FBAR温度传感器

合集下载

RF MEMS

RF MEMS

RF MEMS:着眼未来射频以及混合信号技术近些年有了巨大的进步同时在无线通信快速增长的市场中占有重要地位。

在新摩尔定律下更高集成度的CMOS技术促进了这一成功。

同时,一些射频器件技术尤其是那些采用MEMS技术制作的用来进行频率选择的压电材料器件。

另一方面,已经存在有许多无线服务比如各种各样的无线通信标准以及许多新出现的系统比如“超宽带”以及“无线传感网络”。

这些服务使用不同的频率,不同的带宽,同时各种各样的解调系统使得单一的系统不能稳定运行。

这些都导致整个业界向着“软件无线电”的方向发展。

这个理念经过多年的讨论引出了“认知无线电”的概念。

认知无线电的希望能够通过改变软件来改变射频功能而不像现在这样改变硬件才能达到相同的目的。

很明显传统的有高数据传输速率和较大动态范围的数模转换并不足以实现这一功能。

而人们认为射频MEMS是一个很有前途充满竞争力的技术。

接下来会介绍下射频MEMS的发展现状,包括开关,电容电感,振荡器/滤波器。

未来的射频MEMS不仅仅着眼于“可调谐”,“可选择”以及“集成”,同时还希望实现“模式匹配”,“改进谐振器在无线应用方面的性能”以及“发现射频MEMS的新功能”。

未来的射频MEMS不仅仅是技术上的讨论,也应该包括射频MEMS的国际标准以及无线通信产品。

软件无线电是一种多模式的无线射频系统,这种系统可以使用一个数字系统和一台硬件来改变和实现多种射频功能。

Joseph Mitola在1999年提出这种系统的代表性结构包括射频电路,宽带数模/模数转换,实施软件以及窄带数模/模数转换除此之外还有用户界面。

这个概念已经从他自身的原有功能扩展到了分析用户需求上,比如说这涉及到了关于频带,拟定,软件,硬件,用户应用偏好以及现在的“认知无线电”。

有两种方法来实现认知无线电,一个是利用多种网络来实现各个基于服务的网络间的无缝连接;另外一种是动态频谱的方法。

近些年,人们认为最好是将两种方法合成一种。

压缩机温度传感器简介及性能参数价格

压缩机温度传感器简介及性能参数价格

压缩机温度传感器鄂尔多斯等大型盆地中,后备资源不足,可采储量的增速低于一些老油田产量递减的速度。

当前石油生产主要还是依靠东部主力油田,但大庆、胜利等油田开始老化(见表二),油质下降,开采成本提高,难度加大,产量递减。

大庆的年产量已经低于5万吨,而西部、海洋等新的油田由于地质条件复杂,勘探开发难度大,短期内【压缩机温度传感器】产品简介:直联便携式往复式活塞式空压机,借鉴国内外同类产品的优质机型结构,采用计算机三维造型进行优化设计,结构更合理,性能更优越。

电机配备热保护器,确保空压机电机不会因过载而烧坏。

主要零部件严格按国家标准采用数控机床进行加工。

产品机械性能稳定,内在质量可靠,外形美观,体积小,重量轻,操作简单,携带方便,风力强劲.广泛应用于喷漆、装潢、气动丁具、矿山机械等需要压缩空气的场所。

【压缩机温度传感器】工作原理:往复活塞式压缩机的丁作原理是利用驱动机带动曲轴作旋转运动,曲轴通过连杆带动活塞作往复运动,活塞的往复运动使气缸的容积发生周期性变化:气缸顶部的进排气阀周期性的开闭,吸气阀吸入的空气通过活塞压缩达到排气压力时经排气阀、排气管、单向阀进入储气罐供用用户使用。

【压缩机温度传感器】适用范围:带气钉枪、风批、小面积喷漆、带点胶机等小型仪器、吹尘、小型车充气,家装,修理铺、带泡沫机等等,小型的气动工具和仪器基本都可以,不懂的话还可以质询客服。

电机100%全铜芯线圈【压缩机温度传感器】技术参数:型号匹数功率电源排气量储气罐容积及尺寸排气压力GKJ-3p30l 3.0p 2.2kw 220v/50hz 0.12m3/min 30l(54cm*25cm) 0.8mpaGKJ-4p35l 4.0p 2.2kw 220v/50hz 0.12m3/min 35l(60cm*26cm) 0.8mpaGKJ-5p40l 5.0p 2.2kw 220v/50hz 0.13m3/min 40l(63cm*27cm) 0.8mpa【压缩机温度传感器】安放位置:l 空压机应安置在通风良好,湿度小、少粉尘、无污物、光线充足、容易检查、加油的地方.2 安放时必须使空压机脚轮在同一水平面,否则会引起振动,甚至发生安全事故。

英格索兰温度传感器作用原理

英格索兰温度传感器作用原理
英格索兰空压机温度传感器作用及原理
英格索兰温度传感器空压机的主要部件也是温度测量的核心部分。其主要用于英格索兰空压机的温度测量,控制温度在额定数据之间,使温度在热电阻的作用下,把温度数据传输到空压机控制系统内,在额定温度内有效的保护空压机的并延长空压机的寿命。英格索兰温度传感器材料及电子元件特性为热电阻。
英格索兰温度传感器的工作原理 பைடு நூலகம்
英格索兰温度传感器随温度变化而改变,温度传感器主要用于0—200℃温度范围内的温度测量,良好输出特性。PTAT的输出通过数据传输到控制器信号,输出数字信号故与微处理器MCU兼容,通过处理器的高频采样可算出输出电压方波信号的占空比,即可得到温度。英格索兰温度传感器分辨率优于0.005K。测量温度范围0到200℃。
英格索兰温度传感器主要材料及特性:
①英格索兰温度传感器系数要大而且稳定,电阻值与温度之间应具有良好的线性关系。
②电阻率高,热容量小,反应速度快。
③复现性和工艺性好。
④在测温范围内特性稳定。

温度传感器产品参数

温度传感器产品参数

温度传感器产品参数
温度传感器是一种用于测量环境或物体温度的设备,其产品参数包括
以下几个方面:1. 测量范围:温度传感器的测量范围通常是指其能够测
量的温度范围,例如-40℃~125℃。

2. 精度:温度传感器的精度是指其测
量结果与实际温度之间的误差,通常以百分比或摄氏度为单位表示,例如
±0.5℃。

3. 响应时间:温度传感器的响应时间是指其从接收到温度变化
信号到输出测量结果的时间,通常以毫秒为单位表示,例如10ms。

4. 输
出信号:温度传感器的输出信号通常有模拟信号和数字信号两种,模拟信
号一般为电压或电流信号,数字信号一般为串行或并行接口输出。

5. 工
作电压:温度传感器的工作电压是指其正常工作所需的电压范围,通常以
伏特为单位表示,例如3.3V~5V。

6. 封装形式:温度传感器的封装形式
通常有贴片式、插针式、SMD式等多种形式,不同形式适用于不同的应用
场景。

7. 应用领域:温度传感器的应用领域非常广泛,包括工业自动化、医疗设备、家用电器、汽车电子等多个领域,不同领域的应用需求也不同,因此需要选择不同类型的温度传感器。

温湿度传感器(型号:WHT20B)使用说明书

温湿度传感器(型号:WHT20B)使用说明书

温湿度传感器(型号:WHT20B)使用说明书版本号:1.0实施日期:2023-02-01郑州炜盛电子科技有限公司Zhengzhou Winsen Electronic Technology Co.,Ltd声明本说明书版权属郑州炜盛电子科技有限公司(以下称本公司)所有,未经书面许可,本说明书任何部分不得复制、翻译、存储于数据库或检索系统内,也不可以电子、翻拍、录音等任何手段进行传播。

