D07无锡市2018届高三第一学期期末检测数学试卷
江苏省无锡市2018届高三第一次模拟考试数学答案
![江苏省无锡市2018届高三第一次模拟考试数学答案](https://img.taocdn.com/s3/m/efaf988b0029bd64783e2ca2.png)
江苏省无锡市2018届高三第一次模拟考试数学参考答案及评分标准1. 32. 63. 474.5. 216.50π7. 58.9. 1 02410. 1911. 812. 613. (-2,0)14. (-∞,-1]∪15. (1) 因为DE⊥平面ABCD,(第15题)所以DE⊥AC.(2分) 因为四边形ABCD是菱形,所以AC⊥BD.(4分) 因为DE∩BD=D,所以AC⊥平面BDE.(6分) (2) 如图,设AC∩BD=O,取BE的中点G,连接FG,OG,所以OG∥DE且OG=DE.(8分)因为AF∥DE,DE=2AF,所以AF∥OG且AF=OG,从而四边形AFGO是平行四边形,FG∥AO.(10分) 因为FG⊂平面BEF,AO⊄平面BEF,所以AO∥平面BEF,即AC∥平面BEF.(14分) 16. (1) 因为cos A=,所以cos C=cos2A=2cos2A-1=2×-1=.(3分) 在△ABC中,因为cos A=,所以sin A=.(4分) 因为cos C=,所以sin C=-=, (5分) 所以cos B=-cos(A+B)=sin A sin B-cos A cos B=.(7分) (2) 根据正弦定理=,得=.又ac=24,所以a=4,c=6, (10分) b2=a2+c2-2ac cos B=25, b=5,所以△ABC的周长为15.(14分) 17. (1) 由题意知∠CAP=-θ,所以=-θ,又PQ=AB-AP cosθ=1-cosθ,所以观光专线的总长度为f(θ)=-θ+1-cosθ=-θ-cosθ++1,0<θ<.(3分) 因为当0<θ<时,f'(θ)=-1+sinθ<0, (5分) 所以f(θ)在上单调递减,即观光专线-PQ的总长度随θ的增大而减小.(6分) (2) 设翻新道路的单位成本为a(a>0),则总成本g(θ)=a--=a--,0<θ<, (8分) g'(θ)=a(-1+2sinθ), (9分) 令g'(θ)=0,得sinθ=,因为0<θ<,所以θ=.(10分) 当0<θ<时,g'(θ)<0,当<θ<时,g'(θ)>0.(12分) 所以当θ=时,g(θ)最小.(13分) 答:当θ=时,观光专线-PQ的修建总成本最低.(14分) 18. (1) 因为椭圆E:+=1(a>b>0)的离心率为,所以a2=2c2,b=c, (1分) 所以直线DB的方程为y=-x+b.又O到直线BD的距离为,所以=,所以b=1,a=(3分) 所以椭圆E的方程为+y2=1.(4分) (2) 设P(,t),t>0,直线PA的方程为y=(x+), (5分) 由整理得(4+t2)x2+2t2x+2t2-8=0,解得x C=-,则点C的坐标是-,.(7分)(第18题)因为△ABC的面积等于四边形OBPC的面积,所以△AOC的面积等于△BPC的面积,S△AOC=××=,S△PBC=×t×--=,则=,解得t=.(9分) 所以直线PA的方程为x-2y+=0.(10分) (3) 因为B(,0),P(,t),C-,所以BP的垂直平分线为y=,BC的垂直平分线为y=x-,所以过B,C,P三点的圆的圆心为, (12分) 则过B,C,P三点的圆的方程为+-=+, (14分) 即所求圆的方程为x2-x+y2-ty+=0.(16分) 19. (1) 因为--…-=,n∈N*,所以当n=1时,1-=,a1=2, (1分) 当n≥2时,由--…-=和--…--=-,两式相除可得,1-=-,即a n-a n-1=1(n≥2),所以数列{a n}是首项为2,公差为1的等差数列,于是a n=n+1.(4分) (2) 因为a p,30,S q成等差数列,a p,18,S q成等比数列,所以于是或(7分) 当时,解得当时,无正整数解,所以p=5,q=9.(10分) (3) 假设存在满足条件的正整数k,使得=a m(m∈N*),则=m+1,平方并化简得,(2m+2)2-(2k+3)2=63, (11分) 则(2m+2k+5)(2m-2k-1)=63, (12分) 所以--或--或--(14分) 解得m=15,k=14或m=5,k=3,m=3,k=-1(舍去),综上所述,k=3或14.(16分) 20. (1) 设切点为(x0,y0),f'(x)=e x(3x+1),则切线斜率为(3x0+1),所以切线的方程为y-y0=(3x0+1)(x-x0).因为切线过点(2,0),所以-(3x0-2)=(3x0+1)(2-x0),化简得3-8x0=0,解得x0=0或.(3分) 当x0=0时,切线的方程为y=x-2, (4分)当x0=时,切线的方程为y=9x-18.(5分) (2) 由题意,对任意的x∈R,有e x(3x-2)≥a(x-2)恒成立,①当x∈(-∞,2)时,a≥--⇒a≥--,令F(x)=--,则F'(x)=--,令F'(x)=0得x=0,当x变化时,F(x),F'(x)所以F(x)max=F(0)=1,故此时a≥1.(7分) ②当x=2时,恒成立,故此时a∈R.(8分)③当x∈(2,+∞)时,a≤--⇒a≤--,令F'(x)=0,得x=,当x变化时,F(x),F'(x)所以F(x)min=F=9,故此时a≤9.综上,1≤a≤9.(10分) (3) 因为f(x)<g(x),即e x(3x-2)<a(x-2),由(2)知a∈(-∞,1)∪(9,+∞),令F(x)=--,则当x变化时,F(x),F'(x)(12分) 当x∈(-∞,2),存在唯一的整数x0使得f(x0)<g(x0),等价于a<--存在唯一的整数x0成立.因为F(0)=1最大,F(-1)=,F(1)=-,所以当a<时,有两个整数成立,所以a∈.(14分) 当x∈(2,+∞),存在唯一的整数x0使得f(x0)<g(x0),等价于a>--存在唯一的整数x0成立.因为F=9最小,且F(3)=7e3,F(4)=5e4,所以当a>5e4时,有两个整数成立,所以当a≤7e3时,没有整数成立,所有a∈(7e3,5e4].综上,a∈∪(7e3,5e4].(16分)江苏省无锡市2018届高三第一次模拟考试数学附加题参考答案及评分标准21.由矩阵A属于特征值λ1的一个特征向量为α1=-可得-=λ1-,即---(2分)得a=2b=10.(4分) 由矩阵A属于特征值λ2的一个特征向量为α2=-,可得-=λ2-,即---(6分)得2a-3b=9, (8分)解得--即A=--.(10分)22.由ρ=4sinθ,得ρ2=4ρsinθ,所以x2+y2=4x,即圆C的方程为x2+(y-2)2=4.(3分) 又由消去t,得x-y+m=0, (6分) 由直线l与圆C相交,得-<2,即-2<m<6.(10分)23. (1) 记该公司在星期四至少有两辆汽车出车为事件A,则为该公司在星期四最多有一辆汽车出车,P()=++=,所以P(A)=1-P(=.(3分) 答:该公司在星期四至少有两辆汽车出车的概率为.(2) 由题意,ξ的可能取值为0,1,2,3,4,P(ξ=0)==;P(ξ=1)=+·=;P(ξ=2)=++·=;P(ξ=3)=+=;P(ξ=4)==.(8分) 所以ξ的分布列为故E(ξ)=+2×+3×+4×=.答:ξ的数学期望为.(10分) 24. (1) 因为PE⊥底面ABCD,过点E作ES∥BC,则ES⊥AB.以E为坐标原点,EB方向为x轴的正半轴,ES方向为y轴的正半轴,EP方向为z轴的正半轴建立如图所示的空间直角坐标系E-xyz,则E(0,0,0),B(1,0,0),C(1,1,0),A(-1,0,0),D(-1,2,0),P(0,0,),=(-2,1,0),=(1,1,-).(2分) 设平面PCD的法向量为n=(x,y,z),则n·=-2x+y=0,n·=x+y-z=0,令x=1,解得n=(1,2,).又平面ABCD的法向量为m=(0,0,1), (3分)所以cos<n,m>===, (4分)所以sin<n,m>=.(5分)(第24题)(2) 设M点的坐标为(x1,y1,z1),因为EM⊥平面PCD,所以∥n,即==,也即y1=2x1,z1=x1.(6分) 又=(x1,y1,z1-=(-1,2,-),=(1,1,-所以=λ+μ=(λ-μ,λ+2μ,-λ-μ),解得x1=λ-μ,y1=λ+2μ=2x1=2(λ-μ),即λ=3μ, (8分) z1-=-λ-μ,λ=,所以μ=, (9分)所以点M的坐标为.(10分)。
无锡市第一中学高三数学周末测试(2018.10.20)
![无锡市第一中学高三数学周末测试(2018.10.20)](https://img.taocdn.com/s3/m/458e9c32844769eae009ed99.png)
无锡市一中高三数学周末训练卷2018.10.20班级__________姓名___________一、填空题: 1.设全集U R =,集合{}{}|3,|16A x x B x x =≥=-≤≤,则集合()U C A B I =________. 2.若复数1()2aiz a R i+=∈-是纯虚数(i是虚数单位),则a =____________.3.数据10,6,8,5,6的方差=2s __________.4.抛掷甲、乙两枚质地均匀且四面上分别标有1, 2,3,4的正四面体,记底面上的数字分别为y x ,,则yx为整数的概率是____________.5.如图是一个算法的流程图,若输入x 的值为2,则输出y 的值为____.6.已知3cos(),(,2)5x x πππ+=∈,则tan x =______________.7.2156cos(),cos()sin ()64612x x x πππ++=-+=已知则 . 8.在ABC ∆中,“6A π>”是“1sin 2A >”的______________条件. (填“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”)9.设幂函数()y f x =的图象经过点()182,,则()1512f 的值_________.10.设P 为曲线2:23C y x x =++上的点,且曲线C 在点P 处的切线的倾斜角的取值范围是0,4π⎡⎤⎢⎥⎣⎦,则点P 的纵坐标的取值范围为______________. 11.若316sin =⎪⎭⎫ ⎝⎛-απ,则⎪⎭⎫ ⎝⎛+απ232cos =______________. 12.已知函数f (x )=|sin |x -kx (x ≥0,k ∈R )有且只有三个零点,设此三个零点中的最大值为0x ,则0200(1)sin 2x x x +=____________. 13.在平面直角坐标xOy 中,将函数])2,0[(232∈-+=x x x y 的图像绕坐标原点O 按逆时针方向旋转角θ,若],0[αθ∈∀,旋转后所得曲线都是某个函数的图像,则α的最大值是______________.14.若存在两个正实数y x ,,使得等式0)ln )(ln 2(=--+x y ex y a x 成立,其中e 为自然对数的底数,则实数a 的取值范围为______________.A NBPMC二、解答题:15.如图,在平面直角坐标系xOy中,以Ox轴为始边作两个锐角αβ,别交单位圆于A,B两点.已知A,B(1)求tan()αβ+的值;(2)求2αβ+的值.16.如图,在三棱锥P—ABC中,平面PAB⊥平面ABC,PA⊥PB,M,N分别为AB,PA的中点.(1)求证:PB∥平面MNC;(2)若AC=BC,求证:P A⊥平面MNC.17.已知函数()2cos sin)222x x xf x=-.(1)设,22ππθ⎡⎤∈-⎢⎥⎣⎦,且()1fθ=+,求θ的值;(2)在ABC∆中,1,()1AB f C==,ABC∆,求sin sinA B+的值.(第16题图)18.某地有三个村庄,分别位于等腰直角三角形ABC 的三个顶点处,已知km AC AB 6==,现计划在BC 边的高AO 上一点P 处建造一个变电站. 记P 到三个村庄的距离之和为y .(1)设PBO α∠=,把y 表示成α的函数关系式; (2)变电站建于何处时,它到三个小区的距离之和最小?19.对于函数()f x ,若存在实数对(b a ,),使得等式b x a f x a f =-⋅+)()(对定义域中的每一个x 都成立,则称函数()f x 是“(b a ,)型函数”.(1)判断函数()4xf x =是否为“(b a ,)型函数”,并说明理由;(2)已知函数()g x 是定义域为[]0,2的 “(1,4)型函数”, [0,1]x ∈时,2()g x x =(1)1m x --+(0)m >,且当[0,2]x ∈时,都有1()3g x ≤≤成立,试求m 的取值范围.O B CAP (第18题图)20.已知32()31(0)f x ax x a =-+>,定义{}(),()()()max (),()(),()()f x f x g x h x f x g x g x f x g x ⎧==⎨<⎩≥.(1)求函数()f x 的极值;(2)若()()g x xf x '=,且存在[1,2]x ∈使()()h x f x =,求实数a 的取值范围; (3)若()ln g x x =,试讨论函数()h x (0)x >的零点个数.。
