变形监测技术要求

合集下载

地铁施工变形监测专项施工方案

地铁施工变形监测专项施工方案

地铁施工变形监测专项施工方案一、背景简介随着城市交通的发展,地铁工程建设日益增多,然而地铁施工过程中可能会引起地面建筑物的变形,因此对地铁施工变形进行监测显得尤为重要。

二、监测对象地铁施工变形监测的对象主要包括地面建筑物以及地下管线等。

三、监测手段1.地表测量:通过对地表标志物进行定点测量,如测角、测距等方法,了解地表的变形情况。

2.遥感监测:利用航空摄影和遥感技术,对地铁工程周边的地形进行全方位监测。

3.地下管线探测:采用地下雷达等技术,对地下管线的情况进行探测,及时排除隐患。

四、监测频率1.实时监测:在地铁施工过程中,对地面建筑物变形进行实时监测,保证施工过程的安全。

2.定期监测:除实时监测外,还需定期对地铁施工周边区域进行监测,及时发现潜在问题。

五、监测报告1.监测数据分析:对监测数据进行系统分析,了解地面建筑物的变形情况。

2.问题排查:如发现地面变形异常,需及时进行问题排查,找出原因并提出解决方案。

3.监测报告撰写:根据监测数据和问题排查结果,编制监测报告,向相关部门汇报情况。

六、应急预案1.事故处理:如发生地面建筑物坍塌等紧急情况,需立即启动应急预案,保障施工现场人员的安全。

2.紧急通知:在出现紧急情况时,需第一时间向相关部门通报,并配合开展应急处理工作。

七、总结与展望地铁施工变形监测是保障地下工程施工安全的重要环节,只有加强监测工作,提高预警能力,才能确保地铁施工的顺利进行。

未来,随着监测技术的不断创新,地铁施工变形监测工作将更加精准、高效。

以上是关于地铁施工变形监测专项施工方案的介绍,希望通过不懈的努力,确保地铁施工的顺利进行,保障城市交通的高效便捷。

变形监测方法和技术要求

变形监测方法和技术要求

变形监测方法和技术要求1、变形监测方法(1)常规大地测量方法常规的大地测量方法通常指的是利用常规的大地测量仪器测量方向、角度、边长、高差等技术来测定变形的方法。

包括布设成边角网、各种交会法、极坐标法以及几何水准测量法、三角高程测量法等。

常规的大地测量仪器有水准仪、全站仪等。

常规大地测量方法主要用于变形监测网的布设以及每个周期的观测。

(2)测量机器人随着自动化技术的运用和发展,测量机器人在变形监测中的应用也日益普遍。

以智能全自动化全站仪为代表的测量机器人,在变形监测中,能够通过多周期的观测,得到更准确的数据。

这对分析出相应监测点的变形,并判断建筑变形是否在安全范围内更具有可靠性。

测量机器人通过CCD影像传感器和其它传感器对现实测量世界中的“目标”进行识别,并完成照准、读数等操作,以完全代替人的手工操作。

测量机器人在工程建筑物的变形自动化监测方面,已渐渐成为首选的自动化测量技术设备,测量机器人具有高效、全自动、准确、实时性强、结构简单、操作简便等特点,特别适合于小区域的变形监测,可实现全自动无人值守的变形监测。

(3)RTK方法GNSS动态实时差分测量技术(RTK)应用于变形监测在测量的连续性、实时性、自动化及受外界干扰小等方面表现出了越来越多的优越性。

使用GNSS动态差分技术进行变形监测时,需要将一台接收机安放在变形体以外的稳固地点作为基准站,另外一台或多台GNSS接收机天线安放在变形点上作为流动站。

GNSS方法可以用于测定场地滑坡的三维变形、大坝和桥梁水平位移、地面沉降以及各种工程的动态变形(如风振、日照及其他动荷载作用下的变形)等。

(4)数字近景摄影测量方法数字近景摄影测量方法观测变形时,首先在变形体周围的稳定点上安置高精度数码相机,对变形体进行摄影,然后通过数字摄影测量处理获得变形信息。

与其他方法相比较,数字近景摄影测量方法具有以下显著特点:①信息量丰富,可以同时获得变形体上大批目标点的变形信息;②摄影影像完整记录了变形体各时期的状态,便于后续处理;③外业工作量小,效率高,劳动强度低;④可用于监测不同形式的变形,如缓慢、快速或动态的变形;⑤观测时不需要接触被监测物体。

大坝变形监测施工与观测方法及要求

大坝变形监测施工与观测方法及要求

(一)大坝变形监测施工与观测方法及要求1.技术标准和规范:承建工程变形监测仪器设备的检验、率定、埋设安装与施工期观测,应严格执行现行国家行业技术标准和规范,以及设计文件、承包合同要求。

应执行的现行国家行业技术标准和规范主要有(但不限于):(1)《混凝土大坝安全监测技术规范》(SDJ336—89)(2)《土石坝安全监测技术规范》(SL60—94)(3)《国家一、二等水准测量规范》(GB12897—91)(4)《国家三角测量规范》(GB/T17942-2000)(5)《水利水电工程测量规范》(SL197—97)(6)《水利水电工程施工测量规范》(SL52—93)2.变形监测仪器设备购置、加工:变形监测仪器设备购置、加工应按照经监理工程师批准的设计图纸、仪器设备清单进行。