感谢您使用本公司的系列产品。

为使您更好地使用本公司产品,减少因使用不当造成的产品故障,使用前请务必仔细阅读本说明书并按照所建议的使用方法进行使用。

如果您没有依照本说明书使用或擅自去除、拆解、更换传感器内部组件,本公司不承担由此造成的任何损失。

您所购买产品的颜色、款式及尺寸以实物为准。

本公司秉承科技进步的理念,不断致力于产品改进和技术创新。

因此,本公司保留任何产品改进而不预先通知的权力。

使用本说明书时,请确认其属于有效版本。

同时,本公司鼓励使用者根据其使用情况,探讨本产品更优化的使用方法。

请妥善保管本说明书,以便在您日后需要时能及时查阅并获得帮助。

郑州炜盛电子科技有限公司WHT20B温湿度传感器产品描述WHT20B温湿度传感器嵌入了适于回流焊的双列扁平无引脚SMD封装,温度和湿度信号可以在不同的引脚读出,底面3.0×3.0mm,高度1.0mm。

传感器输出经过标定的数字信号,标准I2C格式。

WHT20B温湿度传感器,包含一个全新设计的ASIC专用芯片内置晶体管Vbe温度特性,实现高精度温度检测;同时包含一个电容湿度芯片,其中湿敏材料吸湿后介电常数变化实现环境湿度检测。

并结合最新的集成电路信号处理技术而成的双芯片解决方案。

具有体积小、功耗低、可靠性高、兼容性好等优点。

产品特点⏹高精度,±3.0%RH和±0.5℃⏹宽电源电压范围,从2.0V到5.5V⏹采用SMD封装,适于回流焊⏹响应迅速、抗干扰能力强⏹高湿条件下优异的长期稳定性应用场景家电领域:家电、湿度调节、暖通空调、除湿机、智能恒温器、房间监视器;工业领域:汽车、测试及检测设备、自动控制;其他领域:数据记录器、气象站、医疗及其他相关温湿度检测控制。

富士通 UTY-RNNUM 温度传感器设置 说明书

富士通 UTY-RNNUM 温度传感器设置 说明书

Service Tips Setting up the Thermo Sensor on the UTY-RNNUM 1)With the wired remote off, press boththe Set Temp Up & Down buttonsalong with the Fan Control buttonsimultaneously for 5 seconds or moreto enter the function setting mode.2)The remote should display 00:00onthe timer.3)Press the right Set Time buttons toselect the function number. Thefunction numbers will be 00:42and00:48. You will need to set them oneat a time.4)Press the Set Temperature buttons,Up and Down, to select the settingvalue of‘01’.5)Press the Timer Set button to lock inthe settings. The ‘01’ will flash.6)Cut power for the system for oneminute than restore power back tothe system. You can set bothfunctions, 00:42and 00:48than shutoff power.7)Once power is restored you canactivate the thermo sensor. Press and hold the Thermo Sensor button toactivate the thermo sensor.*See attached Engineering Bulletin ‘How to Enter Function Settings’.Set Time LeftSet Time RightThermo Sensor IconFunction Number Setting ValueThermo Sensor IconFan ControlSet Temp. Down Set Temp. UpService Tips Entering Function SettingsUTY-LNHUM / UTY-LRHUM AR-REC1U /AR-RED1U / AR-REG1UEntering the Function Setting Mode:Press the Fan(Control)button,Set Temp.(˄)and the Reset button simultaneously then release the Reset button to enter the function setting mode.Selecting the Function Number and Setting Value1.Press the Mode button first then press the Set Temp.(˄)(˅)buttons to select the function number.(Press the Mode button to switch between the left and right digits.) 2.Press the Fan button to proceed to setting the value.(Pressthe Fan button again to return to the function number selection.)3.Press the Set Temp.(˄)(˅)buttons to select the setting.(Press the Mode button to switch between the left and right digits.)4.Press the Timer Mode button and Start/Stop button,in theorder listed to confirm the settings.5.Press the Reset button to cancel the function setting mode.6.After completing the Function Setting,be sure to turn offpower to the outdoor disconnect for a minimum of one minute and turn it on again.Entering the Function Setting Mode:Press the Powerful button,Set Temp.(˄)and Reset button simultaneously then release the Reset button to enter the function setting mode.Selecting the Function Number and Setting Value1.Press the Set Temp.(˄)(˅)buttons to select the functionnumber.(Press the Min.Heat button to switch between the left and right digits.)2.Press the Powerful button to proceed to setting the value.(Press the Powerful button again to return to the function number selection.)3.Press the Set Temp.(˄)(˅)buttons to select the setting.(Pressthe Min.Heat button to switch between the left and right digits.)4.Press the Mode button and then the Start/Stop button,in theorder listed to confirm the settings.5.Press the Reset button to cancel the function setting mode.6.After completing the Function Setting,be sure to turn off powerto the outdoor disconnect for a minimum of one minute and turn it on again.UTY-RVNUMEntering the Function Setting Mode:1.Make sure the indoor unit is powered down and notrunning otherwise you will be restricted from enteringthe Function Settings menu.2.From the monitor screen,press the Menu button twice.3.Once at the submenu,press and hold the Screen Leftand Screen Right buttons for5seconds.4.Select the Function Setting option from the list.Fromthere you will be in the Function Settings Menu andfree to select function number and setting values.5.After completing the Function Setting,be sure to turnoff power to the outdoor disconnect for a minimum ofone minute and turn it on again.Entering the Function Setting Mode:1.Press the Set Temp.(˄)(˅)buttons and Fan buttonsimultaneously for more than5seconds to enterthe function setting mode.2.Press the Set Back button to select the indoor unitnumber.3.Press the Set Time buttons to select the functionnumber.4.Press the Set Temp.buttons(˄)(˅)to select thesetting value.The display flashes as shown to theright during setting value selection.5.Press the Timer Set button to confirm the setting.Press the Set button for a few seconds until thesetting value stops flashing.If the setting valuedisplay changes or if“--”is displayed when theflashing stops,the setting value has not been setcorrectly.(An invalid setting value may have beenselected for the indoor unit.)6.Repeat steps2to5to perform additional settings.Press the Set Temp.buttons(˄)(˅)and Fanbutton simultaneously again for more than5seconds to cancel the function setting mode.Inaddition,the function setting mode will beautomatically canceled after1minute if nooperation is performed.7.After completing the Function Setting,be sure toturn off power to the outdoor disconnect for aminimum of one minute and turn it on again.UTY-RNBYU/UTY-RNNUMUTY-RSNUMEntering the Function Setting Mode:1.Press both the Temp.Up and Down buttons(˄)(˅)and FAN together for more than5seconds simultaneously.Then,shift to Function Setting Mode.2.Press the Temp.Up or Temp.Down button(˄)(˅)and select the indoor unit number.Then,press the Fan button.Function Number&Setting Number Setting3.“Function Number”display blinks.Then,display Number by pressing the Temp.Up orTemp.Down button.4.When the“Setting Number”blinks,press the Fan button to set the Setting number bypressing the Temp.Up or Temp.Down button(˄)(˅).5.Fix the setting by pressing the power button.(Data is transferred to the indoor unit).6.After completing the Function Setting,be sure to turn off power to the outdoordisconnect for a minimum of one minute and turn it on again.。

TURCK智能温度传感器操作说明

TURCK智能温度传感器操作说明
改变输出1状态的上限值
改变输出1状态的下限值 磁滞模式(N/O=常开) 磁滞模式(N/C=常闭) 窗口模式(N/O=常开) 窗口模式(N/C=常闭) 改变输出2状态的上限值 改变输出2状态的下限值 磁滞模式(N/O=常开) 磁滞模式(N/C=常闭) 窗口模式(N/O=常开) 窗口模式(N/C=常闭)
仅限图尔克公司内部使用
For Internal Use Only
rP
关状态,不受压力波动设定点影 响,开关范围可由用户通过开关 点(SP)和释放点(rSP)设定。
参数解释 Loc 编程模式锁定 ULoc 可编程模式 Uni 单位显示
SP1 开关点1
选项
℃ F K Ohm
rP1 OU1
SP2 rP2 OU2
ASP
释放点1 输出1模式
开关点2 释放点2 输出2模式
模拟量输出
如果您想改变设定值,请按压“Set”键并保 持5S直到屏幕停止闪烁。再通过 ↑或↓键选 择。
最后通过按压隐藏按钮“Enter”保存设定值。 新的设定立即生效。
Ohm
K
F

