性较低,HDT为60℃左右多元硫醇▪类似于羟基▪聚硫醇化合物(液体聚硫橡胶)就就是典型多元硫醇,单独使用活性很低,室温反应及其缓慢几乎不能进行▪适当催化剂作用下固化反应以数倍多元胺速度进行▪在低温固化更为明显酸酐类固化剂▪反应速率很慢,不能生成高交联产物,一般不作为固化剂▪低挥发性,毒性低,刺激性低▪反应缓慢,放热量小,适用期长▪固化物收缩率低,耐热性高▪固化物机械强度高,电性能优良▪需加热固化,时间长▪EP常用固化剂,仅次于多元胺主要酸酐:▪顺酐〉苯酐〉四氢苯酐>甲基四氢苯酐▪六氢苯酐〉甲基六氢苯酐▪甲基纳迪克酸酐▪均苯四甲酸二酐▪改性酸酐▪酸酐分子中负电性取代基则活性增强阴/阳离子型催化剂▪催化剂仅仅起催化作用,本身不参与交联▪用量主要以实验值为准▪催化环氧开环形成链增长常用阴离子催化剂1、叔胺类多用DMP-10(二甲氨基苯酚),DMP-30,酚羟基显著加速树脂固化速率,放热量大适用期短,EP快速固化(24h/25℃)2、咪唑类多用液态2-乙基-4-甲基咪唑(仲胺活泼氢与叔胺),适用期长(8—10h),中温固化,热形变温度高,与芳香胺耐热水平(100℃)相当阳离子型固化剂,路易斯酸链终止于离子对复合常用阳离子催化剂▪路易斯酸:BF3,SnCl4,AlCl3等,为电子接受体▪BF3使用最多,具有腐蚀性,反应活性非常高一般与胺类或醚类络合物,如三氟化硼-乙胺络合物, BF3:400,为87℃结晶物质,室温稳定,离解温度90℃,离解后活性增大环氧树脂固化得三个阶段▪液体-操作时间:树脂/固化剂混合物仍然就是液体适合应用▪凝胶-进入固化:混合物开始进入固化相(也称作熟化阶段), 这时它开始凝胶或“突变”成软凝胶物。
环氧树脂增韧改性面面观
耐 热性好 的特 点 ,加入 环氧树脂基 体 中 ,能改进树 脂的韧性 且不 影响 固化 物 的模量和耐 热性 用 于增韧 的热塑 性 树脂主 要有 聚醚砜 ( PES) 、聚砜 ( S 、聚醚酰亚胺 ( E ) P F) P I 、聚酰 亚胺 (I、 P ) 聚碳酸 酯 ( 、 PC) 聚苯醚 (P 、 P O) 聚 醚醚酮 (E K) Ta a 以聚乙烯基 P E 。 ko 邻苯二 甲酸酯 、( 乙烯基 邻苯二 甲酸酯 乙烯基 问苯二酸酯 ) 共聚物 ( E I 、 P P ) ( 乙烯基邻苯二 甲酸酯 一乙烯基对苯二
性, 主要特点 是粒 了的 比 面积 很火 , 表
表 面原子 占有 率高 ,表面具有 不饱和 键或悬空键 的特殊结 构 ,因此 纳米粒 子具有非常大 的表面 活性 。纳米粒 子 对E P具有增强增韧 的作用 ,其作用机 理 主要有三个方面 :( )在变形中 , 1 无
I PN是 制备 具有特殊性 能高分 子 台金 的有 效方法 ,是组 成和构型 不同 的均聚 物或共聚物相互贯 穿 、缠结 而
表 面 的 延性 热 塑 性 颗 粒 对 裂 纹扩 展 起
(E) P I ,以其增韧改性 四官 能度的 E P, 当P I E 达到 3wt , 0 %时 发生相反转 , 成 为 P I 连续相 、E E微 P为分散相 的蜂 窝 状结构 ,固化物 的综 合力学性 能得到
提高 。
