高分子材料英文论文翻译

合集下载

高分子材料工程专业英语课文翻译 (2)

高分子材料工程专业英语课文翻译 (2)

高分子材料工程专业英语课文翻译Polymer Science and Polymer Engineering are closely related andoften used interchangeably. Polymer Science is concerned with the chemistry and physics of polymers, while Polymer Engineering teaches students how to design and manufacture polymer products. No matter which field you choose, there is constant innovation and new developments in the field of Polymer Science and Engineering.高分子科学和高分子工程密切相关,常常互换使用。

高分子科学研究聚合物的化学和物理学,而高分子工程则教授学生如何设计和制造聚合物产品。

无论您选择哪个领域,高分子科学和工程的领域中都不断有创新和新发展。

Polymers are large molecules that are made up of repeating units called monomers. These molecules are characterized by their high molecular weight, which gives them unique properties such as strength, elasticity, and durability. There are many types of polymers, including plastics, rubbers, and fibers.聚合物是由称为单体的重复单位组成的大分子。

高分子材料的应用英文作文

高分子材料的应用英文作文

高分子材料的应用英文作文Polymer materials have a wide range of applications in our daily lives. For example, plastic bottles are made of polymer materials, which are lightweight, durable, and cost-effective. They are widely used for packaging beverages, cosmetics, and household products.In the medical field, polymer materials are used to make artificial organs, medical devices, and drug delivery systems. For example, biodegradable polymers are used to make sutures, which can be absorbed by the body over time, eliminating the need for a second surgery to remove them.In the automotive industry, polymer materials are used to make lightweight and fuel-efficient components, such as bumpers, dashboards, and interior trims. These materials help reduce the overall weight of the vehicle, which in turn improves fuel efficiency and reduces emissions.In the construction industry, polymer materials areused to make insulation materials, pipes, and roofing materials. For example, polyurethane foam is widely used as insulation material because of its high thermal resistance and energy-saving properties.In the electronics industry, polymer materials are used to make components such as printed circuit boards, insulating materials, and protective coatings. These materials offer excellent electrical insulation properties, mechanical strength, and chemical resistance, making them ideal for electronic applications.In conclusion, polymer materials have a wide range of applications in various industries, including packaging, medical, automotive, construction, and electronics. Their unique properties, such as lightweight, durability, and flexibility, make them indispensable in modern society.。

聚苯胺英文文献及翻译

聚苯胺英文文献及翻译

• 二、聚苯胺可用作抗静电和电磁屏蔽材料 由于它具有良好的导电性,且与其它高聚 物的亲合性优于碳黑或金属粉,可以作为 添加剂与塑料、橡胶、纤维结合,制备出 抗静电材料及电磁屏蔽材料(如用于手机外
壳以及微波炉外层防辐射涂料、和军用隐
形材料等)。
报告人:杨稳华 高分子0902班 2012年3月22日
聚苯胺
Subheading goes here
聚苯胺
• 聚苯胺(Polya氮
原子,是一种特殊的导电聚合物。可溶于
N-甲基吡咯烷酮中。
聚苯胺结构:
现已公认的聚苯胺的结构式是1987年由MacDiarmid提出的:即 结构式中含有“苯-苯”连续的还原形式和含有“苯-醌”交替 的氧化形式,其中y值表征PAN的氧化还原程度,不同的结构,组 分和颜色及导电率。当y=1是完全还原的全苯式结构,对应着 “Leucoemeraldine”;y=0是“苯-醌”交替结构,对应着 “Prenigraniline”,均为绝缘体。而y=0.5为苯醌比为3∶1的半 氧化和还原结构,对应着“Emeral-dine”,即本征态。
聚苯胺的应用
另外,通过特殊方法处理得到的水溶性好的聚苯胺,可以在 水性体系里面使用。聚苯胺可以作为电磁波屏蔽材料,耐腐 蚀材料,同时可以吸收微波,还可以用来作为检测空气中氮 氧化物的含量的材料以及H2S,SO2等有害气体的含量。 聚苯胺的应用及市场简介如下:聚苯胺是一种高分子合成材 料,俗称导电塑料。它是一类特种功能材料,具有塑料的密 度,又具有金属的导电性和塑料的可加工性,还具备金属和 塑料所欠缺的化学和电化学性能,在国防工业上可用作隐身 材料、防腐材料,民用上可用作金属防腐蚀材料、抗静电材 料、电子化学品等
聚苯胺的性质
聚苯胺随氧化程度的不同呈现出不同的颜色。

高分子专业英语答案

高分子专业英语答案

高分子专业英语答案【篇一:高分子材料工程专业英语课文翻译(曹同玉,冯连芳)主编】txt>unit 1 what are polymer?第一单元什么是高聚物?what are polymers? for one thing, they are complex and giant molecules and are different from low molecular weight compounds like, say, common salt. to contrast the difference, the molecular weight of common salt is only 58.5, while that of a polymer can be as high as several hundred thousand, even more than thousand thousands. these big molecules or‘macro-molecules’ are made up of much smaller molecules, can be of one or more chemical compounds. to illustrate, imagine that a set of rings has the same size and is made of the same material. when these things are interlinked, the chain formed can be considered as representing a polymer from molecules of the same compound. alternatively, individual rings could be of different sizes and materials, and interlinked to represent a polymer from molecules of different compounds.什么是高聚物?首先,他们是合成物和大分子,而且不同于低分子化合物,譬如说普通的盐。

高分子材料 英文

高分子材料 英文

高分子材料英文Polymer materials, also known as macromolecular materials, are a kind of material with a large molecular weight, which is composed of repeated structural units. With the continuous development of science and technology, polymer materials have been widely used in various fields due to their excellent properties.First of all, polymer materials have excellent mechanical properties. They have high strength, good toughness, and can withstand large deformation without breaking. This makes them suitable for use in the manufacture of various structural materials, such as engineering plastics, fiber-reinforced composites, and elastomers.In addition, polymer materials have good chemical resistance. They are not easily corroded by acids, alkalis, salts, and other chemical substances, making them suitable for use in the chemical industry, pharmaceutical industry, and other fields where corrosion resistance is required.Furthermore, polymer materials have excellent electrical insulation properties. They have high resistivity and dielectric strength, which makes them suitable for use in the manufacture of insulating materials for electrical and electronic products.Moreover, polymer materials have good thermal stability. They have a wide range of operating temperatures and can maintain their properties at high temperatures, making them suitable for use in the manufacture of high-temperature resistant materials.Furthermore, polymer materials are lightweight and easy to process. They have a low density and can be processed into various shapes and structures through molding, extrusion, and other methods, making them suitable for use in the manufacture of lightweight materials.In conclusion, polymer materials have excellent properties such as mechanical strength, chemical resistance, electrical insulation, thermal stability, lightweight, and processability, making them widely used in various fields such as aerospace, automotive, electronics, construction, and packaging. With the continuous development of scienceand technology, it is believed that polymer materials will play an increasingly important role in the future.。

高分子合成 英语作文

高分子合成 英语作文

高分子合成英语作文英文:Polymer synthesis is a fascinating field that involves the creation of large molecules by joining together smaller units called monomers. This process can be achieved through various methods, such as addition polymerization, condensation polymerization, and ring-opening polymerization. Each method has its own unique characteristics and applications, making polymer synthesisa versatile and important area of study in chemistry and materials science.For example, addition polymerization involves the repeated addition of monomers to form a long chain polymer. This is commonly seen in the production of materials like polyethylene and polypropylene, which are used in a wide range of everyday products such as plastic bags, containers, and packaging materials. On the other hand, condensation polymerization involves the elimination of small molecules,such as water or alcohol, during the polymerization process. This method is used to produce materials like nylon and polyester, which are commonly found in clothing, carpets, and other textile products.Polymer synthesis also plays a crucial role in the development of advanced materials with unique properties. For instance, the synthesis of conductive polymers has ledto the creation of flexible and lightweight electronics, such as organic light-emitting diodes (OLEDs) and flexible solar cells. Additionally, the development of biodegradable polymers has contributed to the reduction of plastic waste and environmental pollution.中文:高分子合成是一个迷人的领域,它涉及通过将称为单体的较小单元连接在一起来创建大分子。