F K Ohm

℃ F K Ohm
锁定/解锁 该传感器可通过设定来防止误进入菜单和编程 模式。 锁定:Mode+Set 10S
解锁:Mode+Set 10S
dS2 SP2的开关延迟
dr2 rP2的开关延迟
Fou1 Fou2
P-n diS
rEs SOF
断路或短路输出 状态 断路或短路输出 状态
测量值显示 响应时间
Fou1=on Fou1=oFF Fou2=on Fou2=oFF
Fou2=on Fou2=oFF
Fou2=on Fou2=oFF pnp npn

Keysight N8488A 温度传感器参数手册说明书

Keysight N8488A 温度传感器参数手册说明书
U2001A U2000A
V3500A E4413A
E4412A 8487D
8485D 8481D
OPT-H33
Q8486D R8486D
OPT33
Frequency
Legend
(NEW)
848X thermo-
N848X average
couple sensor
thermocouple sensor
2.4 mm (male) connector for N8487A
Waveguide connector for N8486AR/ N8486AQ
1.85 mm (male) connector for N8488A
APC-7 (male) connector for N8481A only For EPM 1 Series power meters: 1.5 m (5 ft)/3.0 m (10 ft)/6.1 m (20 ft)/15.2 m (50 ft)/30.5 m (100 ft)/61.0 m (200 ft), grey For EPM 1 and EPM-P Series power meters: 1.5 m (5 ft)/3.0 m (10 ft)/10.0 m (31 ft), blue

N848XA Series –35 to +20 dBm
U2002H U2001H
U2000H
8483A (75 Ω)
N8488A N8487A N8485A N8481A N8482A
V8486A W8486A N8486AQ N8486AR
OPT33
E930XA Series –60 to +20 dBm
–– The industry’s widest dynamic range in a thermocouple power measurement solution