加两者 的相容性 或在 体系 中引进 硅氧 烷 一环 氧基嵌共 聚物 ,能使硅 氧烷均
L ■ ■ _
裂纹的增 长通过树 脂基体进 行 ,橡胶 颗粒在裂纹 中起桥梁作用 , 其拉 长、 撕 裂所吸 收的能量 就是断裂 韧性的增 加 值;后者认 为改性 E P中的橡 胶颗粒 在 固化冷 却过程 中受到流体 静拉力 的作
浅谈环氧树脂的增韧改性
浅谈环氧树脂的增韧改性摘要: 综述了环氧树脂的增韧改性技术,着重讨论了橡胶弹性体、热塑性树脂增韧环氧树脂的增韧机理和发展现状,并简要介绍了热致液晶聚合物、柔性链段固化剂和互穿网络结构等环氧树脂增韧改性新技术。
关键词: 环氧树脂; 增韧; 改性环氧树脂是由具有环氧基的化合物与多元羟基化合物(双酚A、多元醇、多元酸、多元胺) 进行缩聚反应而制得的产品。
环氧树脂具有高强度和优良的粘接性能,可用作涂料、电绝缘材料、增强材料和胶粘剂等。
但因其固化物质脆,耐开裂性能、抗冲击性能较低,而且耐热性差,使其应用受到了一定的限制。
为此国内外学者对环氧树脂进行了大量的改性研究工作,以改善环氧树脂的韧性。
目前环氧树脂的增韧研究已取得了显著的成果,其增韧途径主要有三种: ①在环氧基体中加入橡胶弹性体、热塑性树脂或液晶聚合物等分散相来增韧。
②用热固性树脂连续贯穿于环氧树脂网络中形成互穿、半互穿网络结构来增韧。
③用含有“柔性链段”的固化剂固化环氧,在交联网络中引入柔性链段,提高网链分子的柔顺性,达到增韧的目的。
1 橡胶弹性体增韧环氧树脂橡胶弹性体通过其活性端基(如羧基、羟基、氨基) 与环氧树脂中的活性基团(如环氧基、羟基等)反应形成嵌段;正确控制反应性橡胶在环氧树脂体系中的相分离过程是增韧成功的关键。
自Mc Garry发现端羧基丁腈橡胶(CTBN) 能使环氧树脂显著提高断裂韧性后的几十年间,人们在这一领域进行了大量的研究。
据文献报道,已经研究过的或应用的对环氧树脂增韧改性的橡胶有端羧基聚醚、聚氨酯液体橡胶、聚硫橡胶、含氟弹性体、氯丁橡胶、丁腈橡胶、丙烯酸丁酯橡胶等。
通过调节橡胶和环氧树脂的溶解度参数,控制凝胶化过程中相分离形成的海岛结构,以分散相存在的橡胶粒子中止裂纹、分枝裂纹、诱导剪切变形,从而提高环氧树脂的断裂韧性。
目前用液体橡胶增韧环氧树脂的研究有两种趋势。
一种是继续采用CTBN 增韧环氧树脂体系,重点放在增韧机理的深入探讨;另一种是采用其它的合适的液体橡胶,如硅橡胶、聚丁二烯橡胶等。
对环氧树脂增韧改性方法的研究
对环氧树脂增韧改性方法的研究X吴庆娜(黑龙江中盟化工有限公司,黑龙江安达 151400) 摘 要:介绍了环氧树脂增韧改性的一些新方法,包括热塑性树脂增韧、互穿网络增韧、热致性液晶增韧、原位聚合增韧、核壳结构聚合物增韧等,并对其中的增韧机理作了简浅的总结分析。
关键词:环氧树脂;增韧;改性 中图分类号:T E38 文献标识码:A 文章编号:1006—7981(2012)08—0008—01 环氧树脂(EP)是一种热固性树脂,因具有优异的粘接性、机械强度、电绝缘性等特性,而广泛应用于电子材料的浇注、封装以及涂料、胶粘剂、复合材料基体等方面。
由于纯环氧树脂具有高的交联结构,因而存在质脆,耐疲劳性、耐热性、抗冲击韧性差等缺点,难以满足工程技术的要求,使其应用受到一定限制,因此对环氧树脂的改性工作一直是各方研究的热门课题。