高分子材料工程专业英语词汇及部分课文翻译

高分子材料工程专业英语词汇及部分课文翻译

专业英语词汇accordion 手风琴activation 活化(作用)addition polymer 加成聚合物,加聚物aggravate 加重,恶化agitation 搅拌agrochemical 农药,化肥Alfin catalyst 醇(碱金属)烯催化剂align 排列成行aliphatic 脂肪(族)的alkali metal 碱金属allyl 烯丙基aluminum alkyl 烷基铝amidation 酰胺化(作用)amino 氨基,氨基的amorphous 无定型的,非晶体的anionic 阴(负)离子的antioxidant 抗氧剂antistatic agent 抗静电剂aromatic 芳香(族)的arrangement (空间)排布,排列atactic 无规立构的attraction 引力,吸引backbone 主链,骨干behavior 性能,行为biological 生物(学)的biomedical 生物医学的bond dissociation energy 键断裂能boundary 界限,范围brittle 脆的,易碎的butadiene 丁二烯butyllithium 丁基锂calendering 压延成型calendering 压延carboxyl 羧基carrier 载体catalyst 催化剂,触媒categorization 分类(法)category 种类,类型cation 正[阳]离子cationic 阳(正)离子的centrifuge 离心chain reaction 连锁反应chain termination 链终止char 炭characterize 表征成为…的特征chilled water 冷冻水chlorine 氯(气)coating 涂覆cocatalyst 助催化剂coil 线团coiling 线团状的colligative 依数性colloid 胶体commence 开始,着手common salt 食盐complex 络合物compliance 柔量condensation polymer 缩合聚合物,缩聚物conductive material 导电材料conformation 构象consistency 稠度,粘稠度contaminant 污物contour 外形,轮廓controlled release 控制释放controversy 争论,争议conversion 转化率conversion 转化copolymer 共聚物copolymerization 共聚(合)corrosion inhibitor 缓释剂countercurrent 逆流crosslinking 交联crystal 基体,结晶crystalline 晶体,晶态,结晶的,晶态的crystalline 结晶的crystallinity 结晶性,结晶度crystallite 微晶decomposition 分解defect 缺陷deformability 变形性,变形能力deformation 形变deformation 变形degree of polymerization 聚合度dehydrogenate 使脱氢density 密度depolymerization 解聚deposit 堆积物,沉积depropagation 降解dewater 脱水diacid 二(元)酸diamine 二(元)胺dibasic 二元的dieforming 口模成型diffraction 衍射diffuse 扩散dimension 尺寸dimensional stability 尺寸稳定性dimer 二聚物(体)diol 二(元)醇diolefin 二烯烃disintegrate 分解,分散,分离dislocation 错位,位错dispersant 分散剂dissociate 离解dissolution 溶解dissolve 使…溶解distort 使…变形,扭曲double bond 双键dough (生)面团,揉好的面drug 药品,药物elastic modulus 弹性模量elastomer 弹性体eliminate 消除,打开,除去elongation 伸长率,延伸率entanglement 缠结,纠缠entropy 熵equilibrium 平衡esterification 酯化(作用)evacuate 撤出extrusion 注射成型extrusion 挤出fiber 纤维flame retardant 阻燃剂flexible 柔软的flocculating agent 絮凝剂folded-chain lamella theory 折叠链片晶理论formulation 配方fractionation 分级fragment 碎屑,碎片fringed-micelle theory 缨状微束理论functional group 官能团functional polymer 功能聚合物functionalized polymer 功能聚合物gel 凝胶glass transition temperature 玻璃化温度glassy 玻璃(态)的glassy 玻璃态的glassy state 玻璃态globule 小球,液滴,颗粒growing chain 生长链,活性链gyration 旋转,回旋hardness 硬度heat transfer 热传递heterogeneous 不均匀的,非均匀的hydocy acid 羧基酸hydrogen 氢(气)hydrogen bonding 氢键hydrostatic 流体静力学hydroxyl 烃基hypothetical 假定的,理想的,有前提的ideal 理想的,概念的imagine 想象,推测imbed 嵌入,埋入,包埋imperfect 不完全的improve 增进,改善impurity 杂质indispensable 不了或缺的infrared spectroscopy 红外光谱法ingredient 成分initiation (链)引发initiator 引发剂inorganic polymer 无机聚合物interaction 相互作用interchain 链间的interlink 把…相互连接起来连接intermittent 间歇式的intermolecular (作用于)分子间的intrinsic 固有的ion 离子ion exchange resin 离子交换树脂ionic 离子的ionic polymerization 离子型聚合irradiation 照射,辐射irregularity 不规则性,不均匀的isobutylene 异丁烯isocyanate 异氰酸酯isopropylate 异丙醇金属,异丙氧化金属isotactic 等规立构的isotropic 各项同性的kinetic chain length 动力学链长kinetics 动力学latent 潜在的light scattering 光散射line 衬里,贴面liquid crystal 液晶macromelecule 大分子,高分子matrix 基体,母体,基质,矩阵mean-aquare end-to-end distance 均方末端距mechanical property 力学性能,机械性能mechanism 机理medium 介质中等的,中间的minimise 最小化minimum 最小值,最小的mo(u)lding 模型mobility 流动性mobilize 运动,流动model 模型modify 改性molecular weight 分子量molecular weight distribution 分子量分布molten 熔化的monofunctional 单官能度的monomer 单体morphology 形态(学)moulding 模塑成型neutral 中性的nonelastic 非弹性的nuclear magnetic resonance 核磁共振nuclear track detector 核径迹探测器number average molecular weight 数均分子量occluded 夹杂(带)的olefinic 烯烃的optimum 最佳的,最佳值[点,状态] orient 定向,取向orientation 定向oxonium 氧鎓羊packing 堆砌parameter 参数parison 型柸pattern 花纹,图样式样peculiarity 特性pendant group 侧基performance 性能,特征permeability 渗透性pharmaceutical 药品,药物,药物的,医药的phenyl sodium 苯基钠phenyllithium 苯基锂phosgene 光气,碳酰氯photosensitizer 光敏剂plastics 塑料platelet 片晶polyamide 聚酰胺polybutene 聚丁烯polycondensation 缩(合)聚(合)polydisperse 多分散的polydispersity 多分散性polyesterification 聚酯化(作用)polyethylene 聚乙烯polyfunctional 多官能度的polymer 聚合物【体】,高聚物polymeric 聚合(物)的polypropylene 聚苯烯polystyrene 聚苯乙烯polyvinyl alcohol 聚乙烯醇polyvinylchloride 聚氯乙烯porosity 多孔性,孔隙率positive 正的,阳(性)的powdery 粉状的processing 加工,成型purity 纯度pyrolysis 热解radical 自由基radical polymerization 自由基聚合radius 半径random coil 无规线团random decomposition 无规降解reactent 反应物,试剂reactive 反应性的,活性的reactivity 反应性,活性reactivity ratio 竞聚率real 真是的release 解除,松开repeating unit 重复单元retract 收缩rubber 橡胶rubbery 橡胶态的rupture 断裂saturation 饱和scalp 筛子,筛分seal 密封secondary shaping operation 二次成型sedimentation 沉降(法)segment 链段segment 链段semicrystalline 半晶settle 沉淀,澄清shaping 成型side reaction 副作用simultaneously 同时,同步single bond 单键slastic parameter 弹性指数slurry 淤浆solar energy 太阳能solubility 溶解度solvent 溶剂spacer group 隔离基团sprinkle 喷洒squeeze 挤压srereoregularity 立构规整性【度】stability 稳定性stabilizer 稳定剂statistical 统计的step-growth polymerization 逐步聚合stereoregular 有规立构的,立构规整性的stoichiometric 当量的,化学计算量的strength 强度stretch 拉直,拉长stripping tower 脱单塔subdivide 细分区分substitution 取代,代替surfactant 表面活性剂swell 溶胀swollen 溶胀的synthesis 合成synthesize 合成synthetic 合成的tacky (表面)发粘的,粘连性tanker 油轮,槽车tensile strength 抗张强度terminate (链)终止tertiary 三元的,叔(特)的tetrahydrofuran 四氢呋喃texture 结构,组织thermoforming 热成型thermondynamically 热力学地thermoplastic 热塑性的thermoset 热固性的three-dimensionally ordered 三维有序的titanium tetrachloride 四氯化钛titanium trichloride 三氯化铁torsion 转矩transfer (链)转移,(热)传递triethyloxonium-borofluoride 三乙基硼氟酸羊trimer 三聚物(体)triphenylenthyl potassium 三苯甲基钾ultracentrifugation 超速离心(分离)ultrasonic 超声波uncross-linked 非交联的uniaxial 单轴的unsaturated 不饱和的unzippering 开链urethane 氨基甲酸酯variation 变化,改变vinyl 乙烯基(的)vinyl chloride 氯乙烯vinyl ether 乙烯基醚viscoelastic 黏弹性的viscoelastic state 黏弹态viscofluid state 黏流态viscosity 黏度viscosity average molecular weight 黏均分子量viscous 粘稠的vulcanization 硫化weight average molecular weight 重均分子量X-ray x射线x光yield 产率Young's modulus 杨氏模量课文翻译第一单元什么是高聚物?什么是高聚物?首先,他们是合成物和大分子,而且不同于低分子化合物,譬如说普通的盐。

高分子材料英文论文翻译

高分子材料英文论文翻译

《高分子材料研究方法》课程作业题目:<New Opportunities for anAncientMaterial>论文翻译化学与材料工程学院学院高分子专业学号XXXXXXX学生姓名KITTY指导教师二〇XX年X月<New Opportunities for an Ancient Material>论文翻译Science 30 July 2010:V ol. 329 no. 5991 pp. 528-531DOI: 10.1126/science.1188936New Opportunities for an Ancient MaterialFiorenzo G. Omenetto, David L. Kaplan*Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA.E-mail: david.kaplan{at}一种古老材料的新机遇Fiorenzo G. Omenetto, David L. Kaplan*美国,马萨诸塞州(邮编02155),梅德福,塔夫茨大学,生物医学工程系邮箱:david.kaplan{at}ABSTRACTSpiders and silkworms generate silk protein fibers that embody strength and beauty. Orb webs are fascinating feats of bioengineering in nature, displaying magnificent architectures while providing essential survival utility for spiders. The unusual combination of high strength and extensibility is a characteristic unavailable to date in synthetic materials yet is attained in nature with a relatively simple protein processed from water. This biological template suggests new directions to emulate in the pursuit of new high-performance, multifunctional materials generated with a green chemistry and processing approach. These bio-inspired and high-technology materials can lead to multifunctional material platforms that integrate with living systems for medical materials and a host of other applications.摘要蜘蛛或桑蚕生成的丝蛋白纤维,是力与美的结合体。

