PLC模拟量说明关于模拟量分辨率和精度的问题PDF.pdf
PLC调试中常见的模拟量输入输出校准问题及解决方案
PLC调试中常见的模拟量输入输出校准问题及解决方案在工业自动化控制系统中,可编程逻辑控制器(PLC)是一个重要的设备,负责监测和控制各种过程。
模拟量输入输出模块是PLC中至关重要的部分,用于读取和输出模拟量信号。
然而,在PLC调试过程中,经常会遇到模拟量输入输出校准问题。
本文将介绍几个常见的模拟量输入输出校准问题,并提供相应的解决方案。
一、零点漂移问题在PLC调试过程中,模拟量输入输出模块的零点漂移是一个常见的问题。
零点漂移是指模拟量输入输出模块在没有输入信号或输出为零时,输出值不为零的情况。
这可能导致系统误差,影响整个控制过程的准确性。
解决方案:1. 确保输入信号源处于零点状态。
检查传感器、变送器等设备的零点校准,确保输入信号源输出的模拟量为零。
2. 检查输入信号线路。
排除信号线路故障,例如断线、接触不良等情况。
可以使用万用表或示波器检测信号线路的连通性,并重新连接或更换有问题的线路。
二、量程偏移问题模拟量输入输出模块的量程偏移是指模块的输入输出范围与实际应用范围不一致的情况。
这可能导致模块无法准确读取或输出信号,从而影响控制系统的运行。
解决方案:1. 确定量程设置。
检查PLC程序中模拟量输入输出模块的量程设置是否正确。
根据实际应用要求,调整输入输出模块的量程范围,使其与实际信号范围相匹配。
2. 检查量程设置参数是否正确。
对于某些模拟量输入输出模块,需要手动设置量程参数,例如最小值、最大值等。
确保这些参数与实际应用需求一致,并进行相应的设置。
三、传感器误差问题传感器是模拟量输入输出模块的重要组成部分,常用于测量温度、压力、流量等物理量。
然而,传感器的误差可能导致模块读取的信号不准确,从而影响整个控制系统的性能。
解决方案:1. 校准传感器。
使用专业的仪器设备,对传感器进行定期的校准操作。
校准过程可以根据设备制造商提供的校准方法进行,以确保传感器输出的模拟量是准确的。
2. 检查传感器的接线。
排除传感器接线松动、接点氧化等问题,确保传感器与模拟量输入输出模块的连接可靠稳定。
pcl模拟量的处理流程及注意事项
pcl模拟量的处理流程及注意事项下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor.I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!PCL模拟量处理流程与注意事项解析PCL(Programmable Logic Controller)是一种数字运算操作的电子系统,广泛应用于工业控制中。
PLC采集模拟量,模块分辨率是什么意思?12位和16位精度差多少?
PLC采集模拟量,模块分辨率是什么意思?12位和16位精度差多少?【导读】国内外对伺服系统惯量匹配的理解有较大不同,本文提出工程应用中惯量匹配的涵义。
在装备制造业实际应用中,绝大部分是不按惯量匹配来设计的。
同时分析了惯量不匹配较严重时,对伺服系统有何影响。
重点指出,在伺服系统中,需要研究的不是实现负载惯量匹配,而是实现负载惯量与电机惯量的比率在合理的范围,确保系统的快速响应而且能稳定运行。
最后给出了在负载惯量与电动机惯量高度不匹配的应用中可采取的应对措施。
引言转动惯量(Moment of Inertia)是刚体绕轴转动时惯性(回转物体保持其匀速圆周运动或静止的特性)的量度,用字母I或J表示。
转动惯量在旋转动力学中的角色相当于线性动力学中的质量,可形象地理解为一个物体对于旋转运动的惯性。
转动惯量对伺服系统的精度、稳定性、动态响应都有不小影响,伺服系统应用中,折算到电机轴的负载惯量与电机的惯量之比不能过大,必须合理取值,否则,系统一般会出现振荡甚至失控。
但为何需要合适的惯量比,而且这个推荐的惯量比,在实践中如何取值比较合理,这些都是工程师常感到困惑的问题。
伺服电机负载惯量比的适宜性分析1、惯量匹配- -最佳的功率传输和最大加速度所有的机械系统都存在一定程度的弹性(也即刚性是无法无穷大的),而有部分机械系统则存在背隙。
这两种的任何一种达到了一定程度时,都会导致系统响应性能极差。
因此所谓的惯量不匹配可能导致的问题,其实是由于机械刚性不足,可能存在着较大的弹性或背隙而可能产生的运动不稳定问题。
伺服系统中我们需要控制的运动量是负载端的位置或转速,但实际上却是以安装在电机上的反馈装置检测到的位置或转速信号来代替目标负载控制量,而由于刚性的有限性,这种控制方式在一定条件下,特别是惯量比太大时,较大概率会出现不稳定问题。
要提高系统的快速响应性,首先必须提高机械传动部件的谐振频率,即提高机械传动部件的刚性和减小机械传动部件的惯量。