1 热塑性树脂增韧环氧树脂采用热塑性树脂改性环氧树脂,其研究始于80年代。
使用较多的有聚砜醚(PES)、聚砜(P SF)、聚酰亚胺醚(PEI)、聚酮醚(PEK)、聚苯醚(P PO)等热塑性工程塑料,人们发现它们对环氧树脂的改性效果显著。
这些热塑性树脂不仅具有较好的韧性,而且模量和耐热性较高,作为增韧剂加入到环氧树脂中同样能形成颗粒分散相,它们的加入使环氧树脂的韧性得到提高,而且不影响环氧固化物的模量和耐热性。
热塑性树脂增韧环氧树脂的机理和橡胶增韧环氧树脂的机理没有实质性差别,一般仍可用孔洞剪切屈服理论或颗粒撕裂吸收能量理论。
但是,热塑性树脂增韧环氧树脂时,基体对增韧效果影响较小,而分散相热塑性树脂颗粒对增韧的贡献起着主导作用。
2 使环氧树脂形成互穿网络聚合物(IP N)国内外对环氧树脂的互穿网络聚合物体系进行了大量的研究,其中包括:环氧树脂-丙烯酸酯体系、环氧树脂-聚氨酯体系、环氧树脂-酚醛树脂体系和环氧树脂-聚苯硫醚体系等,增韧效果满意。
主要表现在环氧树脂增韧后,不但抗冲击强度提高,而且抗拉强度不降低或略有提高,这是一般增韧技术无法做到的。
环氧树脂增韧研究进展
—
随着 电子 、 电气材料 、 现 代航空航天材 料和复合材 料 的飞速发 展 , 以及现代科 学技术发展 的需要 , 对环氧
l
树脂的综合性能的要求也越来越高。但环氧树脂本身
存在质脆的缺点 , 不能满足这些 领域 以及某些尖端高技
建 键
术领域的要求, 使用受到限制。 针对环氧树脂固化物韧 性差、 脆性大的缺点, 材料学者及科研人员对其改性和
环氧树脂和粒子填充环氧树脂的改性作用 , 加入 5 %左
右的 P N M,环 氧树脂 拉伸强 度从纯 环氧树脂 的 5 0 . 9 1 M P a 和粒子填 充 ( 3 0 %) 环氧树脂 的 6 9 . 2 1 M P a , 分 别提
高到 9 4 . 2 5 M P a 和9 1 . 8 5 M P a ; 断裂韧性 从纯环 氧树脂
尊§
于它是一种非定型的液体预聚体 ,故在固化剂的作用
下, 聚合物分子会 发生主链增长 和交 联 , 形成三维交联
网络结构, 赋予材料橡胶弹性。 人们对于这种橡胶微粒 分散在脆性连续相( 环氧树脂母体) 体系的力学行为进
行 了系统 的研究 。图 1 是设想 的几种机理 的示意图 。
服理论或颗粒撕裂 吸收能量理论 。 但 是从实 验结果看 , 热塑性树脂增 韧环氧树脂 时 ,基体对增韧 效果影响较 小 ,而分散相 热塑性树脂颗 粒对增韧 的贡献起着主导 作用【 ” 。
( 5) 橡胶粒子内部开裂引起剪切带 ( 6) 微裂缝
2 . 2 . 2 橡胶增韧环氧树脂研究进展
增韧环氧树脂的橡胶与环氧树脂在固化前具有相
科 技
上 海 建 材
前
沿
容性 , 并且分 散性好 , 环氧 树脂 固化 时 , 橡 胶能够顺 利 析 出, 呈两相结构。这些弹性体通常具有 可以与环氧树 脂 中的环氧基 反应形 成嵌段 的活性端基 。这种增韧方 法 又以端羧基丁腈橡胶 ( C T B N) 增韧 方法较 为广泛 , 理