仪器设备购置、加工前应向监理工程师报送:(1)仪器设备购置、加工计划:(2)仪器设备检验、率定计划。

仪器设备运抵施工现场后,应会同监理工程师开箱检查验收,应向仪器设备供应方索取仪器设备出厂合格证,计量检测证。

仪器、设备检验合格后应妥善保管。

3.倒垂孔、钢管标、钢铝管双金属标造孔施工与埋设安装:倒垂孔、钢管标、钢铝管双金属标应在施工部位形成后进行。

按照设计坐标、高程进行钻孔孔位定位、放样。

钻机就位,应认真进行校正。

经校正安装固定的钻机,主轴必须严格垂直,钻孔孔位定位精度须满足设计要求。

钻孔施工过程中应每进尺1 m~2m,采用倒垂浮体组配合弹性导中器进行钻孔垂直度检测,以控制钻孔质量,进而指导调整钻孔施工。

倒垂孔钻孔垂直度应满足保护管安装埋设完成后,其保护管有效孔径必须在大于100mm。

钢管标、钢、铝管双金属标钻孔垂直度应满足保护管安装埋设的要求。

钻孔进尺满足设计要求后,应通知设计、地质、监理工程师,参加钻孔终孔验收,并进行单项工程阶段性验收签证。

终孔验收后,及时进行倒垂孔保护管、钢管标、钢、铝管双金属标安装埋设。

各类金属管材、材质型号、加工均应满足设计要求。

铁路路基工程沉降变形观测要求

铁路路基工程沉降变形观测要求

路基工程1、路基沉降变形观测(1)路基沉降观测控制标准无砟轨道地段路基可压缩性地基均进行沉降分析。

按照《客运专线无砟轨道铁路设计指南》4.1.4条:路基在无砟轨道铺设完成后的工后沉降,应满足扣件调整和线路竖曲线圆顺的要求。

工后沉降一般不应超过扣件允许的沉降调高量15mm;沉降比较均匀、长度大于20m的路基,允许的最大工后沉降量为30mm,并且调整轨面高程后的竖曲线半径应能满足下列要求:R sh≥ 0.4V sj2式中:R sh——轨面圆顺的竖曲线半径(m);V sj——设计最高速度(km/h)。

(2)一般规定1)观测的目的是通过沉降观测,利用沉降观测资料分析、预测工后沉降,指导进行信息化施工,必要时提出加速路基沉降的措施,确定无砟轨道的铺设时间,评估路基工后沉降控制效果,确保无砟轨道结构的安全。

2)路基上无砟轨道铺设前,应对路基沉降变形作系统的评估,确认路基的工后沉降和沉降变形满足无砟轨道铺设要求。

3)路基填筑完成或施加预压荷载后应有不少于6个月的观测和调整期。

观测数据不足以评估或工后沉降评估不能满足设计要求时,应延长观测时间或采取必要的加速或控制沉降的措施。

4)评估时发现异常现象或对原始记录资料存在疑问,要进行必要的检查。

(3)沉降观测的内容路基变形监测的内容主要有:路基面沉降变形监测、路基基底沉降监测、既有线监测、水平位移监测、地基土深层沉降监测。

(4)沉降观测断面和观测点的设置沉降观测装置应埋设稳定,观测期间应对观测装置采取有效的保护措施。

根据经验,埋设的观测设施的有效性以及对其保护是否得力是决定整个观测工作成败的关键。

各部位观测点应设在同一横断面上,这样有利于测点看护,便于集中观测,统一观测频率,更重要的是便于各观测项目数据的综合分析。

路基沉降观测断面及观测断面的观测点的布置应按设计要求进行布设,并根据地形地质条件、地基处理方法、路堤高度、地形地势的起伏情况、堆载预压等具体情况,结合沉降观测方法和工期要求核对设计资料,根据施工核对的地质、地形等情况调整或增设。

高速铁路路基变形监测—路基沉降变形监测的目的及技术要求

高速铁路路基变形监测—路基沉降变形监测的目的及技术要求
以路基面沉降监测为主,主要在路基面布设沉降监测桩进行路基 沉降监测;路堤填筑较高时加强路堤填筑层沉降监测,在填筑层 增设单点沉降计监测填土层沉降;对于地基压缩层厚的较高路堤 地段进行路基基底、路堤填筑层及路基面沉降监测,在基底设单 点沉降计、沉降板、剖面沉降管,在填土层布设单点沉降计,在 路基面布设沉降监测桩进行各部位沉降监测。
项目五 高速铁路路基变形监测
一、沉降变形监测的目的
虽然设计中对土质路基、桥梁墩台基础等均进行了沉降变形 计算,采取了相应的设计措施,但设计的沉降分析和计算受勘测、 设计、施工、质量监测等众多环节的影响,其精度仅能达到估算 的程度,不足以控制无砟轨道工后沉降和差异沉降。
项目五 高速铁路路基变形监测
项目五 高速铁路路基变形监测
二、沉降变形监测的原则
为确保最终沉降量和工后沉降受控,合理确定无砟轨道的铺 设时间,应按照以下原则组织实施沉降变形观测:重点路基、兼 顾桥、立体监控、信息施工、数据真实、成果可控。通过对路基、 桥涵的沉降观测点的精密测量,沉降观测数据全面收集,系统、 综合分析沉降变形规律,验证或调整设计措施,使路基、桥涵工 程达到规定的变形控制要求。
项目五 高速铁路路基变形监测
二、沉降变形监测的原则
1、高速铁路无砟轨道变形控制原则
高速铁路无砟轨道路基变形控制十分严格,工后沉降一般 不应超过无砟轨道铺设后扣件允许的沉降调高量 15mm,路桥 或路隧交界处的差异沉降不应大于5mm,过渡段沉降造成的路 基与桥梁的折角不应大于1/1000。
项目五 高速铁路路基变形监测
项目五 高速铁路路基变形监测
五、变形监测网主要技术要求及建网方式
1、垂直位移监测网
(2)垂直位移监测网建网方式
监测网由于自然条件的变化、人为破坏等原因,不可避免的 有个别点位会发生变化。为了验证监测网点的稳定性,应对其进 行定期检测。

桥梁工程沉降变形观测技术要求

桥梁工程沉降变形观测技术要求

桥梁工程沉降变形观测技术要求一、观测点的设置原则1.1承台观测标设置两个观测标,观测标-1设置于底层承台左侧小里程角上,观测标-2设置于底层承台右侧大里程角上。

承台观测标为临时观测标,当墩身观测标正常使用后,承台观测标随基坑回填将不再使用。

1.2墩身观测标当墩全高大于14m时(指承台顶至墩台垫石顶),需要埋设两个观测标,位于墩身两侧中心距地面0.5m处;当墩全高小于等于14m时,埋设一个桥墩观测标,具体埋设位置见图示:桥梁墩身、承台观测标设置位置1.3桥台观测标原则上应设置在台顶(台帽及背墙顶),测点数量不少于4处,分别设在台帽两侧及背墙两侧(横桥向)。

