北师大版八年级数学上册第3章-位置与坐标(培优试题--)

合集下载

北师大版八年级数学上册第三章 位置与坐标 单元提优训练【含答案】

北师大版八年级数学上册第三章 位置与坐标 单元提优训练【含答案】

北师大版八年级数学上册第三章位置与坐标单元提优训练A组(基础题)一、填空题1.点P(-5,12)到x轴的距离为12,到y轴的距离为5,到原点的距离为__________.2.已知AB∥x轴,A点的坐标为(3,2),并且AB=5,则B的坐标为__________.3.已知点A(2a+5,a-3)在第一、三象限的角平分线上,则a=__________.4.已知点P的坐标(2-a,3a+6),且点P在第二、四象限的角平分线上,则点P的坐标是__________.5.已知点A(2,m+3)与B(n,-4)关于x轴对称,则m+n=__________.6.在平面直角坐标系中,将点A(-2,3)向右平移4个单位长度后得到点A′,则A′的坐标为__________.7.对于平面坐标系中任意两点A(x1,y1),B(x2,y2),定义一种新运算“*”:(x1,y1)*(x2,y2)=(x1y2,x2y1).根据这个规则计算:(3,5)*(-1,2)=__________;若A(x1,y1)在第三象限,B(x2,y2)在第四象限,则A*B在第__________象限.二、选择题8.在平面直角坐标系xOy中,点P的坐标是(m2+1,-2 020),则点P的位置在()A.第一象限B.第二象限C.第三象限D.第四象限9.已知点A(m,2)在y轴上,则m+1等于()A.-1 B.1 C.0 D.±110.做课间操时,小明、小刚和小红三人的相对位置如图.若用(3,4)表示小明的位置,(1,3)表示小刚的位置,则小红的位置可表示为( )A.(0,0) B.(0,1) C.(1,0) D.(1,2)11.设线段CD的中点为N,其坐标为(3,2).若端点C的坐标为(7,3),则端点D的坐标为()A.(-1,1) B.(-2,4) C.(-2,1) D.(-1,4)三、解答题12.已知平面直角坐标系中一点P(m+1,2m-4),根据下列条件,求出P点的坐标.(1)点P在过点Q(-3,2),且与y轴平行的直线上.(2)点P到x轴、y轴的距离相等.13.如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,4),B(4,2),C(3,5),请回答下列问题.(1)写出△ABC关于x轴对称的△A1B1C1的各顶点坐标.(2)求△ABC的面积.B组(中档题)四、填空题14.在平面直角坐标系中,△OBC的顶点O(0,0),B(-6,0),且∠OCB=90°,OC=BC,点C在第二象限,则点C关于y轴对称的点的坐标是__________.15.如图,在平面直角坐标系中,对△ABC进行循环往复的轴对称变换.若原来点A坐标是(a,b),则经过第2 020次变换后所得的点A坐标是__________.16.如图,把平面内一条数轴x绕点O逆时针旋转角θ(0°<θ<90°)得到另一条数轴y,x轴和y轴构成一个平面斜坐标系.规定:已知点P是平面斜坐标系中任意一点,过点P作y轴的平行线交x轴于点A,过点P作x轴的平行线交y轴于点B.若点A在x轴上对应的实数为a,点B在y轴上对应的实数为b,则称有序实数对(a,b)为点P22的斜坐标.在平面斜坐标系中,若θ=45°,点P的斜坐标为(1,2),点G的斜坐标为(7,-2),连接PG,则线段PG的长度是__________.五、解答题17.如图,在平面直角坐标系中,已知A (0,a ),B (b ,0),C (3,c )三点,若a ,b ,c 满足关系式:|a -2|+(b -3)2+=0.c -4(1)a =2,b =3,c =4.(2)求四边形AOBC 的面积.(3)是否存在点P (x ,-),使△AOP 面积为四边形AOBC 面积的两倍?若存在,求出点P 的坐标;若不存在,x2请说明理由.C 组(综合题)18.阅读下列一段文字:已知在平面内两点P 1(x 1,y 1),P 2(x 2,y 2),其两点间的距离P 1P 2=.(x 1-x 2)2+(y 1-y 2)2问题解决:已知A (1,4),B (7,2).(1)试求A ,B 两点间的距离.(2)在x 轴上找一点P (不求坐标,画出图形即可),使PA +PB 的长度最短,求出PA +PB 的最短长度.(3)在x 轴上有一点M ,在y 轴上有一点N ,连接A ,N ,M ,B 得四边形ANMB .若四边形ANMB 的周长最短,请找到点M ,N (不求坐标,画出图形即可),求出四边形ANMB 的最小周长.答案2021-2022学年北师大版八年级数学上册第三章位置与坐标单元同步练习题A组(基础题)一、填空题1.点P(-5,12)到x轴的距离为12,到y轴的距离为5,到原点的距离为13.2.已知AB∥x轴,A点的坐标为(3,2),并且AB=5,则B的坐标为(-2,2)或(8,2).3.已知点A(2a+5,a-3)在第一、三象限的角平分线上,则a=-8.4.已知点P的坐标(2-a,3a+6),且点P在第二、四象限的角平分线上,则点P的坐标是(6,-6).5.已知点A(2,m+3)与B(n,-4)关于x轴对称,则m+n=3.6.在平面直角坐标系中,将点A(-2,3)向右平移4个单位长度后得到点A′,则A′的坐标为(2,3).7.对于平面坐标系中任意两点A(x1,y1),B(x2,y2),定义一种新运算“*”:(x1,y1)*(x2,y2)=(x1y2,x2y1).根据这个规则计算:(3,5)*(-1,2)=(6,-5);若A(x1,y1)在第三象限,B(x2,y2)在第四象限,则A*B在第四象限.二、选择题8.在平面直角坐标系xOy中,点P的坐标是(m2+1,-2 020),则点P的位置在( D )A.第一象限B.第二象限C.第三象限D.第四象限9.已知点A(m,2)在y轴上,则m+1等于( B )A.-1 B.1 C.0 D.±110.做课间操时,小明、小刚和小红三人的相对位置如图.若用(3,4)表示小明的位置,(1,3)表示小刚的位置,则小红的位置可表示为( B )A.(0,0) B.(0,1) C.(1,0) D.(1,2)11.设线段CD的中点为N,其坐标为(3,2).若端点C的坐标为(7,3),则端点D的坐标为( A )A.(-1,1) B.(-2,4) C.(-2,1) D.(-1,4)三、解答题12.已知平面直角坐标系中一点P(m+1,2m-4),根据下列条件,求出P点的坐标.(1)点P在过点Q(-3,2),且与y轴平行的直线上.(2)点P到x轴、y轴的距离相等.解(1)因为点P 在过点Q (-3,2),且与y 轴平行的直线上,所以m +1=-3,解得m =-4.所以点P 的坐标为(-3,-12).(2)由题意,得|m +1|=|2m -4|,即m +1=2m -4或m +1=-(2m -4),解得m =5或m =1.所以点P 的坐标为(6,6)或(2,-2).13.如图,在平面直角坐标系中,△ABC 的三个顶点坐标分别为A (1,4),B (4,2),C (3,5),请回答下列问题.(1)写出△ABC 关于x 轴对称的△A 1B 1C 1的各顶点坐标.(2)求△ABC 的面积.解:(1)A 1(1,-4),B 1(4,-2),C 1(3,-5).(2)S △ABC =3×3-×1×2-×1×3-×2×3=9-1-1.5-3=3.5.121212B 组(中档题)四、填空题14.在平面直角坐标系中,△OBC 的顶点O (0,0),B (-6,0),且∠OCB =90°,OC =BC ,点C 在第二象限,则点C 关于y 轴对称的点的坐标是(3,3).15.如图,在平面直角坐标系中,对△ABC 进行循环往复的轴对称变换.若原来点A 坐标是(a ,b ),则经过第2 020次变换后所得的点A 坐标是(a ,b ).16.如图,把平面内一条数轴x 绕点O 逆时针旋转角θ(0°<θ<90°)得到另一条数轴y ,x 轴和y 轴构成一个平面斜坐标系.规定:已知点P 是平面斜坐标系中任意一点,过点P 作y 轴的平行线交x 轴于点A ,过点P 作x 轴的平行线交y 轴于点B .若点A 在x 轴上对应的实数为a ,点B 在y 轴上对应的实数为b ,则称有序实数对(a ,b )为点P的斜坐标.在平面斜坐标系中,若θ=45°,点P 的斜坐标为(1,2),点G 的斜坐标为(7,-2),连接PG ,则22线段PG 的长度是2.5五、解答题17.如图,在平面直角坐标系中,已知A (0,a ),B (b ,0),C (3,c )三点,若a ,b ,c 满足关系式:|a -2|+(b -3)2+=0.c -4(1)a =2,b =3,c =4.(2)求四边形AOBC 的面积.(3)是否存在点P (x ,-),使△AOP 面积为四边形AOBC 面积的两倍?若存在,求出点P 的坐标;若不存在,x2请说明理由.解:(2)根据平面直角坐标系可得,四边形AOBC 为直角梯形,OB =3,BC =4,OA =2,S 梯形AOBC =×(2+4)×3=9.12(3)根据题意,得S △AOP =OA ·|x |=×2|x |=2×9,1212所以x =±18.所以存在P 点,其坐标为P (18,-9)或(-18,9).C 组(综合题)18.阅读下列一段文字:已知在平面内两点P 1(x 1,y 1),P 2(x 2,y 2),其两点间的距离P 1P 2=.(x 1-x 2)2+(y 1-y 2)2问题解决:已知A (1,4),B (7,2).(1)试求A ,B 两点间的距离.(2)在x 轴上找一点P (不求坐标,画出图形即可),使PA +PB 的长度最短,求出PA +PB 的最短长度.(3)在x 轴上有一点M ,在y 轴上有一点N ,连接A ,N ,M ,B 得四边形ANMB .若四边形ANMB 的周长最短,请找到点M ,N (不求坐标,画出图形即可),求出四边形ANMB 的最小周长.解:(1)因为A(1,4),B(7,2),(1-7)2+(4-2)210所以AB==2,10即A,B两点间的距离为2.(2)作点A关于x轴的对称点A′,如图1所示.因为A(1,4),B(7,2),所以A′(1,-4).(1-7)2+(-4-2)22所以A′B==6,即PA+PB的最短长度是6.2(3)作点A关于y轴的对称点A′,作点B关于x轴的对称点B′,连接A′B′与y轴交于点N,与x轴交于点M,如图2所示.因为A(1,4),B(7,2),所以A′(-1,4),B′(7,-2).10由(1)知AB=2,(-1-7)2+(4+2)2A′B′==10.10所以四边形ANMB的最小周长是10+2.。

最新北师大版八年级上--第三章-位置与坐标提高训练经典题

最新北师大版八年级上--第三章-位置与坐标提高训练经典题

最新北师大版八年级上--第三章-位置与坐标提高训练经典题一、单选题:1、若点M(a , b)在第四象限,则点(-a,-b+2)是在()A 、第一象限 B、第二象限 C、第三象限 D、第四象限2、已知点P(1,a)与Q(b,2)关于x轴成轴对称,又有点Q(b,2)与点M(m,n)关于y轴成轴对称,则m﹣n的值为() A、3 B、﹣3 C、1 D、﹣13、已知点A与点B(2,-3)关于y轴对称,那么点A的坐标为()A . (-3,2);B . (-2,-3);C . (-2, 3);D . (2,3).4、在平面直角坐标系中,点P(2,-3)关于原点对称点P的坐标是( )A . (-2,-3)B . (-3,-2)C . (-2,3)D . (-3,2)5、在平面直角坐标系中,(3,-2)在哪一个象限()A . 一B . 二C . 三D . 四6、平面直角坐标系中,下列各点中,在轴上的点是( )。

A . ( 2 , 0 )B . (-2 , 3 )C . ( 0 , 3 )D . ( 1 , -3 )7、点P(-3,4)到y轴的距离是().A . 3 B . 4 C . -3 D . 58、设点A与点B关于x轴对称,点A与点C关于y轴对称,则点B与点C()A、关于x轴对称;B、关于y轴对称;C、关于原点对称;D、既关于x轴对称,又关于y轴对称9、点A与点B关于直线y=﹣1对称,若点A的坐标为(﹣5,3),则点B的坐标为()A、(﹣5,﹣5) B 、(﹣5,﹣3) C 、(3,3) D、(3,﹣3)10、在平面直角坐标系中,点(m﹣2,m﹣3)在第三象限,则m的取值范围是()A . m>3B . m<2C . 2<m<3D . m<311、关于点P(﹣1,3)和点Q(﹣1,5)的说法正确的是()A、关于直线x=4对称;B、关于直线x=2对称;C、关于直线y=4对称;D、关于直线y=2对称12、直角坐标系中,点P(x,y)在第三象限,且P到x轴和y轴的距离分别为3、7,则点P的坐标为()A、(﹣3,﹣7) B、(﹣7,﹣3) C、(3,7) D、(7,3)13、小军从点O向东走了3千米后,再向西走了8千米,如果要使小军沿东西方向回到点O的位置,那么小明需要()A . 向东走5千米B . 向西走5千米C . 向东走8千米D . 向西走8千米14、以下是甲、乙、丙三人看地图时对四个坐标的描述:甲:从学校向北直走500米,再向东直走100米可到图书馆.乙:从学校向西直走300米,再向北直走200米可到邮局.丙:邮局在火车站西200米处.根据三人的描述,若从图书馆出发,判断下列哪一种走法,其终点是火车站()A 、向南直走300米,再向西直走200米 B、向南直走300米,再向西直走100米C、向南直走700米,再向西直走200米D、向南直走700米,再向西直走600米15、如下图1,长方形BCDE的各边分别平行于x轴或y轴,物体甲和物体乙分别由点A(2,0)同时出发,沿长方形BCDE的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2015次相遇地点的坐标是()A、(2,0)B、(﹣1,1)C、(﹣2,1)D、(﹣1,﹣1)16、如上图2,直线m⊥n,在某平面直角坐标系中,x轴∥m,y轴∥n,点A的坐标为(﹣4,1),点B的坐标为(2,﹣4),则坐标原点可能为()A、 O1 B、O2C、O3D、O417、一只跳蚤在第一象限及x轴、y轴上跳动,如上图3,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动[即(0,0)→(0,1)→(1,1)→(1,0)→…],且每秒跳动一个单位,那么第35秒时跳蚤所在位置的坐标是()A、(4,0)B、(5,0)C、(0,5)D、(5,5)18、在平面直角坐标系中,已知点P(2,1)与点Q(2,﹣1),下列描述正确是()A . 关于x轴对称B . 关于y轴对称C . 关于原点对称D . 都在y=2x的图象上19、如下图1,笑脸盖住的点的坐标可能为()A、(5,2)B、(3,﹣4)C、(﹣4,﹣6)D、(﹣1,3)20、如图是在方格纸上画出的小旗图案,若用(0,0)表示A点,(0,4)表示B点,那么C点的位置可表示为() A、(0,3) B、(2,3) C、(3,2) D、(3,0)21、如上图3,在平面直角坐标系中,点P的坐标为()A、(3,﹣2)B、(﹣2,3) C 、(﹣3,2 ) D、(2,﹣3)22、点P(4,3)所在的象限是()A、第一象限;B、第二象限;C、第三象限;D、第四象限23、已知点M(3,﹣2)与点M′(x,y)在同一条平行于x轴的直线上,且M′到y轴的距离等于4,那么点M′的坐标是() A、(4,2)或(﹣4,2)B、(4,﹣2)或(﹣4,﹣2)C、(4,﹣2)或(﹣5,﹣2)D、(4,﹣2)或(﹣1,﹣2)24、已知点A(10,5),B(50,5),则直线AB的位置特点是() A、与x轴平行B、与y轴平行C、与x轴相交,但不垂直D、与y轴相交,但不垂直25、如下图1,正五边形ABCDE放入某平面直角坐标系后,若顶点A、B、C、D、E的坐标分别是(0,a)、(﹣3,2)、(b,m)、(﹣b,m),则点E的坐标是()A、(2,﹣3)B、(2,3)C、(3,2)D、(3,﹣2)二、填空题1、如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的平面坐标分别为A(﹣2,1)和B(﹣2,﹣3),那么第一架轰炸机C的平面坐标是 .2、如图是一盘中国象棋残局的一部分,以“帅”为原点建立坐标系,知道“兵”所在位置的坐标是(2,3),则“炮”所在位置的坐标是.3、(-2,6)关于x轴对称的点的坐标,关于y轴对称的点的坐标;(-4,-2)关于x轴对称的点的坐标,关于y轴对称的点的坐标.4、如果点M(3,x)在第一象限,则x的取值范围是 .5、在平面直角坐标系中,点A的坐标是(2,﹣3),作点A关于x轴的对称点,得到点A′,再作点A′关于y轴的对称点,得到点A″,则点A″的坐标是 .6、小明从家里出发向正北方向走200m就到了学校,如果以小明家为原点,学校的位置为,如果以学校为原点,他家的位置为.7、把点p(-1,3)向下平移1个单位长度,再向右平移2个单位长度,所到达的位置坐标为.8、剧院里5排2号可用(5,2)表示,则(7,4)表示.9、点P(, a﹣3)在第四象限,则a的取值范围是.10、在平面直角坐标系中,将点A(﹣2,3)向右平移2个单位长度,再向下平移6个单位长度得点B,则点B的坐标是.11、点(2+a,3)关于y轴对称的点的坐标是(﹣4,2﹣b),则ab= .12、如下图1,在单位为1的正方形网格纸上,△A1A2A3,△A3A4A5,△A5A6A7 ,…都是斜边在x轴上,斜边长分别为2,4,6,…的等腰直角三角形,若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,﹣1),A3(0,0),则依图中所示规律,A2017的坐标为.13、如上图2,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(1,1)(1,2),(2,2),…,根据这个规律,第2013个点的坐标为.14、如下图1是某市市区几个旅游景点的示意图(图中每个小正方形的边长都为1个单位长度).建立适当的平面直角坐标系,使光岳楼的坐标为(﹣1,0),并用坐标表示下列景点的位置:金凤广场;动物园;湖心岛;山峡会馆.15、观察中国象棋的棋盘,如上图2,其中“马”的位置可以用一个数对(3,5)来表示,则表示“兵”点位置的数对是。