高分子材料专业英语第二版(曹同玉,冯连芳,张菊华)课后例句翻译

高分子材料专业英语第二版(曹同玉,冯连芳,张菊华)课后例句翻译

Unit11.The essentially the ‘giantness’of the size of the polymer molecule that makes its behavior different from that of a commonly known chemical compound such as benzene.实质上,正是由于聚乙烯的巨大的分子尺寸才使其性能不同于像苯这样的一般化合物(的性能)。

2.The globules of polyvinyl alcohol firstly absorb water,swell and get distorbed in shape and aftera long time go into solution.聚乙烯醇颗粒首先吸水溶胀,发生变形,经过很长的时间以后,(聚乙烯醇分子)进入到溶液中。

3.Another peculiarity is that ,in water,polyvinyl alcohol never retains its original powdery nature as the excess sodium chloride does in a saturated salt solution.另一个特点是,在水中聚乙烯醇不会像过量的氯化钠在饱和盐溶液中那样能保持其初始的粉末状态。

UNIT21.The initiation of the chain reaction can be observed most clearly with radical or ionic initiators.用自由基型引发剂或离子型引发剂引发连锁反应可以很清楚的进行观察。

2.Such reactions occur through the initial addition of a monomer molecule to an initiator radical or an initiator ion,by which the active state is transferred from the added monomer.这样的反应是通过单体分子首先加成到引发剂自由基或引发剂离子上而进行的,靠这些活性中心由引发剂转移到被加成的单体上。

高分子复合材料的英语介绍

高分子复合材料的英语介绍
复合材料的主要优点在于它能够把组 分的物理性质结合起来,从而获得新 的结构特性或者功能特性。
Composite materials appeared very early in human technology ,the “structural” properties of straw were combined with a clay matrix to produce the first construction materials and ,more recently ,steel reinforcement opened the wa复y 合to材th料e f在er人roc类o技nc术ret史e 上tha出t i现s t得he很la早st, ce人ntu们ry把d秸om秆in的an结t 构ma特te性ria与l i粘n c土iv基il 质结合 en起gin来e,eri形ng成. 了第一种建筑材料。而且在
不远的时间里,钢筋加固使得钢筋混凝 土得以产生,这种材料在上世界土木工
程中占主导地位。
As a matter of fact ,the modern development of polymeric materials and high modulus fibres (carbon ,aramidic ) introduced a new generation of composites .The most relevant benefit has been the possibility of energetically convenient manufacturing associated with the low weight features .
exploring new markets in field of polymeric

高分子材料专业英语翻译

高分子材料专业英语翻译

高分子材料专业英语翻译Polymer materials, also known as macromolecular materials, are a kind of material with high molecular weight composed of repeating structural units. They are widely used in various fields due to their excellent properties such as light weight, high strength, and good corrosion resistance. In recent years, the demand for polymer materials has been increasing, and the study of polymer materials has become a hot topic in the field of materials science. Therefore, it is necessary to have a good understanding of the professional English translation of polymer materials in order to better communicate and exchange ideas with international counterparts.Firstly, let's start with the translation of some basic concepts related to polymer materials. "Polymer" can be translated into "高分子" in Chinese, which refers to the macromolecular compounds formed by the polymerization of monomers. "Polymerization" can be translated as "聚合" or "聚合反应", which specifically refers to the chemical reaction process of monomers forming polymers. "Macromolecule" can be translated as "大分子", which refers to a molecule with a large molecular weight formed by the combination of a large number of atoms. "Monomer" can be translated as "单体", which refers to the small molecules that can polymerize into polymers. "Polymerization degree" can be translated as "聚合度", which refers to the number of monomer units in a polymer molecule.Secondly, it is important to understand the translation of the properties of polymer materials. "Light weight" can be translated as "轻质", which refers to the low density of polymer materials. "High strength" can be translated as "高强度", which refers to the ability of polymer materials to withstand external forces without deformation or fracture. "Corrosion resistance" can be translated as "耐腐蚀性", which refers to the ability of polymer materials to resist chemical or electrochemical corrosion. "Flexibility" can be translated as "柔韧性", which refers to the ability of polymer materials to bend or stretchwithout breaking. "Thermal stability" can be translated as "热稳定性", which refers to the ability of polymer materials to maintain their properties at high temperatures.Furthermore, it is necessary to understand the translation of the processing methods of polymer materials. "Extrusion" can be translated as "挤出", which refers to the process of forcing polymer materials through a die to form continuous shapes. "Injection molding" can be translated as "注塑", which refers to the process of injecting molten polymer materials into a mold to form a desired shape. "Blow molding" can be translated as "吹塑", which refers to the process of inflating molten polymer materials into a mold to form hollow shapes. "Compression molding" can be translated as "压缩成型", which refers to the process of placing polymer materials in a mold and applying pressure and heat to form a desired shape.In conclusion, the professional English translation of polymer materials is essential for researchers, engineers, and professionals in the field of materials science. By mastering the accurate translation of key concepts, properties, and processing methods of polymer materials, we can better communicate and collaborate with international counterparts, promote the exchange of knowledge and technology, and contribute to the development and application of polymer materials on a global scale.。

高分子材料的应用英文作文

高分子材料的应用英文作文

高分子材料的应用英文作文下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copyexcerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!Polymer materials are widely used in various fields due to their excellent properties. One of the most common applications is in the field of packaging. Polymer materials such as polyethylene and polypropylene are commonly used in the production of plastic bags, bottles, and containers. They are lightweight, durable, and can be easily molded into different shapes. Moreover, they are also cost-effective and can be recycled, which makes them an eco-friendly option.Another important application of polymer materials is in the field of medicine. Polymer materials such as polyethylene glycol and poly(lactic-co-glycolic acid) are used in drug delivery systems. They can be used to encapsulate drugs and release them in a controlled manner, which can improve the efficacy of the drugs and reducetheir side effects. Moreover, polymer materials can also be used in the production of medical devices such as implants, catheters, and prosthetics.Polymer materials are also widely used in the field of construction. Polymer materials such as polyvinyl chloride and polystyrene are commonly used in the production of pipes, insulation materials, and roofing materials. They are lightweight, durable, and can withstand harsh weather conditions. Moreover, they are also cost-effective and can be easily installed, which makes them an attractive option for builders and contractors.In the field of electronics, polymer materials such as polyimide and polyethylene terephthalate are commonly used in the production of flexible circuits, displays, and batteries. They are flexible, lightweight, and can be easily molded into different shapes. Moreover, they have excellent thermal and electrical properties, which make them an ideal choice for electronic applications.In conclusion, polymer materials have a wide range of applications in various fields due to their excellent properties. From packaging to medicine, construction to electronics, polymer materials have revolutionized the waywe live and work. As technology continues to advance, we can expect to see even more innovative applications of polymer materials in the future.。

介绍高分子的英语作文

介绍高分子的英语作文

介绍高分子的英语作文Polymer is a fascinating material that can be found in various aspects of our daily lives. Take a look around you, and you will surely spot something made of polymer. Fromthe plastic bottles we use to the rubber soles on our shoes, polymers are everywhere.Speaking of plastic bottles, they are a perfect example of how versatile polymers can be. These bottles are made of a type of polymer called polyethylene terephthalate, or PET for short. PET is lightweight, durable, and resistant to breakage, making it an ideal material for packaging beverages. Plus, it can be easily molded into different shapes and sizes, allowing for a wide range of bottle designs.Another interesting use of polymers is in the field of medicine. Medical-grade polymers, such as polyethylene and polypropylene, are commonly used in the manufacturing of medical devices and implants. These polymers arebiocompatible, meaning they can be safely used in the human body without causing any harm. They are also resistant to chemicals and sterilization methods, ensuring the safetyand effectiveness of medical procedures.Polymers are also widely used in the construction industry. One example is polyvinyl chloride, or PVC, whichis used in the production of pipes, window frames, and flooring materials. PVC is lightweight, durable, and resistant to moisture, making it an excellent choice for building materials. Additionally, it can be easily molded and shaped, allowing for customized designs and easy installation.In the world of fashion, polymers play a significantrole as well. Synthetic fibers, such as polyester and nylon, are made from polymers and are commonly used in the production of clothing and accessories. These fibers are lightweight, strong, and resistant to wrinkles, making them highly desirable for creating comfortable and long-lasting garments. Moreover, they can be easily dyed and printed, offering a wide range of colors and patterns for fashiondesigners to work with.In conclusion, polymers are incredibly versatile materials that have revolutionized various industries. From plastic bottles to medical devices, construction materials to fashionable clothing, polymers have become an essential part of our modern lives. Their unique properties and adaptability make them the go-to choice for many applications. So next time you come across a polymer product, take a moment to appreciate the science and innovation behind it.。