有机硅增韧环氧树脂的研究进展
生成共聚物 ,并在固化物结构中引入稳定 、柔顺的 Si2O 链 ,从 而提高环氧树脂的耐热性及断裂韧性 。但聚硅氧烷柔顺性 好 ,玻璃化温度低 ,在较多研究结果中均有改性后体系玻璃 化温度降低的报道[13 - 15] 。
目前国内外已有不少有机硅改性环氧方面的文献报道 , 采用的有机硅一般为大分子体系 ,且都是通过有机硅链端所 带的活性端基如羟基 、氨基等与环氧基反应的方式来引进有 机硅链段[13 ,16 - 21] ,这些方法不但消耗了环氧基 ,使固化网络 交联度下降 ,而且大分子柔性链段的引入也相应降低了体系 的刚性 ,因此增韧的同时也伴随着耐热性 ( Tg ) 的下降 。另 外 ,有机硅价格较高 ,在使用上受到一定限制 。改性有机硅 树脂的合成过程中 ,最大的问题是有机硅树脂与普通的有机 树脂的共混性 。共聚物的性能与有机硅树脂和有机树脂的 相容性有很大关系 。从分子聚集态的角度看 ,由于这 2 种树 脂不能达到有效的混合 ,它们自成一相 ,成为非均相的共混 体系 ,随时间的延长 ,体系出现相分离 ,不能充分发挥 2 种树 脂的优良性能[21] 。
表 1 CTBN( 15 份) 改性双酚 A 型环氧树脂的力学性能 Table 1 The mechanical properties of D GEBA
modified wit h 15 wt % CTBN
性能
未改性 改性后
拉伸强度 M Pa 73. 1 95. 8
断裂延 伸率/ %
4. 8 9. 0
关键词 有机硅 改性 环氧树脂 增韧 中图分类号 : TQ323. 5
Research Progress in Epoxy Resins Toughening by Organic Silicon
WAN G Xi , ZH EN G Shuiro ng , WAN G Rumin
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
环氧树脂增韧途径与机理环氧树脂(EP)是一种热固性树脂,因其具有优异的粘结性、机械强度、电绝缘性等特性,而广泛应用于电子材料的浇注、封装以及涂料、胶粘剂、复合材料基体等方面。
由于纯环氧树脂具有高的交联结构,因而存在质脆、耐疲劳性、耐热性、抗冲击韧性差等缺点,难以满足工程技术的要求,使其应用受到一定限制。
因此对环氧树脂的共聚共混改性一直是国内外研究的热门课题。
一、序言目前环氧树脂增韧途径,据中国环氧树脂行业协会专家介绍,主要有以下几种:用弹性体、热塑性树脂或刚性颗粒等第二相来增韧改性;用热塑性树脂连续地爨穿于热固性树脂中形成互穿网络米增韧改性;通过改变交联网络的化学结构以提高网链分子的活动能力来增韧;控制分子交联状态的不均匀性形成有利于塑性变形的非均匀结构来实现增韧。
近年来国内外学者致力于研究一些新的改性方法,如用耐热的热塑性工程塑料和环氧树脂共混;使弹性体和环氧树脂形成互穿网络聚合物(IPN)体系;用热致液晶聚合物对环氧树脂增韧改性;用刚性高分子原位聚合增韧环氧树脂等。
这些方法既可使环氧捌脂的韧性得到提高,同时又使其耐热性、模量不降低,甚至还略有升高。