北师版八年级数学上册第三章培优测试卷含答案

北师版八年级数学上册第三章培优测试卷含答案

北师版八年级数学上册第三章培优测试卷一、选择题(每题3分,共30分)1.云南是一个神奇美丽的地方,这里有美丽的边疆、美丽的城市、美丽的村庄、美丽的风情,云南的省会城市昆明更有着四季如春的美誉,下列表示昆明市地理位置最合理的是()A.在中国西南地区B.在云贵高原的中部C.距离北京2 600千米D.东经102°、北纬24°2.如图,科考队探测到目标位于图中阴影区域内,则目标的坐标可能是() A.(20,30)B.(15,-28)C.(-40,-10)D.(-35,19)3.【母题:教材P54例题】某镇初级中学在镇政府的南偏西60°方向上,且距离镇政府1 500 m,则如图所示的表示法正确的是()4.【2023·济宁任城区校级月考】已知点A(m-1,3)与点B(2,n-1)关于x轴对称,则m+n的值为()A.0 B.1 C.-1 D.3 5.【2023·天津中学月考】已知点A(-1,-4),B(-1,3),则() A.点A,B关于x轴对称B.点A,B关于y轴对称C.直线AB平行于y轴D.直线AB垂直于y轴6.已知点A(m+1,-2)和点B(3,m-1),若直线AB∥x轴,则m的值为() A.2 B.-4 C.-1 D.37.若点P(1,a)与点Q(b,2)关于x轴对称,则代数式(a+b)2 023的值为() A.-1 B.1 C.-2 D.28.【2023·常州实验中学月考】如图,正五边形ABCDE放入某平面直角坐标系后,若顶点A,B,C,D的坐标分别是(0,a),(-3,2),(b,m),(c,m),则点E 的坐标是()A.(2,-3)B.(2,3)C.(3,2)D.(3,-2)9.已知点P的坐标为(2-a,3a+6),且点P到两坐标轴的距离相等,则点P的坐标是()A.(3,3) B.(3,-3)C.(6,-6) D.(3,3)或(6,-6)10.在平面直角坐标系中,一个智能机器人接到的指令是:从原点O出发,按“向上→向右→向下→向右”的方向依次不断移动,每次移动1个单位长度,其移动路线如图所示,第一次移动到点A1,第二次移动到点A2,…,第n次移动到点A n,则点A2 024的坐标是()A.(1 011,0) B.(1 011,1) C.(1 012,0) D.(1 012,1) 二、填空题(每题3分,共24分)11.点(0,-2)在________轴上.12.点(4,5)关于x轴对称的点的坐标为__________.13.一个英文单词的字母顺序分别对应如图中的有序数对:(5,3),(6,3),(7,3),(4,1),(4,4),则这个英文单词翻译成中文为__________.14.已知点A,B,C的坐标分别为(2,4),(6,0),(8,0),则△ABC的面积是________.15.【母题:教材P71复习题T1(3)】若点P到x轴的距离为4,到y轴的距离为5,且点P在y轴的左侧,则点P的坐标为________________.16.已知点N的坐标为(a,a-1),则点N一定不在第________象限.17.【2023·苏州一中月考】如图,一束光线从点A(3,3)出发,经过y轴上的点C 反射后经过点B(1,0),则光线从点A到点B经过的路径长为________.18.【规律探索题】【2022·毕节】如图,在平面直角坐标系中,把一个点从原点开始向上平移1个单位长度,再向右平移1个单位长度,得到点A1(1,1);把点A1向上平移2个单位长度,再向左平移2个单位长度,得到点A2(-1,3);把点A2向下平移3个单位长度,再向左平移3个单位长度,得到点A3(-4,0);把点A3向下平移4个单位长度,再向右平移4个单位长度,得到点A4(0,-4),…;按此做法进行下去,则点A10的坐标为________.三、解答题(19,23,24题每题12分,其余每题10分,共66分)19.【母题:教材P60随堂练习】2023年亚运会将在杭州举行,如图是杭州李华同学家附近的一些地方.(1)根据图中所建立的平面直角坐标系,写出学校、邮局的坐标.(2)某星期日早晨,李华同学从家里出发,沿着(-2,-1)→(-1,-2)→(1,-2)→(2,-1)→(1,-1)→(1,3)→(-1,0)→(0,-1)→(-2,-1)的路线转了一圈,依次写出他路上经过的地方.(3)连接(2)中各点,所形成的路线构成了什么图形?20.已知点P (2m -6,m +2).(1)若点P 在y 轴上,则点P 的坐标为__________; (2)若点P 的纵坐标比横坐标大6,则点P 在第几象限?21.若点P ,Q 的坐标分别是(x 1,y 1),(x 2,y 2),则线段PQ 的中点坐标为⎝ ⎛⎭⎪⎫x 1+x 22,y 1+y 22.如图,已知点A ,B ,C 的坐标分别为(-5,0),(3,0),(1,4),利用上述结论分别求出线段AC ,BC 的中点D ,E 的坐标,并判断DE 与AB 的位置关系.22.【2023·吉林一中月考】已知点P (2x ,3x -1)是平面直角坐标系内的点. (1)若点P 在第三象限,且到两坐标轴的距离和为11,求x 的值;(2)已知点A (3,-1),点B (-5,-1),点P 在直线AB 的上方,且到直线AB 的距离为5,求x 的值.23.如图,在平面直角坐标系中,AB∥CD∥x轴,BC∥DE∥y轴,且AB=CD=4,OA=5,DE=2,动点P从点A出发,沿A→B→C的路线运动到点C停止;动点Q从点O出发,沿O→E→D的路线运动到点D停止.若P,Q两点同时出发,且P,Q运动的速度均为每秒一个单位长度.(1)直接写出B,C,D三个点的坐标;(2)当P,Q两点出发6 s时,试求三角形POQ的面积.24.【存在性问题】已知A(-3,0),C(0,4),点B在x轴上,且AB=4.(1)求点B的坐标.(2)在y轴上是否存在点P,使得以A,C,P为顶点的三角形的面积为9?若存在,求出点P的坐标;若不存在,请说明理由.(3)在y轴上是否存在点Q,使得△ACQ是等腰三角形?若存在,请画出点Q的位置,并直接写出点Q的坐标;若不存在,请说明理由.答案一、1.D【点拨】表示昆明市地理位置最合理的是东经102°、北纬24°.2.D【点拨】图中阴影区域在第二象限,故选D.3.A【点拨】A.镇初级中学在镇政府的南偏西60°方向上,且距离镇政府1 500 m,故本选项符合题意;B.镇初级中学在镇政府的南偏西30°方向上,且距离镇政府1 500 m,故本选项不符合题意;C.镇政府在镇初级中学的南偏西60°方向上,且距离镇初级中学1 500 m,故本选项不符合题意;D.镇政府在镇初级中学的南偏西30°方向上,且距离镇初级中学1 500 m,故本选项不符合题意.故选A.4.B【点拨】因为点A(m-1,3)与点B(2,n-1)关于x轴对称,所以m-1=2,n-1=-3,解得m=3,n=-2,所以m+n=1.5.C【点拨】把A(-1,-4),B(-1,3)在平面直角坐标系中画出,并连接AB,可知AB平行于y轴.6.C【点拨】因为直线AB∥x轴,所以A、B两点的纵坐标相等,所以-2=m-1,解得m=-1.7.A【点拨】因为P(1,a)与Q(b,2)关于x轴对称,所以b=1,a=-2,所以(a+b)2 023=(-2+1)2 023=-1.8.C【点拨】因为点A的坐标为(0,a),所以点A在该平面直角坐标系的y轴上.因为点C,D的坐标分别为(b,m),(c,m),所以点C,D关于y轴对称.因为正五边形ABCDE是轴对称图形,所以该平面直角坐标系经过点A的y轴是正五边形ABCDE的一条对称轴,所以点B,E也关于y轴对称.因为点B的坐标为(-3,2),所以点E的坐标为(3,2).9.D【点拨】因为点P到两坐标轴的距离相等,所以|2-a|=|3a+6|,所以2-a=3a+6或2-a=-(3a+6),解得a=-1或a=-4,所以点P的坐标为(3,3)或(6,-6).10.C【点拨】A1(0,1),A2(1,1),A3(1,0),A4(2,0),A5(2,1),A6(3,1),A7(3,0),A8(4,0),…,2 024÷4=506,所以A2 024的坐标为(506×2,0),则A2 024的坐标是(1 012,0).二、11.y【点拨】横坐标为0,所以点(0,-2)在y轴上.12.(4,-5)【点拨】因为关于x轴对称的点横坐标变,纵坐标互为相反数,所以点(4,5)关于x轴对称的点的坐标为(4,-5).13.学习【点拨】根据有序数对对应的字母即可求解.14.4【点拨】把点A,B,C在平面直角坐标系中标出来,可知BC=2,△ABC的边BC上的高为4,所以△ABC的面积为12×4×2=4.15.(-5,4)或(-5,-4)【点拨】由点P到两坐标轴的距离可知,点P有4个.因为点P在y轴的左侧,所以点P的坐标为(-5,4)或(-5,-4).16.二【点拨】当a>1时,a-1是正数,所以点P在第一象限,当a<1时,a -1为负数,所以点P在第三象限或第四象限.故点N一定不在第二象限.17.5【点拨】作点A关于y轴的对称点A′(-3,3),过A′作垂直于x轴于点D,连接A′,D,B构成△A′DB,所以A′D=3,DB=4,所以A′B=A′D2+BD2=5,即光线从点A到点B经过的路径长为5.18.(-1,11)【点拨】由题图可知A5(5,1);将点A5向上平移6个单位长度,再向左平移6个单位长度,可得A6(-1,7);将点A6向下平移7个单位长度,再向左平移7个单位长度,可得A7(-8,0);将点A7向下平移8个单位长度,再向右平移8个单位长度,可得A8(0,-8);将点A8向上平移9个单位长度,再向右平移9个单位长度,可得A9(9,1);将点A9向上平移10个单位长度,再向左平移10个单位长度,可得A10(-1,11).三、19.【解】(1)学校的坐标为(1,3),邮局的坐标为(0,-1).(2)商店、公园、汽车站、水果店、学校、娱乐城、邮局.(3)图略,所形成的路线构成了一条帆船图形.20.【解】(1)(0,5)(2)根据题意,得2m -6+6=m +2,解得m =2. 所以点P 的坐标为(-2,4). 所以点P 在第二象限.21.【解】由题中所给结论及点A ,B ,C 的坐标分别为(-5,0),(3,0),(1,4),得点D (-2,2),E (2,2).因为点D ,E 的纵坐标相等,且不为0, 所以DE ∥x 轴. 又因为AB 在x 轴上, 所以DE ∥AB .22.【解】(1)因为点P 在第三象限,所以点P 到x 轴的距离为1-3x ,到y 轴的距离为-2x .因为点P 到两坐标轴的距离和为11, 所以1-3x -2x =11,解得x =-2. (2)易知直线AB ∥x 轴.由点P 在直线AB 的上方且到直线AB 的距离为5,得3x -1-(-1)=5,解得x =53. 23.【解】(1)B (4,5),C (4,2),D (8,2).(2)当P ,Q 两点出发6 s 时,P 点的坐标为(4,3), Q 点的坐标为(6,0), 所以S 三角形POQ =12×6×3=9.24.【解】(1)因为点B 在x 轴上,所以设点B 的坐标为(x ,0).因为A (-3,0),AB =4, 所以|x -(-3)|=4, 解得x =-7或x =1.所以点B 的坐标为(-7,0)或(1,0).(2)在y 轴上存在点P ,使得以A ,C ,P 为顶点的三角形的面积为9. 设点P 的坐标为(0,y ),当点P 在点C 的上方时,S △ACP =(y -4)×|-3|2=9,解得y =10;当点P 在点C 的下方时,S △ACP =(4-y )×|-3|2=9,解得y =-2.综上所述,点P 的坐标为(0,10)或(0,-2). (3)在y 轴上存在点Q ,使得△ACQ 是等腰三角形. 如图,点Q 的坐标为(0,9)或(0,-4)或⎝ ⎛⎭⎪⎫0,78或(0,-1).。

北师大版八年级上册数学第三章 位置与坐标 含答案

北师大版八年级上册数学第三章 位置与坐标 含答案

北师大版八年级上册数学第三章位置与坐标含答案一、单选题(共15题,共计45分)1、在平面直角坐标系中,点A的坐标为(1,1)在坐标轴上找到一点P使△AOP 为等腰三角形,这样的点P个数为()A.8 个B.7 个C.6 个D.5 个2、如图,在平面直角坐标系中,设点P到原点O的距离为ρ,OP与x轴正方向的交角为a,则用[ρ,a]表示点P的极坐标,例如:点P的坐标为(1,1),则其极坐标为[ ,45°].若点Q的极坐标为[4,120°],则点Q的平面坐标为()A.(﹣2,﹣2 )B.(2,﹣2 )C.(﹣2 ,﹣2)D.(﹣4,﹣4 )3、在平面直角坐标系中,点(﹣2,﹣2m+3)在第三象限,则m的取值范围是()A.mB.mC.mD.m4、如图,在平面直角坐标系中,矩形的顶点、的坐标分别为,,点是的中点点在上运动,当是腰长为的等腰三角形时,点的坐标不可能的是()A. B. C. D.5、如图所示,若在某棋盘上建立直角坐标系,使“将”位于点(1,﹣2),“象”位于点(3,﹣2),则“炮”位于点()A.(1,3)B.(﹣2,1)C.(﹣1,2)D.(﹣2,2)6、以下描述中,能确定具体位置的是()A.万达电影院2排B.距薛城高铁站2千米C.北偏东30℃D.东经106℃,北纬31℃7、书店、学校、食堂在平面上分别用A、B、C来表示,书店在学校的北偏西30°,食堂在学校的南偏东15°,则平面图上的∠ABC的度数应该是()A.65°B.35°C.165°D.135°8、若A(a,b),B(b,a)表示同一点,那么这一点在 ( )A.第一、三象限内两坐标轴夹角平分线上B.第一象限内两坐标轴夹角平分线上C.第二、四象限内两坐标轴夹角平分线上D.平行于y轴的直线上9、如图,已知三角形ABC如图所示放置在平面直角坐标系中,其中C(-4,4).则三角形ABC 的面积是()A.4B.6C.12D.2410、如图,小手盖住的点的坐标可能为()A.(5,2)B.(-6,3)C.(-4,-6)D.(3,-4)11、如图,是象棋盘的一部分.若“帅”位于点(1,﹣2)上,“相”位于点(3,﹣2)上,则“炮”位于点()上.A.(﹣1,1)B.(﹣1,2)C.(﹣2,1)D.(﹣2,2)12、如图,点A的坐标为(1,3),O为坐标原点,将OA绕点A按逆时针方向旋转90°得到AO′,则点O′的坐标是()13、如图,在一单位为1的方格纸上,,,…,都是斜边在轴上,斜边长分别为2,4,6,…的等腰直角三角形,若的顶点坐标分别为,,,则依图中所示规律,的坐标为()A. B. C. D.14、如图,P1、P2、P3这三个点中,在第二象限内的有()A.P1、P2、P3B.P1、P2C.P1、P3D.P115、如图,点O、M、A、B、C在同一平面内,若规定点A的位置记为(50,20°),点B的位置记为(30,60°).那么,图中点C的位置应记为()110°)二、填空题(共10题,共计30分)16、P(-3,2)关于x轴对称的点的坐标是________17、P1(x1, y1),P2(x2, y2)是平面直角坐标系中的任意两点,我们把|x1﹣x2|+|y1﹣y2|叫做P1、P2两点间的“直角距离”,记作d(P1, P2).(1)令P0(2,﹣4),O为坐标原点,则d(O,P)=________ ;(2)已知Q(2,1),动点P(x,y)满足d(Q,P)=3,且x、y均为整数.①满足条件的点P有________ 个②若点P在直线y=3x上,请写出符合条件的点P的坐标________ .18、如图,A(3,4),B(0,1),C为x轴上一动点,当△ABC的周长最小时,则点C的坐标为________.19、如图,四边形OABC为矩形,点A,C分别在x轴和y轴上,连接AC,点B 的坐标为(4,3),∠CAO的平分线与y轴相交于点D,则点D的坐标为________.20、如图,在平面直角坐标系中,A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2).把一条长为2019个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A﹣B﹣C﹣D﹣A的规律绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是________.21、已知点A在第三象限,且到x轴,y轴的距离分别为4、5,则A点的坐标为________。

北师大版八年级上册数学第三章 位置与坐标含答案(必刷题)

北师大版八年级上册数学第三章 位置与坐标含答案(必刷题)