1.4梁体观测标现浇梁逐孔设置观测标,设观测标的每孔简支梁设置观测标6个,分别设置在支点、跨中。

桥梁梁体徐变观测平面布置图桥梁梁部水准路线观测按二等水准测量精度要求形成闭合水准路线,沉降观测点位布设及水准路线观测示意图如下图所示,其中测点1,2,3,4构成第一个闭合环,测点3,4,5,6构成第二个闭合环。

所有观测线路在形成闭合环以前必须置镜两次以上,以保证不会形成相关闭合环。

并以固定端其中一点为固定点,其他点相对于该点的沉降。

梁体徐变观测标观测方向桥梁梁部徐变观测水准路线示意图桥梁墩台水准路线观测按二等水准测量精度要求形成闭合水准路线(二等精度平差),沉降观测点位布设于墩台两侧,水准路线观测示意图如下图所示:墩身观测标观测方向工作基点桥梁墩台沉降观测水准路线示意图123456二、观测元件埋设技术要求2.1承台观测标沉降观测桩:选择Φ20mm钢筋,顶部磨圆并刻画十字线,埋置深度不小于0.1m,高出埋设表面3mm,表面做好防锈处理。

完成埋设后测量桩顶标高作为初始读数。

如图所示承台观测标设置示意图2.2墩身观测标采用φ18mm不锈钢加工制作,全长120mm。

见图所示:2.3观测技术要求1、承台施工完成后,就要开始进行沉降首次观测,承台观测标为临时观测标,当墩身观测标正常使用后,承台观测标随基坑回填将不再使用。

大坝变形监测作业指导书

大坝变形监测作业指导书

大坝变形监测作业指导书一、背景介绍随着人口的增长和城市化进程的加速,大坝的建设越来越多。

大坝作为水利工程的重要组成部分,承担着调节水量、防洪抗灾、供水等重要功能。

然而,由于大坝长期承受水压和地下水的影响,其内部结构存在变形的风险。

因此,大坝变形监测成为保障大坝运行安全的关键环节。

本指导书将介绍大坝变形监测的目的、原理、方法和步骤,旨在帮助相关人员高效、科学地进行大坝变形监测作业。

二、目的大坝变形监测的主要目的是及时掌握大坝内部结构的变形情况,为大坝的安全运行提供可靠的数据支持。

通过监测大坝变形,可以及时发现结构的破坏和变形,预测可能出现的安全风险,并采取相应的措施加以修复和加固,确保大坝的稳定运行。

三、监测原理大坝变形监测主要依靠测量传感器的监测数据。

通过选取合适的传感器,可以获取大坝结构在不同方面的变形数据。

目前常用的大坝变形监测传感器包括位移传感器、应变传感器和应力传感器等。

传感器将监测到的数据通过信号传输线路传输给数据采集装置,再通过数据处理软件进行分析和展示。

四、监测方法根据大坝不同部位的监测需求,可以采用不同的监测方法。

常见的大坝变形监测方法包括:1. 位移监测:通过位移传感器监测大坝的位移变化,主要用于表面位移和内部位移的监测。

2. 高程监测:通过测量点的高程变化,分析大坝的抬升和下沉情况。

3. 应变监测:通过应变传感器监测大坝的应变变化,了解大坝结构的变形情况。

4. 压力监测:通过应力传感器监测大坝的压力变化,判断大坝稳定性的变化情况。

变形监测有哪些内容

变形监测有哪些内容

变形监测有哪些内容变形监测是指对工程结构或地质体进行形变的监测和分析,以及对变形进行预测和预警的一种技术手段。

变形监测通常应用于地质灾害预警、工程结构安全监测、地下水开采引起的地面沉降等领域。

在实际工程和地质勘察中,变形监测具有重要的意义,可以及时发现和预警可能出现的问题,保障工程安全和地质环境稳定。

下面将介绍一下变形监测的相关内容。

一、监测对象。

变形监测的对象包括但不限于以下几个方面:1. 工程结构,如建筑物、桥梁、隧道、坝体等工程结构的变形监测,可以通过监测结构的位移、变形、裂缝等情况,及时了解工程结构的变形情况,确保结构的安全性。

2. 地质体,如山体、边坡、岩体等地质体的变形监测,可以通过监测地表位移、地下水位变化、地下裂缝等情况,及时了解地质体的变形情况,预防地质灾害的发生。

3. 地下水位,地下水开采引起的地面沉降是一种常见的地质灾害,通过监测地下水位的变化,可以及时预警地面沉降的可能性,采取相应的措施进行治理。

二、监测方法。

1. GNSS监测,GNSS(全球导航卫星系统)是一种常用的变形监测技术,通过布设在监测对象周围的GNSS接收机,实时监测接收机的位置坐标,从而得到监测对象的位移和变形情况。

2. 雷达干涉监测,雷达干涉监测是一种利用合成孔径雷达(SAR)技术进行地表形变监测的方法,可以实现对大范围地表的高精度监测,对地质灾害的监测具有重要意义。

3. 激光测距监测,激光测距监测是一种利用激光测距仪进行变形监测的方法,可以实现对监测对象的高精度三维形变监测,适用于对工程结构的变形监测。

三、监测数据分析。

监测数据的分析是变形监测的重要环节,通过对监测数据的分析,可以及时发现变形情况,并进行预测和预警。

监测数据分析通常包括以下几个方面:1. 变形趋势分析,对监测数据进行时间序列分析,得出监测对象的变形趋势,判断变形是否存在加剧或减缓的趋势。

2. 变形速率分析,对监测数据进行速率分析,得出监测对象的变形速率,判断变形的快慢程度,为预测变形提供依据。

路基工程沉降变形观测技术要求

路基工程沉降变形观测技术要求

内容提要:路基工程沉降变形观测技术要求路基工程沉降变形观测技术要求一、观测标的设置1、路基工程沉降变形观测以路基面沉降观测和地基沉降观测为主,应根据不同的结构部位、填方高度、地基条件、堆载预压等具体情况来设置沉降变形观测断面。

同时应根据施工过程中掌握的地形、地质变化情况调整或增设观测断面。

2、观测断面一般按以下原则设置,同时应满足设计文件要求;1)沿线路方向的间距一般不大于50m;对地势平坦且地基条件均匀良好的路堑、填方高度小于5m 且地基条件均匀良好的路堤及路堑可放宽到100m。