随着电气、电子材料及其复合材料的飞速发展,环氧树脂正由通用型产品向着高功能性、高附加值产品系列的方向转化。
中国环氧树脂行业协会专家表示,这种发展趋势使得对其增韧机理的研究H益深入,增韧机理的研究对于寻找新的增韧方法提供了理论依据,因此可以预测新的增韧方法及增韧剂将会不断出现。
采用热塑性树脂改性环氧树脂,其研究始于20世纪80年代。
使用较多的有聚醚砜(PES)、聚砜(PSF)、聚醚酰亚胺(PEI)、聚醚醚酮(PEEK)等热塑性工程塑料,人们发现它们对环氧树脂的改性效果显著。
据中国环氧树脂行业协会专家介绍,这些热塑性树脂不仪具有较好的韧性,而且模量和耐热性较高,作为增韧剂加入到环氧树脂中同样能形成颗粒分散相,它们的加入使环氧树脂的韧性得到提高,而且不影响环氧固化物的模量和耐热性。
二、热塑性树脂增韧环氧树脂1、热塑性树脂增韧方法未改性的PES对环氧的增韧效果不明显,后来实验发现两端带有活性反应基团的PES对环氧树脂改性效果显著。
如苯酚、羟基封端的PES可使韧性提高100%;双氨基封端、双羟基封端的PES也是有效的改性剂;环氧基封端的PES由于环氧基能促进相互渗透,因而也提高了双酚A型环氧树脂的韧性。
以二氨基二苯砜为固化剂,PES增韧的环氧树脂随固化反应的进行可形成半互穿网络结构,分相后的PES颗粒受到外场力作用产生自身变形(冷拉现象)而吸收了大量能量,使体系韧性提高。
在研究PEl改性环氧树脂中,发现PEI对多官能团的环氧树脂的改性效果显著,其韧性提高随PEI含量增加呈良好的线性关系。
从表中可知用10%PEI改性的环氧树脂,Kic提高了近1倍而Tg基本无变化。
PES、PEI对环氧树脂的增韧作用Shell公司开发了用热塑性树脂混合物改性的环氧树脂,改性剂用的是聚砜(Udel P1700)和聚醚酰亚胺(Ultem 1000)的混合物,改性后的环氧树脂用新型芳香二胺固化后,Tg很高,吸水率降低,耐湿热性能有很大改善。
用芳香族聚酯改性环氧树脂也屡见报道,中国环氧树脂行业协会专家介绍说,双酚A型环氧树脂Epikote828随聚酯分子质量的增大破坏韧性值在增大,但分子质量大到一定程度反而会下降。
聚1,4-丁二醇的分子质量为1000时制得的聚酯,添加量仅5%就可使Epikote828体系的伸长率提高50%,拉伸强度提高25%。
端胺基芳醚酮具有很好的增韧效果。
端胺基芳醚酮的化学结构见式1。
它们可由4,4’-二氟二苯甲酮和双酚A缩聚得4-氨基苯封端齐聚物,齐聚物的分子质量由4,4’-二氟二苯甲酮和双酚A的比例控制。
用不同胺封端的芳醚酮齐聚物增韧的环氧树脂的热、力学和结构性能见表,随着齐聚物量的增加,断裂能提高但玻璃化温度下降。
在交联固化时相的分离是韧性提高的根源,这些树脂的结构取决于增韧剂的用量。
端胺基芳醚酮改性Epon 828的性能热塑性树脂增韧环氧树脂的机理和橡胶增韧环氧树脂的机理没有实质性差别,一般仍可用孔洞剪切屈服理论或颗粒撕裂吸收能量理论。
据中国环氧树脂行业协会专家称,但是从实验结果看热塑性树脂增韧环氧树脂时,基体对增韧效果影响较小,而分散相热塑性树脂颗粒对增韧的贡献起着主导作用。