第5讲PLC的模拟量控制
模拟输出范围
0~10VDC
0~5VDC
4~20mADC
仪表显示值
0.040V
0.020V
4.064mA
注:顺时针旋转电位器为数字值增加,从最小值到最大值需要转18圈。 (2)增益校准 1) 输入校准程序(图5.13所示)
图5.13 输入校准程序
2)校准过程 ①运行前面程序,确保X0为ON状态; ②调节D/A GAIN电位器,直到仪表显示到相应的增益电压/电流为止,如表5.8所 示。
【实例19】有一个压力传感器,感应压力范围是0-5MPa,输出电压是0-5V。利用 这个传感器去测量某管道中的油压,当测到的压力<3.5MPa时,PLC的Y10灯亮, 表示压力低;当测到的压力为3.5-4.2MPa的范围内时,Y11灯亮,表示压力正常; 当测到的压力>4.2MPa时,Y12灯亮,表示压力过高。请写出PLC的控制程序。 (1)系统分析 在该系统中,传感器输出的模拟量通过FX0N-3A转换为数字量放在PLC中,然后通 过区间比较指令进行比较判断,控制PLC的输出,假设FX0N-3A接在PLC的0号位置。 (2)根据数值比例进行画图(图5.18所示)
模拟输入范围 偏置校准值
0~10VDC 0.040V
0~5VDC 0.020V
4~20mADC 4.064mA
②运行前面程序,确保X0为ON状态; ③调节A/D OFFSET电位器,直到数字值1读入D0为止。 注:顺时针旋转电位器为数字值增加,从最小值到最大值需要转18圈。
(2)增益校准 校准过程如下: ①选择对应的接线方法,使输入的增益电压/电流符合表5.6。
图5.7 A/D输入程序
程序解释如下:
(1)X1↓,(H00)写入BFM#17,选择输入通道 1 且复位A/D 转换; (2)(H02)写入BFM#17,保持输入通道1 的选 择且启动A/D 转换; (3)读取BFM#0,输入通道1 当前A/D 转换对 应值存储于主机单元(D01)中; (4)X2↓, (H01)写入BFM#17,选择输入通道 2 且复位A/D 转换; (5)(H03)写入BFM#17,保持输入通道2 的选 择且启动A/D 转换; (6)读取BFM#0,输入通道2 当前A/D 转换对 应值存储于主机单元(D02)中。
S71200 模拟量PDF.pdf
号位 0~20 mA,4~20 mA 0 ~ 27648
SB 1231 1 x 模 拟量输入
6ES7 231-4HA30-0XB0
11 位 +符 号位
±10 V ,±5 -27648 ~
V,±2.5 V
27648
0~20 mA 0 ~ 27648
模拟量输出
SM 1232 2 x 模 6ES7
拟量输出
实际电流输入 设置电流范围 量程范围 NORM_X 通道测量值下限
0-20 mA
0-20 mA 0 -27648
0
4-20 mA
0-20 mA 5530- 27648
5530
6
书山有路
4-20 mA 0 - 27648
0
二、工程量转换为测量值
如下图 2 程序所示,为标准 4~20 mA 模拟量输入信号,对应 0 ~ 80 MPa 压力的量程换算示例,同理需修正通道测量输出值下限 SCALE_X_LO_LIM 为 5530
12 位 ±10 V ,±5 -27648 ~
+ 符 V,±2.5 V
27648
号位 0~20 mA,4~20 mA 0 ~ 27648
6ES7 SM 1234 4 x 模
234-4HE32-0XB0
12 位 +符
±10 V ,±5 V,±2.5 V
-27648 ~ 27648
1
书山有路
拟量输入/ 2 x 模拟量输出
27648
号位 0~20 mA,4~20 mA 0 ~ 27648
SM 1231 4 x 模 6ES7
拟量输入
231-5ND32-0XB0
15 位 +符
模拟量产品量化精度与分辨率说明
模拟量产品量化精度与分辨率说明1.1问题来源相较于数字量(485)产品,读数直接由数字信号标示,因此在数据的传输上没有误差和分辨率的区别。
但是对于模拟量(电压输出、电流输出)的产品,产品内部的主控和传感器组件均为数字信号,在输出时编码为模拟信号,在编码的过程中使用的是DAC编码的方式,DAC编码量化有分辨率,因此产品的量化精度和分辨率显得尤为重要。
1.2产品的编码精度与信号分辨率产品的初始量化精度为12Bit,也就是4096阶,经过放大和数据转换后不同的信号种类的量化精度不尽相同,因此分别描述:4-20mA电流输出:产品占用60%以上的的分辨率,也就是2457阶,因此产品最小分辨率为0.008mA。
0-5V输出产品:产品占用40%以上的分辨率,也就是1638阶,因此产生的最小分辨率为0.003V。