江苏省无锡市第一高级中学高三数学理上学期期末试题含解析
![江苏省无锡市第一高级中学高三数学理上学期期末试题含解析](https://img.taocdn.com/s3/m/d4562810a7c30c22590102020740be1e650ecc0a.png)
江苏省无锡市第一高级中学高三数学理上学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知变量满足的值范围是()参考答案:【知识点】线性规划 E5A画出约束条件所表示的平面区域可知,该区域是由点所围成的三角形区域(包括边界),,记点,得,,所以的取值范围是.故选择A.【思路点拨】画出约束条件所表示的平面区域可知为三角形,目标函数可化为:,表示为可行域的点与点连线的斜率的范围加3求得.2. 在区间上随机取一个数,则事件:“”的概率为()A. B . C. D.参考答案:C3. 函数的图象如图所示,为了得到函数的图象,只需将的图象A.向左平移个单位长度 B.向右平移个单位长度C.向左平移个单位长度 D.向右平移个单位长度参考答案:C略4. 已知函数y=f(2x)+x是偶函数,且f(2)=1,则f(﹣2)=()A.2 B.3 C.4 D.5参考答案:B【考点】函数奇偶性的性质.【专题】函数的性质及应用.【分析】根据函数是偶函数,结合函数,令x=1,即可得到结论.【解答】解:∵y=f(2x)+x是偶函数,∴f(﹣2x)﹣x=f(2x)+x,∴f(﹣2x)=f(2x)+2x,令x=1,则f(﹣2)=f(2)+2=3.故选:B【点评】本题主要考查函数值的计算,利用函数的奇偶性的性质得到方程关系是解决本题的关键,注意要学会转化.5. 已知定义在R上的函数满足f(1)=2,且f(x)的导数f′(x)在R上恒有f′(x)<1(x∈R),则不等式f(x)<x+1的解集为()A.(1,+∞)B.(﹣∞,﹣1)C.(﹣1,1)D.(﹣∞,1)∪(1,+∞)参考答案:A【考点】利用导数研究函数的单调性.【分析】由题意,设g(x)=f(x)﹣(x+1),x∈R;求出g′(x),判定g(x)的单调性,由此求出不等式f(x)<x+1的解集.【解答】解:根据题意,设g(x)=f(x)﹣(x+1),x∈R;∴g′(x)=f′(x)﹣1<0,∴g(x)在R上是单调减函数;又∵g(1)=f(1)﹣(x+1)=0,∴当x>1时,g(x)<0恒成立,即f(x)<x+1的解集是(1,+∞).故选:A.6. 点A,B,C,D在同一个球的球面上,AB=BC=,∠ABC=90°,若四面体ABCD体积的最大值为3,则这个球的表面积为()A.2πB.4πC.8πD.16π参考答案:D【考点】LG:球的体积和表面积.【分析】根据几何体的特征,判定外接球的球心,求出球的半径,即可求出球的表面积【解答】解:根据题意知,直角三角形△ABC的面积为3.其所在球的小圆的圆心在斜边AC的中点上,设小圆的圆心为Q,若四面体ABCD的体积的最大值,由于底面积S△ABC不变,高最大时体积最大,所以,DQ与面ABC垂直时体积最大,最大值为为S△ABC×DQ=3,即×3×DQ=3,∴DQ=3,如图.设球心为O,半径为R,则在直角△AQO中,OA2=AQ2+OQ2,即R2=()2+(3﹣R)2,∴R=2,则这个球的表面积为:S=4π×22=16π.故选:D.【点评】本题考查的知识点是球内接多面体,球的表面积,其中分析出何时四面体ABCD的体积的最大值,是解答的关键,考查等价转化思想思想,是中档题.7. 若集合,全集U=R,则=()A.B. C. D.参考答案:A8. 设集合,集合,则()A. B. C. D.参考答案:C,,则【考点】集合的运算9. 两位同学去某大学参加自主招生考试,学校负责人与他们两人说:“我们要从考试的人中招收5人,你们两人同时被招收的概率是”,由此可推断出参加考试的人数为( )A. 19B. 20C.21 D.22参考答案:答案:B10. 已知命题p: m∈R,sin m=,命题恒成立.若为假命题,则实数的取值范围为()A.B.C.D.参考答案:C二、填空题:本大题共7小题,每小题4分,共28分11. 某数表中的数按一定规律排列,如下表所示,从左至右以及从上到下都是无限的.此表中,主对角线上数列1,2,5,10,17,…的通项公式。
高三数学-2018年江苏省无锡市高三数学综合试卷 精品
![高三数学-2018年江苏省无锡市高三数学综合试卷 精品](https://img.taocdn.com/s3/m/d7a6fc5e336c1eb91a375df4.png)
2018年无锡市高三数学综合试卷第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(改)等差数列{a n }的前n 项和为S n ,若a 5=18-a 6,则S 10等于 ( )A .180B .90C .198D .1082.(改)下列各图形中,是函数图象的是 ( )3.(新)若以集合S ={a ,b ,c }(a ,b ,c ∈R )中的三个不同元素为边长可构成一个三角形,那么这个三角形一定不可能...是 ( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形4.(改)已知椭圆22212a a x y -=的焦距为4,则a 的值为 ( )ABCD5.(改)函数sin(3)cos()cos(3)cos()3633y x x x x ππππ=+--++的图象的一条对称轴的方程是 ( ) A .π12x =B .π6x =C .π12x =- D .π24x =-6.(改)盒中有10只螺丝钉,其中有3只是坏的,现从盒中随机地抽取4只,那么310等于 ( ) A .恰有2只是好的概率 B .恰有1只是坏的概率 C .至多2只是坏的概率 D .4只全是好的概率 7.(新)甲、乙两人同时从A 地赶往B 地,甲先骑自行车到中点后改为跑步,而乙则是先跑步到中点后改为骑自行车,最后两人同时到达B 地.又知甲骑自行车比乙骑自行车的速度快,并且两人骑车速度均比跑步速度快.若某人离开A 地的距离S 与所用时间t 的函数关系可用图①~④中的某一个来表示,则甲、乙两人的图象只可能分别是( ) A .甲是图①,乙是图② B .甲是图①,乙是图④ C .甲是图③,乙是图② D .甲是图③,乙是图④ 8.(改)已知f (x ) = -2x +1,对任意正数ε,x 1、x 2∈R ,使|f (x 1)-f (x 2)|<ε的一个充分不必要条件是 ( )A .| x 1- x 2|<εB .| x 1- x 2|<ε2C .| x 1- x 2|<ε4D .| x 1- x 2|> ε49.(改)已知复数z k (k =1,2,3,…,2018)满足|z k |=1,命题甲为:∑=20031k kz=0,命题乙:复平面内以z k (k =1,2,3,…,2018)的对应点为顶点的2018边形是正多边形,那么命题甲是命题乙的 ( ) A .充分不必要条件 B .必要不充分条件 C .充分且必要条件 D .既不充分不必要条件 10.(改)已知正方体ABCD —A 1B 1C 1D 1中,F 是BB 1的中点,G 为BC 上一点,若C 1F ⊥FG ,则∠D 1FG 为 ( ) A .60º B . 120º C .150º D .90º11.(改)131lim 3(1)3n n n n a +→∞=++,则实数a 的取值范围为 ( )A .(-2,0)B .(-∞,-2)∪(0,+∞)C .(-4,2)D .(-∞,-4)∪(2,+∞)12.(新)设12)310(++n (n ∈N )的整数部分和小数部分分别为I n 和F n ,则F n (F n +I n )的值为( ) A .1 B .2C .4D .与n 有关的数第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.答案填在题中横线上. 13.(改)正整数2160的正约数共有 个.第7题图14.(改)为了了解学生的体能情况,现抽取了某校一个年级的部分学生进行一分钟跳绳次数的测试,将数据整理后,画出频率分布直方图.已知图中从左到右三个小组的频率分别为0.1,0.2,0.4,第一小组的频数为5,Array那么第四小组的频数等于.15.(新)当方程m(x2+y2-4x+2y+5) =(3x+4y+33)2所表示的点的轨迹为双曲线时,则实数m的取值范围为.16.(改)设正实数x、y、z满足(x+y)(x+z)=2,则xyx(x+y+z)的最大值为.三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.17.(改)(本题满分12分)有一块边长为6m的正方形钢板,将其四个角各截去一个边长为x(m)的小正方形,然后焊接成一个无盖的蓄水池(不计损耗).(Ⅰ)求容积V关于自变量x的函数,并指出其定义域;(Ⅱ)指出函数V(x)的单调区间;(Ⅲ)蓄水池的底边为多少时,蓄水池的容积最大?最大容积是多少?18.(新)(本题满分12分)已知向量a = e1-e2,b = 4e1+3e2,其中e1= (1,0),e2= (0,1).(Ⅰ)试计算a·b;|a+b|的值;(Ⅱ)n个向量a1、a2、…、a n称为“线性相关”,如果存在n个不全为零的实数k1、k2、…、k n,使得k1a1+ k2a2+…+ k n a n=0成立,否则,则为“不线性相关”.依此定义,三个向量a1= (-1,1),a2= (2,1),a3= (3,2) 是否为“线性相关”的?请说明你的判断根据;(Ⅲ)平面上任意三个互不共线的向量a1、a2、a3,一定是线性相关的吗?为什么?19.(改)(本小题满分12分)如图,已知斜平行六面体ABCD -A 1B 1C 1D 1中,AB =AD = 2 ,∠A 1AB =∠A 1AD =∠BAD .(Ⅰ)设∠BAD =α,A 1A 与面ABCD 所成的角为β,求证:2coscos cos ααβ=;(Ⅱ)设A 1A 到面B 1D 1DB 的距离为1,求二面角A 1-AD -B 的余弦.ABCDA 1B 1C 1D 120.(新)(本题满分12分)已知递减的等比数列{a n },各项均正,且满足⎪⎪⎩⎪⎪⎨⎧=++++=++++.2712111111,31215432154321a a a a a a a a a a 试求数列{a n }的通项公式 . 21.(改)(本题满分12分)椭圆中心是坐标原点O ,焦点在x 轴上,过椭圆左焦点F 的直线交椭圆于P ,Q 两点,且OQ OP ⊥.求椭圆离心率e 的取值范围.22.(新)(本小题满分14分)设集合S ={|,||<1}x x x ∈R 且.在S 中定义运算“*”,使得*1a ba b ab+=+. (Ⅰ)证明:如果a ∈S ,b ∈S ,那么a *b ∈S ; (Ⅱ)证明:对于S 中的任何元素a 、b 、c ,都有(a *b )*c = a *(b *c )成立;(Ⅲ)试问:是否存在单位元e ,使得a *e = e *a = a ?又是否存在不变元i ,使得a *i = i *a = i .答案一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.B (点拨:a 5+a 6=a 1+a 10=18,S 10=11010()2a a +=90) 2.D (点拨:函数首先必须是映射,一个x 只能对应一个y )3.D (点拨:集合中的元素具有互异性,a 、b 、c 两两互不相等)4.C (点拨:显然a <0,而对于C 、D 中的答案,只须选其中一个代入验证即可) 5.A (点拨:可先将y 化为πsin(4)6x +,其对称轴经过函数的最值点)6.A (点拨:恰有2只是好的概率为2273410C C C =310)7.B (点拨:先走一半的路程,甲所用时间较少,乙所用时间较多) 8.C (点拨:B 是充要的,A 是必要的,D 既非充分又非必要)9.B (点拨:顺次连结封闭多边形的各边所得的向量和为零向量,故由命题乙可推得甲,反之,则不然)10.D (点拨:C 1F 为D 1F 在平面BCC 1B 1内的射影,利用三垂线定理可得D 1F ⊥FG )11.C (点拨:将133(1)n n n a +++的分子分母同除以3k,可得1()3k a +→0,从而|13a +|<1) 12.A (点拨:F n=213)n +,F n +I n =12)310(++n )二、填空题:本大题共4小题,每小题4分,共16分.答案填在题中横线上. 