北师大版八年级上册数学第三章位置与坐标含答案一、单选题(共15题,共计45分)1、在平面直角坐标系xOy中,已知点P(2,2),点Q在y轴上,△PQO是等腰三角形,则满足条件的点Q共有()A.5个B.4个C.3个D.2个2、若点P(x,y)的坐标满足xy=0(x≠y),则点P必在()A.原点上B.x轴上C.y轴上D.x轴上或y轴上(除原点)3、为了保障艺术节表演的整体效果,某校在操场中标记了几个关键位置,如图是利用平面直角坐标系画出的关键位置分布图,若这个坐标系分别以正东、正北方向为x轴、y轴的正方向,表示点A的坐标为(1,0),表示点B的坐标为(3,3),则表示其他位置的点的坐标正确的是()A. B. C. D.4、已知点A(a﹣2,a+1)在x轴上,则a等于()A.1B.0C.﹣1D.25、在直角坐标系中,点M(,﹣2)在()A.第一象限B.第二象限C.第三象限D.第四象限6、在平面直角坐标系中,下面的点在第一象限的是()A.(1,2)B.(﹣2,3)C.(0,0)D.(﹣3,﹣2)7、下列数据能确定物体具体位置的是()A.明华小区东B.希望路右边C.东经118°,北纬28°D.北偏东30°8、如图,正五边形ABCDE放入某平面直角坐标系后,若顶点A,B,C,D的坐标分别是(0,a),(﹣3,2),(b,m),(c,m),则点E的坐标是()A.(2,﹣3)B.(2,3)C.(3,2)D.(3,﹣2)9、平面直角坐标系中的点P(2,-1)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限10、如图,己知菱形ABCD的顶点的坐标为,顶点B的坐标为若将菱形ABCD绕原点O逆时针旋转称为1次变换,则经过2020次变换后点C的坐标为( )A. B. C. D.11、如图,在平面直角坐标中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为,点A,B,E在x轴上,若正方形BEFG的边长为6,则C点坐标为()A.(3,2)B.(3,1)C.(2,2)D.(4,2)12、已知点M到x轴的距离为3,到y轴的距离为2,则M点的坐标为( )A.(3,2)B.(-3,-2)C.(3,-2)D.(2,3),(2,-3),(-2,3),(-2,-3)13、若(1,2)表示教室里第1列第2排的位置,则教室里第3列第2排的位置表示为A.(2,3)B.(3,2)C.(2,1)D.(3,3)14、下列语句.①横坐标与纵坐标互为相反数的点在直线y=-x上;②直线y=-x+2不经过第三象限;③除了用有序实数对,我们也可以用方向和距离来确定物体的位置;④若点P的坐标为(a,b),且ab=0,则P点是坐标原点;⑤函数中y的值随x的增大而减小.其中叙述正确的有()A.2个B.3个C.4个D.5个15、如果点M在第四象限,且点M到y轴的距离是4,到x轴的距离是3,则点M的坐标为()A.(4,-3)B.(-4,3)C.(3,4)D.(-3,4)二、填空题(共10题,共计30分)16、点M(2,﹣3)关于y轴对称的对称点N的坐标是________17、在平面直角坐标系中,已知点A1(1,1),A2(2,4),A3(3,9),A4(4,16),…,用你发现的规律确定点A2016的坐标为________18、如图,四边形OABC为矩形,点A,C分别在x轴和y轴上,连接AC,点B 的坐标为(4,3),∠CAO的平分线与y轴相交于点D,则点D的坐标为________.19、如图的平面直角坐标系中有一个正六边形ABCDEF,其中C、D的坐标分别为(1,0)和(2,0).若在无滑动的情况下,将这个六边形沿着x轴向右滚动,则在滚动过程中,这个六边形的顶点A,B,C,D,E,F中,会过点(45,2)的是点________.20、如图,在平面直角坐标系中,点A、B的坐标分别为、,点在第一象限内,连接、.已知,则________.21、点关于原点对称的点的坐标是________.22、在平面直角坐标系中,点P(-2,1)关于x轴的对称点的坐标为________23、点(5,-8)关于原点对称点的坐标为________24、已知在平面直角坐标系中,点O为坐标原点,点P的坐标为(-2,2),射线PA与x轴正半轴交于点A,射线PB与y轴负半轴交于点B,且线段OA的长度大于线段OB,同时始终满足∠APB=45°,则AOB的面积为________.25、若点与点关于轴对称,则________.三、解答题(共5题,共计25分)26、在直角坐标系中,用线段顺次连结点(-2,0),(0,3),(3,3),(0,4),(-2,0)。

2024-2025学年度北师版八上数学-第三章-位置与坐标-回顾与思考【课外培优课件】

2024-2025学年度北师版八上数学-第三章-位置与坐标-回顾与思考【课外培优课件】

数学 八年级上册 BS版
(1)【解析】因为四边形 OABC 为长方形,点 A 的坐标为(0, 5),点 C 的坐标为(9,0),所以点 B 的坐标为(9,5).故
答案为(9,5).
(2)解:设点 D 的运动时间为 t s.
由题意,得 OD = t , OC =9, BC =5, AB =9.
因为直线 CD 将长方形 OABC 的周长分为3∶4的两部分,
<0 ; ⁠
(2)已知| a -2|+( b -1)2=0,则点 A ( a , b )关于 y 轴对称的点的坐标为 (-2,1) .

数学 八年级上册 BS版
5. 如图,边长为3的等边三角形 BDC 的边 BD 在 y 轴上,顶点 C
在 x 轴上.若将△ BDC 沿 y 轴翻折得到△ BDA ,则点 A 的坐标
数学 八年级上册 BS版
(2)在 x 轴上是否存在一点 F ,使得△ DFC 的面积是△ DFB 面积的2倍?若存在,请求出点 F 的坐标;若不存在,请说明 理由.
解:(1)由题意,得 C (0,2), D (4,2).
S四边形ABDC= AB ·OC =4×2=8.
(2)存在符合条件的点F .

数学 八年级上册 BS版
8. 在平面直角坐标系中,点 O 为坐标原点,已知点 A (0, a ), B ( b , b ), C ( c , a ),其中 a , b 满足关系式| a -4|+ ( b -2)2=0,且 c = a + b . (1)求 A , B , C 三点的坐标,在如图的平面直角坐标系中画 出△ ABC ,并求出其面积. (2)在坐标轴上是否存在点 Q ,使△ COQ 的面积与△ ABC 的面积相等?若存在,请求出点 Q 的坐标;若不存在,请说 明理由.

北师大版八年级数学上册第三章《位置与坐标》 测试题(含答案)

北师大版八年级数学上册第三章《位置与坐标》 测试题(含答案)

北师大版八年级数学上册第三章《位置与坐标》测试题(含答案)一、选择题1、共享单车提供了便捷、环保的出行方式.小白同学在北京植物园打开某共享单车APP,如图,“”为小白同学的位置,“★”为检索到的共享单车停放点.为了到达距离最近的共享单车停放点,下列四个区域中,小白同学应该前往的是(A)A.F6 B.E6 C.D5 D.F72、已知点A在第二象限,到x轴的距离是5,到y轴的距离是6,点A的坐标为(B)A.(-5,6) B.(-6,5) C.(5,-6) D.(6,-5)3、若点N在第一、三象限的角平分线上,且点N到y轴的距离为2,则点N的坐标是(C)A.(2,2) B.(-2,-2) C.(2,2)或(-2,-2) D.(-2,2)或(2,-2).4、如图,建立适当的平面直角坐标系后,正方形网格上的点M,N的坐标分别为(0,2),(1,1),则点P的坐标为(B)A.(-1,2) B.(2,-1) C.(-2,1) D.(1,-2)5、在平面直角坐标系中,点A的坐标为(-3,4),那么下列说法正确的是(C)A.点A与点B(3,-4)关于x轴对称 B.点A与点C(-4,-3)关于x轴对称C.点A与点D(3,4)关于y轴对称 D.点A与点E(4,3)关于y轴对称6、如图,在平面直角坐标系中,△ABC关于直线m(直线m上各点的横坐标都为1)对称,点C的坐标为(4,1),则点B的坐标为(A)A.(-2,1) B.(-3,1) C.(-2,-1) D.(-2,-1)7、过点A(-3,2)和点B(-3,5)作直线,则直线AB(A)A.平行于y轴 B.平行于x轴 C.与y轴相交 D.与y轴垂直8、在平面直角坐标系中,坐标是整数的点称作格点,第一象限的格点P(x,y)满足2x +3y=7,则满足条件的点有(A)A.1个 B.2个 C.3个 D.4个9、如图所示,一方队正沿箭头所指的方向前进,A的位置为三列四行,表示为(3,4),那么C的位置应表示为(D)A.(4,5) B.(5,4) C.(4,2) D.(4,3)10、如图,在平面直角坐标系中,点A的坐标为(3,-2),直线MN∥x轴且交y轴于点C(0,1),则点A关于直线MN的对称点的坐标为(C)A.(-2,3) B.(-3,-2) C.(3,4) D.(3,2)二、填空题11、如图,点A 的坐标是(3,3),横坐标和纵坐标都是负数的是点C ,坐标是(-2,2)的是点D .12、若点P(a +13,2a +23)在第二、四象限的角平分线上,则a =-13.13、如图是某校的平面示意图的一部分,若用(0,0)表示图书馆的位置,(0,-3)表示校门的位置,则教学楼的位置可表示为(5,0).14、若点M(x ,y)在第二象限,且|x|-2=0,y 2-4=0,则点M 15、在平面直角坐标系中,△ABC 的位置如图所示,已知点A 的坐标是(-4,3). (1)点B 的坐标为(3,0),点C 的坐标为(-2,5); (2)△ABC 的面积是10;(3)作点C 关于y 轴的对称点C ′,那么A ,C ′两点之间的距离是16、在平面直角坐标系中,若干个边长为1个单位长度的等边三角形,按如图中的规律摆放.点P 从原点O 出发,以每秒1个单位长度的速度沿着等边三角形的边“OA 1→A 1A 2→A 2A 3→A 3A 4→A 4A 5…”的路线运动,设第n 秒运动到点P n (n 为正整数),则点P 2 019的坐标是(2 0192,2).三、解答题17、如图,在一次海战演习中,红军和蓝军双方军舰在战前各自待命,从总指挥部看: (1)南偏西60°方向上有哪些目标?(2)红方战舰2和战舰3在总指挥部的什么方向上?(3)若蓝A 距总指挥部的实际距离200 km ,则红1距总指挥部的实际距离是多少?解:(1)蓝C ,蓝B. (2)北偏西45°. (3)600 km.18、如图,在平面直角坐标系内,已知点A(8,0),点B 的横坐标是2,△AOB 的面积为12.(1)求点B 的坐标;(2)如果P 是平面直角坐标系内的点,那么点P 的纵坐标为多少时,S △AOP =2S △AOB? 解:(1)设点B 的纵坐标为y. 因为A(8,0), 所以OA =8.则S △AOB =12OA ·|y|=12,解得y =±3.所以点B 的坐标为(2,3)或(2,-3). (2)设点P 的纵坐标为h. 因为S △AOP =2S △AOB =2×12=24, 所以12OA ·|h|=24,即12×8|h|=24,解得h =±6.所以点P 的纵坐标为6或-6. 19、在平面直角坐标系中:(1)已知点P(a -1,3a +6)在y 轴上,求点P 的坐标;(2)已知两点A(-3,m),B(n ,4),若AB ∥x 轴,点B 在第一象限,求m 的值,并确定n 的取值范围;(3)在(1)(2)的条件下,如果线段AB 的长度是5,求以P ,A ,B 为顶点的三角形的面积S.解:(1)因为点P(a -1,3a +6)在y 轴上, 所以a -1=0,解得a =1. 所以3a +6=3×1+6=9, 故P(0,9). (2)因为AB ∥x 轴, 所以m =4.因为点B 在第一象限, 所以n >0. 所以m =4,n >0.(3)因为AB =5,A ,B 的纵坐标都为4, 所以点P 到AB 的距离为9-4=5. 所以S △PAB =12×5×5=12.5.20、(1)在数轴上,点A 表示数3,点B 表示数-2,我们称A 的坐标为3,B 的坐标为-2.那么A ,B 的距离AB =5;一般地,在数轴上,点A 的坐标为x 1,点B 的坐标为x 2,则A ,B 的距离AB =|x 1-x 2|;(2)如图1,在平面直角坐标系中点P 1(x 1,y 1),点P 2(x 2,y 2),求P 1,P 2的距离P 1P 2; (3)如图2,在△ABC 中,AO 是BC 边上的中线,利用(2)的结论说明:AB 2+AC 2=2(AO 2+OC 2).解:(2)因为在平面直角坐标系中,点P1(x1,y1),点P2(x2,y2),所以P1P2=(x1-x2)2+(y1-y2)2.(3)设A(a,d),C(c,0),因为O是BC的中点,所以B(-c,0).所以AB2+AC2=(a+c)2+d2+(a-c)2+d2=2(a2+c2+d2),AO2+OC2=a2+d2+c2.所以AB2+AC2=2(AO2+OC2).21、在某河流的北岸有A,B两个村子,A村距河北岸的距离为1千米,B村距河北岸的距离为4千米,且两村相距5千米,B在A的右边,现以河北岸为x轴,A村在y轴正半轴上(单位:千米).(1)请建立平面直角坐标系,并描出A,B两村的位置,写出其坐标;(2)近几年,由于乱砍滥伐,生态环境受到破坏,A,B两村面临缺水的危险.两村商议,共同在河北岸修一个水泵站,分别向两村各铺一条水管,要使所用水管最短,水泵站应修在什么位置?在图中标出水泵站的位置,并求出所用水管的长度.解:(1)如图,点A(0,1),点B(4,4).(2)找A关于x轴的对称点A′,连接A′B交x轴于点P,则P点即为水泵站的位置,PA +PB =PA ′+PB =A ′B 且最短(如图). 因为A(0,1),B(4,4),所以A ′(0,-1). 所以A ′B =42+(4+1)2=41. 故所用水管的最短长度为41千米.22、如图,在平面直角坐标系中,AB ∥CD ,AB =CD ,CD 在x 轴上,B 点在y 轴上,若OB =OC ,点A 的坐标为(-3-1,3).求:(1)点B ,C ,D 的坐标; (2)S △ACD .解:(1)因为点A 的坐标为(-3-1,3).所以点A 到y 轴的距离是|-3-1|=3+1,到x 轴的距离是3, 所以AB =CD =3+1,OB =OC = 3. 所以OD =1.所以点B 的坐标为(0,3),点C 的坐标为(3,0),点D 的坐标为(-1,0). (2)S △ACD =12CD ·OB =12×(3+1)×3=3+32.23、如图,在长方形OABC 中,O 为平面直角坐标系的原点,A ,C 两点的坐标分别为(3,0),(0,5),点B 在第一象限内.(1)写出点B 的坐标;(2)若过点C 的直线CD 交AB 于点D ,且把AB 分为4∶1两部分,写出点D 的坐标; (3)在(2)的条件下,计算四边形OADC 的面积.解:(1)因为A ,C 两点的坐标分别为(3,0),(0,5). 所以点B 的横坐标为3,纵坐标为5. 所以点B 的坐标为(3,5).(2)若AD ∶BD =4∶1,则AD =5×41+4=4,此时点D 的坐标为(3,4).若AD ∶BD =1∶4,则AD =5×11+4=1,此时点D 的坐标为(3,1).综上所述,点D 的坐标为(3,4)或(3,1). (3)当AD =4时,S 四边形OADC =12×(4+5)×3=272,当AD =1时,S 四边形OADC =12×(1+5)×3=9.综上所述,四边形OADC 的面积为272或9.24、如图,在平面直角坐标系中,已知A(0,a),B(b ,0),C(b ,c)三点,其中a ,b ,c 满足关系式|a -2|+(b -3)2=0,(c -5)2≤0.(1)求a ,b ,c 的值;(2)如果在第二象限内有一点P(m ,53),请用含m 的式子表示四边形APOB 的面积;(3)在(2)的条件下,是否存在点P ,使四边形AOBC 的面积是四边形APOB 的面积的2倍?若存在,求出点P 的坐标,若不存在,请说明理由.解:(1)由已知|a -2|+(b -3)2=0,(c -5)2≤0可得: a -2=0,b -3=0,c -5=0, 解得a =2,b =3,c =5. (2)因为a =2,b =3,c =5, 所以A(0,2),B(3,0),C(3,5). 所以OA =2,OB =3.所以S 四边形ABOP =S △ABO +S △APO =12×2×3+12×(-m)×2=3-m.(3)存在.因为S 四边形AOBC =S △AOB +S △ABC =3+12×3×5=10.5,所以2(3-m)=10.5,解得m =-94.所以存在点P(-94,53),使四边形AOBC 的面积是四边形APOB 的面积的2倍.25、如图,在平面直角坐标系xOy 中,A ,B 两点分别在x 轴、y 轴的正半轴上,且OB =OA =3.(1)求点A ,B 的坐标;(2)若点C(-2,2),求△BOC 的面积;(3)点P 是第一,三象限角平分线上一点,若S △ABP =332,求点P 的坐标.解:(1)因为OB =OA =3,所以A ,B 两点分别在x 轴,y 轴的正半轴上.所以A(3,0),B(0,3).(2)S △BOC =12OB ·|x C |=12×3×2=3. (3)因为点P 在第一,三象限的角平分线上,所以设P(a ,a).因为S △AOB =12OA ·OB =92<332. 所以点P 在第一象限AB 的上方或在第三象限.当P 1在第一象限AB 的上方时,S △ABP 1=S △P 1AO +S △P 1BO -S △AOB =12OA ·yP 1+12OB ·xP 1-12OA ·OB , 所以12×3a +12×3a -12×3×3=332,解得a =7. 所以P 1(7,7).当P 2在第三象限时,S △ABP 2=S △P 2AO +S △P 2BO +S △AOB =12OA ·yP 2+12OB ·xP 2+12OA ·OB. 所以12×3×(-a)+12×3×(-a)+12×3×3=332,解得a =-4. 所以P 2(-4,-4).综上所述,点P 的坐标为(7,7)或(-4,-4).。