高分子材料纳米二氧化硅外文文献翻译

高分子材料纳米二氧化硅外文文献翻译

纳米二氧化硅对成核、结晶和热塑性能的影响外文文献翻译(含:英文原文及中文译文)文献出处:Laoutid F, Estrada E, Michell R M, et al. The influence of nanosilica on the nucleation, crystallization andtensile properties of PP–PC and PP–PA blends[J]. Polymer, 2013, 54(15):3982-3993.英文原文The influence of nanosilica on the nucleation, crystallization andtensileproperties of PP–PC and PP–PA blendsLaoutid F, Estrada E, Michell R M, et alAbstractImmiscible blends of 80 wt% polypropylene (PP) with 20 wt% polyamide (PA) or polycarbonate (PC) were prepared by melt mixing with or without the addition of 5% nanosilica. The nanosilica produced a strong reduction of the disperse phase droplet size, because of its preferential placement at the interface, as demonstrated by TEM. Polarized Light Optical microscopy (PLOM) showed that adding PA, PC or combinations of PA-SiO2 or PC-SiO2 affected the nucleation density of PP. PA droplets can nucleate PP under isothermal conditions producing a higher nucleation density than the addition of PC or PC-SiO2. PLOM was found to be more sensitive to determine differences in nucleation than non-isothermal DSC. PP developed spherulites, whose growth was unaffected by blending, while its overall isothermal crystallizationkinetics was strongly influenced by nucleation effects caused by blending. Addition of nanosilica resulted in an enhancement of the strain at break of PP-PC blends whereas it was observed to weaken PP-PA blends. Keywords:Nanosilica,Nucleation,PP blends1 OverviewImmiscible polymer blends have attracted attention for decades because of their potential application as a simple route to tailor polymer properties. The tension is in two immiscible polymerization stages. This effect usually produces a transfer phase between the pressures that may allow the size of the dispersed phase to be allowed, leading to improved mixing performance.Block copolymers and graft copolymers, as well as some functional polymers. For example, maleic anhydride grafted polyolefins act as compatibilizers in both chemical affinities. They can reduce the droplet volume at the interface by preventing the two polymers from coalescing. In recent years, various studies have emphasized that nanofillers, such as clay carbon nanotubes and silica, can be used as a substitute for organic solubilizers for incompatible polymer morphology-stabilized blends. In addition, in some cases, nanoparticles in combination with other solubilizers promote nanoparticle interface position.The use of solid particle-stabilized emulsions was first discovered in 1907 by Pickering in the case of oil/emulsion containing colloidalparticles. In the production of so-called "Pickling emulsions", solid nanoparticles can be trapped in the interfacial tension between the two immiscible liquids.Some studies have attempted to infer the results of blending with colloidal emulsion polymer blends. Wellman et al. showed that nanosilica particles can be used to inhibit coalescence in poly(dimethylsiloxane)/polyisobutylene polymers. mix. Elias et al. reported that high-temperature silicon nanoparticles can migrate under certain conditions. The polypropylene/polystyrene and PP/polyvinyl acetate blend interfaces form a mechanical barrier to prevent coalescence and reduce the size of the disperse phase.In contrast to the above copolymers and functionalized polymers, the nanoparticles are stable at the interface due to their dual chemical nature. For example, silica can affect nanoparticle-polymer affinities locally, minimizing the total free energy that develops toward the system.The nanofiller is preferentially placed in equilibrium and the wetting parameters can be predicted and calculated. The difference in the interfacial tension between the polymer and the nanoparticles depends on the situation. The free-diffusion of the nanoparticle, which induces the nanoparticles and the dispersed polymer, occurs during the high shear process and shows that the limitation of the viscosity of the polymer hardly affects the Brownian motion.As a result, nanoparticles will exhibit strong affinity at the local interface due to viscosity and diffusion issues. Block copolymers need to chemically target a particular polymer to the nanoparticle may provide a "more generic" way to stabilize the two-phase system.Incorporation of nanosilica may also affect the performance of other blends. To improve the distribution and dispersion of the second stage, mixing can produce rheological and material mechanical properties. Silica particles can also act as nucleating agents to influence the crystallization behavior. One studies the effect of crystalline silica on crystalline polystyrene filled with polybutylene terephthalate (polybutylene terephthalate) fibers. They found a stable fibril crystallization rate by increasing the content of polybutylene terephthalate and silica. On the other hand, no significant change in the melt crystallization temperature of the PA was found in the PA/ABS/SiO2 nanocomposites.The blending of PP with engineering plastics, such as polyesters, polyamides, and polycarbonates, may be a useful way to improve PP properties. That is, improving thermal stability, increasing stiffness, improving processability, surface finish, and dyeability. The surface-integrated nano-silica heat-generating morphologies require hybrid compatibilization for the 80/20 weight ratio of the thermal and tensile properties of the blended polyamide and polypropylene (increasedperformance). Before this work, some studies [22] that is, PA is the main component). This indicates that the interfacially constrained hydrophobic silica nanoparticles obstruct the dispersed phase; from the polymer and allowing a refinement of morphology, reducing the mixing scale can improve the tensile properties of the mixture.The main objective of the present study was to investigate the effect of nanosilica alone on the morphological, crystalline, and tensile properties of mixtures of nanosilica alone (for mixed phases with polypropylene as a matrix and ester as a filler. In particular, PA/PC or PA/nano The effect of SiO 2 and PC/nanosilica on the nucleation and crystallization effects of PP as the main component.We were able to study the determination of the nucleation kinetics of PP and the growth kinetics of the particles by means of polarization optical microscopy. DSC measures the overall crystallization kinetics.Therefore, a more detailed assessment of the nucleation and spherulite growth of PP was performed, however, the effect of nanosilica added in the second stage was not determined. The result was Akemi and Hoffman. And Huffman's crystal theory is reasonable.2 test phase2.1 Raw materialsThe polymer used in this study was a commercial product: isotactic polypropylene came from a homopolymer of polypropylene. The Frenchformula (B10FB melt flow index 2.16Kg = 15.6g / 10min at 240 °C) nylon 6 from DSM engineering plastics, Netherlands (Agulon Fahrenheit temperature 136 °C, melt flow index 240 °C 2.16kg = 5.75g / 10min ) Polycarbonate used the production waste of automotive headlamps, its melt flow index = 5g / 10min at 240 °C and 2.16kg.The silica powder TS530 is from Cabot, Belgium (about 225 m/g average particle (bone grain) about 200-300 nm in length, later called silica is a hydrophobic silica synthesis of hexamethyldisilane by gas phase synthesis. Reacts with silanols on the surface of the particles.2.2 ProcessingPP_PA and PP-PC blends and nanocomposites were hot melt mixed in a rotating twin screw extruder. Extrusion temperatures range from 180 to 240 °C. The surfaces of PP, PA, and PC were vacuumized at 80°C and the polymer powder was mixed into the silica particles. The formed particles were injected into a standard tensile specimen forming machine at 240C (3 mm thickness of D638 in the American Society for Testing Materials). Prior to injection molding, all the spherulites were in a dehumidified vacuum furnace (at a temperature of 80°C overnight). The molding temperature was 30°C. The mold was cooled by water circulation. The mixture of this combination is shown in the table.2.3 Feature Description2.31 Temperature Performance TestA PerkineElmer DSC diamond volume thermal analysis of nanocomposites. The weight of the sample is approximately 5 mg and the scanning speed is 20 °C/min during cooling and heating. The heating history was eliminated, keeping the sample at high temperature (20°C above the melting point) for three minutes. Study the sample's ultra-high purity nitrogen and calibrate the instrument with indium and tin standards.For high temperature crystallization experiments, the sample cooling rate is 60°C/min from the melt directly to the crystal reaching the temperature. The sample is still three times longer than the half-crystallization time of Tc. The procedure was deduced by Lorenzo et al. [24] afterwards.2.3.2 Structural CharacterizationScanning electron microscopy (SEM) was performed at 10 kV using a JEOL JSM 6100 device. Samples were prepared by gold plating after fracture at low temperature. Transmission electron microscopy (TEM) micrographs with a Philips cm100 device using 100 kV accelerating voltage. Ultra-low cut resection of the sample was prepared for cutting (Leica Orma).Wide-Angle X-Ray Diffraction Analysis The single-line, Fourier-type, line-type, refinement analysis data were collected using a BRUKER D8 diffractometer with copper Kα radiation (λ = 1.5405A).Scatter angles range from 10o to 25°. With a rotary step sweep 0.01° 2θ and the step time is 0.07s. Measurements are performed on the injection molded disc.This superstructure morphology and observation of spherulite growth was observed using a Leica DM2500P polarized light optical microscope (PLOM) equipped with a Linkam, TP91 thermal stage sample melted in order to eliminate thermal history after; temperature reduction of TC allowed isothermal crystallization to occur from the melt. The form is recorded with a Leica DFC280 digital camera. A sensitive red plate can also be used to enhance contrast and determine the birefringence of the symbol.2.3.3 Mechanical AnalysisTensile tests were carried out to measure the stretch rate at 10 mm/min through a Lloyd LR 10 K stretch bench press. All specimens were subjected to mechanical tests for 20 ± 2 °C and 50 ± 3% relative humidity for at least 48 hours before use. Measurements are averaged over six times.3 results3.1 Characterization by Electron MicroscopyIt is expected that PP will not be mixed with PC, PA because of their different chemical properties (polar PP and polar PC, PA) blends with 80 wt% of PP, and the droplets and matrix of PA and PC are expectedmorphologies [ 1-4] The mixture actually observed through the SEM (see Figures 1 a and b).In fact, because the two components have different polar mixtures that result in the formation of an unstable morphology, it tends to macroscopic phase separation, which allows the system to reduce its total free energy. During shearing during melting, PA or PP is slightly mixed, deformed and elongated to produce unstable slender structures that decompose into smaller spherical nodules and coalesce to form larger droplets (droplets are neat in total The size of the blend is 1 ~ 4mm.) Scanning electron microscopy pictures and PP-PC hybrid PP-PA neat and clean display left through the particle removal at cryogenic temperatures showing typical lack of interfacial adhesion of the immiscible polymer blend.The addition of 5% by weight of hydrophobic silica to the LED is a powerful blend of reduced size of the disperse phase, as can be observed in Figures 1c and D. It is worth noting that most of the dispersed phase droplets are within the submicron range of internal size. The addition of nano-SiO 2 to PA or PC produces finer dispersion in the PP matrix.From the