13.40 14.15 15.0<m <2516.1三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.17.(Ⅰ)设蓄水池的底面边长为a ,则a =6-2x ,且蓄水池容积为2()(62)V x x x =-.由>062>0x x ⎧⎨-⎩,得()V x 定义域为(0,3). (Ⅱ)322()42436,'()124836V x x x x V x x x =-+=-+.令'()V x ≥0,并注意到(0,3)x ∈知:()V x 的单调递增区间为(0,1];令'()V x ≤0,并注意到(0,3)x ∈知,()V x 的单调递减区间为[1,3].(Ⅲ)令2'()1248360V x x x =-+=,得x =1(3(0,3)x =∉,舍去).此时,a = 4(m ).由()V x 单调性知,3max [()](1)16(m )V x V ==.故当底面边长为4m 时,蓄水池容积最大,最大容积为16m 3. 18.(Ⅰ)a = (3,0) – (0,2) = (3,-2),b = (4,0) +(0,1) =(4,1).a ·b = (3,-2) ·(4,1)=10; |a +b |=|(7,1)|= 50 = 52. (Ⅱ)是“线性相关”的.令k 1(-1,1)+k 2(2,1)+k 3(3,2) = (0,0),于是 k 1+2k 2+3k 3=0,且k 1+k 2+2k 3=0.显然由以上两条件构成的方程组有不全为零的实数解(如k 1= -1,k 2= -5,k 3=3),故它们为线性相关的. (Ⅲ)平面上任意三个互不共线的向量一定线性相关. 由平面向量的基本定理知,平面上任意两个不共线的向量a 1、a 2均可作为向量的一组基底,并且对于平面内的任一其它向量a 3,有且仅有唯一的一对实数λ1、λ2,使a 3 = λ1a 1+λ2a 2.分别取k 1=λ1,k 2=λ2,k 3= -1,即有λ1a 1+λ2a 2- a 3 =0,也就是平面上任意三个互不共线的向量一定线性相关. 19.(Ⅰ)如图,因∠A 1AB =∠A 1AD ,A 1A =A 1A ,AB =AD ,故△A 1AB ≌△A 1AD .于是,A 1B =A 1D .故BD ⊥A 1O .因AB =AD ,故四边形ABCD 为菱形,从而BD ⊥AC . 又A 1O ∩AC =O ,故BD ⊥面A 1C 1CA .于是,面ABCD ⊥面A 1C 1CA . (★) 作HE ⊥AD 于E ,连A 1E ,由三垂线定理得,A 1E ⊥AD .故,2coscos cos 11ααβ=⋅==EA AE AE AH H A AH . (Ⅱ)由(★)得,面B 1D 1DB ⊥面A 1C 1CA .作A 1F ⊥OO 1于F ,则A 1F ⊥面B 1D 1DB .故A 1F =1.在Rt △A 1O 1D 1中,A 1O 1=A 1D 1•2cos α=2cos2α.于是,O 1F =αcos 21211=-F A O A .故,2c o s2c o s c o s c o s 2c o sc o s 11ααβαα=∠==F O A ,从而,ααcos cos 22=.又αcos ≠0,于是αcos = 12 ,α=60º.由(Ⅰ)知,∠A 1EH 是二面角A 1-AD -B 的平面角,于是AB CDA 1B 1C 1D 1O 1EFOH3160tan 30tan cos 11=⋅⋅==∠AE AE E A EH EH A . 20.设数列的公式为q ,则原方程组等价于⎪⎪⎩⎪⎪⎨⎧=++++=++++. ②27121)1(1① ,3121)1(23454321q q q q a q q q q a将以上两式相除得 a 1a 5 = 9,即23a =9. 因a n >0,故a 3 = 3.注意到231qa a =,q a a 32=,q a a 34=,235q a a =,于是a 1+a 2+a 3+a 4+a 5 = 3121又可化为 3121)1()1(33223=++++q q a a q qa ,变形得 313031211)1(332=+=+++a a q q q q .解得3101=+q q (另一解为负,不合,舍去), 从而 q =31(q =3,不合,舍去).此时,27231==q a a ,nn na --=⋅=413)31(27. 21.不妨设椭圆的方程为12222=+by a x (a >b >0).(1)当PQ ⊥x 轴时,F (–c ,0),则ab FP 2||=且|FP | = |FQ |.又OQ OP ⊥,故|OF |= |FP |,即a b c 2=,也就是ac = a 2 – c 2.将两边同除以a 2,得 e 2+e –1= 0,解得215-=e .(2)当PQ 不垂直x 轴时,设PQ :)(c x k y +=并将代入椭圆方程得02)(22222222222=-+++b a c a k cx a k x a k b设),(11y x P ,),(22y x Q ,∵OQ OP ⊥,∴02121=+y y x x .即 0))((21221=+++c x c x k x x ,亦即 0)()1(22212212=++++c k x x c k x x k .于是 02)1(22222222222222222=++-⋅++-⋅+c k ak b c a k c k a k b b a c a k k . 解得 222222222ba cbc a b a k -+= . 显然 k ≠0,故k 2>0,∴222222b a c b b a -+>0,将222c a b -=代入上式,得1324+-e e <0,解得215-<e <1. 综合上述情况得e 的范围是215-≤e <1.22.(Ⅰ)∵a ∈S ,b ∈S ,∴|a |<1,|b |<1.∴22(1)()(1)(1) ab a b ab a b ab a b +-+=++++--22(1)(1)(1)(1)(1)(1)a b a b a b =++--=-->0.∴2()1a b ab ++<1,即|1a b ab ++|<1,也就是1a bab++∈S ,从而a *b ∈S . (Ⅱ)(a *b )*c =1*1111a bca b a b c abc ab c a b ab ab ac bc c ab +++++++==+++++++ ,a *(b *c ) =1*1111b ca b c a b c abc bc a b c bc ab ac bca bc+++++++==+++++++ , 故(a *b )*c = a *(b *c ). (Ⅲ)若a *e = e *a = a ,则11a e e aa ae ea++==++,变形得(1)e a a ea +=+,从而,2a ea =,该式不能对一切满足|a |<1的实数a 恒成立,故不存在满足条件的单位元e .若a *i = i *a = i ,则11a i i ai ai ia++==++,变形得(1)i a i ia +=+,从而,2a i a =,当1i =±时,等式对一切满足|a |<1的实数a 恒成立,故存在满足条件的不变元1i =±.。
江苏无锡市2018年高三年级上学期期末检测数学试题含解析
![江苏无锡市2018年高三年级上学期期末检测数学试题含解析](https://img.taocdn.com/s3/m/538326e35022aaea998f0f77.png)
无锡市普通高中2017年秋学期高三期终调研考试试卷数学一、填空题:(本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置.......上..)1. 已知集合,,若,则实数__________.【答案】3【解析】 ,故2. 若复数(,为虚数单位)是纯虚数,则实数__________.【答案】6【解析】为纯虚数,故3. 某高中共有学生2800人,其中高一年级960人,高三年级900人,现采用分层抽样的方法,抽取140人进行体育达标检测,则抽取高二年级学生人数为__________.【答案】47【解析】由已知,高二年级人数为,采用分层抽样的方法,则抽取高二的人数为 .4. 已知,直线,,则直线的概率为_________.【答案】【解析】由已知,若直线与直线垂直,则,使直线的,故直线的概率5. 根据如图所示的伪代码,当输入的值为3时,最后输出的的值为__________.【答案】21【解析】由图中的伪代码逐步运算:,;①是,,,;②是,,,;③是,,,;④否,输出。
6. 直三棱柱中,已知,,,,若三棱柱的所有顶点都在同一球面上,则该球的表面积为__________.【答案】【解析】是直三棱柱,,又三棱柱的所有顶点都在同一球面上,是球的直径,;,,;故该球的表面积为7. 已知变量满足,目标函数的最小值为5,则的值为__________.【答案】5【解析】如图为满足条件的可行域,由得,当直线过点时有最小值5,此时,解得坐标为,代入得 .【点睛】利用线性规划求最值,一般用图解法求解,其步骤是:1.在坐标系中作出可行域;2.根据目标函数的几何意义,将目标函数进行变形;3. 确定最优解:在可行域内平行移动目标函数变形后的直线,从面确定最优解;4.求最值:将最解代入目标函数即可求最大值与最小值.8. 函数的图像向右平移个单位后,与函数的图像重合,则__________.【答案】【解析】平移后的函数的解析式为,此时图像与函数的图像重合,故, 即 .9. 已知等比数列满足,且,,成等差数列,则的最大值为__________.【答案】1024【解析】由已知得;当或时得最大值 . 【点睛】本题有以下几个关键之处:1.利用方程思想求得首项和公比,进而求得通项;2.利用转化化归思想将问题转化为二次函数最值问题;3.本题易错点是忽视的取值是整数,而误取 .10. 过圆内一点作两条相互垂直的弦和,且,则四边形的面积为__________.【答案】19【解析】根据题意画出上图,连接,过作,,为的中点,为的中点,又,,∴四边形为正方形,由圆的方程得到圆心,半径,【点睛】本题的关键点有以下:1.利用数形结合法作辅助线构造正方形;2.利用勾股定理求解.11. 已知双曲线与椭圆的焦点重合,离心率互为倒数,设分别为双曲线的左,右焦点,为右支上任意一点,则的最小值为__________.【答案】8【解析】由已知,,;又双曲线与椭圆焦点重合,离心率互为倒数,,则双曲线;在右支上,根据双曲线的定义有,,故的最小值为 .【点睛】解答本题有3个关键步骤:1、利用双曲线与椭圆的焦点重合,离心率互为倒数求出曲线方程;2、利用双曲线定义求出;3、将代入整理后再利用基本不等式求出最小值.12. 在平行四边形中,,,,为的中点,为平面内一点,若,则__________.【答案】6【解析】13. 已知函数,.若存在,使得,则实数的取值范围是__________.【答案】【解析】当时,在恒成立在为减函数,当时;当时,.综上,欲使成立需:.【点睛】本题的解题关键是利用导数工具和函数的单调性取得函数,再利用图像的对称原原理将问题转化为,从而求得正解.14. 若函数在区间上单调递增,则实数的取值范围是__________.【答案】【解析】由已知可得,当时,要使得原命题成立需:;当时,要使得原命题成立需:.综上 .二、解答题(本大题共6小题,共90分.解答应写出文字说明、证明过程或演算步骤.)15. 如图,是菱形,平面,,.(1)求证:平面;(2)求证:平面.【答案】(1)见解析;(2)见解析...............................试题解析:(1)证明:因为平面,所以.因为是菱形,所以,因为所以平面.(2)证明:设,取中点,连结,所以,且.因为,,所以且,从而四边形是平行四边形,.因为平面,平面,所以平面,即平面.16. 在中,角的对边分别为,,. (1)求的值;(2)若,求的周长.【答案】(1).(2)15.【解析】试题分析:(1)由三角形内角关系结合两角和与差公式有,所以根据已知条件求出即可求出 . (2)根据正弦定理结合,即可求出的值,再利用余弦定理,求出的值.试题解析:(1)因为,所以.在中,因为,所以,因为,所以,所以.(2)根据正弦定理,所以,又,所以,.,.所以的周长为15.17. 如图,点为某沿海城市的高速公路出入口,直线为海岸线,,,是以为圆心,半径为的圆弧型小路.该市拟修建一条从通往海岸的观光专线,其中为上异于的一点,与平行,设.(1)证明:观光专线的总长度随的增大而减小;(2)已知新建道路的单位成本是翻新道路的单位成本的2倍.当取何值时,观光专线的修建总成本最低?请说明理由.【答案】(1)见解析;(2).【解析】试题分析:(1)利用扇形弧长公式求出,利用直角三角形边角关系求出,则总长为,求出为减函数,命题得证.(2)设单位成本为,则总成本为,,求出,求出,分两区间讨论的单调性,以证明为极小值点.试题解析:(1)由题意,,所以,又,所以观光专线的总长度,,因为当时,,所以在上单调递减,即观光专线的总长度随的增大而减小.