北师大版八年级上数学第三章《位置与坐标》练习题(含答案)

北师大版八年级上数学第三章《位置与坐标》练习题(含答案)

第三章位置与坐标3.1 确定位置A阶练习1.根据下列表述,能确定位置的是()A.红星电影院2排B.北京市四环路C.北偏东30°D.东经118°,北纬40°2.某班级第4组第5排位置可以用数对(4,5)表示,则数对(2,3)表示的位置是()A.第3组第2排B.第3组第1排C.第2组第3排D.第2组第2排3.点A的位置如图所示,则关于点A的位置下列说法中正确的是()A.距点O 4km处B.北偏东40°方向上4km处C.在点O北偏东50°方向上4km处D.在点O北偏东40°方向上4km处4.如图是丁丁画的一张脸的示意图,如果用(−2,2)表示左眼,用(0,2)表示右眼,那么嘴的位置可以表示成()A.(1,0)B.(−1,0)C.(−1,1)D.(1,−1)5.如图是人民公园的部分平面示意图,为准确表示地理位置,可以建立坐标系用坐标表示地理位置,若牡丹园的坐标是(2,2),南门的坐标是(0,−3),则湖心亭的坐标为()A.(−1,3)B.(−3,1)C.(−3,−1)D.(3,−1)6.如图,象棋盘上,若“将”位于点(3,−2),“车”位于点(−1,−2),则“马”位于()A.(1,3)B.(5,3)C.(6,1)D.(8,2)7.以水平数轴的原点O为圆心,过正半轴Ox上的每一刻度点画同心圆,将Ox逆时针依次旋转30°、60°、90°、…、330°得到11条射线,构成如图所示的“圆”坐标系,点A、B的坐标分别表示为(5,0°)、(4,300°),则点C的坐标表示为.8.如果电影院的6排3号座位用(6,3)表示,那么该影院的7排5号座位可以表示为.9.如图,这是某市部分简图,为了确定各建筑物的位置:(图中小正方形的边长代表100m长)(1)请你以火车站为原点建立平面直角坐标系.(2)写出市场、超市、医院的坐标.3.2 平面直角坐标系A阶练习1.(2020春•南昌期末)点A(n+2,1−n)不可能在()A.第一象限B.第二象限C.第三象限D.第四象限2.(2020春•广丰区期末)关于点P(−2,0)在直角坐标平面中所在的象限说法正确的是()A.点P在第二象限B.点P在第三象限C.点P既在第二象限又在第三象限D.点P不在任何象限3.(2020春•兴国县期末)在平面直角坐标系中,若a<0,则点(−2,−a)的位置在()A.第一象限B.第二象限C.第三象限D.第四象限4.(2019秋•东湖区期末)P(6,−1)关于x轴的对称点坐标为()A.(6,1)B.(−6,−1)C.(−6,1)D.(−1,6)5.(2020•邗江区校级一模)如果点P(m+3,m+1)在x轴上,则点P的坐标为()A.(0,2)B.(2,0)C.(4,0)D.(0,−4)6.(2020•武汉模拟)在平面直角坐标系中,点M(3,−5)关于原点对称的点的坐标是()A.(−3,−5)B.(3,5)C.(5,−3)D.(−3,5)7.(2020春•南昌期末)已知点A(−3,2),AB∥坐标轴,且AB=4,若点B在x轴的上方,则点B坐标为.8.(2019秋•抚州期末)点A(5,−1)关于x轴对称的点A'的坐标是.9.(2019秋•广丰区期末)点A(1,5)关于原点对称,得到点A′,那么A′的坐标是.10.(2020春•宁都县期末)在平面直角坐标系中,点(2,3)到x轴的距离是.11.(2020春•霍林郭勒市期末)若点N(x,y)在第二象限,且到x轴距离为2,到y轴距离为3,则点N的坐标是.12.(2020•长汀县一模)已知点P(3,a)关于y轴的对称点为Q(b,2),则ab=.13.(2020春•单县期末)已知点P(−3a−4,2+a),解答下列各题:(1)若点P在x轴上,试求出点P的坐标;(2)若Q(5,8),且PQ∥y轴,试求出点P的坐标.14.(2020春•广丰区校级期末)已知点P(a−2,2a+8),分别根据下列条件求出点P的坐标.(1)点P在x轴上;(2)点P在y轴上;(3)点Q的坐标为(1,5),直线PQ∥y轴;(4)点P到x轴、y轴的距离相等.15.(2019秋•吉安期中)在平面直角坐标系xOy中,△ABC的位置如图所示.(1)顶点A关于x轴对称的点A′的坐标(,),顶点B的坐标(,),顶点C关于原点对称的点C′的坐标(,).(2)△ABC的面积为.一.选择题(共5小题)1.在平面直角坐标系中,点P与点M关于y轴对称,点N与点M关于x轴对称,若点P的坐标为(−2,3),则点N的坐标为()A.(−3,2)B.(2,3)C.(2,−3)D.(−2,−3)2.已知坐标平面内,线段AB∥x轴,点A(−2,4),AB=1,则B点坐标为()A.(−1,4)B.(−3,4)C.(−1,4)或(−3,4)D.(−2,3)或(−2,5)3.平面直角坐标系中,点A(−2,−1),B(1,3),C(x,y),若AC∥x轴,则线段BC的最小值为()A.2B.3C.4D.54.已知a+b>0,ab>0,则在如图所示的平面直角坐标系中,小手盖住的点的坐标可能是()A.(a,b)B.(−a,b)C.(−a,−b)D.(a,−b)5.在平面直角坐标系中,点P(−3,2)到原点的距离为()A.1B.√5C.√13D.√116.已知直角坐标平面内两点A(−3,1)和B(3,−1),则A、B两点间的距离等于.7.已知点M(a,b)的坐标满足ab>0,且a+b<0,则点N(1−a,b−1)在第象限.8.如图,在平面直角坐标系中,DC=AB,OD=OB,则点C的坐标是.9.已知点A(m,−2)和点B(3,n),若直线AB∥x轴,且AB=4,则m+n的值.10.a、b、c为△ABC的三条边,满足条件点(a−c,a)与点(0,−b)关于x轴对称,判断△ABC的形状.B阶练习11.已知点P(2m+4,m−1),请分别根据下列条件,求出点P的坐标.(1)点P在x轴上;(2)点P的纵坐标比横坐标大3;(3)点P在过点A(2,−4)且与y轴平行的直线上.12.如图,已知四边形ABCD.(1)写出点A,B,C,D的坐标;(2)试求四边形ABCD的面积.(网格中每个小正方形的边长均为1)13.平面直角坐标系中有一点M(a−1,2a+7),试求满足下列条件的α值(1)点M在y轴上;(2)点M到x轴的距离为1;(3)点M到y轴的距离为2;(4)点M到两坐标轴的距离相等.3.3 轴对称与坐标变化1.(2019春•南丰县期中)若将点(−1,3)向左平移3个单位,再向下平移4个单位得到点B,则B点坐标为()A.(−4,−1)B.(2,−1)C.(2,7)D.(−4,7)2.(2019春•宜昌期中)如果甲图形上的点P(−2,4)经平移变换后是Q(3,−2),则甲图上的点M(1,−2)经这样平移后的对应点的坐标是()A.(6,−8)B.(−4,4)C.(5,3)D.(3,−5)3.(2019春•河池期末)线段CD是由线段AB平移得到的.点A(−1,4)的对应点为C(4,7),则点B(−4,−1)的对应点D的坐标为()A.(2,9)B.(5,3)C.(1,2)D.(−9,−4)4.(2019春•虹口区期末)平面直角坐标系中,将正方形向上平移3个单位后,得到的正方形各顶点与原正方形各顶点坐标相比()A.横坐标不变,纵坐标加3B.纵坐标不变,横坐标加3C.横坐标不变,纵坐标乘以3D.纵坐标不变,横坐标乘以35.(2019春•南昌期中)将△ABC平移得到△A1B1C1,若已知对应点A(m,n)和A1(2m,2n),则B(a,b)的对应点B1的坐标为()A.(2a,2b)B.(a+m,b+n)C.(a+2,b+2)D.无法确定6.(2019春•高安市期中)在平面直角坐标系内,把点A(4,−1)先向右平移3个单位长度,再向上平移2个单位长度得到点A′,则点A′的坐标是.7.(2019秋•会昌县期中)在平面直角坐标系中,将点P(−3,2)绕点O(0,0)顺时针旋转90°,所得到的对应点P′的坐标为.8.(2020春•赣州期中)若将P(1,−m)向右平移2个单位长度后,再向上平移1个单位长度得到点Q(n,3),则点(m,n)的实际坐标是.9.(2019春•南昌期末)若点A(a−1,a+2)在x轴上,将点A向上平移4个单位长度得点B,则点B的坐标是.10.(2019•和平区一模)如图,A,B的坐标为(2,0),(0,1)若将线段AB平移至A1B1,则a+b的值为.11.(2020春•新余期末)将△ABC向右平移4个单位长度,再向下平移5个单位长度,A阶练习(1)作出平移后的△A′B′C′.(2)求出△A′B′C′的面积.12.(2020春•渝水区校级月考)在平面直角坐标系中,△ABC经过平移得到三角形△A′B′C′,位置如图所示:(1)分别写出点A、A'的坐标:A,A';(2)若点M(m,n)是△ABC内部一点,则平移后对应点M'的坐标为;(3)求△ABC的面积.B阶练习1.如图,将线段AB绕点C(4,0)顺时针旋转90°得到线段A'B',那么A(2,5)的对应点A'的坐标是()A.(9,2)B.(7,2)C.(9,4)D.(7,4)2.将点P(m+2,2﹣m)向左平移1个单位长度到P',且P'在y轴上,那么点P的坐标是()A.(1,3)B.(3,−1)C.(−1,5)D.(3,1)3.在平面直角坐标系中,点G的坐标是(−2,1),连接OG,将线段OG绕原点O旋转180°,得到对应线段OG',则点G'的坐标为()A.(2,−1)B.(2,1)C.(1,−2)D.(−2,−1)4.如图,在平面直角坐标系中,A(1,0),B(−2,4),AB绕点A顺时针旋转90°得到AC,则点C的坐标是()A.(4,3)B.(4,4)C.(5,3)D.(5,4)5.在平面直角坐标系中,把点P(3,4)绕原点旋转90°得到点P1,则点P1的坐标是()A.(−4,3)B.(−3,4)C.(−3,4)或(3,−4)D.(−4,3)或(4,−3)6.已知点M(3a−9,1−a),将M点向左平移3个单位长度后落在y轴上,则M的坐标是.7.已知点A(−4,3)、B(2,−1)两点,现将线段AB进行平移,使点A移到坐标原点,则此时点B的坐标是.8.如图,点P(−2,1)与点Q(a,b)关于直线l(y=−1)对称,则a+b=.9.在平面直角坐标系中,点P(−2,5)关于直线x=2对称的点的坐标为.10.如图,在直角坐标系中,已知点A(3,2),将△ABO绕点O逆时针方向旋转180°后得到△CDO,则点C的坐标是.11.已知:如图,把△ABC向上平移3个单位长度,再向右平移2个单位长度,得到△A′B′C′.(1)写出A′、B′、C′的坐标;(2)求出△ABC的面积;(3)点P在y轴上,且△BCP与△ABC的面积相等,求点P的坐标.12.已知三角形ABC与三角形A'B'C'在平面直角坐标系中的位置如图(1)分别写出点B、B'的坐标:B,B';(2)若点P(a,b)是三角形ABC内部一点,则平移后三角形A'B'C'内的对应点P'的坐标为;(3)求三角形ABC的面积.第三章《位置与坐标》3.1 确定位置A阶练习1.D.2.C.3.D.4.B.5.B.6.C.7.(3,240°).8.(7,5).9.解:(1)建立平面直角坐标系如图所示;(2)市场(400,300),医院(−200,−200),超市(200,−300).3.2 平面直角坐标系A阶练习1.C.2.D.3.B.4.A.5.B.6.D.7.(−3,6)或(1,2)或(−7,2).8.(5,1).9.(−1,−5).10.3.11.(−3,2).12.−6.13.解:(1)∵点P在x轴上,∴2+a=0,∴a=−2,∴−3a−4=2,∴P(2,0)(2)∵Q(5,8),且PQ∥y轴,∴−3a−4=5,a=−3,∴2+a=−1,P(5,−1)14.解:(1)∵点P(a−2,2a+8),在x轴上,∴2a+8=0,解得:a=−4,故a−2=−4−2=−6,则P(−6,0);(2))∵点P(a−2,2a+8),在y轴上,∴a−2=0,解得:a=2,故2a+8=2×2+8=12,则P(0,12);(3)∵点Q的坐标为(1,5),直线PQ∥y轴;,∴a−2=1,解得:a=3,故2a+8=14,则P(1,14);(4)∵点P到x轴、y轴的距离相等,∴a−2=2a+8或a−2+2a+8=0,解得:a1=−10,a2=−2,故当a=−10则:a−2=−12,2a+8=−12,则P(−12,−12);故当a=−2则:a−2=−4,2a+8=4,则P(−4,4).综上所述:P(−12,−12),(−4,4).15.解:(1)顶点A关于x轴对称的点A′的坐标(−4,−3),顶点B的坐标(3,0),顶点C关于原点对称的点C′的坐标(2,−5).故答案为:−4,−3;3,0;2,−5;(2)△ABC的面积为:12×5×5+2×5−12×2×2−12×3×7=10.故答案为:10.B阶练习1.C.2.C.3.C.4.B.5.C.6.2√10.7.四.8.(0,1).9.5或﹣3.10.等边三角形.11.解:(1)∵点P(2m+4,m−1)在x轴上,∴m−1=0,解得m=1,∴2m+4=2×1+4=6,m−1=0,所以,点P的坐标为(6,0);(2)∵点P(2m+4,m−1)的纵坐标比横坐标大3,∴m−1−(2m+4)=3,解得m=−8,∴2m+4=2×(−8)+4=−12,m−1=−8−1=−9,∴点P的坐标为(−12,−9);(3)∵点P(2m+4,m−1)在过点A(2,−4)且与y轴平行的直线上,∴2m+4=2,解得m=−1,∴m−1=−1−1=−2,∴点P的坐标为(2,−2).12.解:(1)A(−2,1),B(−3,−2),C(3,−2),D(1,2);(2)S四边形ABCD=3×3+2×12×1×3+12×2×4=16.13.解:(1)∵点M在y轴上,∴a−1=0,∴a=1;(2)∵点M到x轴的距离为1;∴2a+7=1或2a+7=−1,∴a=−3或a=−4;(3)∵点M到y轴的距离为2,∴a−1=2或a−1=−2,∴a=3或a=−1;(4)∵点M到两坐标轴的距离相等,∴|a−1|=|2a+7|,∴a=−2或a=−8.3.3 轴对称与坐标变换A阶练习1.A.2.A.3.C.4.A.5.B.6.(7,1).7.(2,3).8.(−2,3).9.(−3,4).10.2.11.解:(1)如图.(2)△A′B′C′的面积是:7×8−12×3×7−12×5×2−12×8×5=20.5.12.解:(1)由图知A(1,0),A'(−4,4);(2)A(1,0)对应点的对应点A′(−4,4)得A 向左平移5个单位,向上平移4个单位得到A′,故△ABC内M(m,n)平移后对应点M'的坐标为(m−5,n+4);(3)△ABC的面积为:4×4−12×4×2−12×3×2−12×1×4=7.B阶练习1.A.2.A.3.A.4.C.5.D.6.(3,−3).7.(6,−4).8.−5.9.(6,5).10.(−3,−2).11.解:(1)如图所示:A′(0,4)、B′(−1,1)、C′(3,1);(2)S△ABC=12×(3+1)×3=6;(3)设点P坐标为(0,y),∵BC=4,点P到BC的距离为|y+2|,由题意得12×4×|y+2|=6,解得y=1或y=−5,所以点P的坐标为(0,1)或(0,−5).12.解:(1)观察图象可知B(3,−4),B′(−2,0).故答案为:(3,−4),(−2,0).(2)由题意△A′B′C′是由△ABC向左平移5个单位,向上平移4个单位得到,∴P′(a−5,b+4).故答案为(a−5,b+4).(3)S△ABC=4×4−12×2×4−12×4×1−12×2×3=7.。