2)对于地形、地质条件变化大的地段应适当加密,在变化点附近应设观测断面,以确保能够反映真实差异沉降,覆盖型岩溶地段,沉降监测断面适当加密。

3)一个沉降观测单元(连续路基沉降观测区段为一单元)原则上应不少于2个观测断面。

4)对地形横向坡度大于1:5或地层横向厚度变化的地段应布设不少于1个横向观测断面。

3、观测点设置原则;1)为有利于测点看护、集中观测、统一观测频率、观测数据的综合分析,各部位观测点须设在同一横断面上。

2)断面观测点包括沉降观测桩、沉降板、单点沉降计等设备。

其中沉降观测桩和沉降板需要进行水准测量,其余剖面沉降管、分层沉降计等设备用于特殊监测项目,由设计单位根据工程情况和地质情况明确设置位置、规格型号、观测技术要求及成果输出格式。

4、路基面沉降监测:一个监测断面共设3个监测点,分别在路基中心、两侧路肩各设一个监测桩,于路基成形后设置。

本线一般不采用预压措施。

当路基有预压土时,在中心两侧向外3.5m处增设2个沉降板,位于基床底层顶部,并将基底沉降监测的中心沉降板接管至预压土顶部,预压期间按规定要求进行观测;预压土卸除后,将基底沉降板截管至基床表层高度,两侧沉降板拆除,待级配碎石填筑完成后,再设沉降观测桩。

5、基底沉降监测:1)一般情况于线路中心预埋1个单点数码沉降计,单点沉降计的埋设深度原则上应将沉降计的锚固端埋设至强风化岩面,当强风化岩埋深很大,单点沉降计的埋设深度应根据路堤填高等确定,即黏性土地基单点沉降计应埋至附加应力等于0.1倍自重应力的深度处,砂类土、碎石类土地基单点沉降计应埋至附加应力等于0.2倍自重应力的深度处,路堤基底单点沉降计的顶面应至路基基底垫层底面。

JGJ8-2016建筑变形测量规范

JGJ8-2016建筑变形测量规范

3. 1. 1 下列建筑在施工期间和使用期间应进行变形测量:1 地基基础设计等级为甲级的建筑。

2 软弱地基上的地基基础设计等级为乙级的建筑。

3 加层、扩建建筑或处理地基上的建筑。

4 受邻近施工影晌或受场地地下水等环境因素变化影晌的建筑。

5 采用新型基础或新型结构的建筑。

6 大型城市基础设施。

7 体型狭长且地基土变化明显的建筑。

3. 1. 2 建筑在施工期间的变形测量应符合下列规定:1 对各类建筑,应进行沉降观测,宜进行场地沉降观测、地基土分层沉降观测和斜坡位移观测。

2 对基坑工程,应进行基坑及其支护结构变形观测和周边环境变形观测;对一级基坑,应进行基坑回弹观测。

3 对高层和超高层建筑,应进行倾斜观测。

4 当建筑出现裂缝时,应进行裂缝观测。

5 建筑施工需要时,应进行其他类型的变形观测。

3. 1. 3 建筑在使用期间的变形测量应符合下列规定:1 对各类建筑,应进行沉降观测。

2 对高层、超高层建筑及高耸构筑物,应进行水平位移观测、倾斜观测。

3 对超高层建筑,应进行挠度观测、日照变形观测、风振变形观测。

4 对市政桥梁、博览(展览)馆及体育场馆等大跨度建筑,6 应进行挠度观测、风振变形观测。

5 对隧道、涵洞等,应进行收敛变形观测。

6 当建筑出现裂缝时,应进行裂缝观测。

7 当建筑运营对周边环境产生影响时,应进行周边环境变形观测。

8 对超高层建筑、大跨度建筑、异型建筑以及地下公共设施、涵洞、桥隧等大型市政基础设施,宜进行结构健康监测。

9 建筑运营管理需要时,应进行其他类型的变形观测。

建筑变形测量过程中发生下列情况之一时,应立即实施安全预案,同时应提高观测频率或增加观测内容:1 变形量或变形速率出现异常变化。

2 变形量或变形速率达到或超出变形预警值。

3 开挖面或周边出现塌陷、滑坡。

4 建筑本身或其周边环境出现异常。

5 由于地震、暴雨、冻融等自然灾害引起的其他变形异常情况。

3.2.2 中选择适宜的观测精度等级。

7 3.2.2 建筑变形测量的等级、精度指标及其适用范围沉降监测点位移监视~点等级测站高差中误差坐标中误差主要适用范围(mm) (mm)特等0.05 0.3 特高精度要求的变形测量地基基础设计为甲级的建筑的变形测量;一等O. 15 1. 0 重要的古建筑、历史建筑的变形测量;重耍的城市基础设施的变形测量等地基基础设计为甲、乙级的建筑的变形测量;重要场地的边坡监视~ ;重要的基坑二等0.5 3.0 监测;重要管线的变形测量;地下工程施工及运营中的变形测量;重要的城市基础设施的变形测量等地基基础设计为乙、丙级的建筑的变形测量;一般场地的边坡监视IJ; -般的基坑三等1. 5 10.0 监测;地表、道路及一般管线的变形测量; 一般的城市基础设施的变形测量;日照变形测量;风振变形测量等四等3. 0 20.0 精度要求低的变形测量注: 1 沉降监测点lJ!~站高差中误差:对水准测量,为其lJ!~站高差中误差;对静力水准测量、三角离程测量,为相邻沉降监测点间等价的高差中误差; 2 位移监测点坐标中误差:指的是监测点相对于基准点或工作基点的坐标中误差、监测点相对于基准线的偏差中误差、建筑上某点相对于其底部对应点的水平位移分量中误差等。