(2)设翻新道路的单位成本为,则总成本,,,令,得,因为,所以,当时,,当时,.所以,当时,最小.答:当时,观光专线的修建总成本最低.【点睛】在一定条件下“成本最低”、“用料最省”、“面积最大”、“效率最高“等问题,在生产、生活中经常遇到,在数学上这类问题往往归结为求函数的最值问题.除了常见的求最值的方法外,还可用求导法求函数的最值,但无论采取何种方法都必须在函数的定义域内进行.18. 已知椭圆的离心率为,分别为左,右焦点,分别为左,右顶点,原点到直线的距离为.设点在第一象限,且轴,连接交椭圆于点.(1)求椭圆的方程;(2)若三角形的面积等于四边形的面积,求直线的方程;(3)求过点的圆方程(结果用表示).【答案】(1).(2).(3).【解析】试题分析:(1)由离心率为,得,,利用两点坐标可得的方程为,由圆心到时直线的距离公式求得,则.(2)设,,由两点的坐标可得直线的方程,与椭圆的方程联立可得的坐标(的横、纵坐标分别是的高),代入三角形的面积公式结合面积相等的条件即得关于的方程求出,最后再将代入PA方程即可得所求. (3)所求圆的圆心为的垂直平分线的交点,利用三点的坐标即可得的垂直平分线的方程,两个方程联立即可求得圆心的坐标,再代入圆的标准方程即可得所求.试题解析:(1)因为椭圆的,所以,,所以直线的方程为,又到直线的距离为,所以,所以,,所以椭圆的方程为.(2)设,,直线的方程为,由,整理得,解得:,则点的坐标是,因为三角形的面积等于四边形的面积,所以三角形的面积等于三角形的面积,,,则,解得.所以直线的方程为.(3)因为,,,所以的垂直平分线,的垂直平分线为,所以过三点的圆的圆心为,则过三点的圆方程为,即所求圆方程为.19. 已知数列满足,,是数列的前项的和.(1)求数列的通项公式;(2)若,,成等差数列,,18,成等比数列,求正整数的值;(3)是否存在,使得为数列中的项?若存在,求出所有满足条件的的值;若不存在,请说明理由.【答案】(1).(2),.(3)或14.【解析】试题分析:(1)当时,,,当时,由列是首项为2,公差为1的等差数列.(2)建立方程组,或.当,当无正整数解,综上,.(3)假设存在正整数,使得,,或,,,(舍去)或14.试题解析:(1)因为,,所以当时,,,当时,由和,两式相除可得,,即所以,数列是首项为2,公差为1的等差数列.于是,.(2)因为,30,成等差数列,,18,成等比数列,所以,于是,或.当时,,解得,当时,,无正整数解,所以,.(3)假设存在满足条件的正整数,使得,则,平方并化简得,,则,所以,或,或,解得:,或,,或,(舍去),综上所述,或14.20. 已知函数,,其中.(1)求过点和函数的图像相切的直线方程;(2)若对任意,有恒成立,求的取值范围;(3)若存在唯一的整数,使得,求的取值范围.【答案】(1),.(2).(3).【解析】试题分析:(1)先设切点为,切线斜率为,再建立切线方程为,将代入方程可得,即,进而求得切线方程为:或.(2)将问题转化为对任意有恒成立,①当时,,利用导数工具求得,故此时;②当时,恒成立,故此时;③当时,,利用导数工具求得,故此时.综上:.(3)因为,由(2)知,当,原命题等价于存在唯一的整数成立,利用导数工具求得;当,原命题等价于存在唯一的整数成立,利用导数工具求得.综上:.试题解析:(1)设切点为,,则切线斜率为,所以切线方程为,因为切线过,所以,化简得,解得.当时,切线方程为,当时,切线方程为.(2)由题意,对任意有恒成立,①当时,,令,则,令得,,故此时.②当时,恒成立,故此时.③当时,,令,,故此时.综上:.(3)因为,即,由(2)知,令,则当,存在唯一的整数使得,等价于存在唯一的整数成立,因为最大,,,所以当时,至少有两个整数成立,所以.当,存在唯一的整数使得,等价于存在唯一的整数成立,因为最小,且,,所以当时,至少有两个整数成立,所以当时,没有整数成立,所有.综上:.数学(加试题)说明:解答时应写出文字说明、证明过程或演算步骤.21. 选修4-2:矩阵与变换已知矩阵,若矩阵属于特征值的一个特征向量为,属于特征值的一个特征向量为.求矩阵.【答案】.【解析】试题分析:先由和求得和求得,从而求得,可得.试题解析:由矩阵属于特征值的一个特征向量为可得,,即;得,由矩阵属于特征值的一个特征向量为,可得,即;得,解得.即,22. 选修4-4:坐标系与参数方程在平面直角坐标系中,直线的参数方程是(是参数),以原点为极点,轴的正半轴为极轴建立极坐标系,若圆的极坐标方程是,且直线与圆相交,求实数的取值范围.【答案】【解析】试题分析:由,得的方程为,求出圆心半径;由的参数方程得;与圆相交,则圆心到直线的距离,即可得.试题解析:由,得,所以,即圆的方程为,又由,消,得,由直线与圆相交,所以,即.【点睛】已知直线与圆的位置关系时,常用几何法将位置关系转化为圆心到直线的距离与半径的大小关系,以此来确定参数的值或取值范围.23. 某公司有四辆汽车,其中车的车牌尾号为0,两辆车的车牌尾号为6,车的车牌尾号为5,已知在非限行日,每辆车都有可能出车或不出车.已知两辆汽车每天出车的概率为,两辆汽车每天出车的概率为,且四辆汽车是否出车是相互独立的.该公司所在地区汽车限行规定如下:(1)求该公司在星期四至少有2辆汽车出车的概率;(2)设表示该公司在星期一和星期二两天出车的车辆数之和,求的分布列和数学期望. 【答案】(1).(2)见解析.试题解析:(1)记该公司在星期四至少有两辆汽车出车为事件,则:该公司在星期四最多有一辆汽车出车.∴.答:该公司在星期四至少有两辆汽车出行的概率为.(2)由题意,的可能值为0,1,2,3,4;;;;..答:的数学期望为.【点睛】求复杂事件的概率通常有两种方法:一是将所求事件转化为彼此互斥人事件的和;二是先求对立事件的概率,进而求所求事件的概率,本题词的第(1)题采用的是法二.24. 在四棱锥中,是等边三角形,底面是直角梯形,,,是线段的中点,底面,已知.(1)求二面角的正弦值;(2)试在平面上找一点,使得平面.【答案】(1).(2).【解析】试题分析:(1)为坐标原点,建立空间直角坐标系,即可得到各点的坐标及平面的法向量为,并求得,进而求出平面的法向量为,即可求出,最后求出.(2)设,根据平面法向量定义得,即, ,再利用建立方程求得,,进而求得点的坐标.试题解析:(1)因为底面,过作,则,以为坐标原点,方向为轴的正半轴,方向为轴的正半轴,方向为轴的正半轴建立空间直角坐标系,则,,,,,,,设平面的法向量为,则,,解得,又平面的法向量为,所以,所以.(2)设点的坐标为,因为平面,所以,即,也即,,又,,,所以,所以得,,即,,,所以,所以点的坐标为.。
江苏省无锡市北高级中学2018年高三数学文上学期期末试卷含解析
![江苏省无锡市北高级中学2018年高三数学文上学期期末试卷含解析](https://img.taocdn.com/s3/m/c1ff1e8202768e9950e738e6.png)
江苏省无锡市北高级中学2018年高三数学文上学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 设集合,集合,则=(A)(B)(C)(D)参考答案:B2. 在区间上随机取一个数,则事件:“”的概率为()A. B . C.D.参考答案:C3. 若命题,则对命题p的否定是( ) A.?x∈[﹣3,3],x2+2x+1>0B.?x∈(﹣∞,﹣3)∪(3,+∞),x2+2x+1>0C.D.参考答案:A【考点】命题的否定.【专题】简易逻辑.【分析】根据特称命题的否定是全称命题即可得到结论.解:命题为特称命题,则命题的否定是全称命题,故命题的否定为:?x∈[﹣3,3],x2+2x+1>0,故选:A.【点评】本题主要考查含有量词的命题的否定,比较基础.4. 已知函数,则关于x的方程的实根个数不可能为()A. 5个B. 6个C. 7个D. 8个参考答案:A【分析】以f(x)=1的特殊情形为突破口,解出x=1或3或或﹣4,将x+﹣2看作整体,利用换元的思想方法进一步讨论.【详解】∵函数,即f(x)=,因为当f(x)=1时,x=1或3或或﹣4,则当a=1时,x+﹣2=1或3或或﹣4,又因为x+﹣2≥0或x+﹣2≤﹣4,所以,当x+﹣2=﹣4时只有一个x=﹣2与之对应.其它情况都有2个x值与之对应,故此时所求的方程有7个根,当1<a<2时,y=f(x)与y=a有4个交点,故有8个根;当a=2时,y=f(x)与y=a有3个交点,故有6个根;综上:不可能有5个根,故选:A.【点睛】本题考查分段函数、函数的零点等知识,属于中档题.5. 若某空间几何体的三视图如图所示,则该几何体的体积是参考答案:B略6. 已知命题,使命题,都有给出下列结论:①命题“”是真命题②命题“”是假命题③命题“”是真命题④命题“”是假命题其中正确的是()A.①②③B.③④C.②④D.②③参考答案:D.试题分析:由,知命题是假命题,由,知命题是真命题,可判断②、③正确.考点:全称命题的真假判断.7. 已知某几何体的三视图如图所示,则该几何体的体积为A. B. C. D.参考答案:B【知识点】由三视图求面积、体积.BG2解析:几何体是一个简单组合体,是一个圆柱里挖去一个圆锥,所以体积为,故选B.【思路点拨】几何体是一个简单组合体,是一个圆柱里挖去一个圆锥,用圆柱的体积减去圆锥的体积即可.8. 某几何体的三视图如图所示,则它的体积是A. B.C. D.参考答案:D略9. 已知函数,则()A. B. C. D.参考答案:A10. 定义在R上的可导函数满足,记的导函数为,当时恒有.若,则m的取值范围是A.B.C.D.参考答案:D构造函数,所以构造函数,,所以的对称轴为,所以,是增函数;是减函数。
江苏省无锡市2017-2018学年高一上学期期末考试数学试题 Word版含解析
![江苏省无锡市2017-2018学年高一上学期期末考试数学试题 Word版含解析](https://img.taocdn.com/s3/m/e115481bbcd126fff7050bd6.png)
2017-2018学年江苏省无锡市高一(上)期末数学试卷一、填空题(本大题共14小题,共70.0分)1.已知集合,,则______.【答案】【解析】∵,∴点睛:1.用描述法表示集合,首先要弄清集合中代表元素的含义,再看元素的限制条件,明确集合类型,是数集、点集还是其他的集合.2.求集合的交、并、补时,一般先化简集合,再由交、并、补的定义求解.2.______.【答案】【解析】【分析】直接利用诱导公式化简求解即可.【详解】.故答案为:【点睛】本题考查诱导公式的应用,考查了特殊角的三角函数值的求法,是基础题.3.若幂函数的图象过点,则______.【答案】4【解析】【分析】根据已知求出函数的解析式,将代入可得答案.【详解】设幂函数,幂函数的图象过点,,解得:,,,故答案为:4【点睛】本题考查的知识点是幂函数的解析式,函数求值,难度不大,属于基础题.4.若向量,,且,则|______.【答案】【解析】【分析】利用向量共线定理即可得出.【详解】,,解得..则.故答案为:.【点睛】本题考查了向量共线定理,考查了推理能力与计算能力,属于基础题.5.函数的单调增区间是______.【答案】【解析】【分析】根据题意,将函数的解析式写成分段函数的形式,结合函数的定义域分段讨论函数的单调性,综合即可得答案.【详解】根据题意,,即当时,,令,在上,,此时为增函数,也为增函数,则函数为增函数;当时,,令,在上,,此时为增函数,为减函数,则函数为减函数;故函数的单调增区间是;故答案为:.【点睛】本题考查分段函数的单调性的判断,注意分段函数要分段分析,属于基础题.6.计算:=______.【答案】【解析】【分析】利用对数的运算性质即可得出.【详解】原式=3+4+=7+4=11.故答案为:11.【点睛】本题考查了对数的运算性质,属于基础题.7.已知圆心角是的扇形的面积是,则该圆心角所对的弧长为______cm.【答案】【解析】【分析】利用扇形的面积求出扇形的半径,然后由弧长公式求出弧长的值.【详解】设扇形的弧长为l,圆心角大小为,半径为r,扇形的面积为S,则:.解得,可得:扇形的弧长为cm.故答案为:.【点睛】本题考查扇形面积、扇形的弧长公式的应用,考查计算能力,属于基础题.8.已知函数是周期为2的奇函数,且时,,则______.【答案】【解析】【分析】根据题意,由函数的周期性可得,结合函数的奇偶性与解析式可得分析可得,综合即可得答案.【详解】根据题意,函数是周期为2的函数,则,又由为奇函数,则,则;故答案为:【点睛】本题考查函数的奇偶性与周期性的综合应用,涉及函数的表示方法,属于基础题.9.将函数向右平移个单位所得函数记为,当时取得最大值,则______.【答案】【解析】【分析】利用函数的图象变换规律求得的解析式,再根据正弦函数的最大值,求得的值.【详解】将函数向右平移个单位,所得函数记为,当时取得最大值,则,,令,可得,故答案为:.【点睛】本题主要考查函数的图象变换规律,正弦函数的最大值,属于中档题.10.