positional morphology results, we can see this dramatic change and the preferential accumulation at the interface of silica nanoparticles, which can be clearly seen in FIG. 2 . PP, PA part of the silicon is also dispersed in the PP matrix. It can be speculated that thisformation of interphase nanoparticles accumulates around the barrier of the secondary phase of the LED, thus mainly forming smaller particles [13, 14, 19, 22]. According to fenouillot et al. [19] Nanoparticles are mixed in a polymer like an emulsifier; in the end they will stably mix. In addition, the preferential location in the interval is due to two dynamic and thermodynamic factors. Nanoparticles are transferred to the preferential phase, and then they will accumulate in the interphase and the final migration process will be completed. Another option is that there isn't a single phase of optimization and the nanoparticles will be set permanently in phase. In the current situation, according to Figure 2, the page is a preferential phase and is expected to have polar properties in it.3.2 Wide-angle x-ray diffractionThe polymer and silica incorporate a small amount of nanoparticles to modify some of the macroscopic properties of the material and the triggered crystal structure of PP. The WAXD experiment was performed to evaluate the effect of the incorporation of silica on the crystalline structure of the mixed PP.Isotactic polypropylene (PP) has three crystalline forms: monoclinic, hexagonal, and orthorhombic [25], and the nature of the mechanical polymer depends on the presence of these crystalline forms. The metastable B form is attractive because of its unusual performance characteristics, including improved impact strength and elongation atbreak.The figure shows a common form of injection molding of the original PP crystal, reflecting the appearance at 2θ = 14.0, 16.6, 18.3, 21.0 and 21.7 corresponding to (110), (040), (130), (111) and (131) The face is an α-ipp.20% of the PA incorporation into PP affects the recrystallization of the crystal structure appearing at 2θ = 15.9 °. The corresponding (300) surface of the β-iPP crystal appears a certain number of β-phases that can be triggered by the nucleation activity of the PA phase in PP (see evidence The following nucleation) is the first in the crystalline blend of PA6 due to its higher crystallization temperature. In fact, Garbarczyk et al. [26] The proposed surface solidification caused by local shear melts the surface of PA6 and PP and forms during the injection process, promoting the formation of β_iPP. According to quantitative parameters, KX (Equation (1)), which is commonly used to evaluate the amount of B-crystallites in PP including one and B, the crystal structure of β-PP has 20% PP_PA (110), H(040) and Blends of H (130) heights (110), (040) and (130). The height at H (300) (300) for type A peaks.However, the B characteristic of 5 wt% silica nanoparticles incorporated into the same hybrid LED eliminates reflection and reflection a-ipp retention characteristics. As will be seen below, the combination of PA and nanosilica induces the most effective nucleatingeffect of PP, and according to towaxd, this crystal formation corresponds to one PP structure completely.The strong reductive fracture strain observations when incorporated into polypropylene and silica nanoparticles (see below) cannot be correlated to the PP crystal structure. In fact, the two original PP and PP_PA_SiO2 hybrids contain α_PP but the original PP has a very high form of failure when the strain value.On the other hand, PP-PC and PP-PC-Sio 2 blends, through their WAXD model, can be proven to contain only one -PP form, which is a ductile material.3.3 Polarized Optical Microscopy (PLOM)To further investigate the effect of the addition of two PAs, the crystallization behavior of PC and silica nanoparticles on PP, the X-ray diffraction analysis of its crystalline structure of PP supplements the study of quantitative blends by using isothermal kinetic conditions under a polarizing microscope. The effect of the composition on the nucleation activity of PP spherulite growth._Polypropylene nucleation activityThe nucleation activity of a polymer sample depends on the heterogeneity in the number and nature of the samples. The second stage is usually a factor in the increase in nucleation density.Figure 4 shows two isothermal crystallization temperatures for thePP nucleation kinetics data. This assumes that each PP spherulite nucleates in a central heterogeneity. Therefore, the number of nascent spherulites is equal to the number of active isomerous nuclear pages, only the nucleus, PP-generated spherulites can be counted, and PP spherulites are easily detected. To, while the PA or PC phases are easily identifiable because they are secondary phases that are dispersed into droplets.At higher temperatures (Fig. 4a), only the PP blend inside is crystallized, although the crystals are still neat PP amorphous at the observed time. This fact indicates that the second stage of the increase has been able to produce PP 144 °C. It is impossible to repeat the porous experiment in the time of some non-homogeneous nucleation events and neat PP exploration.The mixed PP-PC and PP-PC-SiO 2 exhibited relatively low core densities at 144 °C, (3 105 and 3 106 nuc/cm 3) suggesting that either PC nanosilica can also be considered as good shape Nuclear agent is used here for PP.On the other hand, PA, himself, has produced a sporadic increase in the number of nucleating events in PP compared to pure PP, especially in the longer crystallization time (>1000 seconds). In the case of the PP-PA _Sio 2 blend, the heterogeneous nucleation of PP is by far the largest of all sample inspections. All the two stages of the nucleating agent combined with PA and silica are best employed in this work.In order to observe the nucleation of pure PP, a lower crystallization temperature was used. In this case, observations at higher temperatures found a trend that was roughly similar. The neat PP and PP-PC blends have small nucleation densities in the PP-PC-SiO 2 nanocomposite and the increase also adds further PP-PA blends. The very large number of PP isoforms was rapidly activated at 135°C in the PP-PA nanoparticle nanometer SiO 2 composites to make any quantification of their numbers impossible, so this mixed data does not exist from Figure 4b.The nucleation activity of the PC phase of PP is small. The nucleation of any PC in PP can be attributed to impurities that affect the more complex nature of the PA from the PC phase. It is able to crystallize at higher temperatures than PP, fractional crystallization may occur and the T temperature is shifted to much lower values (see References [29-39]. However, as DSC experiments show that in the current case The phase of the PA is capable of crystallizing (fashion before fractionation) the PP matrix, and the nucleation of PP may have epitaxy origin.The material shown in the figure represents a PLOAM micrograph. Pure PP has typical α-phase negative spherulites (Fig. 5A) in the case of PP-PA blends (Fig. 5B), and the PA phase is dispersed with droplets of size greater than one micron (see SEM micrograph, Fig. 1) . We could not observe the spherulites of the B-phase type in PP-PA blends. Even according to WAXD, 20% of them can be formed in injection moldedspecimens. It must be borne in mind that the samples taken using the PLOAM test were cut off from the injection molded specimens but their thermal history (direction) was removed by melting prior to melting for isothermal crystallization nucleation experiments.The PA droplets are markedly enhanced by the nucleation of polypropylene and the number of spherulites is greatly increased (see Figures 4 and 5). Simultaneously with the PP-PA blend of silica nanoparticles, the sharp increase in nucleation density and Fig. 5C indicate that the size of the spherulites is very small and difficult to identify.The PP-PC blends showed signs of sample formation during the PC phase, which was judged by large, irregularly shaped graphs. Significant effects: (a) No coalesced PC phase, now occurring finely dispersed small droplets and (B) increased nucleation density. As shown in the figure above, nano-SiO 2 tends to accumulate at the interface between the two components and prevent coalescence while promoting small disperse phase sizes.From the nucleation point of view, it is interesting to note that it is combined with nanosilica and as a better nucleating agent for PP. Combining PCs with nanosilica does not produce the same increase in nucleation density.Independent experiments (not shown here) PP _ SiO 2 samplesindicate that the number of active cores at 135 °C is almost the same as that of PP-PC-SiO2 intermixing. Therefore, silica cannot be regarded as a PP nucleating agent. Therefore, the most likely explanation for the results obtained is that PA is the most important reason for all the materials used between polypropylene nucleating agents. The increase in nucleation activity to a large extent may be due to the fact that these nanoparticles reduce the size of the PA droplets and improve its dispersion in the PP matrix, improving the PP and PA in the interfacial blend system. Between the regions. DSC results show that nano-SiO 2 is added here without a nuclear PA phase.4 Conclusion5% weight of polypropylene/hydrophobic nanosilica blended polyamide and polypropylene/polycarbonate (80E20 wt/wt) blends form a powerful LED to reduce the size of dispersed droplets. This small fraction of reduced droplet size is due to the preferential migration of silica nanoparticles between the phases PP and PA and PC, resulting in an anti-aggregation and blocking the formation of droplets of the dispersed phase.The use of optical microscopy shows that the addition of PA, the influence of PC's PA-Sio 2 or PC-Sio 2 combination on nucleation, the nucleation density of PP polypropylene under isothermal conditions is in the following approximate order: PP <PP-PC <PP -PC-SiO 2<<PP-PA<<< PP-PA-SiO 2. PA Drip Nucleation PP Production of nucleation densities at isothermal temperatures is higher than with PC or PC Sio 2D. When nanosilica is also added to the PP-PA blend, the dispersion-enhanced mixing of the enhanced nanocomposites yields an intrinsic factor PP-PA-Sio2 blend that represents a PA that is identified as having a high nucleation rate, due to nanoseconds Silicon oxide did not produce any significant nucleation PP. PLOAM was found to be a more sensitive tool than traditional cooling DSC scans to determine differences in nucleation behavior. The isothermal DSC crystallization kinetics measurements also revealed how the differences in nucleation kinetics were compared to the growth kinetic measurements.Blends (and nanocomposites of immiscible blends) and matrix PP spherulite assemblies can grow and their growth kinetics are independent. The presence of a secondary phase of density causes differences in the (PA or PC) and nanosilica nuclei. On the other hand, the overall isothermal crystallization kinetics, including nucleation and growth, strongly influence the nucleation kinetics by PLOAM. Both the spherulite growth kinetics and the overall crystallization kinetics were successfully modeled by Laurie and Huffman theory.Although various similarities in the morphological structure of these two filled and unfilled blends were observed, their mechanical properties are different, and the reason for this effect is currently being investigated.The addition of 5% by weight of hydrophobic nano-SiO 2 resulted in breaking the strain-enhancement of the PP-PC blend and further weakening the PP-PA blend.中文译文纳米二氧化硅对PP-PC和PP-PA共混物的成核,结晶和热塑性能的影响Laoutid F, Estrada E, Michell R M, et al摘要80(wt%)聚丙烯与20(wt %)聚酰胺和聚碳酸酯有或没有添加5%纳米二氧化硅通过熔融混合制备不混溶的共聚物。