0-10V输出产品:产品占用80%以上的分辨率,也就是3276阶,因此产生的最小分辨率为0.003V1.3测量设备的量化精度模拟量类型产品一般在后端与单片机或者PLC的DI模块等相连接,因此除了要计算产品的编码精度和分辨率之外,还需要计算单片机或者PLC的量化精度,在编码精度和量化精度之间取较大的精度为准。
对于PLC我们以三菱的FX2N-4AD型号为例,此型号的转换模块根据技术手册可以得知,可以支持-10V到﹢10V电压信号采集,分辨率为5mV,支持4-20mA或者-20mA到20mA采集,分辨率为20uA。
根据上文1.2章节介绍的,我司的电流输出最小分辨率为0.008mA,FX2N-4AD的分辨率为0.020mA,因此整体的最小分辨率为0.020mA;我司最小的电压分辨率为0.003V,FX2N-4AD 的最小分辨率为0.005V,因此整体的最小分辨率为0.005V。
可以看出,我司传感器的输出分辨率是非常高的分辨率,但是PLC的转换模块的分辨率要低,因此受限于PLC的低分辨率,这里丢失了一部分的精度。
西门子PLC模拟量参数
西门子PLC模拟量参数用PLC对现场信号进行处理,那就需要采集现场传感器信号,现场传感器多种多样,无非都分为数字量信号和模拟量信号。
数字量信号也就是我们常说的开关量信号,通断功能。
模拟量信号是连续的信号,它是传感器检测被测对象而输出的数据,这个数据随着被检测信号的变化而变化,我们叫它为模拟量,一般与现场信号成线性比例关系。
比如压力传感器、液位传感器、温度传感器、流量传感器等等。
这些传感器的信号如何让PLC接收呢?在PLC内部又如何处理呢?传感器信号要经过变送器,转变成标准的电信号,那么标准的电信号都是哪些呢?下面一一进行介绍,常见的标准的电信号包含的有电压信号和电流信号。
电压信号又分单极性和双极性,电流信号不分极性。
1、模拟量输入参数:电压(单极性)0~10V 0~5V 0~1V 0~500mV 0~100mV 0~50mV电压(双极性)±10V ±5V ±2.5V ±1V ±500mV ±250mV ±100mV ±50mV ±25mV电流 0~20mA2、量程范围:双极性全量程范围-32000~+32000单极性全量程范围0~320003、转换器:12位A/D转换器4、模拟量输出参数:电压输出±10V,电流输出0~20mA电压-32000~+32000,电流0~320005、精度:电压12位,电流11位6、S7-200PLC模拟量参数(1)CPU 224 XP本体模拟量输入:电压范围: -+10V,数据字格式,满量程:-3,2000至+3,2000。
(2)CPU 224 XP本体模拟量输出:电压范围:0—10V,数据字格式,满量程:0-至+3,2000;电流范围:0—20mA,数据字格式,满量程:0-至+3,2000;(3)S7-200 扩展模块EM231模拟量输入:电压范围:0—10V,0—5V(单极性)、+5V,+2.5V(双极性);电流范围:0—20mA ;数据字格式,满量程:0-至+3,2000(单极性);-3,2000—+3,2000(双极性)(4)S7-200 扩展模块EM232模拟量输出:电压范围: +10V,数据字格式,满量程:-3,2000至+3,2000。
PLC模拟量说明关于模拟量分辨率和精度的问题.pdf
关于模拟量分辨率和精度的问题各种plc模拟量处理:欧姆龙PLC 模拟量CP1H-XA40DR-A 模拟量输入4-20mA对应PLC内部读到的数值是多少?输出4-20mA对应PLC内部读到的数值又是多少?AD转换:硬件连接好后,用编程软件设定输入方式,设定分辨率,然后,在特殊功能寄存器里读取转换数值这个数值的对应关系是:分辨率6000 4-20mA 0-1770 HEX,十进制为0-6000.分辨率12000 0-2EE0 HEX,十进制为0-12000DA转换:也是同样的道理分辨率设定在6000时,4-20mA对应值为0-1770 HEX,转换为十进制为0-6000. 分辨率设定在12000时,对应值为0-2EE0 HEX,转换为十进制为0-120001、欧姆龙CP1H分辨率0-6000对应最小到最大/////////////////////////////////2、S7200是0-20对应0-120003、GE是4-20对应0-32000分辩率只代表了最小量化的梯度,和精度无直接联系,12位是4096位,如取中点为零则为正负2048位,即数字的最小变化是量程的4096分之一。
但一般情况下,考虑到非线性、重复性、温度变化、电源变化等的影响,全范围精度能做到千分之一就不错了,计算的方法可查手册,对照你的环境计算一下就可以了。
如果是双极性,却用于只有正或负的信号输入时是量程的1/2048。