若,______.【答案】【解析】【分析】由已知展开倍角公式及两角和的正弦可得,两边平方得答案.【详解】,,即,,两边平方得:,.故答案为:.【点睛】本题考查三角函数的化简求值,考查倍角公式及两角和的正弦的应用,是基础题.11.若,且,则实数的取值范围是______.【答案】【解析】【分析】讨论在和的单调性,可得在R上递减,进而可得a的不等式,解不等式即可得到所求范围.【详解】,可得时,递减;时,递减,且,可得在R上递减,,可得,解得,故答案为:.【点睛】本题考查分段函数的单调性的判断和运用:解不等式,考查运算求解能力,属于中档题.12.在中,已知,,点M在边BC上,,,则______.【答案】【解析】【分析】由向量加法及减法的三角形法则可得,,结合已知即可求解.【详解】,,,,,,,,,故答案为:.【点睛】本题主要考查了向量的基本运算及向量的数量积的基本运算,属于基础题.13.函数,若,且,则的取值范围是______.【答案】【解析】【分析】作出的图象,求得,m的范围及的解析式,运用二次函数的单调性,可得所求范围.【详解】作出函数的图象,可得,,则在递增,可得的范围是.故答案为:.【点睛】本题考查分段函数的图象和运用,考查二次函数的单调性的运用,以及运算能力,属于中档题.14.函数在R上有4个零点,则实数m的取值范围是______.【答案】【解析】【分析】根据题意,设,则,作出的草图,据此分析可得方程在区间有2个根,结合一元二次函数的性质可得,解可得m的取值范围,即可得答案.【详解】根据题意,对于函数,设,则,的图象如图:若函数在R上有4个零点,则方程在区间有2个不同的根,则有,解可得:,即m的取值范围为;故答案为:【点睛】本题考查函数的零点,注意利用换元法分析,属于综合题.二、解答题(本大题共6小题,共80.0分)15.设集合,全集.(1)若,求;(2)若,求实数a的取值范围.【答案】(1)或;(2)【解析】【分析】(1)求定义域得集合A,求出时集合B,再根据集合的定义计算即可;(2)由得出,由此列不等式求出实数a的取值范围.【详解】(1)集合,时,,,又全集,或,或;(2),又,,,解得实数a的取值范围是.【点睛】本题考查了集合的定义与运算问题,也考查了求函数的定义域和值域问题,是中档题.16.在△ABC中,已知=(1,2),=(4,m)(m>0)(1)若,求m的值;(2)若,且,求的值.【答案】(1)(2)【解析】【分析】(1)由题意可知,结合向量的数量积的性质即可求解m(2)由,结合向量数量积的性质可求m,然后结合,及向量夹角公式即可求.【详解】(1)若,则,,,.(2),,,,,,,而,,.【点睛】本题主要考查了向量数量积的性质的综合应用,解题的关键是熟练掌握基本公式并能灵活应用.17.如图,在平面直角坐标系中,角的始边均为x轴正半轴,终边分别与圆O交于A,B两点,若,,且点A的坐标为.(1)若,求实数m的值;(2)若,若的值.【答案】(1)(2)【解析】【分析】(1)由题意利用二倍角的正切公式求得的值,再利用任意角的三角函数的定义求得m的值.(2)利用同角三角函数的基本关系,求得和的值,再利用两角和的正弦公式求得的值.【详解】(1)由题意可得,,或.,,即,.(2),,,,,.【点睛】本题主要考查任意角的三角函数的定义,同角三角函数的基本关系,二倍角的正弦公式,用两角和的正弦公式的应用,属于中档题.18.某公司对营销人员有如下规定:(i)年销售额x(万元)不大于8时,没有年终奖金;(ⅱ)年销售额x(万元)大于8时,年销售额越大,年终奖金越多.此时,当年销售额x(万元)不大于64时,年终奖金y(万元)按关系式y=log a x+b,(a>0,且a≠1)发放;当年销售额x(万元)不小于64时,年终奖金y(万元)为年销售额x(万元)的一次函数经测算,当年销售额分别为16万元,64万元,80万元时,年终奖金依次为1万元,3万元,5万元.(1)求y关于x的函数解析式;(2)某营销人员年终奖金高于2万元但低于4万元,求该营销人员年销售额x(万元)的取值范围.【答案】(1)(2)【解析】【分析】(1)由已知可得在上是增函数,再结合已知列关于a,b的方程组,求解可得函数解析式;又时,y是x的一次函数,设,再由已知可得关于m,k 的方程组求解可得时,,则函数解析式可求;(2)当时,不合题意;然后分类求解不等式得答案.【详解】(1),年销售额越大,奖金越多,在上是增函数.,解得.时,;又时,y是x的一次函数,设,由题意可得:,解得.时,.∴y关于x的函数解析式为;(2)当时,不合题意;当时,,解得..当时,,解得,.综上,.所以该营销人员年终奖金高于2万元但低于4万元,其年销售额的取值范围是大于32万元且小于72万元.【点睛】本题考查函数解析式的求解及常用方法,考查简单的数学建模思想方法,训练了不等式的解法,是中档题.19.已知奇函数,函数,,,.(1)求b的值;(2)判断函数在上的单调性,并证明;(3)当时,函数的最小值恰为的最大值,求m的取值范围.【答案】(1)0(2)在递增(3)【解析】【分析】(1)由奇函数的性质可得,解方程即可得到b;(2)在单调递增,运用单调性的定义证明,注意取值、作差和变形、定符号和下结论等步骤;(3)由(2)可得的最大值,即可得到的最小值,运用换元法和余弦函数的图象和性质,可得所求范围.【详解】(1)奇函数f(x),可得f(0)=0,即b=0;(2)f(x)在[0,1]单调递增,证明:设x1,x2是[0,1]上任意两个值,且x1<x2,f(x2)﹣f(x1)()•,由x1,x2∈[0,1],且x1<x2,可得x2﹣x1>0,1﹣x1x2>0,1+x12>0,1+x22>0,即有f(x2)﹣f(x1)>0,即f(x2)>f(x1),可得f(x)在[0,1]递增;(3)由(2)可得f(x)在[0,1]递增,可得f(x)max=f(1),可得g(t)的最小值为,令s=cos t,所以s=﹣s2+2s的最小值为,所以s,即cos t≤1,t∈[m,],由y=cos t的图象可得m.【点睛】本题考查函数的奇偶性和单调性的判断和运用,考查换元法和定义法的运用,考查化简整理的运算能力,属于中档题.20.已知向量,,,,函数,的最小正周期为.(1)求的单调增区间;(2)方程;在上有且只有一个解,求实数n的取值范围;(3)是否存在实数m满足对任意x1∈[-1,1],都存在x2∈R,使得++m(-)+1>f(x2)成立.若存在,求m的取值范围;若不存在,说明理由.【答案】(1),(2)或(3)存在,且m取值范围为【解析】【分析】(1)函数,的最小正周期为.可得,即可求解的单调增区间.(2)根据x在上求解的值域,即可求解实数n的取值范围;(3)由题意,求解的最小值,利用换元法求解的最小值,即可求解m的范围.【详解】(1)函数f(x)•1=2sin2(ωx)cos(2ωx)﹣1=sin(2ωx)cos(2ωx)=2sin(2ωx)∵f(x)的最小正周期为π.ω>0∴,∴ω=1.那么f(x)的解析式f(x)=2sin(2x)令2x,k∈Z得:x∴f(x)的单调增区间为[,],k∈Z.(2)方程f(x)﹣2n+1=0;在[0,]上有且只有一个解,转化为函数y=f(x)+1与函数y=2n只有一个交点.∵x在[0,]上,∴(2x)那么函数y=f(x)+1=2sin(2x)+1的值域为[,2],结合图象可知函数y=f(x)+1与函数y=2n只有一个交点.那么2n<1或2n=2,可得或n=1.(3)由(1)可知f(x)=2sin(2x)∴f(x2)min=﹣2.实数m满足对任意x1∈[﹣1,1],都存在x2∈R,使得m()+1>f(x2)成立.即m()+1>﹣2成立令y m()+1设t,那么()2+2=t2+2∵x1∈[﹣1,1],∴t∈[,],可得t2+mt+5>0在t∈[,]上成立.令g(t)=t2+mt+5>0,其对称轴t∵t∈[,]上,∴①当时,即m≥3时,g(t)min=g(),解得;②当,即﹣3<m<3时,g(t)min=g()0,解得﹣3<m<3;③当,即m≤﹣3时,g(t)min=g()0,解得m≤﹣3;综上可得,存在m,可知m的取值范围是(,).【点睛】本题主要考查三角函数的图象和性质,利用三角函数公式将函数进行化简是解决本题的关键.同时考查了二次函数的最值的讨论和转化思想的应用.属于难题.。
2018-2019学年江苏省无锡市高三(上)期末数学试卷
![2018-2019学年江苏省无锡市高三(上)期末数学试卷](https://img.taocdn.com/s3/m/763e7dc2fab069dc5022018d.png)
2018-2019学年江苏省无锡市高三(上)期末数学试卷副标题题号 一 二 总分 得分一、填空题(本大题共14小题,共42.0分)1. 设集合A ={x |x >0},B ={x |-2<x <1},则A ∩B =______.2. 设复数z 满足 (1+i )z =1-3i (其中i 是虚数单位),则z 的实部为______.3. 有A ,B ,C 三所学校,学生人数的比例为3:4:5,现用分层抽样的方法招募n名志愿者,若在A 学校恰好选出9名志愿者,那么n =______.4. 齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马.现从双方的马匹中随机选一匹进行一场比赛,则田忌的马获胜的概率为______.5. 执行如图的伪代码,则输出x 的值为______.6. 已知x ,y 满足约束条件{x −y +1≥02x −y ≤0x ≥0,则z =x +y 的取值范围是______.7. 在四边形ABCD 中,已知AB ⃗⃗⃗⃗⃗ =a ⃗ +2b ⃗ ,BC ⃗⃗⃗⃗⃗ =-4a ⃗ -b ⃗ ,CD ⃗⃗⃗⃗⃗ =-5a ⃗ -3b ⃗ ,其中,a ⃗ ,b ⃗ 是不共线的向量,则四边形ABCD 的形状是______. 8. 以双曲线x 25-y 24=1的右焦点为焦点的抛物线的标准方程是______.9. 已知一个圆锥的轴截面是等边三角形,侧面积为6π,则该圆锥的体积等于______. 10. 设公差不为零的等差数列{a n }满足a 3=7,且a 1-1,a 2-1,a 4-1成等比数列,则a 10等于______ 11. 已知θ是第四象限角,且cosθ=45,那么sin(θ+π4)cos(2θ−6π)的值为______.12. 已知直线y =a (x +2)(a >0)与函数y =|cos x |的图象恰有四个公共点A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),D (x 4,y 4),其中x 1<x 2<x 3<x 4,则x 4+1tanx 4=______.13. 已知点P 在圆M :(x -a )2+(y -a +2)2=1上,A ,B 为圆C :x 2+(y -4)2=4上两动点,且AB =2√3,则PA ⃗⃗⃗⃗⃗ •PB ⃗⃗⃗⃗⃗ 的最小值是______. 14. 在锐角三角形ABC 中,已知2sin 2A +sin 2B =2sin 2C ,则1tanA +1tanB +1tanC 的最小值为______.二、解答题(本大题共10小题,共132.0分)15. 在△ABC 中,设a ,b ,c 分别是角A ,B ,C 的对边,已知向量m⃗⃗⃗ =(a ,sin C -sin B ),n ⃗ =(b +c ,sin A +sin B ),且m ⃗⃗⃗ ∥n ⃗ (1)求角C 的大小(2)若c =3,求△ABC 的周长的取值范围.16. 在四棱锥P -ABCD 中,锐角三角形PAD 所在平面垂直于平面PAB ,AB ⊥AD ,AB ⊥BC . (1)求证:BC ∥平面PAD ; (2)平面PAD ⊥平面ABCD .17. 十九大提出对农村要坚持精准扶贫,至2020年底全面脱贫.现有扶贫工作组到某山区贫困村实施脱贫工作.经摸底排查,该村现有贫困农户100家,他们均从事水果种植,2017年底该村平均每户年纯收人为1万元,扶贫工作组一方面请有关专家对水果进行品种改良,提高产量;另一方面,抽出部分农户从事水果包装、销售工作,其人数必须小于种植的人数.从2018年初开始,若该村抽出5x 户(x ∈Z ,1≤x ≤9)从事水果包装、销售.经测算,剩下从事水果种植农户的年纯收人每户平均比上一年提高x20,而从事包装销售农户的年纯收入每户平均为 (3-14x )万元(参考数据:1.13=1.331,1.153≈1.521,1.23=1.728).(1)至2020年底,为使从事水果种植农户能实现脱贫(每户年均纯收人不低于1万6千元),至少抽出多少户从事包装、销售工作?(2)至2018年底,该村每户年均纯收人能否达到1.35万元?若能,请求出从事包装、销售的户数;若不能,请说明理由.18. 在平面直角坐标系xOy 中,已知椭圆C :x 2a2+y 2b 2=1(a >b >0)的离心率为√32,且过点(√3,12),点P 在第四象限,A 为左顶点,B 为上顶点,PA 交y 轴于点C ,PB 交x 轴于点 D .