高分子材料的应用英文作文

高分子材料的应用英文作文

高分子材料的应用英文作文英文:Polymer materials are widely used in various fields due to their excellent properties such as high strength, light weight, and corrosion resistance. In the field of construction, polymer materials are widely used in the production of pipes, insulation materials, and coatings. For example, polyvinyl chloride (PVC) pipes are widely used in water supply and drainage systems due to their excellent corrosion resistance and low cost.In the field of transportation, polymer materials are widely used in the production of automobile parts, aircraft parts, and ship parts. For example, polyurethane foam is widely used in the production of car seats due to its excellent cushioning properties and light weight.In the field of electronics, polymer materials are widely used in the production of electronic components,such as printed circuit boards, encapsulating materials,and insulating materials. For example, epoxy resin iswidely used in the production of printed circuit boards due to its excellent insulation properties and high temperature resistance.In the field of medical treatment, polymer materialsare widely used in the production of medical devices, such as artificial joints, artificial organs, and drug delivery systems. For example, polyethylene and polypropylene are widely used in the production of artificial joints due to their excellent biocompatibility and low friction coefficient.Polymer materials have a wide range of applications,and their excellent properties make them an indispensable part of modern society.中文:高分子材料由于其高强度、轻质、耐腐蚀等优异性能,在各个领域得到了广泛应用。