北师大八年级上第3章位置与坐标达标测试卷含答案

北师大八年级上第3章位置与坐标达标测试卷含答案

北师大八年级上第3章位置与坐标达标测试卷含答案一、选择题(每题3分,共30分)1.根据下列表述,能确定位置的是( )A.光明剧院2排B.某市人民路C.北偏东40°D.东经112°,北纬36°2.在平面直角坐标系中,点A(-3,0)在( )A.x轴正半轴上B.x轴负半轴上C.y轴正半轴上D.y轴负半轴上3.如图,如果“仕”所在位置的坐标为(-1,-2),“相”所在位置的坐标为(2,-2),那么“炮”所在位置的坐标为( )A.(-3,1) B.(1,-1) C.(-2,1) D.(-3,3)(第3题) (第8题)(第9题) (第10题) 4.若点A(m,n)在第二象限,则点B(-m,|n|)在( )A.第一象限B.第二象限C.第三象限D.第四象限5.平面直角坐标系内的点A(-1,2)与点B(-1,-2)关于( ) A.y轴对称B.x轴对称C.原点对称D.直线y=x对称6.已知点A(1,0),B(0,2),点P在x轴上,且△PAB的面积为5,则点P的坐标为( )A.(-4,0) B.(6,0)C.(-4,0)或(6,0) D.无法确定7.在以下四点中,哪一点与点(-3,4)所连的线段与x轴和y轴都不相交( )A.(-5,1) B.(3,-3) C.(2,2) D.(-2,-1)8.如图是小李设计的49方格扫雷游戏,“★”代表地雷(图中显示的地雷在游戏中都是隐藏的),点A可用(2,3)表示,如果小惠不想因点到地雷而结束游戏的话,下列选项中,她应该点( )A.(7,2) B.(2,6) C.(7,6) D.(4,5)9.如图,已知在边长为2的等边三角形EFG中,以边EF所在直线为x轴建立适当的平面直角坐标系,得到点G的坐标为(1,3),则该坐标系的原点在( )A.E点处B.F点处C.G点处D.EF的中点处10.如图,弹性小球从点P(0,3)出发,沿所示方向运动,每当小球碰到长方形OABC的边时反弹,反弹时反射角等于入射角.小球第1次碰到长方形的边时的点为P1,第2次碰到长方形的边时的点为P2……第n次碰到长方形的边时的点为P n,则点P3的坐标是(8,3),点P2 018的坐标是( )A.(8,3) B.(7,4) C.(5,0) D.(3,0)二、填空题(每题3分,共24分)11.已知点A在x轴上,且OA=3,则点A的坐标为__________.12.已知小岛A在灯塔B的北偏东30°的方向上,则灯塔B在小岛A的________的方向上.13.对任意实数,点P(x,x-2)一定不在第______象限.14.点__________与(-3,7)关于x轴对称,点__________与(-3,7)关于y轴对称,点(-3,7)与(-3,-2)之间的距离是________.15.在平面直角坐标系中,一青蛙从点A(-1,0)处向右跳2个单位长度,再向上跳2个单位长度到点A′处,则点A′的坐标为__________.16.如图,平面直角坐标系中有四个点,它们的横、纵坐标均为整数.若在此平面直角坐标系内移动点A,使得这四个点构成的四边形是轴对称图形,并且点A的横、纵坐标仍是整数,则移动后点A的坐标为__________.(第16题) (第17题) (第18题)17.如图,在△ABC中,点A的坐标为(0,1),点B的坐标为(0,4),点C 的坐标为(4,3),如果要使△ABD与△ABC全等,那么点D的坐标是________________________.18.将正整数按如图的规律排列下去,若用有序数对(m,n)表示m排从左到右第n个数.如(4,3)表示9,则(15,4)表示________.三、解答题(19~21题每题10分,其余每题12分,共66分)19.在直角坐标系中描出下列各组点,并将各组内的点用线段依次连接起来.(1)(2,6),(4,6),(4,8),(2,8);(2)(3,0),(3,3),(3,6);(3)(3,5),(1,6);(4)(3,5),(5,6);(5)(3,3),(2,0);(6)(3,3),(4,0).20.小林放学后,先向东走了300 m再向北走200 m,到书店A买了一本书,然后向西走了500 m再向南走了100 m,到快餐店B买了零食,又向南走了400 m,再向东走了800 m到了家C.请建立适当的平面直角坐标系,并在坐标系中画出点A,B,C的位置.21.如图是规格为8×8的正方形网格,请在所给网格中按下列要求操作:(1)请在网格中建立平面直角坐标系,使点A的坐标为(-2,4),点B的坐标为(-4,2);(2)在第二象限内的格点上找一点C,使点C与线段AB组成一个以AB为底的等腰三角形,且腰长是无理数,画出△ABC,则点C的坐标是________,△ABC的周长是________(结果保留根号);(3)作出△ABC关于x轴对称的△A′B′C′.(第21题)22.在直角坐标系中,有点A(3,0),B(0,4),若有一个直角三角形与Rt △ABO全等且它们只有一条公共直角边,请写出这些直角三角形各顶点的坐标(不要求写计算过程).23.长阳公园有四棵古树A,B,C,D,示意图如图所示.(1)请写出A,B,C,D四点的坐标;(2)为了更好地保护古树,公园决定将如图所示的四边形EFGH用围栏圈起来划为保护区,请你计算保护区的面积(单位:m).(第23题)24.如图,已知点P(2m-1,6m-5)在第一象限的角平分线OC上,AP⊥BP,点A在x轴上,点B在y轴上.(1)求点P的坐标.(2)当∠APB绕点P旋转时,OA+OB的值是否发生变化?若变化,求出其变化范围;若不变,求出这个定值.(第24题)答案一、1.D 2.B 3.A 4.A 5.B 6.C7.A 8.D 9.A 10.B二、11.(3,0)或(-3,0)12.南偏西30°13.二14.(-3,-7);(3,7);9 15.(1,2)16.(-1,1)或(-2,-2)17.(4,2)或(-4,2)或(-4,3) 18.109三、19.解:画出的图形如图所示.(第19题)20.解:(答案不唯一)以学校门口为坐标原点、向东为x轴的正方向建立平面直角坐标系,各点的位置如图:(第20题)21.解:(1)如图所示(第21题)(2)如图所示.(-1,1);210+22(3)如图所示.22.解:根据两个三角形全等及有一条公共直角边,可利用轴对称得到满足这些条件的直角三角形共有6个.如图:(第22题)①Rt△OO1A,②Rt△OBO1,③Rt△A2BO,④Rt△A1BO,⑤Rt△OB1A,⑥Rt△OAB2.这些三角形各个顶点的坐标分别为:①(0,0),(3,4),(3,0);②(0,0),(0,4),(3,4);③(-3,4),(0,4),(0,0);④(-3,0),(0,4),(0,0);⑤(0,0),(0,-4),(3,0);⑥(0,0),(3,0),(3,-4).23.解:(1)A (10,10),B (20,30),C (40,40),D (50,20).(2)四边形EFGH 各顶点坐标分别为E (0,10),F (0,30),G (50,50),H (60,0),另外M (0,50),N (60,50),则保护区的面积S =S 长方形MNHO -S △GMF -S △GNH -S △EHO =60×50-12×20×50-12×10×50-12×10×60=3 000-500-250-300=1 950(m 2).24.解:(1)由题意,得2m -1=6m -5.解得m =1.所以点P 的坐标为(1,1).(2)当PA 不垂直于x 轴时,作PD ⊥x 轴于点D ,PE ⊥y 轴于点E ,则△PAD ≌△PBE ,所以AD =BE .所以AD =BE .所以OA +OB =OD +AD +OB =OD +BE +OB =OD +OE =2,为定值.当PA ⊥x 轴时,显然PB ⊥y 轴,此时OA +OB =2,为定值.故OA +OB 的值不发生变化,其值为2.。

北师大版数学八年级上册 第3章 位置与坐标测试卷(含答案)

北师大版数学八年级上册 第3章 位置与坐标测试卷(含答案)

第3章测试卷(满分120分,时间90分钟)项是符合要求的)1.根据下列表述,能确定位置的是( )A.光明剧院2排B.某市人民路C.北偏东40°D.东经112°,北纬36°2.在平面直角坐标系中,点 A(-3,0)在( )A.x轴正半轴上B.x轴负半轴上C.y轴正半轴上D.y轴负半轴上3.如图,小明从点O出发,先向西走40米,再向南走30米到达点M.如果点M的位置用(-40,-30)表示,那么(10,20)表示的位置是( )A.点AB.点 BC.点 CD.点 D4.在以下四点中,哪一点与点(-3,4)所连的线段与x轴和y轴都不相交( )A.(-5,1)B.(3,-3)C.(2,2)D.(-2,-1)5.已知A(6,0),B(2,1),O(0,0),则△ABO的面积为( )A.1B.2C.3D.46.已知M(1,—2),N(—3,—2),则直线MN与x轴,y轴的位置关系分别为( )A.相交,相交B.平行,平行C.垂直相交,平行D.平行,垂直相交7.已知点A(a,2019)与点A'(-2 020,b)是关于原点 O的对称点,则a+b的值为( )A.1B.5C.6D.48.雷达二维平面定位的主要原理是:测量目标的两个信息——距离和角度,目标的表示方法为(m,α),其中,m表示目标与探测器的距离;α表示以正东为始边,逆时针旋转后的角度.如图,雷达探测器显示在点A,B,C处有目标出现,其中,目标A的位置表示为A(5,30°),目标C的位置表示为C(3,300°).用这种方法表示目标 B的位置,正确的是( )A.(-4,150°)B.(4,150°)C.(-2,150°)D.(2,150°)9.无论m为何值,点A(m,5-2m)不可能在( )A.第一象限B.第二象限C.第三象限D.第四象限10.一个小球从点 A(3,3)出发,经过y轴上点C 反弹后经过点B(1,0),则小球从A 点经过点 C 到B 点经过的最短路线长是( )A.4B.5C.6D.7二、填空题(本大题共8小题,每小题4分,共32分.本题要求把正确结果填在规定的横线上,不需要解答过程)11.点A(−√3,0)关于y轴的对称点的坐标是 .12.已知点 A(m-1,3)与点 B(2,n+1)关于x轴对称,则m=. .13.在平面直角坐标系中,点A₁(1,1),A₂(2,4),A₃(3,9),A₄(4,16),…,用你发现的规律确定点.A₉的坐标是14.在平面直角坐标系中,一青蛙从点A(-1,0)处向右跳2个单位长度,再向上跳2个单位长度到点A′处,则点 A'的坐标为 .15.在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点,观察图中每一个正方形(实线)四条边上的整点的个数,请你猜测由里向外第20个正方形(实线)四条边上的整点个数共有个.16.如图,在△ABC中,点A的坐标为(0,1),点 B 的坐标为(0,4),点 C 的坐标为(4,3),如果要使△ABD与.△ABC全等,那么点 D的坐标是 .17.如图,在△ABC中,点 A 的坐标为(0,1),点C的坐标为(4,3)如果要使以点 A、B、D为顶点的三角形与△ABC全等,那么点 D的坐标是 .18.在平面直角坐标系中,孔明做走棋游戏,其走法是:棋子从原点出发,第1步向右走1个单位长度,第2步向右走2个单位长度,第3步向上走1个单位长度,第4步向右走1个单位长度……依次类推,第n步的走法是:当n能被3整除时,则向上走1个单位长度;当n被3除余数是1时,则向右走1个单位长度,当n被3除余数为2时,则向右走2个单位长度,当走完第100步时,棋子所处位置的坐标是三、解答题(本大题共6小题,满分58分.解答应写出文字说明、证明过程或演算步骤)19.(8分)在平面直角坐标系中,点A关于y轴的对称点为点B,点B关于x轴的对称点为点C.(1)若点 A 的坐标为(1,2),请你在给出的坐标系中画出△ABC,设的值;AB 与y轴的交点为D,求S ADOS ABC(2)若点 A的坐标为(a,b)(ab≠0),判断△ABC的形状.20.(8分)如图,在平面直角坐标系中,线段AB的两个端点坐标分别为A(2,3),B(2,-1).(1)作出线段AB 关于y 轴对称的线段C、D.(2)怎样表示线段CD 上任意一点 P 的坐标?21.(10分)长阳公园有四棵古槐A,B,C,D(单位:m).(1)请写出A,B,C,D四点的坐标;(2)为了更好地保护古树,公园决定净如图所示的四边莆EFGH 用围栏圈起来,划为保护区,请你计算保护区的面积.22.(10分)在平面直角坐标系xOy中,点M的坐标为((3,−2),,线段AB的位置如图所示,其中点 A 的坐标为(7,3),点 B的坐标为(1,4).(1)将线段AB平移可以得到线段MN,其中点 A 的对应点为M(3,−2),点 B 的对应点为N,则点 N的坐标为 .(2)在(1)的条件下,若点C的坐标为(4,0),请在图中描出点 N 并顺次连接BC,CM,MN,NB,然后求出四边形 BCMN的面积S.23.(10分)在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右方向依次不断移动,每次移动1个单位.其行走路线如下图所示.(1)填写下列各点的坐标:4₄(),A₈(),A₁₂();(2)写出点.A₄ₙ的坐标(n是正整数);(3)指出蚂蚁从点.A₁₀₀至点A₁₀₁的移动方向.24.(12分)(1)在平面直角坐标系中,将点A(−3,4)向右平移5个单位长度到点.A₁,再将点A₁绕坐标原点顺时针旋转90°到点 A₂,求点A₁,A₂的坐标;(2)在平面直角坐标系中,将第二象限内的点B(a,b)向右平移m个单位长度得到第一象限内的点.B₁,再将点B₁绕坐标原点顺时针旋转90°到点B₂,写出点B₁,B₂的坐标;(3)在平面直角坐标系中,将点P(c,d)沿水平方向平移n个单位长度到点.P₁,,再将点P₁绕坐标原点顺时针旋转90°到点 P₂,写出点 P₂的坐标.第3章测试卷1. D2. B3. B4. A5. C6. D7. A8. B9. C 10. B11.(√3,0) 12.3 —4 13.(9,81) 14.(1,2) 15.8016.(4,2)或(-4,2)或(-4,3)17.(4,-1)、(-1,3)、(-1,-1) 18.(100,33)19.解(1)如图所示,14.(2)直角三角形.20.解(1)如图线段CD;(2)P(-2,y)(-1≤y≤3).21.解(1)A(10,10),B(20,30),C(40,40),D(50,20).(2)E(0,10),F(0,30),G(50,50),H(60,0),另外令M(0,50),N(60,50),则保护区的面积S=S矩形MNHO−S△GMF−S△GNH−S△EHO=60×50−12×20×50−12×10×50−12×10×60=3000−500−250−300=1950(m²)22.解(1)由点M(3,-2)的对应点A(7,3)知先向右平移4个单位、再向上平移5个单位,∴点B(1,4)的对应点N的坐标为(-3,-1),故答案为:(-3,-1).(2)如图,描出点 N并画出四边形BCMN,S=12×4×5+12×6×1+12×1×2+2×1+12×3×4=10+3+1+2+6=22.23.解(1)2 0 4 0 6 0;(2)A₄n(2n,0);(3)向上.24.解(1)∵将点A(-3,4)向右平移5个单位长度到点A₁,∴点A₁的坐标为(2,4),∵又将点 A₁绕坐标原点顺时针旋转90°到点A₂,∴A₂的坐标为(4,-2).(2)根据(1)中的规律,得B₁的坐标为(a+m,b),B₂的坐标为(b,-a-m).(3)分两种情况:①当把点P(c,d)沿水平方向向右平移n个单位长度到点P₁时,P₁的坐标为((c+n,d),P₂的坐标为(d,-c-n);②当把点P(c,d)沿水平方向向左平移n个单位长度到点P₁时,P₁的坐标为(c-n,d),然后将点P₁绕坐标原点顺时针旋转90°到点 P₂,则 P₂的坐标为(d,-c+n).。

2022-2023学年北师大版八年级数学上册《第3章位置与坐标》同步知识点分类练习题(附答案)

2022-2023学年北师大版八年级数学上册《第3章位置与坐标》同步知识点分类练习题(附答案)