变形监测方案

变形监测方案

变形监测方案第1篇变形监测方案一、概述本方案旨在对某特定区域或结构进行精确、高效的变形监测,以确保其安全性及功能性。

通过采用先进的技术手段和严谨的数据分析方法,实时掌握监测对象的变形情况,及时预警潜在风险,为决策提供科学依据。

二、监测目标1. 准确测量监测对象的变形量,包括水平位移、垂直位移、倾斜等;2. 实时掌握监测对象的变形速率,分析变形趋势;3. 及时发现监测对象的异常变形,预警潜在风险;4. 为政府部门、企业及相关单位提供科学、可靠的监测数据。

三、监测方法1. 地面测量法:采用全站仪、水准仪等设备,对监测对象的水平位移、垂直位移进行定期测量;2. 空间测量法:利用GNSS技术,对监测对象的水平位移进行实时测量;3. 倾斜测量法:采用倾斜仪等设备,对监测对象的倾斜角度进行定期测量;4. 远程监测法:利用摄像头、无人机等设备,对监测对象进行远程监控,实时掌握其变形情况。

四、监测设备与参数1. 全站仪:用于测量监测对象的水平位移、垂直位移;- 精度要求:±(2mm+2ppm);- 测量范围:≥5km;2. 水准仪:用于测量监测对象的垂直位移;- 精度要求:±0.5mm;- 测量范围:≥3km;3. GNSS接收机:用于实时测量监测对象的水平位移;- 精度要求:±(10mm+1ppm);- 测量范围:全球范围;4. 倾斜仪:用于测量监测对象的倾斜角度;- 精度要求:±0.01°;- 测量范围:±45°;5. 摄像头/无人机:用于远程监控监测对象。

五、监测数据处理与分析1. 对采集到的数据进行预处理,包括数据清洗、数据校准等;2. 采用加权平均法、最小二乘法等方法,对监测数据进行处理,计算监测对象的变形量;3. 分析监测对象的变形趋势,评估其稳定性;4. 结合历史数据和实时数据,预测监测对象的未来变形情况;5. 当监测对象的变形量超过预警阈值时,及时发布预警信息。

变形监测安全技术交底模板

变形监测安全技术交底模板

一、交底目的为确保变形监测工作的顺利进行,提高施工安全水平,防止安全事故的发生,现将变形监测安全技术要求交底如下。

二、交底内容1. 变形监测设备安全要求(1)变形监测设备应选用合格产品,确保其性能稳定可靠。

(2)使用前,应检查设备外观是否有损坏、磨损,连接部位是否牢固。

(3)设备操作人员应熟悉设备性能、操作规程和注意事项。

2. 变形监测现场安全要求(1)施工现场应设置安全警示标志,明确警示范围。

(2)施工现场应保持整洁,通道畅通,不得堆放杂物。

(3)作业人员应佩戴安全帽、安全带等防护用品。

(4)现场施工人员应听从指挥,不得擅自操作设备。

3. 变形监测作业安全要求(1)作业人员应遵守作业规程,不得违反操作流程。

(2)作业人员应确保监测设备固定牢固,防止因振动、碰撞等原因导致设备损坏。

(3)作业人员应定期检查监测设备,发现异常情况及时上报。

(4)作业过程中,如遇恶劣天气,应暂停作业,确保人员安全。

4. 变形监测数据采集安全要求(1)数据采集人员应熟悉数据采集设备操作,确保数据准确、完整。

(2)数据采集过程中,应避免因操作不当导致设备损坏或数据丢失。

(3)数据采集结束后,应及时将数据传输至安全区域,确保数据安全。

5. 变形监测数据处理安全要求(1)数据处理人员应熟悉数据处理软件,确保数据处理准确、可靠。

(2)数据处理过程中,应严格按照数据处理流程进行,避免因操作不当导致数据错误。

(3)数据处理结束后,应及时将数据备份,防止数据丢失。

三、交底总结通过本次安全技术交底,使作业人员充分了解变形监测过程中的安全要求,提高安全意识,确保变形监测工作顺利进行。

如有疑问,请及时向项目负责人或安全管理人员咨询。

四、交底时间(请在此处填写交底时间)五、交底人(请在此处填写交底人姓名及职务)六、参与交底人员(请在此处填写参与交底人员姓名及职务)七、签字确认(请在此处填写参与交底人员签字)注:本模板仅供参考,具体交底内容可根据实际情况进行调整。