东华大学 材料学 专业英语翻译 高分子方向

东华大学 材料学 专业英语翻译  高分子方向

Graft copolymerization is an efficient method to modify polymers .Various vinyl monomers have been investigated to graft onto starch ,and the starch graft copolymers have been used as flocculating agents , superabsorbents,ion exchanges and matrix or filler of thermo plastics. In this paper,mo dified starch paste by grafting with butylacrylate(BA) is firstly investigated as rubber-reinforcing filler. Three types of natural rubber(NR)/starch composites are prepared . Properties and morphology of these composites and corresponding starch powders are examined .The observed reinforcement effect of modified starch powder on NR/starch composites is interpreted.NO20this exploratory investigation examined the structural mechanism accounting for the enhanced compressive properties of heat-treated Kevlar-29 fibers . A novel theory was set forth that hydrogen-bond disruption and concurrent misorientation of crystallites may account for the observed augmentation of compressive properties. To examine the said theory ,as-received Kevlar-29 fibers were characterized by themogravimetric analysis and differential scanning calorimetry in an effort to determine if crosslinking and/or hydrogen disruption was responsible for the improved behavior in compression.NO21to prevent the loss of fiber strength , ultrahigh-molecular-weight polyethylene (UHMWPE) fibers were treated with an ultraviolet radiation technique combined with a corana-discharge treatment .the physical and chemical changes in the fiber surface were examined with scanning electron microscopy and Fourier transform infrared/attenuated total reflectance .the gel contents of the fibers were measured by a standard device .the mechanical properties of the treated fibers and the interfacial adhesion properties of UHMWPE-fiber-reinforced vinyl ester resin composites were investigated with tensile testing .NO22bicomponent fiber were wet-spun from soybean protein and poly(vinyl alcohol). the protein core of spun bicomponent fiber was brittle .our effort was then to study the soybean protein solution ,with the aim of trying to understand the cause for fiber brittleness and to determine the optimum solution conditions for fiber spinning . the effectsof alkali ,urea ,and sodium sulfite on the viscosity of the soybean protein solution were examined. the hydrolytic stability of the soybean protein solution was examined at various pH values at two temperatures .NO13a novel natural polymer blend ,namely ,a semi-interpenetrating polymer network (semi-IPN)composed of crosslinked chitosan with glutaraldehyde and silk fibroin was prepared .the FTIR spectra of the semi-IPN manifested that the chitosan and silk fibroin had a strong hydrogen-bond interaction and formed an interpolymer complex . the semi-IPN showed good pH sensitivity and ion sensitivity, and could also act as an "artificial muscle" because its swelling-shrinking behavior exhibited a fine reversibility.a number of papers have been published on the structure of PAN using X-ray diffraction ,infrared spectroscopy ,nuclear resonance ,and molecular simulations .based on the scattering pattern ,PAN is considered either orthorhombic with 3D,or hexagonal with 2D order . it has been proposed that hexagonal packing ,of PAN chains in dry samples becomes orthorhombic due to co-crystallization of PAN with polar solvent molecules .in this study ,we use in still XRD measurements, and draw upon these earlier publication ,to understand the deformation process on microscopic scale in PAN and its nanocompositeNO15new organic-inorganic hybrids based on PS/TiO2 hybrid membranes were prepared by sol-gel and phase inversion process. the membranes were characterized in terms of morphology, structure ,hydrophlicity, UF ,performance and thermal stability .the results showed that macrovoids were nearly suppressed with formation of sponge like membrane structure .the TiO2 particles were uniformly dispersed in membrane . the nanodispersed morganic network formed after sol-gel process and the strong interaction between inorganic network and polymeric chains led to the improvement of porosity and thermal stability.NO16polymers carrying a hydrolyzable ester function and bactericidal quaternary ammonium salts were successfully synthesized in two steps . the first one was the modification of hydroxyl functions of poly(vinyl alcohol) by chloroacetic anhydride . the structure of synthesized polymers was confirmed by infrared ,1H-,and 13C- nuclear magnetic resonance .the kinetic results were consistent with a 1-order reaction ,and the activation energy in the case of total modification was found to be 16.8(J/Mol) . the second step was the quaternization of the pendant chlorine atom with a long alkyl chain or aromatic tertiary amines.NO17blending homopolymers with block copolymers has been proved to be another interesting approach to modify the morphology of the block copolymer self-assembly. by blending homopolymer of identical chemical structure with one block in the copolymer , the dimension of the domains in the final phase separation has been adjusted , by changing either the volume fraction or the molecular weight of the homopolymer .at low volume fraction of the block copolymers , the structure formation is analogous to micelle formation of surfactant molecules in solutions, and the interfacial tension between the copolymer and the homopolymer is a critical factor.NO18differential scanning calorimetry and dynamic mechanical zhermal analysis techniques have been used to characterize different Kevlar/epoxy composites. tetra-functional aliphatic amine and anhydride/diglycidyl epoxy have been used as matrix and different quantities of continuous Kevlar fibers as reinforcement .Kevlar fibers had different effects on curing kinetics and final thermal properties depending on epoxy matrix type . a significant decrease in the glass transition temperature(Tg)was observed as Kevlar content increased when anhydride matrix was used .NO10the electrostatic spinning technique was used to produce ultrafine polyamide-6 fibers. the effects of solution conditions on the morphological appearance and the average diameter of as-spun fibers were investigated by optical scanning and scanning electron ,microscopy techniques . it was shown that the solution properties (i.e. viscosity , surface tension and conductivity) were important factors characterizing the morphology of the fibers obtained .among these three properties ,solution viscosity was found to have the greatest effect . solutions with high enough viscosities were necessary to produce fibers without beads.NO11ternary blend fibers (TBFs) ,based on melt blends of poly(ethylene 2,6-naphthalate) , poly(ethylene terephthalate ), and a thermotropic liquid-crystal polymer (TLCP), were prepared by a process of melt blending and spinning to achieve high performance fibers . the reinforcement effect of the polymer matrix by the TLCP component the fibrillar structure with TLCP fibrils of high aspect ratios and the development of more ordered and perfect crystalline structures by an annealing process resulted in the improvement of the tensile strength and modulus for the TBFs .NO12an amphiphilic AB block copolymer composed of poly(N-isopropylacrylamide) as a hydrophilic segment and poly (10-undecenoic acid) as a hydrophobic segment was synthesized . the lower critical solution temperature (LCST) of the copolymer was 30.8 ..,as determined by the turbidity method . the block copolymer forms micells in an aqueous medium. transmission electron microscopy images showed that these nanoparticles were regularly spherical in shap . the micelle size determined by size analysis was around 160 nm .NO7this work examines the PBT/PET sheath/core conjugated fiber with reference to melt spinning, fiber properties and thermal bonding . regarding the rheological behaviors in the conjugated spinning , PET and PBT show the smallest difference between their melt -viscosity at temperatures of 290 and 260 respectively , which has been thought to represent optimal spinning conditions . the effect of processing parameters on the crystallinity of core material-PET was observed and listed . in order of importance , these factors are the draw ratio, the heat-set temperature , and the drawing temperature.NO8thermoresponsive shape memory fibers were prepared by melt spinning form a polyester polyol-based polyurethane shape memory polymer and were subjected to different postspinning operations to modify their structure . the effect of drawing and heatsetting operations on the shape memory behavior , mechanical properties , and structure of the fibers was studied . in contrast to the as-spun fibers , which were found to show permanent shape , the drawn and heat-set fibers showed significantly higher stresses and complete recovery.NO9the dry-jet-wet spinning process was employed to spin poly(lactic acid) fiber by the phase inversion technique using chloroform and methanol as solvent and nonsolvent ,respectively , for PLA . the as-spun fiber was subjected to two-stage hot drawing to study the effect of various process parameters , such as take-up speed ,drawing temperature , and heat-setting temperature on the fiber structural propertics . the take-up speed speed had a pronounced influence on the maximum draw ratio of the fiber . the optimum drawing temperature was observed to be 90 to get a fiber with the tenacity of 0.6 GPa for the draw ratio of 8 .NO1the purpose of this work is to examine zhe changes in thermal properties and zhe crystallization behavior of polyamide 6(PA6) when filled with multi-walled carbon nanotubes (MWCNT). the composites were produced by melt mixing starting from an industrial available masterbatch containing as produced MWCNT . the focus of this article is a detailed discussion of results obtained by differential scanning calorimetry (DSC) ,X-ray ,diffraction (XRD) dynamic mechanical thermal analysis (DMTA), and water sorption . the influence of CNT on zhe thermal transitions (glass transition temperature ,melting ,and crystallization) of PA6 is investigated .NO2the effects of nucleating agents (NAs) on fracture toughness of injection-molded isotactic poly(propylene)/ethylene-diene terpolymer (PP/EPDM) were studied in this work . compared with PP/EPDM blends without any NA,EP/EPDM/NA blends show very small and homo geneous PP sphernlites . as we expected ,PP/EPDM blends nucleated with B-phase NA(TMB-5) present not only a significant enhancement in toughness but also a promotion of brittle-ductile transition . however ,the addition of A-phase NA(DMDBS) has no apparent affect on the toughness of the blends . the impact-fractured surface morphologies of such samples were analyzed via scanning electronic microscope(SEM).NO3solutions of poly(ethylene-co-vinyl alcohol) or EVOH ,ranging in composition from 56 to 71 wt% vinyl alcohol ,can be readily electrospun at room temperature from solutions in 70% 2-propanol/water . the solutions are prepared at 80 and allowed to cool to room temperature .interestingly, the solutions are not stable at room temperature and eventually the polymer precipitates after several hours . however prior to precipitation , electrospinning is extensive and rapid ,allowing coverage of fibers on various substrates . fiber diameters of ca. 0.2-8.0 um were obtained depending upon the solution concentration .NO4the use of macromonomers is a convenient method for preparing branched polymers . however graft copolymers obtained by conventional radical copolymerization of macromonomers often exhibit poorly controlled molecular weights and high polydispersities as well as large compositional heterogeneities from chain-to-chain . in contrast , the development of "living"/controlled radical polymerization has facilitated the precise synthesis of well-defined polymers with lowpolydispersities in addition to enabling synthetic chemists to prepare polymers with novel and complex architectures .NO5the thermal and electrical conductivities in nanocomposites of single ,walled carbon nanotubes (SWNT) and polyethylene (PE) are investigated in terms of SWNT loading the degree of PE crystallinity , and the PE alignment . isotropic SWNT/PE nanocomposites show a significant increase in thermal conductivity with increasing SWNT loading , having 1.8 and 3.5 W/m K at a SWNT volume fraction of ———0.2 in low-density PE(LDPE) and high-density PE (HDPE), respectively . this increase suggests a reduction of the interfacial thermal resistance . oriented SWNT/HDPE nanocomposites exhibit higher thermal conductivities , which are attributed primarily to the aligned PE matrix .NO6we previously discovered that isotropic monomer solution show birefringence due to its anisotropic structure after gelation in the presence of a small amount of rod-like polyelectrolyte. here ,we focus on what mechanism is responsible for the formation of anisotropic structure during gelation .various optical measurements are perfected to elucidate the structure change during gelation . it is found that the existence of a large-size structure in monomer solution with the rod-like polyelectrolyte is essentially important to induce birefringence during gelation .。

高分子材料专业英语配翻译

高分子材料专业英语配翻译

As against this well-defined behavior of a simple chemical compound, a polymer like polyethylene does not melt sharply at one particular temperature into clean liquid. 与这类简单化合物明确的行为相比,像聚乙烯这样的聚合物不能在某一特定的温度快速地熔融成纯净的液体。

Also, we can add a very large quantity of the polymer to the same quantity of water without the saturation point ever being reached. 同样地,我们可以将大量的聚合物加入到同样量的水中,不存在饱和点。

While linear polymers are important, they are not the only type of molecules possible. 线状聚合物是很重要的,他们不是唯一可能类型的分子。

Substituent groups such as methyl or phenyl groups on the repeat units are not considered branches. Branching is generally introduced into a molecule by intentionally adding some monomer with the capability of serving as a branch. Let us consider the formation of a polyester. The presence of difunctional acids and difunctional alcohols allows the polymer chain to grow. These difunctional molecules are incorporated into the chain with ester linkages at both ends of each. Trifunctional acids or alcohols, on the other hand, produce a linear molecule by reacting two of their functional groups. If the third reacts and the resulting chain continues to grow, a branch has been introduced into the original chain. Adventitious branching sometimes occurs as a result of an atom being abstracted from the original linear molecule, with chain growth occurring from the resulting active site. Molecules with this kind of accidental branching are generally still called linear, although the presence of significant branching has profound effects on some properties of the polymer, most notably the tendency to undergo crystallization.The polymerization is a chain reaction in two ways: because of the reaction kinetic and because as a reaction product one obtains a chain molecule. 聚合反应是链式反应的原因有两种:因为反应动力学和因为作为反应产物它是一种链式分子。

高分子材料英文

高分子材料英文

高分子材料英文Polymers, also known as macromolecules, are large molecules composed of many repeated subunits. These subunits, called monomers, are connected by covalent bonds to form long chains or networks. The study of polymers, known as polymer science, is a multidisciplinary field that encompasses aspects of chemistry, physics, materials science, and engineering.Polymer materials have a wide range of applications in our daily lives, from the plastic bottles we use to the synthetic fibers in our clothing. They are also used in more specialized applications, such as in medical devices, electronics, and aerospace components. The versatility of polymers is due to their unique combination of properties, including flexibility, durability, and lightweight.One of the key advantages of polymer materials is their tunable properties. By adjusting the chemical structure and processing conditions, the properties of polymers can be tailored to meet specific requirements. For example, the addition of certain additives can enhance the strength and stiffness of a polymer, making it suitable for structural applications. Similarly, the incorporation of fillers or reinforcements can improve the thermal and electrical conductivity of a polymer, expanding its utility in electronic devices.In recent years, there has been growing interest in the development of advanced polymer materials with enhanced performance and functionality. This has led to the emergence of new classes of polymers, such as conductive polymers, shape-memory polymers, and self-healing polymers. These materials exhibit novel properties that have the potential to revolutionize various industries, from healthcare to automotive.In the field of biomaterials, polymers play a crucial role in the design of biocompatible and biodegradable materials for medical implants and drug delivery systems. The ability to engineer polymers at the molecular level has enabled the development of smart materials that can respond to external stimuli, such as temperature,pH, or light. These stimuli-responsive polymers have applications in controlled drug release, tissue engineering, and diagnostics.Furthermore, the use of polymers in additive manufacturing, also known as 3D printing, has opened up new possibilities for the rapid prototyping and production of complex geometries. This technology allows for the fabrication of custom-designed parts with precise control over material properties, making it particularly attractive for the aerospace and automotive industries.In conclusion, high-performance polymer materials have revolutionized the way we design and manufacture products across various sectors. Their tunable properties, versatility, and ability to be tailored for specific applications make them indispensable in modern technology and industry. As research in polymer science continues to advance, we can expect to see even more innovative and sustainable polymer materials in the future.。