(1)求椭圆C 的标准方程; (2)求△PCD 面积的最大值.19. 已知函数f (x )=e x -a2x 2-ax (a >0).(1)当a =1时,求证:对于任意x >0,都有f (x )>0成立; (2)若函数y =f (x )恰好在x =x 1和x =x 2两处取得极值,求证:x 1+x 22<ln a .20. 设等比数列{a n }的公比为q (q >0,q =1),前n 项和为Sn ,且2a 1a 3=a 4,数列{b n }的前n 项和Tn 满足2T n =n (b n -1),n ∈N *,b 2=1. (1)求数列{a n },{b n }的通项公式;(2)是否存在常数t ,使得{S n +12t }为等比数列?说明理由; (3)设c n =1bn +4,对于任意给定的正整数k (k ≥2),是否存在正整数l ,m (k <l<m ),使得c k ,c 1,c m 成等差数列?若存在,求出l ,m (用k 表示),若不存在,说明理由.21. 设旋转变换矩阵A =[0−110],若[ab12]•A =[34c d ],求ad -bc 的值.22. 自极点O 作射线与直线ρcosθ=3相交于点M ,在OM 上取一点P ,使OM •OP =12,若Q 为曲线{x =−1+√22ty =2+√22t(t 为参数)上一点,求PQ 的最小值.23. 在平面直角坐标系xOy 中,曲线C 上的动点M (x ,y )(x >0)到点F (2,0)的距离减去M 到直线x =-1的距离等于1. (1)求曲线C 的方程;(2)若直线y =k (x +2)与曲线C 交于A ,B 两点,求证:直线FA 与直线FB 的倾斜角互补. 24. 已知数列{a n }满足a 1=23,1an−1=2−a n−1an−1−1(n ≥2).(1)求数列{a n }的通项公式;(2)设数列{a n }的前n 项和为S n ,用数学归纳法证明:S n <n +12-ln (n+32).答案和解析1.【答案】{x|0<x<1}【解析】解:∵A={x|x>0},B={x|-2<x<1};∴A∩B={x|0<x<1}.故答案为:{x|0<x<1}.进行交集的运算即可.考查描述法表示集合的定义,以及交集的运算.2.【答案】-1【解析】解:由(1+i)z=1-3i,得z=,∴z的实部为-1.故答案为:-1.把已知等式变形,再由复数代数形式的乘除运算化简得答案.本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.3.【答案】36【解析】解:∵学生人数比例为3:4:5,A高校恰好抽出了9名志愿者,∴n=9÷=36,故答案为:36.学生人数比例为3:4:5,用分层抽样方法抽取n名志愿者,每个个体被抽到的概率相等,A高校恰好抽出了9名志愿者,即可求出一般地,在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本.这样使得样本更具有代表性.4.【答案】13【解析】解:现从双方的马匹中随机选一匹进行一场比赛,基本事件总数n=3×3=9,田忌的马获胜包含的基本事件有:m=3种,∴田忌的马获胜的概率p===.故答案为:.基本事件总数n=3×3=9,田忌的马获胜包含的基本事件有:m=3种,由此能求出田忌的马获胜的概率.本题考查概率的求法,考查等可能事件概率计算公式等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.5.【答案】25【解析】解:模拟程序的运行过程,如下;x=0,执行循环体,x=1,x=1不满足条件x>20,执行循环体,x=2,x=4不满足条件x>20,执行循环体,x=5,x=25满足条件x>20,终止循环,程序运行后输出x=25.故答案为:25.分析程序的功能,计算x的值,根据循环条件得出程序运行后输出的x值.本题考查了程序语言的应用问题,考查了对应思想的应用,属于基础题.6.【答案】[0,3]【解析】解:由x,y满足约束条件作出可行域如图,化目标函数为y=-x+z,由图可知,当直线y=-x+z与原点(0,0)时,z有最小值0;当直线y=-x+z过A(1,2)时,z有最大值3.∴z=x+y的取值范围是[0,3].故答案为:[0,3].由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.本题考查简单的线性规划,考查数形结合的解题思想方法,是中档题.7.【答案】梯形【解析】解:∵,,,∴=++=-8=2故AD与BC平行,且长度不等故四边形ABCD是以AD和BC为底边的梯形故答案为:梯形由已知四边形ABCD中,,,,且不共线,我们可以求出向量,结合向量平行的性质,我们易判断向量与的关系,进而判断出四边形ABCD的形状.本题考查的知识点是平面向量共线的性质,其中根据=2,判断线段AD与BC的平行关系及长度关系是解答本题的关键.8.【答案】y2=12x【解析】解:双曲线-=1的右焦点为(3,0),∴抛物线的焦点为(3,0),∴抛物线标准方程为y2=12x,故答案为:y2=12x.由双曲线的性质,确定抛物线的焦点坐标,即可求出抛物线标准方程.本题考查双曲线、抛物线的性质,考查抛物线的标准方程,考查学生的计算能力,比较基础.9.【答案】3π【解析】解:如图,设圆锥的底面半径为r,则母线长为2r,高为.则其侧面积S=2πr2=6π,解得r=.∴圆锥的高为3.其体积V=×π×3×3=3π,故答案为:3π.由题意画出图形,设圆锥的底面半径为r,则母线长为2r,由侧面面积求得r,再由圆锥体积公式求解.本题考查柱、锥、台体体积的求法,考查空间想象能力和思维能力,是中档题.10.【答案】21【解析】解:设等差数列{a n}的公差为d,则d≠0,则a1=a3-2d=7-2d,a2=a3-d=7-d,a4=a3+d=7+d,由于a1-1,a2-1,a4-1成等比数列,则,即(6-d)2=(6-2d)(6+d),化简得d2-2d=0,由于d≠0,解得d=2,因此,a10=a3+7d=7+7×2=21.故答案为:21.由已知条件得出,并列出有关公差的方程,求出公差的值,利用等差数列的性质可求出a10的值.本题考查等比数列的性质,解决本题的关键在于将题中条件进行转化,考查计算能力,属于中等题.11.【答案】5√214【解析】解:∵θ是第四象限角,且cosθ=,∴sinθ=-=-,∴===•=•=,故答案为:.利用同角三角函数的基本关系求得sinθ的值,再利用诱导公式、两角和的三角公式求得要求式子的值.本题主要考查同角三角函数的基本关系,诱导公式、两角和的三角公式的应用,属于基础题.12.【答案】-2【解析】解:分别作出直线y=a(x+2)(a>0)与函数y=|cosx|的图象,可得当直线y=a(x+2)与y=|cosx|的图象相切,它们恰有四个公共点,且D为切点,可得y=-cosx的导数为y′=sinx,即a=sinx4,a(x4+2)=-cosx4,即sinx4(x4+2)=-cosx4,则x4+2=-=-,则x4+=-2.故答案为:-2.分别作出直线与函数y=|cosx|的图象,可得当直线y=a(x+2)与y=|cosx|的图象相切,它们恰有四个公共点,D为切点,运用导数的几何意义和同角的商数关系,即可得到所求值.本题考查函数方程的转化思想和数形结合思想,考查导数的几何意义、同角的商数关系,考查化简变形能力和运算能力,属于中档题.13.【答案】19-12√2【解析】解:如图,圆M:(x-a)2+(y-a+2)2=1的圆心M在直线y=x-2上,圆心C到AB的距离为1,点C到直线y=x-2的距离d=,∴AB的中点E到圆心M的最短距离为3-1,∴PE的最小值为3-2.可得•==(PE2-=PE2-3∴•的最小值是19-12.故答案为:19-12.由向量数量积可得•=PE2-=PE2-3,只需求得PE的最小值即可得•的最小值.本题考查了向量的数量积运算,考查了转化思想,属于难题.14.【答案】√132【解析】解:2sin2A+sin2B=2sin2C,由正弦定理得2a2+b2=2c2,结合余弦定理a2=b2+c2-2bccosA,可得3b=4ccosA,再由正弦定理得3sinB=4sinCcosA,则3(sinAcosC+cosAsinC)=4sinCcosA,即3tanA=tanC.tanB=-tan(A+C)=.∴++==.当且仅当时取等号.∴++的最小值为.故答案为:.由已知条件结合正弦定理和余弦定理即可求出3tanA=tanC,再利用两角和的正切三角函数公式求出tanB,然后利用基本不等式即可求出答案.本题考查了正弦定理和余弦定理,考查了基本不等式的应用,是中档题.15.【答案】解:(1)由向量m⃗⃗⃗ =(a,sin C-sin B),n⃗=(b+c,sin A+sin B),且m⃗⃗⃗ ∥n⃗,得:a(sin A+sin B)=(b+c)(sin C-sin B)由正弦定理,得:a(a+b)=(b+c)(c-b)化为:a2+b2-c2=-ab,由余弦定理,得:cos C=-12,所以,C=2π3,(2)因为C=2π3,所以,B=π3-A,由B>0,得:0<A<π3,由正弦定理,得:asinA =bsinB=csinC=2√3,△ABC的周长为:a+b+c=2√3(sin A+sin B)+3=2√3[sin A+sin(π3-A)]+3,=2√3sin(A+π3)+3,由0<A<π3,得:π3<A+π3<2π3,√32<sin(A+π3)≤1,所以,周长C=2√3sin(A+π3)+3∈(6,2√3+3].【解析】(1)由向量平行的性质,正弦定理可得a2+b2-c2=-ab,由余弦定理得:cosC=-,即可得解C的值.(2)由正弦定理,三角函数恒等变换的应用可求周长为:a+b+c=2sin(A+)+3,由0<A<,利用正弦函数的性质即可求解.本题主要考查了向量平行的性质,正弦定理,余弦定理,三角函数恒等变换的应用在解三角形中的综合应用,考查了计算能力和转化思想,属于中档题.16.【答案】证明:(1)四边形ABCD中,因为AB⊥AD,AB⊥BC,所以,BC∥AD,BC在平面PAD外,所以,BC∥平面PAD,(2)作DE⊥PA于E,因为平面PAD⊥平面PAB,而平面PAD∩平面PAB=AB,所以,DE⊥平面PAB,所以,DE⊥AB,又AD⊥AB,DE∩AD=D,所以,AB⊥平面PAD,AB在平面ABCD内,所以,平面PAD⊥平面ABCD.【解析】(1)证明BC∥AD,然后证明BC∥平面PAD.(2)作DE⊥PA于E,说明DE⊥平面PAB,推出DE⊥AB,结合AD⊥AB,证明AB⊥平面PAD,然后证明平面PAD⊥平面ABCD.本题考查直线与平面垂直的判断定理的应用,直线与平面平行的判断定理的应用,考查空间想象能力以及计算能力.17.【答案】解:(1)设至2020年底,种植户平均收人=(100−5x)(1+x20)3100−5x≥16,设其解为x≥x0=20(√163-1),由题意所给数据知11.5<1+x 020<12,解得3<x 0<4, 又x ∈Z ,1≤x ≤9, 则x ≥4,即至少抽取20户,答:至少抽出20户从事包装、销售工作,(2)设至2018年底,每户平局收入为f (x )万元, 则f (x )=5x(3−14)x+(100−5x)(1+x 20)100,假设能达到1.35万元,则f (x )≥1.35,x ∈Z ,1≤x ≤9, 则−310x 2+3x+2020≥1.35,即3x 2-30x +70≤0,x ∈Z ,1≤x ≤9, 解得x ∈{4,5,6}, 答:当抽出从事包装、销售的户数不少于20户且不超过30户时,能达到,否则,不能. 【解析】(1设至2020年底,种植户平均收人=≥16,解不等式得x ,即可求出答案;(2)设至2018年底,每户平局收入为f (x )万元,≥1.35,解不等式得x ,即可求出答案本题主要考查函数在实际生活中的应用、也是高考的热点,它可以综合地考查中学数学思想与方法,体现知识的交汇.18.【答案】解:(1)由已知得c a =√32,⇒ba =12,点(√3,12)代入x 2a 2+y 2b 2=1可得3a 2+14b 2=1.代入点(√3,12)解得b 2=1, ∴椭圆C 的标准方程:x 24+y 2=1.(2)可得A (-2,0),B (0,1).设P (m ,n ),m >0,n >0,且.m 24+n 2=1PA :y =nm+2(x +2),PB :n−1mx +1,可得C (0,2nm+2),D (m1−n ,0). 由{y =n−1m x +1y =2n m+2可得x =m(2n−m−2)(n−1)(m+2). S△PCD=12⋅m(2n−m−2)(n−1)(m+2)⋅(−n)=nm 2+2mn−2mn 22(n−1)(m+2)=n(4−4n 2)+2mn(1−n)2(n−1)(m+2)=-n(2n+m+2)m+2=12(m −2n −2).设P 处的切线为:x -2y +t =0,t <0.