F65系列湿度及湿度-温度传感器使用说明书

F65系列湿度及湿度-温度传感器使用说明书

F65 SeriesHUMIDITYAND HUMIDITY-TEMPERATURE TRANSMITTERS INSTRUCTION MANUALCONTENTS DESCRIPTION (3)OPERATION (4)Power Supply (4)Output Range (4)Temperature Operating Range and Temperature Limits (4)Humidity Limits (4)Temperature Compensation (4)Sensor Protection (5)Output Signals (5)Wiring Diagrams (6)Grounding (7)INSTALLATION (8)General Recommendations (8)Installation of the Base Plate (9)Installation of the Electronics Module (10)MAINTENANCE (11)Cleaning or Replacing the Dust Filter (11)Periodic Calibration Check (11)SPECIFICATIONS (13)PLEASE, READ THIS FIRST• Check the product for any physical damage that may have occurred during shipment. We carefully pack and routinely insure all shipments. If any damage has occurred, it is your responsibility to filea claim with the carrier, prior to returning the damaged product. Please note that our warranty doesnot cover damage during shipment.• See the label on the shipping box for information about the model number of the transmitter, the supply voltage as well as the type and range of the output signals. An identical label is also located under the printed circuit board.• Prior to installation, get fully familiarized with the operating limits of the product and with the installation instructions provided in this manual.• Do not unnecessarily remove the sensor protection (dust filter or slotted cap) from the probe. Both sensors (humidity and temperature) can be mechanically damaged by careless removal of the protection. The ROTRONIC HYGROMER humidity sensor looks like a small white paper tag. Do not remove from the probe!Each ROTRONIC instrument is carefully calibrated before shipment. No further adjustments should be required before installation. If you have any question or problem, please call our service department at 631/427-3898 and press 5 (or ask for extension 21).Transmitters of the F65 series are used to measure humidity or a combination of humidity and temperature in manufacturing areas, clean rooms, research laboratories and other industrial applications. The electronic circuitry is either of the 2-wire loop powered type or of the 3-wire type. Linearized output signals (DC current or voltage) are provided for transmission over a length of cable to a remote display, recorder, controller or data processing unit.The F65 series features the ROTRONIC HYGROMER capacitive humidity sensor. This well proven sensor offers exceptional durability and stability in all kinds of environments. This fact is reflected in the 3-year full warranty that covers the transmitters of the F65 series. Reliability is further enhanced by the easy-to-perform field calibration. Measurement accuracy and fast response are provided over the entire range of humidity conditions, even when the sensor is exposed to extremely high or low humidity over long periods of time. An electronic compensation circuit maintains the accuracy of humidity measurement at all temperatures.Models that measure both humidity and temperature, use an RTD Pt100 as the temperature sensor.F65 series transmitters include a base plate and a module (sensor and electronics) which plugs into the base plate. The base plate can be installed and wired without the module at the same time as general electrical work is being done. During that period of time, the module can safely be stored away. The F65 series is available in the following configurations:Model Measurement Circuit Type InstallationF2C-W65 Humidity 2-Wire Loop Powered Wall (Surface)FT2C-W65 Hum. + Temperature 2-Wire Loop Powered Wall (Surface)F2C-D65 Humidity 2-Wire Loop Powered Duct (Through Wall)FT2C-D65 Hum. + Temperature 2-Wire Loop Powered Duct (Through Wall)(Surface) F3V-W65 Humidity 3-Wire WallFT3V-W65 Hum. + Temperature 3-Wire Wall (Surface)F3V-D65 Humidity 3-Wire Duct (Through Wall)FT3V-D65 Hum. + Temperature 3-Wire Duct (Through Wall)Power SupplyTransmitters of the F65 series require the following supply voltage:• 2-Wire Transmitters: 10..35 VDC (depending on the load connected to the output)The minimum supply voltage can be determined as follows: V min = 10 V + [0.02 x Load (ohm)]. For the maximum load of 500Ω, the minimum supply voltage is 10 + [0.02 x 500] = 20 VDC. The maximum current consumption is 20 mA per circuit.• 3-Wire Transmitters: 10..35 VDC or 24 VACModels with a current output require a minimum of 15 VDC when the load connected to the output(s) is 500Ω. 3-Wire transmitters have a typical current consumption of 16 mA (Humidity only) or 32 mA (combined humidity and temperature).Output RangeThe range of the relative humidity output is 0 to 100%RH. The temperature output depends on the range specified when ordering (see label on shipping box and under the printed circuit board). Temperature Operating Range and Temperature LimitsThe F65 series can operate within 23 to 122°F (-5 to 50°C) at the electronics.The temperature operating range of models for surface (wall) installation is the same as the temperature limits of the electronics. For through wall (duct) installation models, the temperature limits at the sensor(s) are –22..158°F (-30..70°C).Operating the transmitter and/or its probe outside of the temperature limits can result in permanent damage.Humidity LimitsAs far as possible, avoid sudden condensation at the sensors. When measuring at high humidity, condensation may occur on the humidity sensor due to a sudden difference in temperature with the environment. This does not damage the sensor. However, this will produce an overflow reading (an output signal of more than 100 %RH) for as long as condensation is present on the humidity sensor. Temperature CompensationPractically every make of relative humidity sensor requires a compensation for the effect of temperature on the humidity output signal in order to measure accurately over a wide range of temperature conditions. In the specific case of an instrument using a capacitive sensor, compensation is required because the dielectric characteristics of both the water molecule and the hygroscopic polymer used in the sensor vary with temperature.The electronic circuit of the F65 series uses an NTC located next to the humidity sensor to provide automatic compensation for the effect of temperature on the humidity sensor. The temperature compensation uses normal room temperature as a reference. Because of this, calibration of the unit is done at normal room temperature rather than at the temperature of operation at the sensor.Sensor ProtectionTransmitters of the F65 series are supplied as a standard with a dust filter to protect the sensors.When using a transmitter in a clean environment with rapidly changing conditions, it is recommended to use a slotted cap with screen (available from ROTRONIC) as opposed to using a dust filter.Do not remove the dust filter or slotted cap.Output SignalsThe F65 series is available with the following output signals:• 2-Wire loop powered transmitters: 4-20 mAThe transmitter behaves as a variable load and adjusts the current flowing through the terminals as a function of relative humidity and temperature. The output signal may be read with any current sensing device having a maximum impedance of 500 ohms. When several devices are connected in series with the transmitter, the resulting impedance should not exceed 500 ohms, wiring included.• 3-Wire Transmitters: 0-20 mA, 4-20 mA, 0-1 V or 0-5 V. The output signal depends on the type specified when ordering. A label located inside the case cover shows the type of output signal for each unit..The output signals are linear and are consistent with the requirements of most data/signal processing instrumentation (panel meter, controller, computer card, etc.).Units with current outputs behave as a variable source of current and adjust the current flowing through the terminals as a function of relative humidity and temperature. The output signal may be read with any current sensing device having a maximum impedance of 500 ohms. When several devices are connected in series with the transmitter, the resulting impedance should not exceed 500 ohms, wiring included.Units with voltage outputs behave as a variable voltage source and adjust the voltage across the terminals as a function of relative humidity and temperature. The output signals may be read with any voltage sensing device having a minimum impedance of 100 kohms. When several devices are connected in parallel with the transmitter, the resulting impedance should not be less than 1000 ohms.Wiring DiagramsThe wiring diagram for transmitters that measure humidity only is as follows:3-Wire Transmitter with voltage output2-Wire Transmitter (4-20 mA output)Terminal number on base plateTerminal number on base plate3-Wire Transmitter with current output12Terminal number on base platenot used not usedThe wiring diagram for transmitters that combine humidity and temperature measurement is as follows:GroundingOperation of the F65 series does not require that the unit be electrically grounded. However, we recommend grounding the instrument, especially if the electronic circuits are subjected to a low humidity environment (less than 35 %RH).3-Wire Transmitter with voltage outputs2-Wire Transmitter (4-20 mA outputs) using two independent power suppliesTerminal number on base plateTerminal number on base plateTerminal number on base plate3-Wire Transmitter with current outputs2-Wire Transmitter (4-20 mA outputs)using a single power supplyINSTALLATION• Do not remove the dust filter or slotted cap from the probe. The sensor can easily be damaged when not protected.• The ROTRONIC HYGROMER humidity sensor has the appearance of a small white paper tag.Do not remove!General RecommendationsRelative humidity is extremely dependent on temperature. Proper measurement of relative humidity requires that the probe and its sensors be at exactly the temperature of the environment to be measured. Because of this, the location where you choose to install the probe can have a significant effect on the performance of the instrument. The following guidelines should guarantee good instrument performance:• Select a representative location: install the probe where humidity, temperature and pressure conditions are representative of the environment to be measured.• Provide good air movement at the probe: air velocity of at least 200 ft/ minute (1 meter/second) facilitates adaptation of the probe to changing temperature.• Avoid the following:(1)Close proximity of the probe to a heating element, a cooling coil, a cold or hot wall, direct exposure to sun rays, etc. (2) Close proximity of the probe to a steam injector, humidifier, direct exposure to precipitation, etc. (3) Unstable pressure conditions resulting from excessive air turbulence.• Immerse as much of the probe as possible in the environment to be measured.• Prevent the accumulation of condensation water at the sensor leads. Install the probe so that the probe tip is looking downward. If this is not possible, install the probe horizontally.Installation of the Base PlateThe base plate should be installed first, using screws with an approximate diameter of 5/32".IMPORTANT (Through wall installation only)In order to be able to use a calibrator for future calibration checks, an orifice should be provided at a distance of about 6” from the center of the base plate. Calibrators available from ROTRONIC require an orifice with a diameter of 13/16” (21 mm). We recommend that this orifice be equipped with a QMA-15 probe holder and a rubber stopper. The orifice will be used to insert the probe of the calibrator and to verify the readings of the transmitter.The base plate is supplied with one sealing cable grip. This cable grip provides effective sealing only with cables having the proper outside diameter. Preferably, use a cable with an outside diameter of 0.236 to 0.275 inch (6 to 7 mm) and with 18 AWG wires. Depending on the installation, you may have to use a cable with twisted pairs or a shielded cable to avoid interference.In order to determine the maximum length of cable that can be used to connect the transmitter to other devices, the first step is to find out what is the resistance per unit of length of the cable that you plan on using.. Current outputs: the maximum permissible cable length, connecting the unit to other devices, is determined by the total resistance resulting from the addition of the cable resistance and that of the devices connected in series with the unit. This resistance should not exceed 500 ohms.. Voltage outputs: the maximum cable length can be determined under consideration of the voltage drop caused by the current flowing to the devices connected to the unit. The voltage drop in thecable depends both on cable resistance and on the equivalent resistance of the devices connected in parallel to the unit. The total resistance connected to each unit output must at least be equal to 100 kohms. Cable resistance should not be more than 1/1000 of the load resistance.Avoid running the cables connecting the unit in the same conduit as 110 VAC power cables. If this cannot be avoided, a shielded cable or a cable with twisted wires may be required to prevent interference due to electromagnetic induction caused by switching.We generally recommend grounding, especially if the electronics will be subjected to a low humidity environment (35 %RH or less).Transmitter TypeTerminals Description (see base plate) 2-Wire, humidity only 1: not used2: not used3: (+) Supply Voltage 4: 4-20 mA (humidity)3-Wire, humidity only 1: (+) Supply Voltage2: (-) Supply Voltage and Common 3: not used4: (+) Humidity (current or voltage)2x2-Wire, humidity and temperature 1: (+) Supply Voltage2: 4-20 mA (temperature) 3: (+) Supply Voltage 4: 4-20 mA (humidity)3-Wire, humidity and temperature 1: (+) Supply Voltage2: (-) Supply Voltage and Common 3: (+) Temperature (current or voltage) 4: (+) Humidity (current or voltage)See also Wiring DiagramsInstallation of the Electronics ModuleOnce the base plate has been installed and wired, the plug-in module (sensor(s) and electronics can be inserted and secured with the screws provided. The transmitter is ready to operate.Example:Through wall installation.MAINTENANCECleaning or Replacing the Dust FilterThe dust filter should be cleaned from time to time, depending on the conditions of measurement. Cleaning should be done without removing the filter from the probe. Gently wipe the filter with a solution of water and mild detergent. If this does not remove most of the stains, the filter should be replaced. To do this, unscrew the filter from the probe.Before putting on a new dust filter, check the alignment of both sensors with the probe. The wires that connect the sensors to the probe are very thin and bend easily. If this happens, correct the alignment by holding the sensor very gently with a pair of small flat nosed pliers.Periodic Calibration CheckLong term stability of the humidity sensor is typically better than 1 %RH per year. For maximum accuracy, calibration of the unit should be verified every 6 to 12 months.Transmitters of the F65 series are equipped with a 5-pin keyed test connector that permits reading the signal(s) without interrupting the operation of the transmitter.Pop out ROTRONIC Label toaccess Connector and Calibration Pot(s) Square Single-turn Pot = Temp.Temp.Rectangular Multi-turn Pot = RHThrough WallTest Connector Pin # Wire Color Signal(+)1 Green Humidity(-)2 Yellow Humidityused3 Brown not4 White Temperature (+)(-)5 Gray TemperatureThe ROTRONIC A2C calibrator can be used to directly read the signal(s) provided by the test connector. The A2C comes with test cable AK3029-B used to connect the A2C with the transmitter.The humidity-temperature probe connected to the A2C provides the reference readings necessaryto check the accuracy of the F65 transmitter. As an alternative, any suitable reference instrumentmay be used and the signal(s) from the test connector can be read with a multimeter (use test cableAK3029-4P to connect the DVM to the transmitter).The signals from the test connector are as follows:• 2-Wire and 2x2-Wire Transmitters: 40..200 mV.• 3-Wire Transmitters: 0..1 VFor humidity, this corresponds to 0..100%RH. For temperature, this corresponds to the range specified when ordering the transmitter (see label on shipping box and under the printed circuit board).A one-point calibration check can be done by comparison between a reference instrument and thesignal(s) provided by the test connector. If an offset adjustment of the transmitter is required, use the potentiometer(s) located next to the test connector.Note: during a 1-point adjustment against a referenceprobe, make sure that both the reference probe andtransmitter are ventilated and provide enough time forboth to equilibrate.SPECIFICATIONSHumidity Sensor ROTRONIC HYGROMER C94Temperature Sensor (FT Models) Pt100 RTDOperating Temperature at Electronics 23..122°F (-5..50°C)Humidity Measuring Range 10..100 %RHHumidity Output Range 0..100%RHTemperature Measuring Range (FT Models) See temperature LimitsStandard Temperature Output Range (FT Models) 0..100°F or 0..100°CTemperature Limits at Sensors Wall Mount Models: 23..122°F (-5..50°C)Duct Mount Models: -22..158°F (-30..70°C) Output Signals (linear) F2C/FT2C: 4-20 mA (max. load 500Ω)F3V/FT3V: 0-5 V (min. load 1000 Ω)Accuracy at 68..77°F (20..25°C) ± 2%RH from 10 to 100%RH± 0.5°F (±0.3°C)Repeatability ± 0.3%RH and ±0.2°F (±0.1°C)Humidity Sensor Stability better than 1%RH over a yearResponse Time (without filter) 10 seconds (%RH and temperature) Calibration Potentiometers 1 for Humidity, 1 for TemperatureSupply Voltage F2C/FT2C: 10..35VDC; min. 10V + [0.02 x Load]F3V/FT3V: 15..35VDC/24VAC - 16/32 mA (F/FT) Sensor Protection PPS Dust Filter (wire mesh)Weight 0.7 lbs (300 g)Case Material ABSCase Protection DIN IP 65 (splash proof)。