工程变形监测方案涉及哪些内容

工程变形监测方案涉及哪些内容

工程变形监测方案涉及哪些内容一、监测对象工程变形监测的对象主要包括建筑结构、桥梁、隧道、地铁、坝体、管道、地基土体等工程结构及地质体等。

对不同的监测对象,采取不同的监测手段和技术方法。

在建筑结构方面,通常会对建筑的位移、倾斜、裂缝等进行监测,以确保建筑物的稳定性和安全性。

对桥梁和隧道方面,主要关注其结构变形、挠度、裂缝等情况。

而对于地基土体、坝体、管道等地下工程,通常会对其沉降、变形、应力等进行监测。

二、监测的技术手段工程变形监测的技术手段主要包括传统的测量仪器监测和现代的遥感监测技术。

传统的测量仪器监测包括全站仪、水准仪、倾斜仪、裂缝计等。

这些仪器主要通过人工操作或固定安装在监测点上,采用光学、机械或电子等原理进行测量,获取监测数据。

现代的遥感监测技术包括卫星遥感、激光雷达扫描、无人机、高精度GPS等。

这些技术可以实现远距离、动态、高精度的监测,大大提高了监测效率和精度。

三、监测的频次工程变形监测的频次主要包括定期监测和实时监测。

定期监测通常是按照一定的时间间隔进行,如每月、每季度或每年进行一次,以了解结构变形的趋势和周期性变化。

实时监测是指通过实时数据传输和处理技术,实时获取变形数据,并能及时发出预警信号。

四、监测数据分析监测数据的分析主要包括数据处理、趋势分析、异常预警等。

数据处理方面,主要对监测数据进行清洗、修正、转换、存储等,以确保数据的准确性和可靠性。

趋势分析是指对监测数据进行周、月、年的趋势分析,以了解结构变形的规律性和周期性变化。

异常预警是指通过监测数据的分析,发现结构发生异常变形,及时报警并采取相应的措施。

五、应对措施当监测数据显示结构发生异常变形时,需要及时采取相应的措施。

对于建筑结构,可以通过加固、维修等手段来消除异常变形。

对于桥梁和隧道等结构,可以加固、维修或限行等来应对。

对于地基土体、地铁隧道等地下工程,可以通过加固、抢修或改线等来应对。

综上所述,工程变形监测方案是确保工程结构安全及稳定运行的重要手段,涉及监测对象、监测技术手段、监测频次、监测数据分析及应对措施等方面。

桥梁工程变形监测方案

桥梁工程变形监测方案

桥梁工程变形监测方案1.监测目标和要求桥梁工程变形监测的主要目标是通过实时、准确地监测桥梁结构的变形情况,及时判断结构的稳定性,并对异常情况进行预警和分析。

监测要求包括:实时监测变形数据、准确标定监测位置、高精度测量变形量、快速响应异常情况等。

2.监测设备和技术(1)监测设备:选择合适的监测设备是影响监测效果的重要因素。

可以选择激光测距仪、GNSS测量系统、倾斜仪、挠度计等设备。

这些设备可以提供高精度的变形数据,并且具有较高的稳定性和可靠性。

(2)监测技术:通过不同的监测技术可以实现对桥梁变形情况的全面监测。

例如,利用激光测距仪可以实现对桥梁的纵向和横向位移变形的监测;倾斜仪可以测量桥梁的倾斜变形;GNSS系统可以实现对桥梁的整体位移和变形的监测等。

3.监测方案(1)监测位置的确定:根据桥梁结构的特点和工程要求,在桥梁的主体结构和关键部位安装监测设备,如桥塔、梁体、支座等。

监测位置的确定需要充分考虑到监测的重要性和可行性,确保监测结果的准确性和全面性。

(2)监测频率和周期:根据桥梁的使用情况、结构特点和监测目标,制定监测频率和周期。

可以通过连续监测、定时监测或事件触发监测等方式,获取尽可能多的变形数据,以便及时发现异常情况。

(3)数据处理和分析:对监测数据进行及时处理和分析,以便了解桥梁结构的变形特点和趋势。

可以使用专业的数据处理软件进行数据的预处理和分析,还可以应用数据挖掘和机器学习等技术,发现异常变形,并进行预警和报警。

(4)监测报告和管理:根据监测结果和分析,编制监测报告,汇总和记录桥梁结构的变形情况和趋势,为桥梁的维护和管理提供依据。

监测报告应包括监测数据、分析结果、异常情况和管理建议等内容。

4.实施和维护在实施桥梁工程变形监测方案时,需要进行设备安装、校准和参数配置等工作,保证监测设备的准确性和可靠性。

在使用过程中,定期对监测设备进行巡检和维护,确保设备的正常运行。

此外,还需要建立完善的管理机制和应急预案,及时处理数据异常和设备故障,并与维修单位进行沟通和协调。

测量工程师的建筑变形监测规范要求

测量工程师的建筑变形监测规范要求

测量工程师的建筑变形监测规范要求建筑变形监测是一个关键的工程质量管理环节,对于确保建筑物的安全性、稳定性和可持续性发挥着重要作用。

作为测量工程师,在进行建筑变形监测时,需要遵守一系列规范要求,以确保监测结果的准确性和可靠性。

本文将探讨测量工程师在建筑变形监测中所需遵守的规范要求。

1. 监测计划的制定要求- 遵循国家或地区相关的建筑监测技术规范和规程,如国家标准《建筑工程变形测量技术规范》等。

- 根据具体项目的特点确定监测目标、监测方法、监测时段和监测频率等。

- 确定监测设备的布置位置和数量,保证能够全面、准确地监测建筑物的变形情况。

- 制定监测结果处理和报告编制的规范要求,确保结果的可靠性和有效性。

2. 测量设备和技术要求- 使用符合相关国家或地区标准的测量仪器设备,保证其精度、稳定性和可靠性。

- 确保测量设备的校准有效期,在校准有效期内进行监测工作。

- 选择合适的监测技术方法,如全站仪、GNSS测量和激光测距等,根据具体项目需求进行选择和应用。

- 根据实际情况采取合适的测量控制方法,如长时测量、实时监测或定期采集数据等。

3. 监测数据的处理和分析要求- 进行监测数据的质量控制和质量评估,确保数据的准确性和可靠性。

- 使用专业的数据处理和分析软件,进行数据的整理、计算和图表展示等。

- 针对监测结果进行趋势分析和变形评估,及时发现异常情况并进行相应的措施和处理。

- 编制监测报告,将监测结果以清晰、简明的方式呈现,包括数据、图表和建议等。

4. 监测人员的资质和培训要求- 测量工程师需要具备相关专业知识和技能,熟悉建筑测量和监测技术的原理和方法。

- 具备良好的测量操作和数据处理能力,能够独立完成建筑变形监测工作。

- 参加相关培训和继续教育,不断提升自身专业水平和技能。

- 遵守职业道德和行业规范,保证工作的专业化和可信度。

5. 安全和环境要求- 在进行建筑变形监测时,严格遵守安全操作和相关环境保护要求,确保监测过程的安全性和环境友好性。

勘测师在建筑物变形监测中的技术要求与方法

勘测师在建筑物变形监测中的技术要求与方法