{x 2+4y 2−4=0x=2y−t⇒8y 2-4ty +t 2-4=0,△=-16t 2+128=0⇒t =-2√2. 此时,方程组的解{x =√2y =−√22即点P (√2,-√22)时,S △PCD 取得最大值,最大值为√2-1.【解析】(1)利用椭圆的离心率求得,将(,)代入椭圆方程,即可求得a 和b的值.(2)设P (m ,n ),m >0,n >0,且.可得 S ===-=.设P 处的切线为:x-2y+t=0,t <0.由⇒8y 2-4ty+t 2-4=0,△=-16t 2+128=0⇒t=-2时.S △PCD 取得最大值,本题考查了椭圆的标准方程及其性质、三角形面积计算公式,考查了推理能力与计算能力,属于难题.19.【答案】证明:(1)当a =1时,f (x )=e x -12x 2-x ,则f ′(x )=e x -x -1,∴f ″(x )=e x -1>0,(x >0), ∴f ′(x )=e x -x -1单调递增, ∴f ′(x )>f ′(0)=0, ∴f (x )单调递增,∴f (x )>f (0)=1>0,故对于任意x >0,都有f (x )>0成立;(2)∵函数y =f (x )恰好在x =x 1和x =x 2两处取得极值 ∴x 1,x 2是方程f ′(x )=0的两个实数根,不妨设x 1<x 2, ∵f ′(x )=e x -ax -a ,f ″(x )=e x -a ,当a ≤0时,f ″(x )>0恒成立,∴f ′(x )单调递增,至多有一个实数解,不符合题意, 当a >0时,f ″(x )<0的解集为(-∞,ln a ),f ″(x )>0的解集为(ln a ,+∞), ∴f ′(x )在(-∞,ln a )上单调递减,在(ln a ,+∞)上单调递增, ∴f ′(x )min =f ′(ln a )=-a lna ,由题意,应有f ′(ln a )=-a lna <0,解得a >1, 此时f ′(-1)=1e >0,∴存在x 1∈(-1,ln a )使得f ′(x 1)=0, 当f (2a -1)=e 2a -1-2a 2, 设s =2a -1>1, ∴h (s )=e s -12(s +1)2, ∴h ′(s )e s -s -1,由(1)可知h (s )>h (1)=e -2>0, ∴存在x 2∈(ln a ,2a -1)使得f ′(x 2)=0, ∴a >1满足题意,∵f ′(x 1)=f ′(x 2)=0, ∴e x 1−ax 1-a =e x 2−ax 2-a =0, ∴a =e x 2−e x 1x 2−x 1, ∴f ″(x 1+x 22)=ex 1+x 22-a =ex 1+x 22-e x 2−e x 1x 2−x 1=e x 1(ex 2−x 12-e x 2−x 1−1x 2−x 1),设x 2−x 12=t >0,∴ex 2−x 12-e x 2−x 1−1x 2−x 1=e t -e2t −12t=(2t−et )e t +12t,设g (t )=(2t -e t )e t +1, ∴g ′(t )=2(t +1-e t )e t ,由(1)可知,g ′(t )=2(t +1-e t )e t <0恒成立, ∴g (t )单调递减, ∴g (t )<g (t )=0, 即f ″(x 1+x 22)<0,∴x 1+x 22<ln a .【解析】(1)先求导,根据导数和函数的最值得关系即可求出,(2)根据题意可得x 1,x 2是方程f′(x )=0的两个实数根,不妨设x 1<x 2,可以判断a >1,分别根据函数零点存在定理可得f′(x 1)=f′(x 2)=0,可得-a=-a=0,即可得到a=,则f″()=(-),设=t >0,再根据函数g (t )=(2t-e t )e t +1,求导,借助于(1)的结论即可证明本题考查了利用导数研究函数的单调性与最值、不等式的解法、等价转化方法、对数运算性质,考查了推理能力与计算能力,属于难题. 20.【答案】解:(1)等比数列{a n }的公比为q (q >0,q =1),∵2a 1a 3=a 4,∴2a 12q 2=a 1q 3,可得a 1=q2.∴a n =q2×q n -1=q n2. 数列{b n }的前n 项和Tn 满足2T n =n (b n -1),n ∈N *,b 2=1. ∴n ≥2时,2b n =2(T n -T n -1)=n (b n -1)-(n -1)(b n -1-1), 化为:(n -2)b n =(n -1)b n -1+1,当n ≥3时,两边同除以(n -2)(n -1),可得:b nn−1-b n−1n−2=1n−2-1n−1, 利用累加求和可得:b nn−1=b 2+1-1n−1,化为:b n =2n -3(n ≥3), 当n =1时,2b 1=b 1-1,解得b 1=-1, 经过验证n =1,2时也满足. ∴b n =2n -3.(2)由(1)可知:a n =q n2,q >0,q ≠1.∴S n =q2(1−q n )1−q =q n+12(q−1)-q2(q−1).①若t =q−1q时,则S n +12t =q n+12(q−1),∴S n+1+12t S n +12t=q .即数列{S n +12t }是公比为q 的等比数列. ②若t ≠q−1q时,则S n +12t =q n+12(q−1)-q2(q−1)+12t .设q2(q−1)=A ,12t -q2(q−1)=B .(其中A ,B ≠0). 则S n+1+12t S n +12t=Aq n+1+B Aq n +B=q +B(1−q)Aq n +B 不为常数.综上:存在t =q−1q时,使得数列{S n +12t }是公比为q 的等比数列.(3)由(1)可知:b n =2n -3. c n =1bn+4=12n+1,假设对于任意给定的正整数k (k ≥2),存在正整数l ,m (k <l <m ),使得c k ,c 1,c m成等差数列.则12k+1+12m+1=22l+1,整理得:2m +1=(2l+1)(2k+1)4k−2l+1,取l =2k ,则2m +1=(4k +1)(2k +1),解得m =4k 2+3k . 即存在l =2k ,m =4k 2+3k .符合题意. 【解析】(1)等比数列{a n }的公比为q (q >0,q̸=1),根据2a 1a 3=a 4,利用通项公式可得=,可得a 1.可得通项公式a n .数列{b n }的前n 项和Tn 满足2T n =n(b n -1),n ∈N *,b 2=1.利用n≥2时,2b n =2(T n -T n-1),化为:(n-2)b n =(n-1)b n-1+1,当n≥3时,两边同除以(n-2)(n-1),可得:-=-,利用累加求和即可得出b n . (2)由(1)可知:a n =,q >0,q≠1.可得S n =-.分类讨论:t=时,计算=q 即可得出结论.②若t≠时,则S n +=-+.设=A ,-=B .(其中A ,B≠0).==q+不为常数,即可判断出结论.(3)由(1)可知:b n =2n-3.c n ==,假设对于任意给定的正整数k(k≥2),存在正整数l ,m (k <l <m ),使得c k ,c 1,c m 成等差数列.则+=,整理得:2m+1=,取l=2k ,即可得出结论.本题考查了等差数列与等比数列的通项公式求和公式、累加求和方法、数列递推关系、分类讨论方法,考查了推理能力与计算能力,属于难题. 21.【答案】解:由题意,可知:[a b 12]•[0−110]=[34c d ].即:[b −a 2−1]=[34cd ]. ∴{a =−4b =3c =2d =−1, ∴ad -bc =(-4)×(-1)-3×2=-2. 【解析】本题可先将矩阵A 代入,然后计算等于号左边的两个矩阵相乘,然后根据矩阵相等得到a 、b 、c 、d 的值,即可得到结果.本题主要考查矩阵的乘法运算及两个矩阵相等的概念.本题属基础题.22.【答案】解:设点P 的极坐标为(ρ,θ),设点M 的极坐标为(ρ1,θ),由于OM •OP =12,所以,ρ1•ρ=12,则ρ1=12ρ,由于点M 在直线ρcosθ=3上,所以,12cosθρ=3,化简得ρ=4cosθ,在该极坐标方程两边同时乘以ρ,得ρ2=4ρcosθ,化为普通方程得x 2+y 2=4x ,即(x -2)2+y 2=4,所以,点P 在圆(x -2)2+y 2=4上,在曲线{x =−1+√22ty =2+√22t (t 为参数)的参数方程中消去参数t 得x -y +3=0,圆心到该直线的距离为√12+(−1)2=5√22,因此,PQ 的最小值为5√22−2.【解析】先求出点P 的轨迹的极坐标方程,并化为普通方程,可知点P 在圆上,求出圆心到直线的距离,在该距离的基础上减去圆的半径,可得出PQ 的最小值. 本题考查简单曲线的极坐标方程,解决本题的关键在于求出动点的轨迹方程,属于中等题.23.【答案】解:(1)线C 上的动点M (x ,y )(x >0)到点F (2,0)的距离减去M到直线x =-1的距离等于1,所以动点M 到直线x =-2的距离与它到点F (2,0)的距离相等, 故所求轨迹为:以原点为顶点,开口向右的抛物线y 2=8x , 证明(2)设A (x 1,y 1),B (x 2,y 2). 联立{y 2=8x y=k(x+2),化为k 2x 2+(4k 2-8)x +4k 2=0,(k ≠0). 由于△>0, ∴x 1+x 2=8−4k 2k 2,x 1x 2=4.∴直线FA 与直线FB 的斜率之和=y 1x1−2y 2x 2−2=k(x 1+2)(x 2−2)+k(x 2+2)(x 1−2)(x 1−2)(x 2−2),分子=k (2x 1x 2-8)=0,∴直线FA 与直线FB 的斜率之和为0, ∴直线FA 与直线FB 的倾斜角互补. 【解析】(1)利用抛物线定义“到定点距离等于到定直线距离的点的轨迹”求动点P 的轨迹;(2)设A (x 1,y 1),B (x 2,y 2).直线与抛物线方程联立化为k 2x 2+(4k 2-8)x+4k 2=0,(k≠0).由于△>0,利用根与系数的关系与斜率计算公式可得:直线FA 与直线FB 的斜率之和0,即可证明本题考查了直线与抛物线相交问题转化为方程联立可得根与系数的关系、斜率计算公式,考查了推理能力与计算能力,属于中档题.24.【答案】解:(1)∵1a n −1=2−an−1a n−1−1,(n ≥2). ∴1an−1=1−a n−1+1a n−1−1=-1+1an−1−1,∴1an−1-1an−1−1=-1,∵a 1=23,∴a 1-1=-13, ∴数列{1a n −1}是以-3为首项,以-1为公差的等差数列,∴1an −1=-3-(n -1)=-2-n ,可得a n =1-1n+2.(2)由(1)可得:S n =n -13−14-……-1n+2. 下面利用数学归纳法证明:S n <n +12-ln (n+32).①n =1时,左边=S 1=23,∵5ln e -6ln2=ln e 526>0, ∵56>ln2.右边=1+12-ln2=23+56-ln2>23=左边. 此时不等式成立.②假设n =k ∈N *时成立,即S k <k +12-lnk+32.则n =k +1时,S k +1=S k +1-1k+3<k +1+12-1k+3-ln k+32,下面证明:k +1+12-1k+3-ln k+32<k +1+12-lnk+42,即证明:1k+3+lnk+32>lnk+42,即证明:1k+3>ln(1+1k+3), 令1k+3=x ∈(0,14].令f (x )=x -ln (1+x ),x ∈(0,14]. f ′(x )=1-11+x =x1+x >0,∴函数f (x )在x ∈(0,14]内单调递增. ∴f (x )>f (0)=0.∴x >ln (1+x ),即1k+3>ln(1+1k+3)成立, 因此n =k +1时不等式也成立.综上可得:不等式对于∀n ∈N *都成立. 【解析】(1)由=,(n≥2).化简可得-=-1,利用等差数列的通项公式可得a n与S n.(2)由(1)可得S n,下面利用数学归纳法证明:S n<n+-ln ().①n=1时,左边=S1=,根据5lne-6ln2=>0,可得ln2.可得n=1时不等式成立.②假设n=k∈N*时成立,即S k<k+-ln.则n=k+1时,S k+1=S k +1-<k+1+--ln,下面证明:+ln>ln,即证明:>,令=x ∈.令f(x)=x-ln(1+x),x ∈.利用导数研究函数的单调性即可证明结论.本题考查了数列递推关系、等差数列的通项公式、数学归纳法、利用导数研究函数的单调性极值与最值、方程与不等式的解法,考查了推理能力与计算能力,属于难题.第21页,共21页。
江苏省无锡市2017-2018学年高三上学期期末数学试卷(有答案)
![江苏省无锡市2017-2018学年高三上学期期末数学试卷(有答案)](https://img.taocdn.com/s3/m/e2ab546cbe23482fb4da4cac.png)