埃克斯科特 C7150B 温度传感器说明书

埃克斯科特 C7150B 温度传感器说明书

INSTALLATION INSTRUCTIONS63-2072-06C7150BTemperature SensorAPPLICATIONThe C7150B Temperature Sensor is used with the W973Single Zone System, the M7415A Motor, or Economizer Logic Modules (W7210, W7215, W7459, W7340) to sense mixed or discharge air in rooftop packaged air conditioning equipment.SPECIFICATIONSModels: See Table 1.Dimensions: See Fig. 1.Mounting Arrangement:Integral mounting flange that requires No. 8 screws.NOTE:The C7150B1004 requires four No. 8 screws;the C7150B1046 requires two No. 8 screws.Ambient Temperature Ratings:Maximum: 250°F (121°C).Operating Range: -40 to 110°F (-40 to 43°C).Shipping Range: -30 to 150°F (-34 to 66°C).Wiring Connection: 1/4in. (6mm) quick-connects.NOTE:The C7150B1046 includes 4in. lead wires withconnector for W7340 compatibility.Table 1. C7150B Models.a Negative Temperature Coefficient (NTC).Fig. 1. C7150B approximate dimensions in in. (mm).INSTALLATIONWhen Installing this Product...1.Read these instructions carefully. Failure to follow them could damage the product or cause a hazardous condition.2.Check the ratings given in the instructions and on the product to make sure the product is suitable for your application.3.Installer must be a trained, experienced service technician.4.After installation is complete, check out product operation as provided in these instructions.IMPORTANTAll wiring must agree with applicable codes, ordinances and regulations.ModelNominal Resistance at 77°F (25°C)Nominal Sensitivity aat midrangeC7150B10043000 ohms 70 ohms per °F(124 ohms per °C)C7150B104610K ohms234 ohms per °F (415 ohms per °C)C7150B1004C7150B1046C7150B T EMPERATURE SENSORAutomation and Control SolutionsHoneywell International Inc.1985 Douglas Drive North Golden Valley, MN ® U.S. Registered T rademark© 2015 Honeywell International Inc.63-2072—06 M.S. Rev. 02-15Printed in United StatesBy using this Honeywell literature, you agree that Honeywell will have no liability for any damages arising out of your use or modification to, the literature. You will defend and indemnify Honeywell, its affiliates and subsidiaries, from and against any liability, cost, or damages, including attorneys’ fees, arising out of, or resulting from, any modification to the literature by you.1.Install on a mounting bracket (not included) inside the mixed air or discharge air duct using No. 8 mounting screws and nuts. (See Fig. 2).NOTE:When mounting, ensure that terminals do nottouch metallic conductive surfaces.2.Wire using 1/4 in. (6 mm) female quick-connect terminated wires from C7150B to control inputs.NOTE:For C7150B1046, splice additional wiring asneeded between sensor and connector.Fig. 2. Mounting C7150B [C7150B1004 shown].NOTE:Fig. 2 displays bracket (not included) and sug-gested bracket dimensions in in. (mm).OPERATIONThe C7150B Air Temperature Sensor consists of a thermistor sensing element mounted on a phenolic board. It is applied in ventilation duct systems. The thermistor element negative temperature coefficient (NTC) characteristic causes its resistance to decrease as the sampled air temperatureincreases. This resistance change is used as a control system sensor to regulate discharge air temperature in a W973 Single Zone System or damper position of the M7415A Motor (either directly, or through the Economizer Logic Module).CHECKOUTAllow the C7150B sensor to soak in the air moving through the duct for a minimum of 5 minutes before taking a resistance measurement:1.Disconnect sensor leadwires from associated systemcomponents.2.Connect an ohmmeter across the leadwires.3.Nominal resistance measurements should be in accordance with the resistance/temperature curves shown in Fig. 3 and4.4.Reconnect sensor leadwires to associated system components.5.Check operation of the M7415A Motor, W973 System, or the Economizer Logic Module.Fig. 3. C7150B1004 Sensor resistance temperature.Fig. 4. C7150B1046 Sensor resistance temperature.。

egr温度传感器工作原理

egr温度传感器工作原理

egr温度传感器工作原理
egr温度传感器工作原理EGR阀在发动机中速运转及中等负荷时开启,在发动机低速运转且水温低于60°C时 EGR阀关闭以防止发动机怠速不稳,在发动机大负荷运转时EGR阀也关闭以保证发动机有足够的功率输出。

因此EGR监测温度传感器监测的温度范围为50〜400°C。

由于发动机排出的废气温度很高,当EGR阀开度增大时,流经EGR阀的废气循环量也大,EGR温度传感器处的温度也就高。

EGR温度传感器的电阻随流经废气的温度而变化,并通过测量电路转换为相应的电压信号。

例如,发动机在一般工况下,废气再循环流量较小,EGR温度传感器处的温度为1〇〇〜200°C;发动机在高速或重载工况时,废气再循环流量大,EGR温度传感器处的温度为300〜400°C;而当发动机怠速或低温时不进行废气再循环,即在EGR阀关闭时,EGR温度传感器处的温度较低,通常在50°C以下。

EGR温度传感器将EGR通道的废气温度转换为相应的电压信号,并输送给发动机ECU,ECU据此信号即可判断EGR阀的工作情况。

AMS2750E中文版

AMS2750E中文版

AMS 2750E高温测定法5 年一次的更新,复查并重审了该规范以提高其使用量,技术革新导致了使用的变化。

变化范围较大并且没有做标记。

目录1.范围 (3)2.引用文件 (3)2.1 ASTM 出版物 (3)2.2 定义 (3)3.技术要求 (8)3.1温度传感器 (8)3.2 仪表(见表3, 4, 和表5) (12)3.3 热处理设备: (16)3.4 系统精度测试(SA Ts) (18)3.5 炉温均匀性测试(TUS) (23)3.6 实验室炉子 (33)3.7 记录 (33)3.8 取舍 (33)4. 质量保证条款 (33)4.1 检验职责 (33)5. 交货准备 (42)6. 接收 (42)7. 拒收 (42)8. 注释 (43)图1 负载传感器的使用和重新校检 (13)图2 不同类型炉子的炉温均匀性范围 (16)图3 仪表类型要求 (17)图4 每个区域最少传感器支数 (18)图5固定的SAT传感器与在500℉ (260℃)以上温度测试的传感器的允许组合 (19)图6 系统精度测试(SA T)计算的实例 (21)表1 传感器和传感器校检 (34)表2 热电偶和补偿导线 (35)表3 使用仪器及校准 (36)表4 炉子记录图表的确定要求 (38)表5 记录器打印图表及速度 (38)表6 零件所用炉子分类、仪表类型以及SA T校验周期 (39)表7 原材料炉所用炉子分类、仪表类型以及SA T校验周期 (40)表8 零件所用炉子分类、仪表类型以及和TUS校验周期 (41)表9 原材料炉所用炉子分类、仪表类型和TUS校验周期 (41)表10 校验或试验间隔延长的容许值 (42)表11 TUS传感器数量要求 (42)附录A:E版与D版变更内容说明 (42)1.范围1.1 本规范涵盖了热处理过程中用到的热处理设备的高温测量要求,包括温度传感器,仪器仪表,热处理设备,系统精度测试和温度均匀性测量。