2、热塑性树脂增韧机理即热塑性树脂颗粒对裂纹扩展具有约束闭合作用,它横架在裂纹面上,从而阻止了裂纹的进一步扩展,像一座桥将裂纹的两边联接起来。
同时桥联力还使两者连接处的裂纹起钉锚作用,中国环氧树脂行业协会专家介绍说,具体是:(1)桥联约束效应与弹性体不同,热塑性树脂具有与环氧基体相当的弹性模量和远大于基体的断裂伸长率,这使得桥联在已开裂脆性环氧基体表而的延性热塑性颗粒对裂纹扩展起约束闭合作用。
(2)裂纹钉锚效应颗粒桥联不仅对裂纹前缘的整体推进起约束限制作用,分布的桥联力还对桥联点处的裂纹起钉锚作用,从而使裂纹前缘呈波浪形的弓形状。
国内外对环氧树脂的互穿网络聚合物体系进行了大量的研究,其中包括:环氧树脂-丙烯酸酯体系、环氧树脂一聚氨酯体系、环氧树脂一酚醛树脂体系和环氧树脂一聚苯硫醚体系等,增韧效果满意。
据中国环氧树脂行业协会专家介绍,这主要表现在环氧树脂增韧后,不但冲击强度提高,而且拉伸强度不降低或略有提高,这是一般增韧技术无法做到的。
三、互穿网络聚合物增韧环氧树脂1、互穿网络聚合物增韧改性方法于浩等对同步法制造的环氧树脂/聚氨酯(EP/PUR)IPN进行了研究,发现EP/PUR 配比(质量比)在90/10时,IPN体系剪切强度、拉伸强度出现极大值,耐冲击强度在质量比为95/5时最高。
并对不同聚合物组成对IPN性能的影响进行了考察,认为双酚A型环氧树脂形成的EP/PUR性能最佳,其热稳定性比EP和PUR都高。
刘竞超等研究了用原位聚合法制备刚性PU来改性环氧树脂。
当固化体系中刚性PU用量不大时,刚性分子能以分子水平均匀分散于环氧基体中形成分子复合材料,整个体系类似于半一互穿网络,这些刚性分子能对基体起到增强作用,提高基体拉伸强度,同时又能阻止裂纹而增大基体的韧性。
闻荻江等用同步法合成聚丙烯酸正丁酯/环氧树脂(PnBA/EP),与纯环氧树脂相比使用不同固化剂,其冲击强度可提高20%~200%,据中国环氧树脂行业协会专家介绍,当加入10%PnBA时其弯曲强度和模量都有所提高且挠度增加,IPN试件耐热性能有所下降,见表。
PEP/PnBA IPN组分比改变对力学性能的影响陈麒等以双官能用环氧树脂和双酚A为聚合单体,制备高分子质量苯氧树脂,10%的苯氧树脂加入E-44中,固化试样冲击强度提高63.2%,Tg提高32%。
SEM分析,增韧的苯氧树脂连续贯穿于环氧树脂的交联网络中,由于这种串结的结果,导致其体系受到冲击时断裂形变提高,从而使其韧性增加。
2、IPN增韧机理互穿网络聚合物是由2种或2种以上交联网状聚合物相互贯穿,缠结形成的聚合物混合物,其特点足1种材料无规则地贯穿到另1种材料中去,起着“强迫包容”和“协同效应”的作用。
中国环氧树脂行业协会专家表示,影响IPN性能的主要因素有网络的互穿程度、组分比、交联程度,全互穿IPN明显高于半互穿IPN的性能[1]。
IPN的橡胶相组分过大,拉伸强度、剪切强度、弯曲强度都急剧降低,增韧效果也差。
适当的交联都可获得最佳力学性能,不但韧性大幅度提高,而且拉伸强度也有所提高。
但交联含量过高,对提高固化物韧性不利,因为网络链太短,不利于外力作用下的应变,吸收冲击能减小。
液晶聚合物(LCP)含有大量的刚性介晶单元和一定量的柔性间隔段,其结构特点决定了它的优异性能,它比一般聚合物具有更高的物理力学性能和耐热性。