高分子材料与工程专业英语课文翻译(精品文档)

高分子材料与工程专业英语课文翻译(精品文档)

UNIT 1 What are Polymer?什么是高聚物?首先,他们是合成物和大分子,而且不同于低分子化合物,譬如说普通的盐。

与低分子化合物不同的是,普通盐的分子量仅仅是58.5,而高聚物的分子量高于105,甚至大于106。

这些大分子或“高分子”由许多小分子组成。

小分子相互结合形成大分子,大分子能够是一种或多种化合物。

举例说明,想象一组大小相同并由相同的材料制成的环。

当这些环相互连接起来,可以把形成的链看成是具有同种分子量化合物组成的高聚物。

另一方面,独特的环可以大小不同、材料不同,相连接后形成具有不同分子量化合物组成的聚合物。

许多单元相连接给予了聚合物一个名称,poly意味着“多、聚、重复”,mer意味着“链节、基体”(希腊语中)。

例如:称为丁二烯的气态化合物,分子量为54,化合将近4000次,得到分子量大约为200000被称作聚丁二烯(合成橡胶)的高聚物。

形成高聚物的低分子化合物称为单体。

下面简单地描述一下形成过程:因而能够看到分子量仅为54的小分子物质(单体)如何逐渐形成分子量为200000的大分子(高聚物)。

实质上,正是由于聚合物的巨大的分子尺寸才使其性能不同于象苯这样的一般化合物。

例如,固态苯,在5.5℃熔融成液态苯,进一步加热,煮沸成气态苯。

与这类简单化合物明确的行为相比,像聚乙烯这样的聚合物不能在某一特定的温度快速地熔融成纯净的液体。

而聚合物变得越来越软,最终,变成十分粘稠的聚合物熔融体。

将这种热而粘稠的聚合物熔融体进一步加热,不会转变成各种气体,但它不再是聚乙烯(如图1.1)。

发现另一种不同的聚合物行为和低分子量化合物行为是关于溶解过程。

例如,让我们研究一下,将氯化钠慢慢地添加到固定量的水中。

盐,代表一种低分子量化合物,在水中达到点(叫饱和点)溶解,但,此后,进一步添加盐不进入溶液中却沉到底部而保持原有的固体状态。

饱和盐溶液的粘度与水的粘度不是十分不同,但是,如果我们用聚合物替代,譬如说,将聚乙烯醇添加到固定量的水中,聚合物不是马上进入到溶液中。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《高分子材料研究方法》课程作业题目:<New Opportunities for anAncientMaterial>论文翻译化学与材料工程学院学院高分子专业学号XXXXXXX学生姓名KITTY指导教师二〇XX年X月<New Opportunities for an Ancient Material>论文翻译Science 30 July 2010:V ol. 329 no. 5991 pp. 528-531DOI: 10.1126/science.1188936New Opportunities for an Ancient MaterialFiorenzo G. Omenetto, David L. Kaplan*Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA.E-mail: david.kaplan{at}一种古老材料的新机遇Fiorenzo G. Omenetto, David L. Kaplan*美国,马萨诸塞州(邮编02155),梅德福,塔夫茨大学,生物医学工程系邮箱:david.kaplan{at}ABSTRACTSpiders and silkworms generate silk protein fibers that embody strength and beauty. Orb webs are fascinating feats of bioengineering in nature, displaying magnificent architectures while providing essential survival utility for spiders. The unusual combination of high strength and extensibility is a characteristic unavailable to date in synthetic materials yet is attained in nature with a relatively simple protein processed from water. This biological template suggests new directions to emulate in the pursuit of new high-performance, multifunctional materials generated with a green chemistry and processing approach. These bio-inspired and high-technology materials can lead to multifunctional material platforms that integrate with living systems for medical materials and a host of other applications.摘要蜘蛛或桑蚕生成的丝蛋白纤维,是力与美的结合体。

从本质上而言,圆形蜘蛛网在生物工程上有着极好的功用,当作为蜘蛛赖以生存的工具时,它展现出了完美的力学构架。

迄今为止,在合成材料领域中材料难以同时获得高强度和较好的延展性;而在天然材料中一种结构相对简单的蛋白质通过用水处理即可获得高的强度和较好的延展性。

这给了我们一个新的效仿方向——通过绿色化学合成和加工的方法去获得一种新的、高性能的、多功能的材料。

这些仿生和高科技材料能够在医药材料和一些其他的应用上使多功能材料平台和生命系统相结合起来。

《高分子材料研究方法》课程作业Mechanically, silks are outstanding material systems. The toughness of silk fibers issuperior to any of the best synthetic high-performance fibers available today,including Kevlar (Dupont Advanced Fiber Systems). Although important insights into silk protein self-assembly have been achieved over the past 10 years [1, 2], the mechanisms by which these proteins achieve metastable states in the glands of the spinning organisms remain unclear. This is a remarkable processing achievement that allows the concentration of protein in the glands to reach >30 weight % in water [1], whereas at this concentration most proteins, globular or fibrous, aggregate and precipitate. In the case of silk, this would result in the premature formation of β sheets (crystallization), resulting in insolubility of the spinning dope and blockage of the spinning apparatus, events that would be catastrophic to the silk-spinning organism [2]. The lack of full comprehension of these processing steps has limited the ability to spin reconstituted silk solutions into fibers with properties comparable to those of native fibers.引他人之言,丝是一类优秀的材料。

真丝纤维的韧性优于任何现有的最佳合成高性能纤维,包括Kevlar纤维(杜邦的高级纤维体系)。

虽然在过去的十年里已经对丝蛋白的自组装行为有了较为深刻的理解[1, 2],但对于蛋白质在可纺丝生物体腺内实现亚稳状态的机理尚不明晰。

这是一个了不起的处理过程:使蛋白质在腺液内聚集达到质量分数大于百分之三十的浓度[1]并保持亚稳态。

然而在人类纺丝加工过程中,大多数蛋白质并不是处于亚稳态,无论是球状还是纤维状,都会发生聚集和沉淀。

丝在这种情况下,会过早形成β片层(结晶),导致其不溶于纺丝原液、堵塞纺丝设备,这种情况若是发生在可纺丝生物体身上,将是一场灾难性[2]。

由于对可纺丝生物体纺丝处理步骤缺乏充分的理解,我们纺织再造真丝纤维的能力不足,所得再造真丝的性能不能与天然纤维相媲美。

Relationships between silk protein processing and fiber properties suggest that material features are controlled by a combination of the chemistry and the spinning process. Mechanical properties of spider silks are modulated on the basis of spinning conditions, including temperature, reeling rate, and drawing rate, as well as the specific type of silk (Fig. 1) [3, 4]. Silkworm silk fibers are also influenced by process conditions such that properties can be achieved to match those of spider silks [5]. Silks from Bombyxmori obtained at different reeling rates result in stronger but more brittle fibers. Wet spinning with post-spinning treatments can also be used to generate spider silk–like properties and microstructures from silkworm silks [6].丝蛋白的加工与纤维的性能之间的关系表明,化学合成和纺丝加工过程控制了材料的性能。

蜘蛛丝的力学性能是受纺丝的条件所控制的,这些条件包括温度、缫丝速度和牵引速度,以及丝的类型(图1)[3,4]。

桑蚕丝纤维也受工艺条件的影响,以实现它的性能与蜘蛛丝的性<New Opportunities for an Ancient Material>论文翻译能相媲美[5]。

丝,以不同的缫丝速率从家蚕中获得,可以使之成为更强更脆的纤维。

通过湿法纺丝可以用于制成类似于蛛丝性能和蚕丝微观结构的纤维[6]。

(Fig.1.Mechanical properties of silks. (A) Impressive toughness and relative strength of reeled spider dragline silk. The area under the curve shown indicates fiber toughness or the energy taken up by the material before breaking. In terms of strength-to-weight ratio, the spider silk strength (1.1 GPa) is about equivalent to high-tensile engineering steel (1.3 GPa), yet spider silk has a relative density of 1.3 compared with that of steel at 7.8, when reeled at 20 mm s−1 at 25°C for Nephila edulis. In terms of toughness, spider silk is 165 ± 30 kJ kg−1, which is substantially higher than that of Kevlar 81 (33 kJ kg−1)[1, 5]. (B) Spinning silk from B. mori silkworms at different speeds illustrates control of fiber mechanical properties resulting from processing inputs to complement the importance of chemistry. The data show that the properties can match those of spider silks when spun from the worms at higher rates than native processes. The speeds shown for the lines reflect the rate at which the silk was drawn from the silkworm under controlled conditions at 25°C and are compared with standard degummed silk from cocoons, which are spun from the glands at a natural speed of 4 to 15 mm s−1 at 20°C[3]. (C) Stress strain curves for major ampullate (MA) gland silk (red line) and viscid silk (blue line) from the spider A. diadematus. E init = initial stiffness [4]. (D) Compilation of data from multiple sources and based on data from the《高分子材料研究方法》课程作业spider A. diadematus[4]. RH indicates relative humidity.)(图1 丝的力学性能。

相关文档
最新文档