这些对于确保零部件或原材料的热处理符合适用规范要求是很有必要的。

叉车温度传感器原理_解释说明以及概述

叉车温度传感器原理_解释说明以及概述

叉车温度传感器原理解释说明以及概述1. 引言1.1 概述叉车温度传感器是一种重要的设备,用于监测和测量叉车工作环境中的温度变化。

温度传感器基于物理原理,能够快速准确地感知周围环境的温度,并将数据传输给叉车系统进行处理和分析。

通过对温度变化的监测,叉车温度传感器可以帮助控制叉车在不同环境条件下的工作状态,提供保护性措施以防止过热或过冷等问题的发生。

1.2 文章结构本文将从以下几个方面介绍叉车温度传感器原理和应用。

首先,在第二部分“叉车温度传感器原理”中,我们将解释基本的温度传感器原理以及叉车温度传感器的工作原理,并探讨其在叉车中的具体应用。

接着,在第三部分“解释与说明”中,我们将详细解释温度测量原理,并分析叉车温度传感器的测量精确度和误差情况,并介绍其维护保养与故障排除方法。

在第四部分“概述与分析”中,我们将总结叉车温度传感器的市场现状,并展望其未来发展趋势,并探讨叉车温度传感器的应用前景。

最后,在第五部分“结论”中,我们将总结本文的研究内容和主要观点,评述叉车温度传感器的重要性,并提出进一步研究方向和建议。

1.3 目的本文旨在深入介绍叉车温度传感器的原理、工作方式以及应用情况。

通过对叉车温度传感器原理的详细解释和说明,希望读者能够全面了解该设备,并能够正确使用和维护叉车温度传感器,提高工作效率和安全性。

此外,在文章概述与分析部分,我们还将对叉车温度传感器市场现状进行概述,并探讨其未来发展趋势和应用前景,从而为相关领域的研究人员和决策者提供有价值的参考信息。

2. 叉车温度传感器原理:2.1 温度传感器基本原理温度传感器是一种能够测量环境中温度变化的设备。

它基于材料的热特性或物质与温度之间的关系来进行测量。

常见的温度传感器有热电偶、热敏电阻和半导体温度传感器等。

2.2 叉车温度传感器工作原理叉车温度传感器主要通过感知环境中的热量变化,将这些变化转换成电信号并输出。

通常,叉车温度传感器采用半导体温度传感器来测量环境温度。

密封空气型FBAR温度传感器

密封空气型FBAR温度传感器
1 1] , 频 率 与 温 度、 压 力 具 有 很 好 的 线 性[ 据此可将
F B AR 制作 成 性 能 良 好 的 温 度 传 感 器 和 压 力 传 感 器 。 将图 1 所 示 的 密 封 空 气 型 F B AR 用 作 温 度 传 一 感器时 , F B AR 谐振频率的漂移将由两部分造成 : 部分是由于 F 另一部分 B AR 本 身 的 T C F 引 起 的, 是由于密封空气的膨胀从而产生的压力引起的 。 在 这种情况下 , 单从温度 和 F B AR 谐 振 频 率 二 者 的 关
] 敏度 。 综合文献 [ 的研究 , 在1 5 7 0~1 2 0 ℃ 的 范围 - 内, 而有效提高 F B AR 谐振 频 率 随 温 度 线 性 减 小 ; F B AR 温度传感器灵敏度的方法却未见报道 。 本文 在已有体硅 刻 蚀 型 F B AR 的 基 础 上 提 出 了 制 作 密 封空 气 型 F 并研究了密封空气型 B AR 的 方 法 , F B AR 用作温度传感器的可行性 。
F B A R T e m e r a t u r e S e n s o r w i t h a S e a l e d A i r R o o m p
, , D I N G K o u b a o L I U S h i i e H E X i n l i j g
密封空气型 F B A R 温度传感器
丁扣宝 , 刘世洁 , 何兴理
( ) 浙江大学 信电系 , 浙江 杭州 3 1 0 0 2 7
薄膜体声波谐振器 ( 是性能优良的 压 电 换 能 器 。 通 过 在 体 硅 刻 蚀 型 F F B A R) B A R 背面密封空气的方 摘 要 : 法制作了密封空气型 F 研究了密封空气型 F 在2 B A R, B A R 用 作 温 度 传 感 器 的 可 行 性。实 验 结 果 表 明, 0~1 0 0℃ 的温度范围内 , 密封空气型 F 且具有很好的稳定性与可靠性 。 B A R 温度传感器的并联谐振频率随温度线性变化 , ; 关键词 : 薄膜体声波谐振器 ; 压电换能器 ; 密封空气型薄膜体声波谐振器 ( 温度传感器 F B A R) 中图分类号 : TN 4 0 9 文献标识码 : A