据中国环氧树脂行业协会专家介绍,它的拉伸强度可达200MPa以上,比ET、PC高3倍,比PE高6倍;其模量达20GPa以上,比PE高20倍,比PC、PEK高8.5倍。
四、热致性液晶聚合物增韧环氧树脂1、热致性液晶聚合物增韧改性方法LCP还有另1个重要特点,它在加工过程中受到剪切力作用具有形成纤维状结构的特性,因而能产生高度自增强作用。
中国环氧树脂行业协会专家说,因此当用热致性液晶聚合物(TLCP)和环氧树脂进行共混改性时,在提高韧性的同时,弯曲模量保持不变Tg还略有升高,同化物为两相结构。
LCP以原纤形式分散于环氧基体中,在应力作用下提高了材料的韧性。
LCP和热塑性工程塑料相比,用量仅为其25~30%,却可达到同样的增韧效果。
梁伟荣等采用热致性液晶聚合物KU9221增韧E-51,E-51树脂中加入2%~4%的KU9221时,其固化物冲击强度提高2倍左右,并可使弹性模量和耐热性提高。
姚康德等发现,环氧树脂中含有少量LCP,如聚(对羟基苯甲酸酯一共一对苯二甲酸乙二醇酯)作为分散相,可大幅度改善固化物Tg附近的伸长率。
此时LCP在固化物中呈微相分散,类似于分子复合材料的增强效应。
韦春等合成了1种端基含有活性基团的热致性液晶聚合物(LCPU),用其改性环氧树脂CYD-128/4,4’-二氨基二苯砜固化体系。
结果表明,LCPU的加入可以使固化体系的冲击强度提高2~3.5倍,拉伸强度提高 1.6~1.8倍,弹性模量提高 1.1~1.5倍,断裂伸长率提高2~2.6倍,玻璃化转变温度提高36~60℃,改性后材料断裂面的形态逐渐呈现韧性断裂特征。
张宏元等设计并合成了1种侧链型液晶聚合物(SLCP),用T31作同化剂时SLCP对环氧树脂有较好的增韧效果。
在强度和玻璃化温度不降低的情况下,断裂伸长率比未改性固化物最大提高 2.6倍。
利用液晶环氧树脂对普通环氧树脂进行改性电是实现环氧树脂高性能化的1个可行途径,具有重要的应用价值。
据中国环氧树脂行线专家介绍,李孝波等先以苯酚和环氧氯丙烷为主要原料制得液晶单官能团环氧树脂(MEP),在120℃下使之与E-44环氧树脂、二苯砜二胺反应制得侧链液晶环氧树脂(SCEP),在150℃/4h+200℃/8h下即可制得其固化物。
MEP、SCEP及其固化物均有较好的液晶特征,SCEP有较高的强度和韧性。
2、热致性液晶聚合物增韧机理热致性液晶聚合物增韧环氧树脂的机理主要是裂纹钉锚作用机制。
如前所述,TLCP 作为第二相(刚性与基体接近),本身又有一定的韧性和较高的断裂伸长率,第二相体积分数适当,就可以发生裂纹钉锚增韧作用,即TLCP颗粒对裂纹扩展具有约束闭合作用,它横架在断裂面上,从而阻止裂纹进一步扩展,像一座桥将裂纹的两边联接起来,同时桥联力还使两者连接处的裂纹起钉锚作用。
中国环氧树脂行业协会专家表示,少量TLCP 原纤存在可以阻止裂缝,提高脆性基体的韧性,而不降低材料的耐热性和刚度。
采用原位聚合技术使初生态刚性高分子均匀分散于刚性树脂基体中,得到准分子水平上的复合增韧特性是探索改性脆性高聚物,得到高强度和高韧性聚合物的新途径——中国环氧树脂行业协会专家对专门介绍。