2022-2023学年北师大版八年级数学上册《第3章位置与坐标》同步知识点分类练习题(附答案)一.点的坐标1.若点A(﹣1,n)在第二象限,则点A′(﹣1,﹣n)在第()象限.A.一B.二C.三D.四2.在平面直角坐标系中,下列各点中到x轴的距离是4,且在第四象限的是()A.(4,﹣5)B.(﹣4,5)C.(﹣5,4)D.(5,﹣4)3.已知点A(m,n),且有mn≤0,则点A一定不在()A.第一象限B.第二象限C.第四象限D.坐标轴上4.若点P(a,b)是第四象限的点,且|a|=2,|b|=3,则P的坐标是()A.(2,﹣3)B.(﹣2,3)C.(﹣3,2)D.(3,﹣2)5.若P在第二象限,且到x轴的距离为3,到y轴的距离为4,则点P的坐标为()A.(3,4)B.(﹣3,4)C.(﹣4,3)D.(4,3)6.点P(2﹣a,2a﹣1)在第四象限,且到y轴的距离为3,则a的值为()A.﹣1B.﹣2C.1D.27.若点A(2a﹣1,1﹣4a)在y轴上,则点A的坐标为.8.已知点P(m﹣3,m+1)在第一象限,则m的取值范围是.9.已知点P的坐标(2﹣a,3a+6),且点P到两坐标轴的距离相等,则点P的坐标是.二.坐标确定位置10.如图,已知棋子“车”的坐标为(﹣2,﹣1),棋子“炮”的坐标为(3,﹣2),则棋子“马”的坐标为()A.(1,1)B.(﹣1,1)C.(1,﹣1)D.(﹣1,﹣1)11.象棋在中国有着三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏,如图,是一局象棋残局,若表示棋子“炮”和“車”的点的坐标分别为(1,2),(﹣2,0),则表示棋子“马”的点的坐标为()A.(﹣3,3)B.(﹣3,2)C.(4,2)D.(3,2)三.坐标与图形性质12.已知点A(4,2),B(﹣2,2),则直线AB()A.平行于x轴B.平行于y轴C.经过原点D.以上都有可能13.已知点P(1,y),Q(x,2),若PQ∥x轴,且线段PQ=3,则x=,y=.14.已知线段AB=4,AB∥x轴,若点A坐标为(﹣1,2),且点B在第一象限,则B点坐标为.四.两点间的距离公式15.如果点A的坐标为(2,﹣1),点B的坐标为(5,3),那么A、B两点的距离等于.五.关于x轴、y轴对称的点的坐标16.在平面直角坐标系中,点A(1,2)关于x轴对称的点的坐标是()A.(1,﹣2)B.(﹣1,2)C.(1,2)D.(﹣1,﹣2)17.已知点A(m﹣1,3)与点B(2,n+1)关于x轴对称,则m+n的值为()A.﹣1B.﹣7C.1D.718.在平面直角坐标系中,点A(m+1,5)与点B(3,n)关于y轴对称,则m,n的值分别为()A.m=﹣4,n=5B.m=﹣4,n=3C.m=2,n=5D.m=﹣2,n=5 19.点P(a+2,2a﹣5)关于y轴的对称点在第二象限,则a的取值范围是.六.坐标与图形变化-对称20.如图,在平面直角坐标系中,点P(﹣1,2)关于直线x=1的对称点的坐标为.21.在平面直角坐标系中,点A(m,2)是由点B(3,n)向上平移2个单位得到,则()A.m=3,n=0B.m=3,n=4C.m=1,n=2D.m=5,n=2 22.将点A(﹣2,﹣3)向左平移3个单位,再向上平移4个单位得到点B,则点B的坐标是()A.(﹣5,﹣7)B.(﹣5,1)C.(1,1)D.(1,﹣7)23.点M(a,a+3)向右平移1个单位后与x轴上点N重合,则点N的坐标为()A.(﹣1,0)B.(﹣2,0)C.(﹣3,0)D.(﹣4,0)24.如图,直角坐标系中,△ABC的顶点都在网格点上,其中,C点坐标为(1,2).(1)写出点A、B的坐标:A(,)、B(,)(2)将△ABC先向左平移2个单位长度,再向上平移1个单位长度,得到△A′B′C′,则A′B′C′的三个顶点坐标分别是A′(,)、B′(,)、C′(,).(3)△ABC的面积为.八.关于原点对称的点的坐标25.在平面坐标中,点P(m,2)与点Q(3,n)关于原点对称,则()A.m=3,n=2B.m=﹣3,n=﹣2C.m=﹣3,n=2D.m=3,n=﹣2 26.已知点A(x﹣2,3)与点B(x+4,y﹣5)关于原点对称,则()A.x=﹣1,y=2B.x=﹣1,y=8C.x=﹣1,y=﹣2D.x=1,y=8 27.将△ABC的三个顶点坐标的横坐标都乘以﹣1,并保持纵坐标不变,则所得图形与原图形的关系是()A.关于x轴对称B.关于y轴对称C.关于原点对称D.将原图形沿x轴的负方向平移了1个单位28.在平面直角坐标系中,把点P(2,3)绕原点旋转90°得到点P1,则点P1的坐标是()A.(﹣3,2)B.(﹣2,3)C.(﹣2,3)或(2,﹣3)D.(﹣3,2)或(3,﹣2)29.在平面直角坐标系xOy中,△ABC的位置如图所示(1)分别写出△ABC各个顶点的坐标;(2)分别写出顶点A关于x轴对称的点A′的坐标和顶点B关于y轴对称的点B′的坐标;(3)求△ABC的面积.参考答案一.点的坐标1.解:∵点A(﹣1,n)在第二象限,∴n>0,∴﹣n<0,则点A′(﹣1,﹣n)在第三象限.故选:C.2.解:A.根据点的坐标的特点,(4,﹣5)到x轴距离是5,且在第四象限,故A不符合题意.B.根据点的坐标的特点,(﹣4,5)到x轴距离是5,且在第二象限,故B不符合题意.C.根据点的坐标的特点,(﹣5,4)到x轴距离是4,且在第二象限,故C不符合题意.D.根据点的坐标的特点,(5,﹣4)到x轴距离是4,且在第四象限,故D符合题意.故选:D.3.解:根据点A(m,n),且有mn≤0,所以m≥0,n≤0或m≤0,n≥0,所以点A一定不在第一象限,故选:A.4.解:∵点P(a,b)在第四象限,∴点P(a,b)的横坐标是正数,纵坐标是负数,∵|a|=2,|b|=3,∴a=2,b=﹣3,∴点P的坐标为(2,﹣3).故选:A.5.解:∵P在第二象限,∴点P的横坐标小于0,纵坐标大于0;∵点P到x轴的距离是3,即点P的纵坐标为3,到y轴的距离为4,即点P的横坐标为﹣4,∴点P的坐标是(﹣4,3).故选:C.6.解:∵点P(2﹣a,2a﹣1)在第四象限,且到y轴的距离为3,∴点P的横坐标是3;∴2﹣a=3,解答a=﹣1.故选:A.7.解:∵点A(2a﹣1,1﹣4a)在y轴上,∴2a﹣1=0,解得:a=,∴2a﹣1=0,1﹣4a=﹣1,∴点A的坐标为(0,﹣1).故答案为:(0,﹣1).8.解:∵点P(m﹣3,m+1)在第一象限,∴,解得m>3.9.解:∵点P到两坐标轴的距离相等就是横纵坐标相等或互为相反数,∴分以下两种情考虑:①横纵坐标相等时,即当2﹣a=3a+6时,解得a=﹣1,∴点P的坐标是(3,3);②横纵坐标互为相反数时,即当(2﹣a)+(3a+6)=0时,解得a=﹣4,∴点P的坐标是(6,﹣6).故答案为(3,3)或(6,﹣6).二.坐标确定位置10.解:如图所示:棋子“马”的坐标为:(1,﹣1).故选:C.11.解:如图所示:表示棋子“马”的点的坐标为:(4,2).故选:C.三.坐标与图形性质12.解:∵A(4,2),B(﹣2,2),∴点A到x轴的距离为2,点B到x轴的距离为2,且A、B都在x轴上方,∴AB平行于x轴,故选:A.13.解:∵P(1,y),Q(x,2),且PQ∥x轴,∴y=2,又∵PQ=3,∴|x﹣1|=3∴x=4或﹣2,故答案为:4或﹣2,2.14.解:∵AB∥x轴,点A坐标为(﹣1,2),∴A、B两点纵坐标都为2,又∵AB=4,且点B在第一象限,点A坐标为(﹣1,2),∴B点在A点右边,B(3,2).故答案为:(3,2).四.两点间的距离公式15.解:由两点间的距离公式得,AB==5,故答案为:5.五.关于x轴、y轴对称的点的坐标16.解:点A(1,2)关于x轴对称的点的坐标为(1,﹣2),故选:A.17.解:∵点A(m﹣1,3)与点B(2,n+1)关于x轴对称,∴,∴,∴m+n=3+(﹣4)=﹣1.故选:A.18.解:∵点A(m+1,5)与点B(3,n)关于y轴对称,∴m+1=﹣3,n=5,∴m=﹣4,n=5,故选:A.19.解:∵点P(a+2,2a﹣5)关于y轴的对称点在第二象限,∴点P在第一象限,∴,解得.故答案为:.六.坐标与图形变化-对称20.解:∵点P(﹣1,2),∴点P到直线x=1的距离为1﹣(﹣1)=2,∴点P关于直线x=1的对称点P′到直线x=1的距离为2,∴点P′的横坐标为2+1=3,∴对称点P′的坐标为(3,2).故答案为:(3,2)七.坐标与图形变化-平移21.解:∵点B(3,n)向上平移2个单位得到点A(m,2),∴m=3,n+2=2,∴n=0,故选:A.22.解:将点A(﹣2,﹣3)向左平移3个单位,再向上平移4个单位得到点B,则点B的坐标是(﹣2﹣3,﹣3+4),即(﹣5,1),故选:B.23.解:点M(a,a+3)向右平移1个单位,得到点N的坐标是(a+1,a+3),∴a+3=0,∴a=﹣3,∴a+1=﹣3+1=﹣2,∴N(﹣2,0),故选:B.24.解:(1)写出点A、B的坐标:A(2,﹣1)、B(4,3)(2)将△ABC先向左平移2个单位长度,再向上平移1个单位长度,得到△A′B′C′,则A′B′C′的三个顶点坐标分别是A′(0,0)、B′(2,4)、C′(﹣1,3).(3)△ABC的面积=3×4﹣2××1×3﹣×2×4=5.八.关于原点对称的点的坐标25.解:∵点P(m,2)与点Q(3,n)关于原点对称,∴m=﹣3,n=﹣2.故选:B.26.解:∵点A(x﹣2,3)与点B(x+4,y﹣5)关于原点对称,∴x﹣2+x+4=0,y﹣5=﹣3,解得:x=﹣1,y=2,故选:A.27.解:将△ABC的三个顶点坐标的横坐标都乘以﹣1,并保持纵坐标不变,则所得图形与原图形的关系是关于y轴对称,故选:B.九.坐标与图形变化-旋转28.解:如图,满足条件的点P1的坐标为(﹣3,2)或(3,﹣2),故选:D.29.解:(1)A(﹣4,3),B(3,0),C(﹣2,5);(2)点A关于x轴对称的点A′的坐标(﹣4,﹣2),点B关于y轴对称的点B′的坐标(﹣3,0);(3)S△ABC=5×7﹣×2×2﹣×5×5﹣×3×7=10.。

第3章 位置与坐标 北师大版八年级上册单元测试(培优提升卷)及答案

第3章 位置与坐标 北师大版八年级上册单元测试(培优提升卷)及答案

第3章位置与坐标单元测试(培优提升卷)姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分120分,试题共26题,选择10道、填空8道、解答8道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.注意事项:一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2020秋•建平县期末)若,则关于点的说法正确的是 A.在一或二象限B.在一或四象限C.在二或四象限D.在一或三象限【分析】根据,可得,或,,再根据各象限内点的坐标的符号特征判断即可.【解答】解:,,或,,点在一或三象限.故选:.2.(2020•樊城区模拟)在平面直角坐标系中,将点沿轴向右平移5个单位后的对应点的坐标为 A.B.C.D.【分析】直接利用点的平移规律即可得出答案.【解答】解:将点沿轴向右平移5个单位,对应点的坐标为:.故选:.3.(2020秋•会宁县期末)点在第四象限,且,那么点在 A.第一象限B.第二象限C.第三象限D.第四象限【分析】直接利用各象限内点的坐标特点得出,的符号,进而结合绝对值的性质得出,的符号即可得出答案.【解答】解:点在第四象限,且,,,,,点在第一象限.故选:.4.(2020•市南区校级自主招生)如图,的顶点坐标分别为,..如果将绕点逆时针旋转,得到△,那么点的对应点的坐标为 A..B.C.D.【分析】根据,..将绕点逆时针旋转,得到△,则可得点的对应点的坐标.【解答】解:如图,,..将绕点逆时针旋转,得到△,那么点的对应点的坐标为.故选:.5.(2021•广东模拟)在第四象限内的点到轴的距离是1,到轴的距离是4,则点的坐标为 A.B.C.D.【分析】根据第四象限内点的横坐标是正数,纵坐标是负数,点到轴的距离等于纵坐标的长度,到轴的距离等于横坐标的长度求出点的横坐标和纵坐标,然后写出答案即可.【解答】解:点在第四象限且到轴的距离是1,到轴的距离是4,点的横坐标为4,纵坐标为,点的坐标是.故选:.6.(2021春•栾城区期中)如图,若在象棋盘上建立平面直角坐标系,使棋子“车”的坐标为,“马”的坐标为,则棋子“炮”的坐标为 A.B.C.D.【分析】直接利用已知点坐标建立平面直角坐标系进而得出答案.【解答】解:如图所示:棋子“炮”的坐标为.故选:.7.(2021•南明区模拟)如图,在平面直角坐标系中,关于直线(直线上各点的横坐标都为对称,点的坐标为,则点的坐标为 A.B.C.D.【分析】根据题意得出,关于直线对称,即关于直线对称,进而得出答案.【解答】解:关于直线(直线上各点的横坐标都为对称,,关于直线对称,即关于直线对称,点的坐标为,,解得:,则点的坐标为:.故选:.8.(2020•巨野县模拟)小莹和小博士下棋,小莹执圆子,小博士执方子.如图,棋盘中心方子的位置用表示,右下角方子的位置用表示.小莹将第4枚圆子放入棋盘后,所有棋子构成一个轴对称图形.她放的位置是 A.B.C.D.【分析】首先根据题意建立坐标系,然后再确定根据轴对称图形的定义确定位置.【解答】解:如图:小莹放的位置所表示的点的坐标是.故选:.9.(2019秋•赣县区期末)在平面直角坐标系中,若点关于的对称点为,则点是线段的中点.如图,已知,,,点关于的对称点为,关于的对称点为,关于的对称点为,关于的对称点为,,则点的坐标是 A.B.C.D.【分析】根据题意可得前6个点的坐标,即可发现规律每6个点一组为一个循环,根据,进而可得点的坐标.【解答】解:,,,点关于点的对称点,,,解得,,所以点;同理:关于点的对称点,所以关于点的对称点,所以,,,,,发现规律:每6个点一组为一个循环,,所以与重合,所以点的坐标是.故选:.10.(2020秋•荥阳市期中)如图,将边长为1的正方形依次放在坐标系中,其中第一个正方形的两边,分别在轴和轴上,第二个正方形的一边与第一个正方形的边共线,一边在轴上以此类推,则点的坐标为 A.B.C.D.【分析】根据、、的横坐标为1,纵坐标分别为1、0、;、、的横坐标为2,纵坐标分别为1、0、;可知点的横坐标为,纵坐标为.【解答】解:,点的坐标为.故选:.二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.(2021•南岗区校级开学)已知点,,,则点在第 一 象限.【分析】根据有理数的乘法、有理数的加法,可得、的符号,根据第一象限内点的横坐标大于零,纵坐标大于零,可得答案.【解答】解:因为,,所以,,点在第一象限,故答案为:一.12.(2021春•龙港区期末)课间操时,小华、小军、小刚的位置如图,小军对小华说,如果我的位置用表示,小刚的位置用表示,那么你的位置可以表示为 .【分析】直接利用根据题意建立平面直角坐标系,进而得出小华的位置.【解答】解:如图所示:小华的位置为:.故答案为:.13.(2021•饶平县)、两点的坐标分别是,,若将线段平移至、,点、的坐标分别为,,则 6 .【分析】由已知得出线段向右平移了5个单位,向上平移了2个单位,即可得出结果;【解答】解:点、的坐标分别是为,,若将线段平移至的位置,,,线段向右平移了5个单位,向上平移了2个单位,,,,故答案为:6.14.(2021春•单县期末)平面直角坐标系中,点,,,若轴,当线段取最小值时,点的坐标为 .【分析】利用垂线段最短可判断当,垂足为时,的长最小,然后利用与坐标轴平行的直线上点的坐标特征写出点坐标.【解答】解:如图,当,垂足为时,的长最小,轴,点,点的纵坐标为2,,即轴,而,点的横坐标为4,.故答案为.15.(2020秋•锦州期末)如图是一台雷达探测相关目标得到的部分结果,若图中目标的位置为,目标的位置为,则目标的位置为 .【分析】根据题意写出坐标即可.【解答】解:由题意,点的位置为.故答案为.16.(2020秋•朝阳区校级期中)写出点关于直线(直线上各点的纵坐标都是对称点的坐标 .【分析】画出图形解决问题即可.【解答】解:如图,观察图象可知点的坐标为.故答案为.17.(2019秋•义乌市期末)如图,平面直角坐标系中有四个点,他们的横纵坐标均为整数,若在此平面直角坐标系内移动点至第四象限处,使得这四个点构成的四边形是轴对称图形,并且点横纵坐标仍是整数,则点的坐标可以为 答案不唯一 (写出一个即可).【分析】把点向左移动1格,再向下移动3个格,与原来的三个点构成正方形是轴对称图形.【解答】解:如图,把点向左移动1格,再向下移动3个格,也就是与原来的三个点构成的图形是轴对称图形.故答案为:.18.(2021春•牧野区校级期末)如图,在平面直角坐标系中,从点,,,,,,依次扩展下去,则的坐标为 .【分析】根据各个点的位置关系,可得出下标为4的倍数的点在第一象限,被4除余1的点在第二象限,被4除余2的点在第三象限,被4除余3的点在第四象限,点在第一象限,且横、纵坐标,再根据第一象限点的规律即可得出结论.【解答】解:由规律可得,,点在第一象限,点,点,点,点,故答案为:.三、解答题(本大题共8小题,共66分.解答时应写出文字说明、证明过程或演算步骤)19.(2020秋•肥西县期末)已知点在第二象限,且,,求点的坐标.【分析】根据第二象限内的点的横坐标小于零,可得的值,根据第二象限内点的纵坐标大于零,可得的值.【解答】解:由第二象限内的点的横坐标小于零,得.由第二象限内点的纵坐标大于零,得,故点坐标是.20.(2020春•港南区期末)如图在平面直角坐标系中,各顶点的坐标分别为:,,(1)在图中作△使△和关于轴对称;(2)写出点,,的坐标.【分析】(1)根据关于轴对称的点的坐标特征得到点的坐标为,点的坐标为,点的坐标为,然后描点;(2)由(1)可得到三个对应点的坐标.【解答】解:(1)如图,(2)点的坐标为,点的坐标为,点的坐标为.21.(2020春•蕲春县期中)已知在轴负半轴上,直线轴,且线段长度为4.(1)求点的坐标;(2)求的值;(3)求点坐标.【分析】(1)由点在轴负半轴上,可得点的横坐标等于0,列出关于的绝对值方程,可解得的值,则点的坐标可求得;(2)将(1)中所求得的的值代入计算即可;(3)由直线轴及点的坐标,可设,结合线段长度为4,可得关于的方程,解得的值,则点的坐标可得.【解答】解:(1)在轴负半轴上,,且,,且,.,;(2),;(3)直线轴,,设,又线段长度为4,,,或.22.(2020春•江汉区月考)如图,三角形是由三角形经过某种平移得到的,点与点,点与点,点与点分别对应,且这六个点都在格点上,观察各点以及各点坐标之间的关系,解答下列问题:(1)分别写出点和点的坐标,并说明三角形是由三角形经过怎样的平移得到的;(2)连接,直接写出与之间的数量关系 ;(3)若点是三角形内一点,它随三角形按(1)中方式平移后得到的对应点为点,求和的值.【分析】(1)由图形可得出点的坐标和平移方向及距离;(2)根据平移的性质和平角的定义和平行线的性质即可求解;(3)根据以上所得平移方式,利用“横坐标,右移加,左移减;纵坐标,上移加,下移减”的规律列出关于、的方程,解之求得、的值.【解答】解:(1)由图知,,,三角形是由三角形向左平移3个单位,向下平移3个单位得到的;(2)与之间的数量关系.故答案为:;(3)由(1)中的平移变换得,,解得,.故的值是3,的值是4.23.(2021春•湖北月考)李老师到人民公园游玩,回到家后,他利用平面直角坐标系画出了公园的景区地图,如图所示.可是他忘记了在图中标出原点和轴、轴.只知道游乐园的坐标为.(1)帮李老师在图中建立平面直角坐标系;(2)求出其他各景点的坐标.(3)若图中一个单位长度代表实际距离100米,请你求出其中某两点(已用字母标记)间的实际距离.【分析】(1)先利用游乐园的坐标画出直角坐标系,(2)写出其他各景点的坐标;(3)利用、在轴上可直接写出它们之间的距离.【解答】解:(1)如图,坐标原点在点,(2)、、、;(3)米.24.(2019•藁城区二模)如图,在直角坐标系的坐标轴上按如下规律取点:在轴正半轴上,在轴正半轴上,在轴负半轴上,在轴负半轴上,在轴正半轴上,,且,,,设,,,,有坐标分别为,,,,,,.(1)当时,求的值;(2)若,求的值;(3)当时,直接写出用含为正整数)的式子表示轴负半轴上所取点坐标.【分析】(1)根据题目的已知关系依次计算,,,便可;(2)用分别表示,,,,,,进而根据计算,由列出的方程便可求解;(3)根据题意得出,,,,根据规律得,进而表示出的坐标.【解答】解:(1)当时,,,,;(2),,,,,,,当时,则,;(3)当时,则,,,.25.(2020春•兴国县期末)在平面直角坐标系中,对于点,若点的坐标为,则称点是点的“级关联点”(其中为常数,且,例如,点的“2级关联点”为,即.(1)若点的坐标为,则它的“3级关联点”的坐标为 ;(2)若点的“5级关联点”的坐标为,求点的坐标;(3)若点的“级关联点”位于坐标轴上.求点的坐标.【分析】(1)根据关联点的定义,结合点的坐标即可得出结论.(2)根据关联点的定义,结合点的坐标即可得出结论.(3)根据关联点的定义和点的“级关联点”位于坐标轴上,即可求出的坐标.【解答】解:(1);,若点的坐标为,则它的“3级关联点”的坐标为.故答案为:;(2)设点的坐标为,由题意可知,解得:,点的坐标为;(3)点的“级关联点”为,,①位于轴上,,解得:,,,.②位于轴上,,解得:,.综上所述,点的坐标为,或.26.(2019秋•中牟县期中)在学习完《位置与坐标》,小斌、小亮、小敏和小芳设计了一个游戏,他们在操场上画了如图所示,每小格边长均为的方格.若小斌从点出发,依次到点(小亮),(小敏),(小芳)处,规定:向北和向东走为正,向南和向西走为负;如果从到记为,从到记为,数对中的第一个数表示东西方向,第二个数表示南北方向.(1)图中的到,到分别记为 , ;(2)若小斌的行走路线为,请计算小斌走过的路程;(3)若小亮从点出发到点,行走的路线依次为,,请在图中标出点的位置;(4)若图中有两个格点,,且点,,则应记为 .【分析】(1)根据向北和向东走为正,向南和向西走为负可得出结论;(2)分别根据各点的坐标计算总长即可;(3)向北和向东走为正,向南和向西走为负可得到的位置;(4)令与对应的横纵坐标相减即可得出.【解答】解:(1),,故答案为,;(2).所以,小斌走过了.(3)如图;(4)由,,所以,,,所以,应记为.故答案为.。