CF5 CO2 温度传感器用户手册说明书

CF5 CO2 温度传感器用户手册说明书

User manualCF5CO2 / temperature transmitterGeneralThe IAQ-sensor product CF5 is used to measure indoor air carbon dioxide concentration and temperature in rooms. The CF5 is available both with and without display, (LCD). Both are available for wall mounting as well as for duct mounting.The unit is designed for connecting to Direct Digital Control (DDC). The linear output functions are pre-programmed as COand temperature transmitters with jumper2selected outputs 0-10 V / 2-10 V / 0-20 mA / 4-20 mA. The measuring ranges can be modified from a PC (Windows) and use of the software UIP (version 4.3 or higher) together with the RS232 communication cable.Figure 1 CF5 for wall mounting and duct mountingTerminal DefaultOutput Default OutputRangeOutputs of thissensorOutput Range ofthis sensorOut(1) 0-10VDC 0-2000 ppm CO2Out(2) 0-10VDC 0-50 o CTable I. Default output configurations for CF5 Formulas for calculation of output values Configuration Output Range Formula for calculation0-10 VDC 0-2000 ppm CO20-50 o C CO2 value = Volt/10*2000 Temperature value in o C = Volt/10*502-10 VDC 0-2000 ppm CO20-50 o C CO2 value = (Volt –2)/8*2000 Temperature value in o C = (Volt –2)/8*504-20 mA 0-2000 ppm CO20-50 o C CO2 value = (mA-4)*2000/16 Temperature value in o C = (mA-4)*50/16a-b c–d Value = (reading-a)/(b-a)*(d-c)+ca = lowest value of the configurationb = highest value of the configurationc = lowest value of the ranged = highest value of the rangeTable II. Calculation of CO2 value and temperature value for CF5Output ConfigurationsThe sensors/controllers are supplied from the factory (unless otherwise ordered) with 0...10VDC linear outputs for Out(1) and Out(2)(see Table I). If other options are needed for the application, the output jumpers have to be configured before the unit is powered up. Each jumper selection is independent from the others, except for the “Start point selection” jumper, which affects both Out(1) and Out(2)linear outputs. Alternative measuring ranges of the outputs can be selected with the software UIP (version 4.3 or later).Jumper Position FunctionStart point selection jumper0%20%Jumper top position provides 0Vdc or 0mA start point for Out(1), Out(2)(0-20mA or 0-10V).Jumper bottom position provides 2Vdc or 4mA start point for Out(1), Out(2) (4-20mA or 2-10V).NOTE! The start point jumper is missing on some models!Out(1)CurrentVoltage Connection in position “Current” provides 0/4-20mA output range for Out(1). Current output is not recommended for temperature measurements Connection in position “Voltage” provides 0/2-10VDC output range for Out(1). Please note! Temperature measurements accuracy is valid only for units configured in voltage outputs mode.Out(2)CurrentVoltage Connection in position “Current” provides 0/4-20mA output range for Out(2). Current output is not recommended for temperature measurements Connection in position “Voltage” provides 0/2-10VDC output range for Out(2). Please note! Temperature measurements accuracy is valid only for units configured in voltage outputs mode.Table II. Configuration jumpers for CF5Self-diagnosticsThe system contains complete self-diagnostic procedures. A full system test is executed automatically every time the power is turned on. In addition, constantly during operation, the sensor probes are checked against failure by checking the valid dynamic measurement ranges. All EEPROM updates, initiated by the sensor itself, as well as by external connections, are checked by subsequent memory read back and data comparisons.These different system checks return error bytes to the system RAM. The error codes are available by connecting a PC with a special RS232 cable connected to the UART port slide connector. The error codes are shown in the software UIP (version 4.3 or later). Warm up and Out of Range are the only bits that are reset automatically after return to normal state. All other error bits have to be reset manually after return to normal by power off/on.The yellow LED flashes if an error has been detected. If a fatal error has been detected the yellow LED is lit.Error code and action planBit # ErrorcodeError description Suggested action0 N/A Fatal Error Try to restart sensor by powerOFF/ON. Contact local distributor 1 2 Reserved2 4 Algorithm Error.Indicate wrong EEPROMconfiguration. Try to restart sensor by power OFF/ON.Check detailed settings and configuration with UIP software version 4.3 and higher. Contact local distributor.3 8 Output ErrorDetected errors during outputsignals calculation andgeneration. Check connections and loads of outputs.Check detailed status of outputs with UIP software version 4.3 and higher.4 16 Self-Diagnostic Error.May indicate the need of zerocalibration or sensorreplacement. Check detailed self-diagnostic status with UIP software version 4.3 and higher.Contact local distributor5 32 Out Of Range ErrorAccompanies most of othererrors. Can also indicateoverload or failures of sensorsand inputs.Resets automatically aftersource of error disappearance. Try sensor in fresh air.Check connections of temperature and relative humidity probe. Check detailed status of measurements with UIP software version 4.3 and higher.See Note 1!6 64 Memory ErrorNon-fatal error during memoryoperations. Check detailed settings and configuration with UIP software version 4.3 and higher.7 128 Warm Up stateIs always set after power up orpower failure. Resets afterrestart sequence. If it doesn’t disappear in half a minute, check power stability.Note 1. Any probe is out of range. Occurs, for instance, during over exposure of CO2 sensor, in which case the error code will automatically reset when the measurement values return to normal. Could also indicate the need of zero point calibration. If the CO2 readings are normal, and still the error code remains, the temperature sensor can be defect or the connections to it are broken.Remark:If several errors are detected at the same time the different error code numbers will be added together into one single error code!PLEASE NOTE!The sensor accuracy is defined at continuous operation (at least 3 weeks after installation)MaintenanceThe CF5is basically maintenance free. An internal self-adjusting calibration function takes care of normal long term drift associated to the CO2sensor. To secure the highest accuracy, a time interval of five years is recommended between CO2 calibrations, unless some special situations have occurred. A zero calibration can be performed by use of pure nitrogen or air that has passed through a chemical absorber and a PC together with the UIP software version 4.3 (or higher). The Service bag can be used to produce carbon dioxide free air. The software can be free downloaded from . The RS232-cable and the zero calibration bag can be ordered from Rotronic. The cable is to be connected to the UART port slide connector (see Fig. 5). For change of control parameters and re-calibration (CO2 and temperature) this PC tool has to be used. The check can be done on site without interfering with the ventilation system.This is for sensors with measuring ranges between 0-3000 ppm and 0-4%: When a zero calibration shall be executed a plastic tube with 2,2 mm outer diameter and 0,8 mm inner diameter shall be inserted in marked holes of the sensor. Plastic tubing is connected to the tube. The gas flow should be between 0,3 and 1,0 l/min. Array Figure 2 Part of the PCB with holes for gas inlets marked.Duct mountingIf for some reason the printed circuit board (PCB) needs to be removed, special precaution must be taken in order not to damage the temperature probe in the sampling tube. When putting the PCB back in the protective housing, the probe mustbe gently positioned in the sampling tube.+This product is in accordance with theEMC 2004/108/EC, 92/31/EEGincluding amendments by the CE-marking Directive 93/68/EEC The product fulfils the following demands:EN 61000-4-2 level 2,EN 61000-4-3 level 2,EN 61000-4-4 level 4,EN 61000-4-6,EN 61000-4-8 level 4,EN 55022 class B。