勘测师在建筑物变形监测中的技术要求与方法对于任何建筑物,变形监测是至关重要的环节。

而勘测师作为变形监测的专业人员,需要具备一定的技术要求和方法,以确保监测工作的准确性和可靠性。

本文将就勘测师在建筑物变形监测中的技术要求与方法进行探讨。

一、技术要求1.专业知识勘测师在建筑物变形监测中必须具备扎实的专业知识,包括建筑学、土木工程学、测量学等。

只有深刻理解建筑物的结构原理和变形规律,才能准确识别潜在的问题并提供有效的解决方案。

2.仪器设备操作技能现代勘测师需要熟练操作各类变形监测仪器设备,包括全站仪、水准仪、倾斜仪等。

熟练的仪器操作能力不仅有助于提高测量的准确性,还能提高工作效率。

3.数据处理与分析能力勘测师需要具备良好的数据处理与分析能力。

监测得到的数据必须经过合理的处理与分析,才能得出对建筑物变形状况的准确判断。

因此,勘测师需要熟悉各类数据处理软件,并能够正确理解和解读数据。

4.沟通协调能力作为变形监测的专业人员,勘测师需要与建筑师、工程师等其他相关专业人员密切合作。

因此,良好的沟通和协调能力对于勘测师来说至关重要,能够确保监测工作与相关工作的顺利进行。

二、方法1.基准点的选择与布设建筑物变形监测的首要任务是确定合适的基准点,以提供一个稳定的参照坐标。

勘测师需要根据建筑物的结构和变形特点,合理选择并布设基准点,确保监测结果具有可比性和可靠性。

2.测量线路的设计与布设勘测师需要根据建筑物的具体情况设计变形监测的测线路,并合理布设测点。

测线路的设计应满足监测要求,同时考虑到便捷性和准确性,以确保变形监测工作的顺利进行。

3.定期监测与记录变形监测是一个长期的过程,勘测师需要定期进行监测并记录数据。

监测频率的选择应考虑到监测目的、建筑物的特点以及变形的速度等因素。

同时,勘测师需要将监测结果进行准确的记录,以便后期分析和评估。

4.数据分析与评估收集到的监测数据需要进行合理的分析与评估。

勘测师需要根据监测数据的变化趋势、幅度大小等因素,判断建筑物的变形情况,并评估是否存在安全隐患。

勘测师在建筑物变形监测中的技术要求

勘测师在建筑物变形监测中的技术要求

勘测师在建筑物变形监测中的技术要求在建筑物的设计、施工和日常使用过程中,变形是一个不可避免的问题。

建筑物的变形监测是为了及时了解建筑物在使用过程中的变形情况,以保障建筑物的结构安全性和使用寿命。

作为变形监测的专业人员,勘测师在此过程中承担着重要的角色和责任。

本文将探讨勘测师在建筑物变形监测中的技术要求。

1. 资质和知识要求作为一名勘测师,首先需要具备相关的专业资质和证书。

这些资质包括建筑测量工程师执业资格、工程监理等级证书等。

同时,勘测师需要具备扎实的理论基础和专业知识,熟悉建筑结构和变形监测的工作原理,并能够熟练运用相关的测量仪器和设备。

2. 测量技术要求为了准确测量建筑物的变形情况,勘测师需要掌握一系列测量技术和方法。

其中包括但不限于以下几个方面:(1)测量仪器的选择和使用。

勘测师需要熟悉各种测量仪器的特点和使用方法,如全站仪、水准仪、测距仪等。

根据不同的监测任务,合理选择测量仪器,并准确操作。

(2)基准控制的建立。

建立合理的基准控制是变形监测的前提,勘测师需要根据实际情况确定基准点,进行基准控制网的布设和标志。

(3)监测点的设置。

监测点的设置需要考虑建筑物的结构特点和变形方式,合理确定监测点的位置和数量,并进行标记和记录。

(4)测量数据的处理和分析。

勘测师需要熟悉测量数据的处理和分析方法,包括数据的录入、校核、计算和绘图等,以得出准确的变形监测结果。

3. 熟悉相关标准和规范在建筑物变形监测中,勘测师需要熟悉相关的标准和规范,如《建筑物变形监测规范》等。

这些标准和规范对于勘测师的技术要求具有指导性作用,勘测师需要严格按照标准规范的要求进行测量和数据分析,确保监测结果的准确性和可靠性。

4. 数据报告的编制变形监测的最终目的是为了提供准确的监测结果和分析报告,帮助项目团队判断建筑物的结构安全性和变形趋势。

因此,勘测师需要具备合理编制监测报告的能力。

报告应包括测量任务的背景、监测点的布设情况、数据的处理和分析结果,以及针对监测结果提出的建议和措施等内容。

勘测师在建筑物变形监测中的技术要求与方法

勘测师在建筑物变形监测中的技术要求与方法

勘测师在建筑物变形监测中的技术要求与方法建筑物变形监测是保障建筑结构安全稳定的一项重要工作。

勘测师在此过程中扮演着关键的角色,应具备一定的技术要求和方法。

本文将介绍勘测师在建筑物变形监测中所需的技术要求以及常用的方法,并对其进行详细探讨。

一、技术要求1.1 资格与知识作为一名勘测师,首先需要具备合法的资格执业证书,并且熟悉相关的法律法规和规范要求。

在建筑物变形监测中,勘测师应具备扎实的数学、物理基础知识,特别是在几何学、力学和土力学方面有一定的了解。

1.2 仪器设备操作与维护勘测师需要熟练掌握各种变形监测仪器的操作方法,包括但不限于全站仪、水平仪、测量计算机等。

同时,勘测师应具备仪器设备的维护和保养能力,确保仪器的正常运行和准确性。

1.3 数据分析与处理勘测师需要熟练掌握数据分析与处理的方法,能够通过采集的监测数据进行精确的计算和分析,提取有用的信息,并制作成相应的报告。

此外,勘测师还需要具备良好的表达能力,能够向相关人员清晰、准确地传达监测结果和建议。

二、方法2.1 建筑物变形监测技术建筑物变形监测技术主要包括有线测量、无线测量和遥感监测。

有线测量是指通过电缆或光缆将数据传输到数据中心进行处理和分析。

无线测量则采用无线传感器,将监测数据通过无线信号传输到主控设备。

遥感监测则是利用卫星、航空摄影等遥感技术,实现对建筑物变形的监测。

2.2 测点布设与数据采集勘测师应根据具体监测目的和要求,合理布设监测测点。

在布设测点时,应考虑建筑物的结构特点以及变形可能发生的区域。

数据采集方面,勘测师需要按照一定的时间间隔和频率对测点进行监测,确保数据的准确性和连续性。

2.3 数据分析与报告制作勘测师通过收集的监测数据进行数据分析和处理,包括进行计算、绘制曲线等工作。

根据监测结果,勘测师应制作相应的监测报告,详细描述监测的过程、结果和建议。

报告的格式应简洁明了,内容准确全面。

2.4 建立监测数据库在建筑物变形监测过程中,勘测师应建立相应的监测数据库,将每次监测的数据进行归档和储存。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