所以,有些精度的标注是精度值再加减一个字。
这一个字就是量化误差。
不过,AD的制造商是考虑到条件因素,如果稳定性差,分辨率再高也没用,只是用于调节时平滑些。
所以,较好条件下的测量系统精度取分辨率的1/3较适宜。
用于控制取1/10左右。
首先解释一下标度变换:标度变换用于模拟量处理,PLC作为计算机,只能处理数字量,而我们生活中经常遇到的物理量,像压力,温度,流量,位移等先通过传感器,变送器,转换为便于处理的标准模拟量(0~10v 4-20mma -10v-10v )模拟量进入PLC 的AD转换模块后转换成数字量16进制的比如0-1770h 也就是十进制的0-6000(举例来说,不同AD模块,分辨率不一样,输入类型可以设置成别的方式)可是这些与我们要的比如温度等物理量数值上是不一样的,不过成线性关系。
(完整版)西门子PLC编程模拟量
对输入、输出模拟量的PLC编程的探讨及编程实例解析对于初学PLC编程的人来说,模拟量输入、输出模块的编程要比用位变量进行一般的程序控制难的多,因为它不仅仅是程序编程,而且还涉及到模拟量的转换公式推导与使用的问题。
不同的传感变送器,通过不同的模拟量输入输出模块进行转换,其转换公式是不一样的,如果选用的转换公式不对,编出的程序肯定是错误的。
比如有3个温度传感变送器:(1)、测温范围为 0~200,变送器输出信号为4~20ma(2)、测温范围为 0~200,变送器输出信号为0~5V(3)、测温范围为-100~500,变送器输出信号为4~20ma(1)和(2)二个温度传感变送器,测温范围一样,但输出信号不同,(1)和(3)传感变送器输出信号一样,但测温范围不同,这3个传感变送器既使选用相同的模拟量输入模块,其转换公式也是各不相同。
一、转换公式的推导下面选用S7-200的模拟量输入输出模块EM235的参数为依据对上述的3个温度传感器进行转换公式的推导:对于(1)和(3)传感变送器所用的模块,其模拟量输入设置为0~20ma电流信号 ,20ma对应数子量=32000,4 ma对应数字量=6400;对于(2)传感变送器用的模块,其模拟量输入设置为0~5V电压信号,5V 对应数字量=32000,0V对应数字量=0;这3种传感変送器的转换公式该如何推导的呢?这要借助与数学知识帮助,请见下图:上面推导出的(2-1)、(2-2)、(2-3)三式就是对应(1)、(2)、(3)三种温度传感变送器经过模块转换成数字量后再换算为被测量的转换公式。
编程者依据正确的转换公式进行编程,就会获得满意的效果。
二、变送器与模块的连接通常输出4~20ma电流信号的传感变送器,对外输出只有 +、- 二根连线,它需要外接24V电源电压才能工作,如将它的+、- 二根连线分别与24V电源的正负极相连,在被测量正常变化范围内,此回路将产生4~20ma电流,见下左图。
PLC模拟量说明关于模拟量分辨率和精度的问题.docx
关于模拟量分辨率和精度的问题各种plc模拟量处理:欧姆龙PLC 模拟量CP1H-XA40DR-A 模拟量输入4-20mA对应PLC内部读到的数值是多少?输出4-20mA对应PLC内部读到的数值又是多少?AD转换:硬件连接好后,用编程软件设定输入方式,设定分辨率,然后,在特殊功能寄存器里读取转换数值这个数值的对应关系是:分辨率6000 4-20mA 0-1770 HEX,十进制为0-6000.分辨率12000 0-2EE0 HEX,十进制为0-12000DA转换:也是同样的道理分辨率设定在6000时,4-20mA对应值为0-1770 HEX,转换为十进制为0-6000. 分辨率设定在12000时,对应值为0-2EE0 HEX,转换为十进制为0-120001、欧姆龙CP1H分辨率0-6000对应最小到最大/////////////////////////////////2、S7200是0-20对应0-120003、GE是4-20对应0-32000分辩率只代表了最小量化的梯度,和精度无直接联系,12位是4096位,如取中点为零则为正负2048位,即数字的最小变化是量程的4096分之一。
但一般情况下,考虑到非线性、重复性、温度变化、电源变化等的影响,全范围精度能做到千分之一就不错了,计算的方法可查手册,对照你的环境计算一下就可以了。
如果是双极性,却用于只有正或负的信号输入时是量程的1/2048。
所以,有些精度的标注是精度值再加减一个字。
这一个字就是量化误差。
不过,AD的制造商是考虑到条件因素,如果稳定性差,分辨率再高也没用,只是用于调节时平滑些。
所以,较好条件下的测量系统精度取分辨率的1/3较适宜。
用于控制取1/10左右。