新版北师大初中数学八年级(上)第三章位置与坐标练习题(附答案)

新版北师大初中数学八年级(上)第三章位置与坐标练习题(附答案)

新版北师大 八年级数学(上) 第三章 位置与坐标 练习题一、精心选一选1.点),(n m P 是第三象限的点,则 ( )(A )b a +>0 (B )b a +<0 (C )ab >0 (D )ab <02.若点P 的坐标为)0,(a ,且a <0,则点P 位于 ( )(A )x 正半轴 (B )x 负半轴 (C )y 轴正半轴 (D )y 轴负半轴3.若点A 的坐标为(3,-2),点B 的坐标是(-3, -2),则点A 与点B 的位置关系是 ( )(A )关于原点对称 (B )关于x 轴对称 (C )关于y 轴对称 (D )无法判断4.点M (-2,5)关于x 轴的对称点是N ,则线段MN 的长是 ( )(A )10 (B )4 (C )5 (D )25.一只七星瓢虫自点(-2,4)先水平向右爬行3个单位,然后又竖直向下爬行2个单位,则此时这只七星瓢虫的位置是 ( )(A )(-5,2) (B )(1,4) (C )(2,1) (D )(1,2)6.以点(2,0)为圆心,以3为半径画一个圆,则这个圆与x 轴的交点是 ( )(A )(0,-1)和(0,5) (B )(-1,0)和(5,0)(C )(-1,0)和(5,0) (D )(0,-1)和(0,5)7.若点P ),(b a 在第四象限,则Q ),1(b a -+在 ( )(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限8.如图1所示,线段AB 的中点为C ,若点A 、B 的坐标分别是 (1,2)和(5,4),则点C 的坐标是( )(A )(3,3.5) (B )(3,2) (C )(2,3) (D )(3,3) 9.如图2,在直角坐标系中,△AOB 的顶点O 和B 的坐标分别是O (0,0),B (4,0),且∠OAB =90°,AO =AB ,则顶点A 关于x 轴的对称点的坐标是 ( )(A )(2,2) (B )(-2,2)(C )(2,-2) (D )(-2,-2)10. 若0>xy ,且0>+y x ,则点)(y x P ,在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限二、耐心填一填11.若点P 的坐标为(-3,4),则点P 到x 轴的距离是_____,到y 轴的距离是_____,到原点的距离是_____.12.过两点A (-2,4)和B (3,4)作直线AB ,则AB_____x 轴.13.如图3,Rt △AOB 的斜边长为4,一直角边OB 长为3,则点A的坐标是_____,点B 的坐标是_____.14.点A )2,(a 和点B ),3(b 关于x 轴对称,则ab =_____.15.商店在学校的东南方向,则学校在商店的_________. X16.点P 的坐标是(-2,12 a ),则点P 一定在第_______象限.17.若点A 的坐标是(-2,3),点B 与点A 关于原点对称,点C 与点B 关于y 轴对称,则点C 的坐标是_____.18.一个矩形的两边长分别是3和4,已知它在直角坐标系中的三个顶点的坐标分别是(0,0),(4,0),(0,-3),则此矩形第四个顶点的坐标是_____.19.将点P (2,1)绕原点O 按顺时针方向旋转90°到点Q ,则点Q 的坐标是_____.20.如图4,∠OMA =90°,∠AOM =30°,AM =20米,OM =203米, 站在O 点观察点A ,则点A 的位置可描述为:在北偏东_____度的方向上,距离点O_____米.三、用心做一做 21. 已知点P(b a ,)在第二象限,且|a |=3,|b |=8,求点P 的坐标.22. 在平面直角坐标系中,描出下列各点:A (-2,-1),B (4,-1),C (3,2),D (0,2),并计算四边形ABCD 的面积.23. 如图5,每个小方格都是边长为1的正方形,在平面直角坐标系中.(1)写出图中从原点O 出发,按箭头所指方向先后经过A 、B 、C 、D 、E 多点的坐标;(2)按图中所示规律,标出下一个点F 的位置.图4图5新版北师大 八年级数学(上) 第三章 位置与坐标 复习题答案一、1.C 2.B 3.C 4.A 5.D 6.B 7.A 8.D 9.C 10.A二、11. 4 3 5 12.平行于 13.)7,0( (3,0) 14. -6 15.西北方向 16. 二17.(-2,-3) 18.(4,-3) 19.(1,-2) 20. 60 40三、21.由题意,得a <0,b >0;又|a |=3,得a = ±3,|b |=8,得=b ±8,故8,3=-=b a ,故点P 的坐标是(-3,8).22. 图略.四边形ABCD 的面积是13.5.23.(1)A(1,0),B(1,2),C(-2,2),D(-2, -2),E(3,-2);(2)F (3,4).。

数学八年级上北师大版第3章位置与坐标测试题(解析版)

数学八年级上北师大版第3章位置与坐标测试题(解析版)

第三章位置与坐标检测题(本检测题满分:100分,时间:90分钟)一、选择题(每小题3分,共30分)1.在平面直角坐标系中,若点A(a,﹣b)在第一象限内,则点B(a,b)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限2.在如图所示的直角坐标系中,点M,N的坐标分别为()A.M(-1,2),N(2,1)B.M(2,-1),N(2,1)C.M(-1,2),N(1,2)D.M(2,-1),N(1,2)第2题图第3题图3.如图,长方形BCDE的各边分别平行于x轴或y轴,物体甲和物体乙分别由点A(2,0)同时出发,沿长方形BCDE的边作环绕运动,物体甲按逆时针方向以1个单位长度/秒匀速运动,物体乙按顺时针方向以2个单位长度/秒匀速运动,则两个物体运动后的第2012次相遇点的坐标是()A.(2,0)B.(-1,1)C.(-2,1)D.(-1,-1)4.已知点P的坐标为,且点P到两坐标轴的距离相等,则点P的坐标是()A.(3,3)B.(3,-3)C.(6,-6)D.(3,3)或(6,-6)5.平面直角坐标系中,已知平行四边形ABCD的三个顶点坐标分别是A(m,n),B(2,﹣1),C(﹣m,﹣n),则点D的坐标是()A.(﹣2,1)B.(﹣2,﹣1)C.(﹣1,﹣2)D.(﹣1,2)6.在直角坐标系中,一个图案上各个点的横坐标和纵坐标分别加正数,那么所得的图案与原图案相比()A.形状不变,大小扩大到原来的倍B.图案向右平移了个单位长度C.图案向上平移了个单位长度D.图案向右平移了个单位长度,并且向上平移了个单位长度7.已知点A(a,1)与点A′(5,b)关于坐标原点对称,则实数a、b的值是()A.a=5,b=1 B.a=-5,b=1C.a=5,b=-1 D.a=-5,b=-18.如图,若将直角坐标系中“鱼”的每个“顶点”的横坐标保持不变,纵坐标分别变为原来的21,则点A的对应点的坐标是()A.(-4,3)B.(4,3)C.(-2,6)D.(-2,3)9.如果点),(nmA在第二象限,那么点,(mB │n│)在()第8题图A .第一象限B .第二象限C .第三象限D .第四象限 10.在平面直角坐标系中,孔明做走棋游戏,其走法是:棋子从原点出发,第1步向右走1个单位,第2步向右走2个单位,第3步向上走1个单位,第4步向右走1个单位……依次类推,第n 步的走法是:当n 能被3整除时,则向上走1个单位;当n 被3除,余数是1时,则向右走1个单位,当n 被3除,余数为2时,则向右走2个单位,当走完第100步时,棋子所处位置的坐标是( ) A .(66,34) B .(67,33) C .(100,33) D .(99,34)二、填空题(每小题3分,共24分)11.在平面直角坐标系中,点A (2,2m +1)一定在第 象限.12点和点关于轴对称,而点与点C (2,3)关于轴对称,那么 , , 点和点的位置关系是 .13.一只蚂蚁由点(0,0)先向上爬4个单位长度,再向右爬3个单位长度,再向下爬2个单位长度后,它所在位置的坐标是 .14.在平面直角坐标系中,点A 的坐标是(2,3),作点A 关于x 轴的对称点,得到点A ′,再作点A ′关于y 轴的对称点,得到点A ″,则点A ″的坐标是(____,____). 15.在平面直角坐标系中,已知A (2,3),B (0,1), C (3,1),若线段AC 与BD 互相平分,则点D 关于坐标原点的对称点的坐标为 .16.如图,正方形ABCD 的边长为4,点A 的坐标为(-1,1),AB 平行于x 轴,则点C 的坐标为 _. 17.已知点(1)M a -,和(2)N b ,不重合.(1)当点M N ,关于 对称时,21a b ==,;(2)当点M N ,关于原点对称时,a = ,b = .18.如图,将平面直角坐标系中“鱼”的每个“顶点”的纵坐标保持不变,横坐标分别变为原来的31,那么点A 的对应点A '的坐标是_______.第18题图三、解答题(共46分)19.(6分)如图所示,三角形ABC 三个顶点A ,B ,C 的坐标分别为A (1,2),B (4,3),C (3,1).把三角形A 1B 1C 1向右平移4个单位长度,再向下平移3个单位长度,恰好得到三角形ABC ,试写出三角形A 1B 1C 1三个顶点的坐标.第19题图 第20题第16题图图20.(6分)如图,在平面网格中每个小正方形的边长为1个单位长度,(1)线段CD是线段AB经过怎样的平移后得到的?(2)线段AC是线段BD经过怎样的平移后得到的?21.(6分)在直角坐标系中,用线段顺次连接点A(,0),B(0,3),C(3,3),D(4,0).(1)这是一个什么图形;(2)求出它的面积;(3)求出它的周长.22.(6分)如图,点用表示,点用表示.若用→→→→表示由到的一种走法,并规定从到只能向上或向右走(一步可走多格),用上述表示法写出另两种走法,并判断这几种走法的路程是否相等.23.(6分)(湖南湘潭中考)在边长为1的小正方形网格中,△AOB的顶点均在格点上,(1)B点关于y轴的对称点的坐标为;(2)将△AOB向左平移3个单位长度得到△A1O1B1,请画出△A1O1B1;(3)在(2)的条件下,点A1的坐标为.24.(8分)如图所示.(1)写出三角形③的顶点坐标.(2)通过平移由三角形③能得到三角形④吗?(3)根据对称性由三角形③可得三角形①,②,它们的顶点坐标各是什么?25.(8分)有一张图纸被损坏,但上面有如图所示的两个标志点A(-3,1),B(-3,-3)可见,而主要建筑C(3,2)破损,请通过建立直角坐标系找到图中C点的位置.第22题图第23题图第24题图第25题图第三章 位置与坐标检测题参考答案一、选择题1.D 解析:根据各象限内点的坐标特征解答即可. ∵ 点A (a ,﹣b )在第一象限内, ∴ a >0,﹣b >0,∴ b <0,∴ 点B (a ,b )所在的象限是第四象限.故选D .2.A 解析:本题利用了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).3.D 解析:长方形的边长为4和2,因为物体乙的速度是物体甲的速度的2倍,时间相同, 物体甲与物体乙的路程比为1︰2,由题意知: ①第一次相遇物体甲与物体乙行的路程和为12×1,物体甲行的路程为12×31=4,物体乙 行的路程为12×32=8,在BC 边相遇; ②第二次相遇物体甲与物体乙行的路程和为12×2,物体甲行的路程为12×2×31=8,物 体乙行的路程为12×2×32=16,在DE 边相遇; ③第三次相遇物体甲与物体乙行的路程和为12×3,物体甲行的路程为12×3×31=12, 物体乙行的路程为12×3×32=24,在A 点相遇,此时甲、乙回到出发点,则每相遇三次, 两物体回到出发点.因为2 012÷3=670……2,故两个物体运动后的第2012次相遇点与第二次相遇点为同一点,即物体甲行的路程为 12×2×31=8,物体乙行的路程为12×2×32=16,在DE 边相遇,此时相遇点的坐标为: (-1,-1),故选D .4.D 解析:因为点P 到两坐标轴的距离相等,所以,所以a =-1或a =-4.当a =-1时,点P 的坐标为(3,3);当a =-4时,点P 的坐标为(6,-6). 5.A 解析:∵ A (m ,n ),C (﹣m ,﹣n ),∴ 点A 和点C 关于原点对称. ∵ 四边形ABCD 是平行四边形,∴ 点D 和B 关于原点对称. ∵ B (2,﹣1),∴ 点D 的坐标是(﹣2,1).故选A .6.D7.D 解析:因为点A (a ,1)与点A ′(5,b )关于坐标原点对称,而点(a ,b )关于坐标原点的对称点的坐标是(-a ,-b ),所以a =-5,b =-1.故选D. 8.A 解析:点A 变化前的坐标为(-4,6),将横坐标保持不变,纵坐标变为原来的21,则点A 的对应点的坐标是(-4,3),故选A .9.A 解析:因为点A 在第二象限,所以,0,0><n m 所以,0>-m ︱n ︱>0,因此点B 在第一象限.10.C 解析:在1至100这100个数中:(1)能被3整除的为33个,故向上走了33个单位; (2)被3除,余数为1的数有34个,故向右走了34个单位; (3)被3除,余数为2的数有33个,故向右走了66个单位,故总共向右走了34+66=100(个)单位,向上走了33个单位.所以走完第100步时所处 位置的横坐标为100,纵坐标为33.故选C .二、填空题11.一 解析:因为2m ≥0,1>0,所以纵坐标2m +1>0.因为点A 的横坐标2>0,所以点A 一定在第一象限. 12.关于原点对称 解析:因为点A (a ,b )和点关于轴对称,所以点的坐标为(a ,-b );因为点与点C (2,3)关于轴对称,所以点的坐标为(-2,3),所以a =-2,b =-3,点和点关于原点对称. 13.(3,2) 解析:一只蚂蚁由点(0,0)先向上爬4个单位长度,坐标变为(0,4),再向右爬3个单位长度,坐标变为(3,4),再向下爬2个单位长度,坐标变为(3,2),所以它所在位置的坐标为(3,2). 14.3 解析:点A 关于x 轴的对称点A ′的坐标是(2,3),点A ′关于y 轴的对称点A ″的坐标是(2,3).15.(-5,-3) 解析:如图所示,∵ A (2,3),B (0,1),C (3,1),线段AC 与BD 互相平分,∴ D 点坐标为:(5,3),∴ 点D 关于坐标原点的对称点的坐标为(-5,-3).第15题答图16.(3,5) 解析:因为正方形ABCD 的边长为4,点A 的坐标为(-1,1),所以点C 的横坐标为4-1=3,点C 的纵坐标为4+1=5,所以点C 的坐标为(3,5).17.(1)x 轴 (2)-2 1 解析:两点关于x 轴对称时,横坐标相等,纵坐标互为相反数;两点关于原点对称时,横、纵坐标都互为相反数. 18.(2,3) 解析:点A 的坐标是(6,3),它的纵坐标保持不变,把横坐标变为原来的31,得到它的对应点A '的坐标是16,33⎛⎫⨯ ⎪⎝⎭,即A '(2,3).三、解答题19.解:设△A 1B 1C 1的三个顶点的坐标分别为A 1(,将它的三个顶点分别向右平移4个单位长度,再向下平移3个单位长度,则此时三个顶点的坐标分别为(,由题意可得=2,2x +4=4,2y -3=3,3x +4=3,3y -3=1,所以A 1(-3,5),B 1(0,6),.20. 解:(1)将线段AB 向右平移3个单位长度(向下平移4个单位长度),再向下平移4个单位长度(向右平移3个单位长度),得线段CD .(2)将线段BD 向左平移3个单位长度(向下平移1个单位长度),再向下平移1个单位长度(向左平移3个单位长度),得到线段AC . 21. 解:(1)因为点B (0,3)和点C (3,3)的纵坐标相同, 点A 2,04,0D (-)和点()的纵坐标也相同, 所以BC ∥AD . 因为AD BC , 所以四边形是梯形.作出图形如图所示. (2)因为,,高,故梯形的面积是21227. (3)在Rt △中,根据勾股定理,得,同理可得,因而梯形的周长是.22.解:走法一:; 走法二:.答案不唯一. 路程相等.23.分析:(1)根据关于y 轴对称的点的横坐标互为相反数,纵坐标相等解答;(2)根据网格结构找出点A ,O ,B 向左平移后的对应点A 1,O 1,B 1的位置,然后顺次连接即可; (3)根据平面直角坐标系写出坐标即可.解:(1)B 点关于y 轴的对称点的坐标为(-3,2); (2)△A 1O 1B 1如图所示; (3)点A 1的坐标为(-2,3).第21题答图第23题答图24.分析:(1)根据坐标的确定方法,读出各点的横、纵坐标,即可得出各个顶点的坐标;(2)根据平移过程中点的坐标的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减,可得三角形④不能由三角形③通过平移得到;(3)根据对称性,即可得到三角形①,②顶点的坐标.解:(1)(-1,-1),(-4,-4),(-3,-5).(2)不能.(3)三角形②的顶点坐标分别为(-1,1),(-4,4),(-3,5)(三角形②与三角形③关于轴对称);三角形①的顶点坐标分别为(1,1),(4,4),(3,5)(由三角形③与三角形①关于原点对称可得三角形①的顶点坐标).25.分析:先根据点A(-3,1),B(-3,-3)的坐标,确定出x轴和y轴,再根据C点的坐标(3,2),即可确定C点的位置.解:点C的位置如图所示.。