针对目前变形监测项目应符合以下规范要求
基坑开挖对临近轻轨高架结构的影响主要集中在以下方面:一是坑外土体的位移;二是既有高架桥与基坑相对位置的关系;三是轻轨高架上下部的结构关系;四是轻轨高架的结构基础和埋深情况。

五是轻轨高架自身的结构自重和轻轨高架中动载荷的控制与变化情况等。

基坑周边轻轨高架在基坑开挖中的变形情况是复杂的,变形的原因是多元的,变形的效果是动态的。

在实践工程中,基坑开挖将要造成土体的不均匀沉降和水平方向的位移,不仅要做好岩土工程计算,制定可行性基坑开挖方案,同时还要做好变形监测工作,防止各种因素对轻轨高架桥产生的影响。

对于建筑基坑施工对周边轻轨高架的变形影响,高程和平面控制可参考规范二级要求。

变形监测应设置平面和高程基准点,要求设置在变形区域以外,位置稳定、易于长期保存的地方,并应定期复测。

复测周期应视基准点所在位置的情况而定,在建筑基坑施工过程中宜1~2月复测一次,点位稳定后宜每季度或每半年复测一次。

1、沉降观测的高程基准点不应少于3个,应与工作基点形成闭合环或附合线路。

高程基准点和工作基点布设应避开交通干道主路、地下管线、仓库堆栈、水源地、河岸、松软填土、滑坡地段、机器震动区以及其他可能使标石、标志易遭腐蚀或破坏的地方,其点位与邻近建筑的距离应大于建筑基础最大宽度的2倍。

当使用静力水准测量方法测量沉降时,用于联测观测点的工作基点宜与沉降观测点设在同一高程面上,偏差不应超过±1cm。

不能满足这一要求时,应设置上下高程不同但位置垂直对应的辅助
点传递高程。

实际工作中采用精度不低于1mm级水准仪配合铟瓦尺或条码尺进行水准测量,观测方式其中高程控制测量、工作基点联测及首次观测值应采用往返测或单程双测站法,其他各次沉降观测点可采用单程观测或单程双测站法。

起始点高程宜采用测区原有高程系统。

较小规模的监测项目可假定高程系统,较大规模的项目宜与国家水准网联测。

二级水准视线长度应≤50m,前后视距差≤2.0m,前后视距差累积≤3.0m,视线高度(下丝)≥0.3m。

用数字水准仪观测时最短视线长度不宜小于3m,最低水平视线高度不应低于0.6m。

限差要求往返较差及附合或环线闭合差≤1.0√n(mm),单程双测站所测高差较差≤0.7√n(mm),检测已测段高差之差≤1.5√n(mm)。

n为测站数。

用于运营阶段的结构、轨道和道床的垂直沉降监测点高程中误差±0.5mm,相邻监测点高程中误差±0.3mm。

同一项目在不同周期进行变形监测应采用相同的观测路线和观测方法,使用相同的仪器和设备,并应固定观测人员。

首次观测应独立观测2次取平均值作为初始值。

监测频率可按照设计要求结合基坑施工进度进行拟定,当发生较大沉降时可加密监测频率;连续一个月沉降趋势趋于稳定状态(无沉降差,纯属仪器误差)的情况下,可要求减少监测频率。

在项目开始前和结束后应对使用的水准仪、水准标尺进行检验,二级水准观测仪器i角不得大于15”。

水准仪i角的测定办法,如图所示:
将水准仪置平在二支水准标尺的中间,仪器距标尺约30米或40米,前后大约等距离,读取标尺上的读数得到二点的高差值。

搬迁仪器至二支标尺的一内侧或外侧均可,此时,仪器至标尺的距离分别为近距离的标尺只是几米,而远距离的标尺已是几十米。

同样,测量这二点的高差值,如果二次测得的高差相等,说明仪器i角为零。

高差不等就说明仪器存在着i角的误差。

如:仪器在中间,读取A尺的读数a1=0962,B尺的读数b1=1062
仪器在一侧,读取A尺的读数a2=0835,B尺的读数b2=0933
h1=-1062+0962=-0100
h2=-0933+0835=-0098
h=-0098+0100=+2mm
按小角公式计算i角;
i=Δ·ρ/s=2mm×206265”/60000mm=41/6”=7”
理论上不应在日出后或日落前约半小时、太阳中天前后、风力大于四级、气温突变时以及标尺分划线的成像跳动而难以照准时进行观测。

观测前半小时,应将仪器至于露天阴影下,使仪器与外界气温趋于一致。

使用数字水准仪时还应进行预热。

当测站观测限差超限时,应立即重测;当迁站后发现超限时,应从稳固可靠的固定点开始重测。

2、各级别水平位移观测的平面基准点(含方位定向点)不应少于3个,基准点与工作基点应方便检核效验。

大型的工程项目,水平位移基准点应采用具有强制对中装置的观测墩。

基准网布设可用测角精度±1”级;测距精度±2mm+2ppm*D级全站仪,(±2mm是仪器固定误差,2代表仪器本身和大气折光所引起的比例误差,ppm相当于百万分之几也就是10^-6,D代表全站仪实际所测距离,如实际所测距离为1公里,误差就是2mm)宜采用独立坐标系统,必要时可与国家坐标系统联测。

二等水平位移监测变形观测点的点位中误差±3mm,平均边长150m,最弱边相对中误差≤1/70000。

工作中可采用极坐标法,必要时可双测站。

监测主体上的水平位移监测点可用棱镜反射,距离短时也可用反射片。


测频率可按照设计要求结合基坑施工进度进行拟定,当发生较大位移时可加密监测频率;连续一个月位移趋势趋于稳定状态(无位移差,纯属仪器误差)的情况下,可要求减少监测频率。

变形监测作业开始前,应收集相关水文地质,岩土勘察工程和设计图纸,并根据各类因素进行方案设计。

方案设计中应包括:监测目的,精度等级,监测方法,监测基准网布设,监测周期,项目预警值,和使用的仪器设备等内容。

每期监测结束后,应及时处理监测数据。

提交每次的监测数据报表;根据施工情况提交阶段性报告(体现随时间变化的变形曲线);项目结束后提交最终报告。

当数据变化量达到预警值或接近允许值时;出现变化异常时须立即通知建设单位和施工单位采取相应措施。

相关文档
最新文档