首先解释一下标度变换:标度变换用于模拟量处理,PLC作为计算机,只能处理数字量,而我们生活中经常遇到的物理量,像压力,温度,流量,位移等先通过传感器,变送器,转换为便于处理的标准模拟量(0~10v 4-20mma -10v-10v )模拟量进入PLC 的AD转换模块后转换成数字量16进制的比如0-1770h 也就是十进制的0-6000(举例来说,不同AD模块,分辨率不一样,输入类型可以设置成别的方式)可是这些与我们要的比如温度等物理量数值上是不一样的,不过成线性关系。
S7-200类型PLC模拟量问题的解答
S7-200模拟量问题的解答问题:S7-200模拟量输入模块(EM231,EM235)如何寻址?回答: 模拟量输入和输出为一个字长,所以地址必须从偶数字节开始, 精度为12位,模拟量值为0-32000的数值。
格式: AIW[起始字节地址] AIW6 ;AQW[起始字节地址] AQW0每个模拟量输入模块,按模块的先后顺序地址为固定的,顺序向后排。
例: AIW0 AIW2 AIW4 AIW6每个模拟量输出模块占两个通道,即使第一个模块只有一个输出AQW0 (EM235只有一个模拟量输出), 第二个模块模拟量输出地址也应从AQW4开始寻址,依此类推。
(注: 每一模块的起始地址都可在step7 micro/win 中 Plc/Information里在线读到)。
问题:如何将传感器连接到S7-200 模拟量输入模块(EM231,EM235)以及有哪些注意事项?回答:模拟量输入模块可以通过拨码开关设置为不同的测量方法。
开关的设置应用于整个模块,一个模块只能设置为一种测量范围。
(注:开关设置只有在重新上电后才能生效)输入阻抗与连接有关:电压测量时,输入是高阻抗为10 MOhm ;电流测量时,需要将Rx 和 x 短接,阻抗降到250 Ohm 。
注意:为避免共模电压,须将M端与所有信号负端连接, 未连接传感器的通道要短接, 如下列各图。
下列各图是各种传感器连接到S7-200 模拟量输入模块的示例为了防止模拟量模块短路,可以串入传感器一个750 Ohm电阻。
它将串接在内部250 Ohm电阻上并保证电流在 32 m A以下。
3: 电压测量注意:如果你使用一个4-20mA 传感器, 测量值必须通过编程进行相应的转换.输入转换: X=32000 *(AIWx – 6400) /(32000 – 6400)输出转换: Y=计算值*(32000 – 6400)/32000 + 6400问题:为什么使用S7-200 模拟量输入模块时接收到一个变动很大的不稳定的值?回答: 1.你可能使用了一个自供电或隔离的传感器电源,两个电源没有彼此连接。
模拟量分辨率的理解以及和模拟量转换精度的被包含关系
模拟量分辨率的理解以及和模拟量转换精度的被包含关系
模拟量的分辨率分辨率是A/D模拟量转换芯⽚的转换精度。
即⽤多少位的数值来表⽰模拟量。
也就是说分辨率越⾼,模拟量的值的范围分得越细,转化为的数字值越精确。
假如模拟量模块的转换分辨率是12位,能够反映模拟量变化的最⼩单位是满量程的1/4096(2的12次⽅),16位的最⼩单位是满量程的1/65536(2的16次⽅)。
以下列举⼀例,说明如果要在多种多样的模拟输⼊输出设备中,选择具有适合⾃⼰要求的分辨率的设备,应如何考虑。
例如,假设“测量 0℃~ 100℃的温度”。
1:希望以1℃为单位测量需要1/100的精度。
分辨率为8位(分成2的8次⽅=256份)的设备就⾜够了。
2:希望以0.1℃为单位测量需要1/1000的精度。
分辨率为12位(分成2的12次⽅=4096份)的设备就⾜够了。
3:希望以0.01℃为单位测量需要1/10000的精度。
分辨率为16位(分成2的8次⽅=65536份)的设备就⾜够了。
与分辨率容易搞混的⼀个概念是模拟量转换的精度。
模拟量转换的精度除了取决于A/D转换的分辨率,还受到转换芯⽚的外围电路的影响。
在实际应⽤中,输⼊的模拟量信号会有波动、噪声和⼲扰,内部模拟电路也会产⽣噪声、漂移,这些都会对转换的最后精度造成影响。
这些因素造成的误差要⼤于A/D芯⽚的转换误差。
PLC关于模拟量的处理
模拟量的处理1、模拟量的规范化读入模拟量输入模块的输入信号都与实际的物理量相对应,如用一个液位传感器-变送器来测量罐的液位,测量范围为0~500L,对应的输出电压为0~10V。
假设将该模拟量信号接入模拟量输入模块,对应于0~10V的电压信号,其转换值为0~27648,该数值应该进一步转换为实际物理量值(如:0~500L),这个过程称为“规范化”。
在STEP7的标准库中有可用于模拟量规范化的功能FC105,使用FC105(符号名为“SCALE”)可以将从模拟量输入模块所接收的整型值转换为以工程单位表示的介于下限(LO_LIM)和上限(HI_LIM)之间的实型值。