第三章 位置与坐标试题2022-2023学年北师大版八年级数学上册

第三章  位置与坐标试题2022-2023学年北师大版八年级数学上册

第三章位置与坐标试题一.选择题1.在坐标平面内,有一点P(﹣2,0),则P点的位置在()A.原点B.坐标轴上C.x轴上D.y轴上2.在平面直角坐标系中,点(﹣4,3)在()A.第一象限B.第二象限C.第三象限D.第四象限3.气象台为了预报台风,首先要确定台风中心的位置,则下列说法能确定台风中心位置的是()A.西太平洋B.距电台500海里C.北纬128°,东经36°D.湛江附近4.如图,点M是平面直角坐标系中的一点,MA⊥x轴,MB⊥y轴,MA=4,MB=3,则点M的坐标为()A.(4,3)B.(3,4)C.(﹣4,3)D.(﹣3,4)5.在平面直角坐标系的第四象限内有一点M,到x轴的距离为4,到y轴的距离为5,则点M的坐标为()A.(﹣4,5)B.(5,﹣4)C.(4,﹣5)D.(﹣5,﹣4)6.中国象棋具有悠久的历史,战国时期,就有了关于象棋的正式记载,如图是中国象棋棋局的一部分,如果用(2,﹣1)表示“炮”的位置,(﹣2,0)表示“士”的位置,那么“将”的位置应表示为()A.(﹣2,3)B.(0,﹣5)C.(﹣3,1)D.(﹣4,2)7.已知,点A的坐标是(3,﹣2),则点A关于x轴的对称点的坐标是()A.(﹣3,﹣2)B.(﹣2,3)C.(3,2)D.(2,﹣3)8.如图,A(8,0),B(0,6),以点A为圆心,AC长为半径画弧,交y轴正半轴于点B,则点C的坐标为()A.(10,0)B.(0,10)C.(﹣2,0)D.(0,﹣2)二.填空题9.点M(m+1,3﹣2m)在y轴上,则点M坐标为.10.已知A(m,n)在第二象限,则点B(n,m)在第象限.11.山西督军府旧址是晋文公重耳庙,历代山西巡抚的衙门设在此.1916年,各省军务长官改称为督军,阎锡山任督军,因此称督军府.督军府主要由门楼、前院、渊谊堂、小自省堂、梅山等组成.如图所示,门楼的坐标是(0,0),渊谊堂的坐标是(0,2),则梅山的坐标是.12.在平面直角坐标系中,对于点A(x,y),若点B的坐标为(x+ay,ax+y),则称点B 是点A的a级亲密点.例如:点A(﹣2,6)的级亲密点为B(﹣2+×6,×(﹣2)+6),即点B的坐标为(1,5).A题:已知点C(﹣1,5)的3级亲密点是点D,则点D的坐标为.B题:若点E在x轴上,点E不与原点重合,点E的a级亲密点为点F,且EF的长度为OE长度的倍,则a的值=.三.解答题13.已知点A(1,2)、B(6,3)、C(8,0),求四边形OABC的面积.14.如图所示,△ABC在正方形网格中,若点A的坐标为(0,3),按要求回答下列问题:(1)在图中建立正确的平面直角坐标系;(2)根据所建立的坐标系,写出点B和点C的坐标;(3)作出△ABC关于x轴的对称图形△A′B′C′.(不用写作法)15.已知点M(3a﹣2,a+6).(1)若点M在x轴上,求点M的坐标(2)变式一:已知点M(3a﹣2,a+6),点N(2,5),且直线MN∥x轴,求点M的坐标.(3)变式二:已知点M(3a﹣2,a+6),若点M到x轴、y轴的距离相等,求点M的坐标.16.如图,在平面直角坐标系中,已知A(a,0),B(b,0),其中a,b满足|a+1|+(b ﹣3)2=0.(1)填空:a=,b=;(2)如果在第三象限内有一点M(﹣2,m),请用含m的式子表示△ABM的面积;(3)在(2)条件下,当m=﹣时,在y轴上有一点P,使得△BMP的面积与△ABM 的面积相等,请求出点P的坐标.第三章位置与坐标参考答案1.C.2.B.3.C.4.D.5.B.6.C.7.C.8.C.9.(0,5).10.四.11.(﹣3,6).12.±.13.解:过A点作AD⊥x轴于点D,过点B作BE⊥x轴于点E,∵A(1,2)、B(6,3)、C(8,0),∴OD=1,AD=2,OE=6,BE=3,OC=8,∴DE=OE﹣OD=6﹣1=5,CE=05﹣0E=8﹣6=2,∴S四边形OABC=S△OAD+S梯形ABED+S△BCE==.14.解:(1)所建立的平面直角坐标系如下所示:(2)点B和点C的坐标分别为:B(﹣3,﹣1)C(1,1);(3)所作△A'B'C'如下图所示.15.解:(1)∵点M在x轴上,∴a+6=0,∴a=﹣6,3a﹣2=﹣18﹣2=﹣20,a+6=0,∴点M的坐标是(﹣20,0);(2)∵直线MN∥x轴,∴a+6=5,解得a=﹣1,3a﹣2=3×(﹣1)﹣2=﹣5,所以,点M的坐标为(﹣5,5).(3)∵点M到x轴、y轴的距离相等,∴3a﹣2=a+6,或3a﹣2+a+6=0解得:a=4,或a=﹣1,所以点M的坐标为(10,10)或(﹣5,5).16.解:(1)所作图形如下所示:(2)点A1、B1、C1的坐标分别为:(1,5),(1,0),(4,3).17.解:(1)∵|a+1|+(b﹣3)2=0,∴a+1=0且b﹣3=0,解得:a=﹣1,b=3,故答案为:﹣1,3;(2)过点M作MN⊥x轴于点N,∵A(﹣1,0)B(3,0)∴AB=1+3=4,又∵点M(﹣2,m)在第三象限∴MN=|m|=﹣m∴S△ABM=AB•MN=×4×(﹣m)=﹣2m;(3)当m=﹣时,M(﹣2,﹣)∴S△ABM=﹣2×(﹣)=3,点P有两种情况:①当点P在y轴正半轴上时,设点p(0,k)S△BMP=5×(+k)﹣×2×(+k)﹣×5×﹣×3×k=k+,∵S△BMP=S△ABM,∴k+=3,解得:k=0.3,∴点P坐标为(0,0.3);②当点P在y轴负半轴上时,设点P(0,n),S△BMP=﹣5n﹣×2×(﹣n﹣)﹣×5×﹣×3×(﹣n)=﹣n﹣,∵S△BMP=S△ABM,∴﹣n﹣=3,解得:n=﹣2.1∴点P坐标为(0,﹣2.1),故点P的坐标为(0,0.3)或(0,﹣2.1).。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章位置与坐标
3.2平面直角坐标系
专题一与平面直角坐标系有关的规律探究题
1.如图,在平面直角坐标系中,有若干个整数点(横纵坐标都为整数的点),其顺序按图中“→”方向排列,如:(1,0),(2,0),(2,1),(3,2),(3,1),(3,0),(4,0),(4,1),…,观察规律可得,该排列中第100个点的坐标是().
A.(10,6)
B.(12,8)
C.(14,6)
D.(14,8)
2.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2013次运动后,动点P的坐标是_____________.
3.如图,一粒子在区域直角坐标系内运动,在第1秒内它从原点运动到点B1(0,1),接着由点B1→C1→A1,然后按图中箭头所示方向在x轴,y轴及其平行线上运动,且每秒移动1个单位长度,求该粒子从原点运动到点P(16,44)时所需要的时间.
专题二 坐标与图形
4. 如图所示,A (-3,0)、B (0,1)分别为x 轴、y 轴上的点,△ABC 为等边三角形,点P (3,a )在第一象限内,且满足2S △ABP =S △ABC ,则a 的值为( )
A .
4
7 B .2 C .3
D .2
5.如图,△ABC 中,点A 的坐标为(0,1),点C 的坐标为(4,3),如果要使△ABD 与△ABC 全等,那么点D 的坐标是____________________________________.
6.如图,在直角坐标系中,△ABC 满足,∠C =90°,AC =4,BC =2,点A 、C 分别在x 轴、y 轴上,当A 点从原点开始在x 轴正半轴上运动时,点C 随着在y 轴正半轴上运动. (1)当A 点在原点时,求原点O 到点B 的距离OB ; (2)当OA =OC 时,求原点O 到点B 的距离OB .
y
x A
O
C
B
答案:
1.D 【解析】 因为1+2+3+…+13=91,所以第91个点的坐标为(13,0).因为在第14行点的走向为向上,故第100个点在此行上,横坐标就为14,纵坐标为从第92个点向上数8个点,即为8.故第100个点的坐标为(14,8).故选D .
2.D 【解析】 根据动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),∴第4次运动到点(4,0),第5次接着运动到点(5,1),…,∴横坐标为运动次数,经过第2013次运动后,动点P 的横坐标为2013,纵坐标为1,0,2,0,每4次一轮,∴经过第2013次运动后,动点P 的纵坐标为:2013÷4=503余1,故纵坐标为四个数中第一个,即为1,
∴经过第2013次运动后,动点P 的坐标是:(2013,2),故答案为:(2013,1). 3.解:设粒子从原点到达A n 、B n 、C n 时所用的时间分别为a n 、b n 、c n ,
则有:a 1=3,a 2=a 1+1,a 3=a 1+12=a 1+3×4,a 4=a 3+1,a 5=a 3+20=a 3+5×4,a 6=a 5+1,…, a 2n-1=a 2n-3+(2n-1)×4,a 2n =a 2n-1+1,
∴a 2n-1=a 1+4[3+5+…+(2n-1)]=4n 2-1,a 2n =a 2n-1+1=4n 2

∴b 2n-1=a 2n-1-2(2n-1)=4n 2-4n+1,b 2n =a 2n +2×2n=4n 2
+4n ,
c 2n-1=b 2n-1+(2n-1)=4n 2
-2n=
)12(122
-+-n n )(,c 2n =a 2n +2n=4n 2
+2n=(2n )2
+2n , ∴c n =n 2
+n ,
∴粒子到达(16,44)所需时间是到达点C 44时所用的时间,再加上44-16=28(s ),
所以t=442
+447+28=2008(s ).
4.C 【解析】 过P 点作PD ⊥x 轴,垂足为D , 由A (﹣3,0)、B (0,1),得OA =3,OB =1, 由勾股定理,得AB =22OB OA +=2, ∴S △ABC =
2
1
×2×3=3. 又S △ABP =S △AOB +S 梯形BODP ﹣S △ADP =
21×3×1+21×(1+a )×3﹣2
1×(3+3)×a =
2
333a
-+,
由2S △ABP =S △ABC ,得3+3-3a =3,∴a =3.故选C .
5.(4,﹣1)或(﹣1,3)或(﹣1,﹣1) 【解析】 △ABD 与△ABC 有一条公共边AB , 当点D 在AB 的下边时,点D 有两种情况①坐标是(4,﹣1);②坐标为(﹣1,﹣1); 当点D 在AB 的上边时,坐标为(﹣1,3);
点D 的坐标是(4,﹣1)或(﹣1,3)或(﹣1,﹣1). 6.解:(1)当A 点在原点时,AC 在y 轴上,BC⊥y 轴,所以OB=AB=22
25AC CB .
(2)当OA=OC 时,△OAC 是等腰直角三角形, 而AC=4,所以OA=OC=22.
过点B 作BE⊥OA 于E ,过点C 作CD⊥OC,且CD 与BE 交于点D ,可得︒
=∠=∠=∠45221. 又BC=2,所以CD=BD=2,
所以BE=BD+DE=BD+OC=32,又OE=CD=2,所以OB=22
25BE OE .
3.3轴对称与坐标变化
专题折叠问题
1.如图,长方形OABC的边OA、OC分别在x轴.y轴上,点B的坐标为(3,2).点D、E分别在AB、BC边上,BD=BE=1.沿直线DE将△BDE翻折,点B落在点B′处.则点B′的坐标为()
A.(1,2)B.(2,1)C.(2,2)D.(3,1)
2.(2012江苏南京)在平面直角坐标系中,规定把一个三角形先沿着x轴翻折,再向右平
移2个单位长度称为1次变换.如图,已知等边三角形ABC的顶点B、C的坐标分别是(-1,-1)、(-3,-1),把△ABC经过连续9次这样的变换得到△A′B′C′,则点A的对应点A′的坐标是.
3.(2012山东菏泽)如图,OABC是一张放在平面直角坐标系中的长方形纸片,O为原点,点A在x轴的正半轴上,点C 在y轴的正半轴上,OA=10,OC=8,在OC边上取一点D,将纸片沿AD翻折,使点O落在BC边上的点E处,求D、E两点的坐标.
答案:
1.B 【解析】 ∵长方OABC 的边OA 、OC 分别在x 轴、y 轴上,点B 的坐标为(3,2),∴CB =3,AB =2,又根据折叠得B ′E =BE ,B ′D =BD ,而BD =BE =1,∴CE =2,AD =1,∴B ′的坐标为(2,1).故选B .
2.(16,3) 【解析】 因为经过一次变换后点A 的对应点A ′的坐标是(0,3),经过两次变换后点A 的对应点A ′的坐标是(2,-3),经过三次变换后点A 的对应点A ′的坐标是(4,3),经过四次变换后点A 的对应点A ′的坐标是(6,-3),可见,经过n 次变换后点A 的对应点A ′的坐标为:当n 是偶数时为(2n -2,-3),当n 为奇数时(2n -2,3),所以经过连续9次这样的变换后点A 的对应点A ′的坐标是(2×9-2,3),即(16,3).故答案为(16,3).
3.解:由题意,可知,折痕AD 是四边形OAED 的对称轴,
在Rt △ABE 中,AE=AO =10,AB =8,6BE ===,
∴CE=4 ∴E(4,8),
在Rt △DC E 中,222DC CE DE +=, 又DE=OD ,∴222(8)4OD OD -+=, ∴OD =5, ∴D (0,5).。

相关文档
最新文档