富丽凯温度传感器使用教程

富丽凯温度传感器使用教程

富丽凯温度传感器使用教程
XXX温度传感器一般有三个按键提供设置的需要,一个是Set键,按一下进入设置状态。

另两个提供向上和向下调整温度,可以调整到任意温度点。

调整到需要的温度点后,再按一下Set键来确认。

1、接通智能温控器的电源,显示屏上显示的是当前的温度。

因为传感器未接触其他器件,而是直接暴露在空气中,所以这就是现在的气温:31摄氏度,还不算太热。

2、显示屏右下方是“启动温度”设置按钮,按升温键一下,温度提高1摄氏度;也可以按住不放手,温度连续升高。

这里我设置为65摄氏度,也就是传感器温度低于或等于65度时,输出插座自动通电,所连接的设备启动。

设备可以是电动机、电加热器等等。

3、显示屏左下方是“停止温度”设置按钮。

我设置为80度,即传感器温度高于或等于80度时,输出插座自动断电,受控设备停止工作。

4、再看温度传感器,它的作用是感知被监测对象的温度,并转变为电信号,通过导线传回温控器。

可以拿一个铁质物品试一下,传感器有较强磁性,能吸附其上。

5、把传感器吸附在被监测的设备上。

这个设备得有铁质部分;否则,就得想办法固定了。

6、把受控设备的插头插在温控器输出插座上。

注意:最好在温控器本身未加电的状态下进行。

至此,设置工作完成,温控器加电,该系统就开始工作了。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图2-2FBAR的电学阻抗特性曲线
2.2FBAR的典型结构
理想的FBAR是电极一压电层一电极的三明治结构,激发出来的体声波在电极与空气的交界面得到很好的反射,从而使体声波限制在FBAR的压电层中[8]。一般来说,有两种方法来形成FBAR的声学反射层:一是使FBAR的下电极部分与空气接触,空气具有很高的声学阻抗,通过空气反射体声波;二是采用布拉格反射层的方法形成声学反射层。布拉格反射层由多层厚度为四分之一波长的高低声学阻抗层交替形成,通常采用W与Si02作为高低声学阻抗层。根据声学反射层的设计结构的不同,产生了三种主流的FBAR结构,它们分别是:体硅刻蚀型、空气隙型和固态装备型。各结构如下图所示[9]:
图3-2Si02层温度补偿结构
若采用Si02作为FBAR的支撑层,则该Si02也可以有效地减小FBAR的TCF。采用植入Si022层的方法固然可以减小FBAR的TCF,但其也有负面影响,主要是植入的Si02层会不具有压电特性,从而会使FBAR的有效机电藕合系数减小,从而减小FBAR的Q值。
还有一种常用的温度补偿方法是将FBAR与一个温度敏感电容并联[12],如图3-4所示:温度升高时,Cs将会减小,从而可以将FBAR的TCF提高约40ppm/℃。由于A1N薄膜的TCF约为-25ppm/℃,因此该方法对压电薄膜为A1N的FBAR具有很好的温度补偿效果。
目前,最常用的温度补偿方法是通过在FBAR的压电薄膜中放置一层Si02以,由于Si02的杨氏模量随温度的升高而增大,故Si02具有正的温度系数(约+85ppm )[10]。为了实现薄膜体声波谐振的温度补偿,需要利用一些材料的固有属性,即该材料必须具有正的温度系数,如Si02或者与其相似的材料。为了实现温度补偿,一方面可以通过合理调的厚度,另一方面必须合理布置该材料在FBAR中的位置,综合利用这两种方法,将会获得很好的温度补偿效果,一般采用的补偿方法如图3-3所示[10],其中3-3 ( a)采用在FBAR的压电薄膜内部植入Si02层进行温度补偿;而3-3 ( b)则是以作为支撑层来实现FBAR的温度补偿,当然这种法对FBAR的不同次谐波的补偿力度不尽相同[11]。
在一定的温度范围内,当温度T升高时,在忽略热膨胀导致压电材料密度ρ发生变化的情况下,压电材料的杨氏模c随着温度T的升高而减小,从而导致fs减小。这就是FBAR温度传感的原理。但是,随之也出现了两个问题,即fs与T之间是否是线性关系以及在什么温度区间内与T之间呈线性关系,这两个方面是目前FBAR温度传感器的研究焦点。
FBAR温度传感器的现状研究主要集中在测量FBAR的谐振频率随温度的变化特性以及这种保持这种变化特性的温度范围。对于一个性能理想的FBAR温度传感器来说,谐振频率与温度之间必须具有良好的线性和重复性。2004年,G D.Mansfeld等人提出在液体环境下使用FBAR传感温度的概念[13],研究了-10℃ -45℃之间FBAR谐振频率的变化,实验数据表明FBAR的谐振频率随温度升高而线性减小,在实验上证实了FBAR温度传感器的可行性;2005年,Hongyu Yu等人研究了结构为Al/Zn0/Al/Si02的FBAR的温度频率特性[14],实验结果证明:在20℃-110℃的温度范围内,该FBAR的谐振频率与温度具有很好的线性关系;2007年,Kuan-Hsun CHID等人研究了高性能的FBAR温度与压力传感器[15],其研究成果表明:在10℃ -80℃的温度范围内,FBAR的温度频率具有很好的线性度,并指出此FBAR温度传感器的TCF为-25.2ppm/℃。
1绪论
现代信息技术促使人类社会进入了信息化时代。信息获取、信息传输、信息处理是信息技术的基础,而传感器技术、通信技术、计算机技术分别构成了信息技术系统的感官、神经和大脑,传感器技术在其中显得尤为重要。传感器技术的水平直接影响检测控制系统和信息系统的技术水平,具有促进传统产业和行业的技术跳跃式进步的作用。目前,传感器已经应用于人们生活的方方面面,可以说,掌握了核心传感器技术,就意味着站在了科技发展的制高点。
1.1传感器基础
传感器是测试测量系统发展的产物,而测试测量系统则是伴随着人类社会的进步而发展起来的。早期的测试测量系统通常都是依靠机械构造实现测量的目的,
但是,随着社会的进步,科学技术日新月异,人们对测量数据的要求越来越复杂,对测量的精度要求也越来越高,机械构造的测量已经不能满足人们的要求。电子技术的出现促使古老的测量系统进入了传感器的时代。
图2-3体硅刻蚀型FBAR
图2-4空气隙型FBAR
图2-5固态装配型FBAR
3FBAR温度传感器原理
3.1 FBAR的温度频率系数
我们通常所说的FBAR的谐振频率一般是指FBAR在室温时的基波谐振频
当然这种说法并不严谨,因为FBAR的谐振频率是随外界的温度变化而变化的,这也是为什么FBAR可以用来作为温度传感的原因。那么,为什么FBAR的谐振频率会随着外界的温度变化而生变化呢?假设一个近似理想的FBAR如图3-1所示:
理想的FBAR主要由三部分组成:上电极、压电薄膜、下电极。当有一交变电压信号施加于FBAR的上下金属电极上时,由于逆压电效应,压电层内便会产生体声波,体声波在上下电极间传播,在电极与空气的交界面处被反射,此时,又由于压电效应,上下电极便会产生一个射频信号。若压电层的厚度d是恰好是体声波半波长的基数倍,则体声波在上下电极间形成驻波,此时,FBAR上下电极间的射频信号最强,阻抗最小,即FBAR发生串联谐振。FBAR的电学阻抗特性曲线如下图所示,其有两个谐振频率:并联谐振频率fp和串联谐振频率fs[7]。FBAR的电学阻抗特性曲线如图1-2所示。
4.2FBAR温度传感器的发展现状
FBAR在传感器领域具有巨大的应用潜力,但是目前对FBAR温度传感器的研究报道仍然不是很多。众所周知,FBAR的谐振频率随温度的升高而减小,因此,FBAR用在传感器时,必须尽量减小温度对FBAR频率特性的影响。故而,目前学术界对FBAR温度特性的研究很大一部分主要集中于如何减小FBAR的温度系数,对FBAR温度传感器的研究成果现代信息技术的三大支柱之一,人们在利用信息的过程中,首先必须要获取信息,然后才能对信息加以利用。传感器就是获取信息的主要手段和途径,传感器就像人体的感觉器官,可以把各种非电量转换为电量,从而实现电量的电测技术。在信息技术持续快速发展的今天,传感器技术不仅对现代化科学技术、现代化农业及工业自动化的发展起到基础和支柱的作用,没有传感器也就没有人类现代化的生活和条件,传感器技术已经受到世界各国的高度重视,已经成为科学技术和国民经济发展水平的标志之一。
图3-1近似理想的FBAR中声波的传播
假设压电薄膜的厚度为d,体声波在压电薄膜中传播的速度为va,波长为 ,在忽略上下电极厚度的情况下,FBAR发生串联谐振的条件是:
而声波波长与频率fs存在如下关系:
根据以上两个公式我们可以得到FBAR的串联谐振频率关与体声波在压电薄膜中得传播速度va之间的关系式:
传感器技术是现代工业技术的重要标志之一。那么,什么是传感器呢?根据国家标准GB7665-87的定义,传感器是指能感受规定的被测量并按照一定规律转换成可用输出信号的器件或装置[1]。从广义的角度来说,传感器也可以这样来定义:一种能把特定的信息(如物理量、化学量、生物量等)按固定的规律转换成某种可用信号并能输出的器件或者装置。从狭义的角度来说,传感器是把非电量信息转换为电量信号输出的器件[2]。无论如何,传感器最重要的两个组成部分是:敏感元件与转换元件[3]。传感器的组成框图如图1-1所示:
1.2 FBAR传感器
目前,FBAR已在移动通信领域获得了广泛的商业应用,但由于其本身具有优良的特性,其在传感器领域的应用正引起人们广泛的研究兴趣。FBAR的传感器原理很简单,就是FBAR的谐振频率受到待测量物理量的影响而发生变化,通过测量FBAR的谐振频率便可得知待测量物理量的大小。
研究较多的FBAR传感器是FBAR微质量传感器,根据Sauerbrey方程可知,FBAR谐振频率的变化与其加载的微小质量呈线性关系[4]。由于FBAR谐振频率高,所以FBAR微质量传感器具有很高的灵敏度。国内外对FBAR微质量传感器的研究日益增多。
图3-3温度敏感电容补偿结构
4FBAR传感器的研究意义及发展现状
4.1FBAR温度传感器的研究意义
温度是最基本的物理量之一,温度传感器是最早开发且应用最广的一类传感器。无论是在日常生活中,还是在工业生产领域,温度传感器都被广泛使用,尤其是在工业测控领域,精确的温度传感器是实现精确控制的基础。
温度传感器的种类很多,如热敏电阻温度传感器、热电偶温度传感、红外线温度传感器等,每种温度传感器都有其自身的优点。FBAR温度传感器与传统的温度传感器相比,最大的优点是高灵敏度和高分辨率,而且通过频率的形式表现出来,受电磁干扰等影响较小。对FBAR温度传感器的研究,不仅拓展了FBAR在传感器领域的应用,而且促进了对FBAR温度敏感机理、FBAR温度补偿等课题的探索,对于未来FBAR的广泛使用具有重要的现实意义。
FBAR温度传感器研究
学号:220132587
姓名:王玲
日期:2013-12-20
FBAR温度传感器研究
Research ofFBAR temperature sensor
摘要
近年来,微机电制造技术的发展使得薄膜体声波谐振器(FBAR)获得了广泛的商业应用。一方面,FBAR在移动通信领域扮演着重要角色,由于FBAR射频器件具有体积小、工作频率高、插入损耗小、功率容量大等优点,FBAR振荡器、滤波器、双工器已经广泛应用于移动通信领域。另一方面,FBAR在传感器领域也发展迅速,FBAR传感器的高灵敏度和高可靠性引起了人们的广泛研究兴趣。虽然FBAR传感器的发展仍然处于实验室研究阶段,但随着对其研究的不断深入,相信不久的将来,它将会被广泛应用于很多领域。
图1-2典型的FBAR传感器
2FBAR的工作原理
2.1FBAR基础
FBAR即薄膜体声波谐振器(Film Bulk Acoustic Resonator)的英文简写是一种利用体声波工作的电声器件,首先由Lakin和Wang在1981年提出[5]。理想的FBAR的结构[6]如图1-1所示:
相关文档
最新文档