IN:欲转换为以工程单位表示的实型值的输入值(整数类型),可直接从模拟量输入模块接收数据;LO_LIM:以工程单位表示的下限值,实数类型;HI_LIM:以工程单位表示的上限值,实数类型;OUT:规范化后的值(物理量),实数类型;BIPOLAR:“1”表示输入值为双极性,“0”表示输入值为单极性。
示例说明,如果I0.0为“1”且M0.0为“0”,则可将地址为288的模拟量输入通道值(0~27648)转换为介于0.0和500.0之间的实型值,并写入MD104。
PIW288 为27648(01101100,00000000)MD104显示的值为500.00(注意MD104的值为实数显示);PIW288为27036(01010001,00000000)MD显示的值为375.00;PIW288为13824(00110110,00000000)MD104显示的值为250.00;PIW288为6912(00011011,00000000)MD显示的值为125.00。
FC105的功能可用下式表示:常数K1和K2根据输入值是双极性还是单极性来设置。
假定输入整型值介于-27648与27648之间,则K1=-27648.0,K2=+27648.0;假定输入整型值介于0和27648之间,则K1=0.0,K2=+27648.0。
plc模拟量精度计算方法
plc模拟量精度计算方法PLC(可编程逻辑控制器)是一种常用于工业自动化领域的控制设备,它可以通过编程来实现逻辑控制和数据处理。
在PLC的应用中,模拟量精度是一个重要的参数,它影响着PLC对现场信号的采集和处理能力。
本文将介绍PLC模拟量精度的计算方法。
我们需要了解什么是模拟量精度。
模拟量是指连续变化的信号,例如温度、压力、流量等。
PLC通常通过模拟输入模块来采集这些模拟量信号,然后将其转换为数字信号进行处理。
模拟量精度是指PLC对于输入信号的精确度和分辨率,也可以理解为PLC对于模拟信号的采样和转换能力。
PLC的模拟量精度通常由以下几个方面的因素确定:1. 模拟输入模块的分辨率:模拟输入模块是PLC用于采集模拟量信号的设备,其分辨率决定了模拟量信号的精确度。
分辨率可以理解为模拟量输入模块能够识别和表示的最小变化量。
分辨率越高,表示PLC对于模拟量信号的采样和转换能力越好。
2. 模拟输入模块的量程:模拟输入模块的量程是指模拟量输入模块能够测量的最大和最小信号范围。
量程的选择应根据实际应用中模拟量信号的范围来确定,过小的量程会导致信号超出量程而无法测量,过大的量程则会导致信号过小而无法精确测量。
3. AD转换器的精度:AD转换器是模拟量信号转换为数字信号的关键设备,其精度决定了PLC对于模拟量信号的转换精确度。
AD转换器的精度通常用位数来表示,例如12位、16位等。
位数越高,表示AD转换器的精度越高,PLC对于模拟量信号的转换能力越好。
模拟量精度的计算可以通过以下步骤进行:1. 确定模拟输入模块的分辨率和量程。
这些参数通常可以在模拟输入模块的技术手册或规格书中找到。
例如,某个模拟输入模块的分辨率为10位,量程为0-10V。
2. 确定AD转换器的精度。
AD转换器的精度通常可以在PLC的技术手册或规格书中找到。
例如,某个PLC的AD转换器精度为12位。
3. 根据模拟输入模块的分辨率和量程,以及AD转换器的精度,可以计算出PLC的模拟量精度。
PLC调试中常见的模拟量输入输出问题及解决方法
PLC调试中常见的模拟量输入输出问题及解决方法在PLC(可编程逻辑控制器)调试过程中,模拟量输入输出问题是一种常见的挑战。
本文将探讨PLC调试中常见的模拟量输入输出问题,并提供一些解决方法。
1. 电源问题当PLC的电源供应不稳定或电源线路存在噪音时,模拟量输入输出的准确性可能会受到影响。
为了解决这个问题,可以考虑以下措施:- 确保PLC的电源电压稳定,使用稳定性高的电源设备。
- 使用滤波器或稳压器来减少电源噪音。
- 对电源线路进行绝缘和屏蔽,以减少外界干扰。
- 定期检查电源线路,确保连接良好。
2. 信号干扰模拟量信号容易受到电磁干扰或信号回路的交叉干扰。
以下方法可帮助解决信号干扰问题:- 使用防干扰的电缆或信号线,降低干扰的影响。
- 将模拟量输入线路与高压电源线路或高频电源线路保持一定的距离,以减少相互干扰。
- 如果信号线路较长,可以考虑使用信号放大器或信号隔离器来提高信号抗干扰能力。
3. 精度问题PLC模拟量输入输出模块的精度是保证系统运行准确的重要指标。
如果模块精度较低,可能导致输出信号不准确。
以下是几种解决方法:- 选择具有较高精度的模拟量输入输出模块。
- 校准模块,确保输入输出信号的准确度。
- 确保传感器的精度和测量范围与模块匹配,以避免精度损失。
- 定期检查模块的性能,确保其正常工作。
4. 信号转换问题在PLC系统中,有时需要将不同类型的信号进行转换,例如将电压信号转换为电流信号。
在进行信号转换过程中可能会出现问题。
以下是一些应对方法:- 理解信号转换的原理,确保正确连接转换装置。
- 检查转换装置的输入输出范围和转换精度,确保其满足系统要求。
- 验证信号转换后的准确性,可以通过比对与信号源的实际值来进行检查。
5. 信号采样频率信号采样频率是指PLC系统对模拟量输入信号的采样速率。
如果采样频率过低,可能无法准确捕捉到信号的快速变化。
以下方法可用于解决采样频率问题:- 确认PLC的采样频率是否满足系统需求。
模拟量精度详解
模拟量精度详解
1、模拟量概念
∙在工业控制现场有很多连续变化的量,例如温度、压力、水位等等,那么这些连续变化的量就是模拟量。
∙在控制过程中我们的PLC是无法直接识别这些模拟量的,我们PLC对这些模拟量的识别主要通过以下几个步骤。
1、)将温度、压力、水位等这些模拟量,通过变送器转换成为4~20mA 电流信号、0~5V或者0~10V电压信号。
2、)将这些信号通过两线制、三线制或者四线制的方式接到PLC的模拟量模块。
3、)PLC接收到这些电流或者电压信号后通过模数转换,将模拟量转换成16位2进制的数字量,进行识别。
2、模拟量的存储
∙PLC对外部模拟信号是通过16位,也就是1个字的空间进行存储的。
3、模拟量模块精度
我们在硬件组态的过程中经常会看见SM 331 AI8 X 14Bit、SM 331 AI8 X 12 Bit这样的型号,那么同样是8路的AI模块,为什么会有14Bit和12Bit的区别呢?
下面我们来引导大家理解模拟量模块精度的概念。
∙14Bit和12Bit代表的是模块的精度。
∙12Bit精度的含义
1、)单极性:
12Bit在单极性的时候有三位无效位,因此它是以23也就是8为单位进行变化的。
2、)双极性
12Bit在双极性的时候有四位无效位,因此它是以24也就是16为单位进行变化的。
通过上面的分析我们可以得出如下结论1、)表示精度的数值越大精度越高。
2、)相同精度下单极性精度高于双极性精度。
模拟量27648的问题
模拟量27648的问题日本的PLC将12位模拟量输入模块转换后的数(0~4095)去掉尾数后为0~4000,对应于模块的模拟量的量程(例如0~10V)。
美国的PLC(例如S7-200和GE的PLC)将4000左移3位,12位模拟量输入模块转换后的数为0~32000,接近16位正数的最大值32767。
S7-300的模拟量输入模块一般采用积分转化法,转换后的二进制数的位数可以设置为9~16位(与模块的型号和组态有关),如果小于16 位(包括符号位),则转换值被自动左移,使其最高位(符号位)在16位字的最高位,左移后未使用的低位则填入0。
设转换的精度为12位加符号位,左移3位后低3位为0,相当于实际的值被乘以8。
这种处理方法使转换后的数值与模拟量的关系与组态的A/D转换的位数无关,便于对转换值的后续计算和处理,例如PID控制功能块FB 41需要将来自模拟量输入模块的整数转换为0~100.0%的浮点数。
下表给出了模拟量输入模块的转换值与以百分数表示的模拟量之间的对应关系,其中最重要的关系是双极性模拟量量程的上、下限(100%和−100%)分别对应于模拟值27648和−27648。
单极性模拟量量程的上、下限(100%和0%)分别对应于模拟值27648和0。
有人可能要问,为什么是27648呢?我认为可能是制定规则的人担心实际的模拟量输入可能会超过选择的量程,因此在量程的上、下限(-100%~100%)之外设置了18.5%的裕量。
为什么是27648而不是别的数呢?因为27648的十六进制数6C00H 是个较特殊的数。
不能认为模块的分辨率为1/27648,分辨率还是取决于模块设置的实际精度(转换后的位数)。
现场采集的底层数据分两种情况讨论(对于单极性检测)1、有信号时底层数据应该在0~27648属于正常范围,我调试还没有发现类似27650等之类的数据;底层数据还可能为32767,此时说明信号线输入有问题(常见的就是信号线的正负接反了)。
PLC控制系统模拟量介绍
业 精 于 勤 技 精 于 专 学 以 致 用
PLC 控制系统设计基础
主讲人:郝飞
天津职业技术师范大学
工程实训中心
PLC控制系统设计基础
模拟量扩展模块与热电偶热电阻扩展模块
业 精 于 勤
1、PLC 对模拟量的处理
模拟量输入信号:压力、温度、流量、转速等
技 现场模拟量信号----物理量。如:100KPa,50度,2000转/分 精 程 于 专 及 PLC模拟量信号----标准量程信号。如:4~20mA, 0~20mA, 0~10V,
技 精 程 于 专 及
应
学 用 以 致 用
PLC 编 AQWxx AQWxx
MSB LSB 0 电流输出
11位数据值
0
0
0
0
工程实训中心
PLC控制系统设计基础
5、热电偶、热电阻扩展模块
业 精 于 勤
技 精 程 于 专 及
应 EM 231模拟量输入模块的量程:±80mV 热电阻的接线方式有2线,3线,4线
分辨率为12位。
业 精 于 勤
PLC中数值表示:单极性 0~32000,双极性 -32000~+32000
MSB LSB 0 单极性 12位数据值 0 0 0
技 精 程 于 专 及
应
学 用 以 致 用
PLC 编
AIWxx
MSB LSB
双极性 12位数据值 0 0 0 0
AIWxx
最高位=0:表示正数 最高位=1:表示负数
1500 转 / 分 实际转速 * 采样转换后的数值 32000
工程实训中心
PLC控制系统设计基础
业 精 于 勤
例:压力量程 0~10MPa 变送器送出的信号 4~20mA 模拟量输入模板的量程为 0~20mA 所以4~20mA对应为6400~32000 当前实际压力的计算公式为
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
关于模拟量分辨率和精度的问题
各种plc模拟量处理:
欧姆龙PLC 模拟量
CP1H-XA40DR-A 模拟量输入4-20mA对应PLC内部读到的数值是多少?输出4-20mA对应PLC内部读到的数值又是多少?
AD转换:
硬件连接好后,用编程软件设定输入方式,设定分辨率,然后,在特殊功能寄存器里读取转换数值这个数值的对应关系是:
分辨率6000 4-20mA 0-1770 HEX,十进制为0-6000.
分辨率12000 0-2EE0 HEX,十进制为0-12000
DA转换:也是同样的道理
分辨率设定在6000时,4-20mA对应值为0-1770 HEX,转换为十进制为0-6000. 分辨率设定在12000时,对应值为0-2EE0 HEX,转换为十进制为0-12000
1、欧姆龙CP1H分辨率0-6000对应最小到最大
/////////////////////////////////
2、S7200是0-20对应0-12000
3、GE是4-20对应0-32000
分辩率只代表了最小量化的梯度,和精度无直接联系,12位是4096位,如取中点为零则为正负2048位,即数字的最小变化是量程的4096分之一。
但一般情况下,考虑到非线性、重复性、温度变化、电源变化等的影响,全范围精度能做
到千分之一就不错了,计算的方法可查手册,对照你的环境计算一下就可以了。
如果是双极性,却用于只有正或负的信号输入时是量程的1/2048。
所以,有些精度的标注是精度值再加减一个字。
这一个字就是量化误差。
不过,AD的制造商是考虑到条件因素,如果稳定性差,分辨率再高也没用,只是用于调节时平滑些。
所以,较好条件下的测量系统精度取分辨率的1/3较适宜。
用于控制取1/10左右。
首先解释一下标度变换:
标度变换用于模拟量处理,PLC作为计算机,只能处理数字量,而我们生活中经常遇到的物理量,像压力,温度,流量,位移等先通过传感器,变送器,转换为便于处理的标准模拟量(0~10v 4-20mma -10v-10v )模拟量进入PLC 的AD转换模块后转换成数字量16进制的比如0-1770h 也就是十进制的0-6000(举例来说,不同AD模块,分辨率不一样,输入类型可以设置成别的方式)可是这些与我们要的比如温度等物理量数值上是不一样的,不过成线性关系。
举个例子
用0-10v 输出的位移传感器测量位移,位移传感器的量程是0-100mm 那么对plc 的AD转换单元进行设置,设置成0-10v输入,对分辨率设置成6000 那么PLC采集进去的数字量是0v 对应数字量0
5v 对应数字量3000
10v 对应数字量6000
那么标度变换就是要把这些数字量还原为我们可以识别的物理量
0v 对应数字量0 对应0mm
5v 对应数字量3000 对应50mm
10v 对应数字量6000 对应100mm 这就是标度变换,欧姆龙PLC 可以用SCL SCL1 SCL2 指令直接对采集进来的数字进行标度转换。
而三菱没有专门的标度指令,采集进来的都是数字量,需要自己写转换程序。
不明白你这个工程的模拟量用来做什么测量的,应该是压力或者别的物理量,通过采集外部物理量进行闭环控制来达到输出的这个物理量在一个设定的范围值内吧~~!!
S7200是16位滴,如AIW0、AIW2等。
对于4~20mA的输入,对应的就是6400~32000
模拟量假入选定量程0-20ma 对应数字量0-32000
都是线性变化就是你画个坐标轴ma 为X轴数字量为y 轴
一点是0,0 另一个点是20,32000 物理量应该是模拟量数字量的统称。