江苏省无锡市2017-2018学年高三上学期期末数学试卷2018.01 一、填空题(本大题共14小题,每小题5分,共计70)1,已知集合A={1,3},B={1,2,m},若AUB=B,则实数m=____________ 2.若复数ii213a -+(a ∈R,i 为虚数单位)是纯虚数,则实数a=__________ 3某高中共有学生2800人,其中高一年级900人,高三年级900,用分层抽样的方法,抽取140人进行体育达标检测,则抽取高二年级学生人数为__________ 4.已知a,b ∈{1,2,3,4.5,6},直线1l :012=+-y x :2l 01=+-by ax ,则1l ⊥2l 的概率为__________5根据如图所示的伪代码,当输入a 的值为3时,最后输出的S 的值为_______ 6.直三棱柱ABC-A 1B 1C 1中,已知AB ⊥BC,AB=3,BC=4,AA 1=5,若三棱柱的所有顶点都在同一球面上,则该球的表面积为__________7.已知变量x,y 满足⎪⎩⎪⎨⎧≤-≤+≥c y x y x 242x ,目标函数=3x+y 的最小值为5,则c 的值为______8.函数y=cos(2x+ϕ)(0<ϕ<π)的图像向右平移2π个单位后,与函数y=sin(2x −3π)的图像重合,则ϕ=__________9.已知等比数列{a n }满足a 2a 5=2a3,且a 4,45,2a 7成等差数列,则a 1·a 2·…·a n 的最大值为________ 10过圆x 2+y 2=16内一点P(−2,3)作两条相互垂直的弦AB 和CD,且AB=CD,则四边形ACBD 的面积为__________11.已知双曲线C :22a x −22by =1(a>0,b>0)与椭圆162x +12y 2=1的焦点重合,离心率互为倒数,设F 1,F 2分别为双曲线C 的左,右焦点,P 为右支上任意一点,则221PF PF 的最小值为__________12.在平行四边形ABCD 中,AB=4,AD=2,∠A=3π,M 为DC 的中点,N 为平面ABCD 内一点,若 |−|=|AM −|,则·=___________13.已知函数f(x)=⎪⎪⎩⎪⎪⎨⎧->+-≤-+21),21(log 21,122122x x x x x x .g(x)= −x 2−2x −2,若存在a ∈R,使得f(a)+g(b)=0,则实数b 的取值范围是_______________14.若函数fx)=(x+1)2|x −a|在区间[−1,2]上单调递增,则实数a 的取值范围是___________ 二、解答题;{本大题共6小题,共90分,解答应写出文字说明,证明过程或演算步骤,)15.如图,ABCD 是菱形,DE ⊥平面ABCD,AF ∥DE,DE=2AF.(1)求证:AC ⊥平面BDE (2)求证:AC ∥平面BEF16.在△ABC 中,角A,B,C 的对边分别为a,b,c,cosA=43,C=2A (1)求cosB 的值;(2)若ac=24,求△ABC 的周长17.如图,点C 为某沿海城市的高速公路出入口,直线BD 为海岸线,∠CAB=3,AB ⊥BD,是以A 为圆心,半径为1km 的圆弧型小路,该市拟修建一条从C 通往海岸的现光专线,其中P 为上异于B,C 的一点,PQ 与AB 平行,设∠PAB=θ(1)证明:观光专线的总长度随θ的增大而减小;(2)已知新建道路PQ 的单位成本是翻新道路的单位成本的2倍,当θ取何值时,观光专线的修建总成本最低?请说明理由,18已知椭圆E:22a x +22by =1(a>0,b>0)的离心率为22,F 1,F 2分别为左,右焦点,A,B 分别为左,右顶点,原点O 到直线BD 的距离为36,设点P 在第一象限,且PB ⊥x 轴,连接PA 交椭圆于点C.(1)求椭圆E 的方程(2)若三角形ABC 的面积等于四边形OBPC 的面积,求直线PA 的方程; (3)求过点B,C,P 的圆方程(结果用t 表示)19.已知数列{a n |满足(1−11a )(1−21a )…-(1−n a 1)=n a 1,n ∈N*,S n 是数列{a n }的前n 项的和 (1)求数列{a n }的通项公式;(2)若p a ,30,S q 成等差数列,p a ,18, S q 成等比数列,求正整数P,q 的值;(3)是否存在k ∈N*,使得161++k k a a 为数列{a n }中的项?若存在,求出所有满足条件的k 的值;若不存在,请说明理由20.已知函数f(x)=xe (3x −2),g(x)=a(x −2),其中a,x ∈R (1)求过点(2,0)和函数y=f(x)图像相切的直线方程(2)若对任意x ∈R,有f(x)≥g(x)恒成立,求a 的取值范围 (3)若存在唯一的整数0x ,使得f(0x )<g(0x ),求a 的取值范围无锡市普通高中2017年秋学期高三期终调研考试卷数学(加试题)注意事项及说明;本卷考试时间30分钟,企卷满分为40分说明:鲜答时应写出文字说明,证明过程或演算步骤21.(本小题满分10分)选修4-2:矩阵与变换已知矩阵A=⎥⎦⎤⎢⎣⎡b a 43,若矩阵A 属于特征值1λ的一个特征向量为=⎥⎦⎤⎢⎣⎡-21,属于特征值2λ的一个特征向量为=⎥⎦⎤⎢⎣⎡-32,求矩阵A22.(本小题满分10分)选修4-4坐标系与参数方程在平面直角坐标系xOy 中,直线l 的参数方程⎪⎪⎩⎪⎪⎨⎧+==m t y t x 2321(t 是参数),以原点为极点,x轴的正半轴为极轴建立极坐标系,若圆C 的极坐标方程是ρ=4sin θ,且直线l 与圆C 相交,求实数m 的取值范围23.(本小题满分10分)某公司有A,B,C,D 四辆汽车,其中A 车的车牌尾号为0,B,C 两辆车的车牌尾号为6,D 车的车牌尾号为5,已知在非限行日,每辆车都有可能出车或不出车,已知A,D 两辆汽车每天出车的概率为43,B,C 两辆汽车每天出车的概率为21,且四辆汽车是否出车是相互独立的,该公司(1)求该公司在星期四至少有2辆汽车出车的概率(2)设ζ表示该公司在星期一和星期二两天出车的车辆数之和,求ζ的分布列和数学期望24.(本小题满分10分)在四棱锥P −ABCD 中,△ABP 是等边三角形,底面ABCD 是直角梯形,∠DAB=90°,AD ∥BC,E 是线段AB 的中点,PE ⊥底面ABCD,已知DA=AB=2BC=2(1)求二面角P-CD-AB 的正弦值;(2)试在平面PCD 上找一点M,使得EM ⊥平面PCD。
无锡市2018年秋学期高三期末考试试卷.doc
![无锡市2018年秋学期高三期末考试试卷.doc](https://img.taocdn.com/s3/m/023c881f1eb91a37f1115cf7.png)
NBMACD 无锡市2018年秋学期高三期末考试试卷物理说明:本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共120分,考试时间100分钟第Ⅰ卷(选择题,共31分)一、单项选择题:本题共5小题,每小题3分,共计15分.每小题只有一个选项符合题意. 1.超级电容的容量比通常的电容器大得多,其主要优点是高功率脉冲应用和瞬时功率保持,具有广泛的应用前景。
如图所示,某超级电容标有“2.7V ,100F”,将该电容接在 1.5V 干电池的两端,则电路稳定后该电容器的负极板上所带电量为A .-150CB .-75C C .-270CD .-135C2.避雷针上方有雷雨云时避雷针附近的电场线分布如图所示,图中中央的竖直黑线AB 代表了避雷针,CD 为水平地面。
MN 是电场线中两个点,下列说法中正确的有A .M 点的场强比N 点的场强大B .试探电荷从M 点沿直线移动到N 点,电场力做功最少C .M 点的电势比N 点的电势高D .CD 的电势为零,但其表面附近的电场线有些位置和地面不垂直3.矩形线框与理想电流表、理想变压器、灯泡连接电路如图(1)所示。
灯泡标有“36 V 、40W”的字弹性挡板样且阻值可以视作不变,变压器原、副线圈的匝数之比为2∶1。
线框产生的电动势随时间变化的规律如图(2)所示。
则下列说法正确的是A362s in(πt)VB 次C D .理想变压器输入功率为20 W4.有人根据条形磁铁的磁场分布情况制作了一个用塑料制成的模具,模具的侧边界刚好与该条形磁铁的磁感线重合,如图所示。
另取一个柔软的弹性导体线圈套在模具上方某位置,线圈贴着模具上下移动的过程中,下列说法中正确的是(地磁场很弱,可以忽略)A .线圈切割磁感线,线圈中出现感应电流B .线圈紧密套在模具上移动过程中不出现感应电流C .由于线圈所在处的磁场是不均匀的,故而不能判断线圈中是否有电流产生D .若线圈平面放置不水平,则移动过程中会产生感应电流 5.如图所示,水平传送带匀速运动,在传送带的右侧固定一弹性挡杆。
江苏省无锡市第三中学高三数学理上学期期末试卷含解析
![江苏省无锡市第三中学高三数学理上学期期末试卷含解析](https://img.taocdn.com/s3/m/793c65edc9d376eeaeaad1f34693daef5ef71348.png)
江苏省无锡市第三中学高三数学理上学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知A={x|x≥k},B={x|<1},若A?B,则实数k的取值范围为()A.(1,+∞)B.(﹣∞,﹣1)C.(2,+∞)D.[2,+∞)参考答案:C【考点】集合的包含关系判断及应用.【分析】化简集合A,B;再由A?B可求得实数k的取值范围.【解答】解:B={x|<1}=(﹣∞,﹣1)∪(2,+∞),A={x|x≥k}=[k,+∞),又∵A?B,∴k>2;故选C.2. 实数x,y满足,则使得z=2y﹣3x取得最小值的最优解是()A.(1,0)B.(0,﹣2)C.(0,0)D.(2,2)参考答案:A【考点】简单线性规划.【分析】作出不等式组对应的平面区域,利用z的几何意义,利用数形结合即可得到结论.【解答】解:作出不等式组对应的平面区域如图:由z=2y﹣3x得y=x+,平移直线y=x+由图象可知当直线y=x+经过点A时,直线y=x+的截距最小,此时z最小,由,解得,即A(1,0),则z=2y﹣3x取得最小值的最优解(1,0),故选:A.3. 已知抛物线y2=4x,过其焦点F的直线l与抛物线分别交于A、B两点(A在第一象限内),=3,过AB的中点且垂直于l的直线与x轴交于点G,则三角形ABG的面积为()A.B.C.D.参考答案:C【考点】抛物线的简单性质.【分析】由抛物线焦点弦的性质及向量的坐标运算,求得直线的倾斜角,求得直线AB的方程,代入抛物线方程,利用求得丨AB丨及中点E,利用点斜式方程,求得G点坐标,利用点到直线的距离公式及三角形的面积公式求得三角形ABG的面积.【解答】解:作出抛物线的准线l:x=﹣1,设A、B在l上的射影分别是C、D,连接AC、BD,过B作BE⊥AC于E.∵=3,则设丨AF丨=3m,丨BF丨=m,由点A、B分别在抛物线上,结合抛物线的定义,得丨AC 丨=3m,丨BD丨=m.因此,Rt△ABE中,cos∠BAE==,得∠BAE=60°∴直线AB的倾斜角∠AFx=60°,得直线AB的斜率k=tan60°=.则直线l的方程为:y=(x﹣1),即x﹣y﹣=0,设A(x1,y1),B(x2,y2),则,整理得:3x2﹣10x+3=0,则x1+x2=,x1x2=1,则y1+y2=(x1﹣1)+(x2﹣1)=,=,∴AB中点E(,),则EG的方程的斜率为﹣,则EG的方程:y﹣=﹣(x﹣),当x=0时,则y=,则G(,0),则G到直线l的距离d==,丨AB丨=x1+x2+p=,则S△ABG=×丨AB丨?d=××=,故选C.【点评】本题考查抛物线的简单几何性质,考查直线与抛物线的位置关系,韦达定理,中点坐标公式,焦点弦公式,考查数形结合思想,属于中档题.4. 一个篮球运动员投篮一次得3分的概率为,得2分的概率为,不得分的概率为,已知他投篮一次得分的均值为2分,则的最小值为……()A.B.C.D.参考答案:C略5. 设向量,满足||=||=|+|=1,则|﹣t|(t∈R)的最小值为()A. 2 B. C. 1 D.参考答案:D考点:平面向量数量积的坐标表示、模、夹角.专题:平面向量及应用.分析:由题意易得向量的夹角,进而由二次函数可得|﹣t|2的最小值,开方可得.解答:解:设向量,的夹角为θ,∵||=||=|+|=1,∴=1+1+2×1×1×cosθ=1,解得cosθ=,∴θ=,∴|﹣t|2=+t2=t2+t+1=(t+)2+,当t=时,上式取到最小值,∴|﹣t|的最小值为故选:D点评:本题考查平面向量的模长公式,涉及二次函数的最值,属基础题.6. 如图,二面角的大小为,,且,,则AD与β所成角的大小为( )A.B. C. D.参考答案:C7. 如图,在Rt△ABC中,∠C=90°,按以下步骤作图:①以点A为圆心,以小于AC的长为半径作弧,分别交AC,AB于点M,N;②分别以点M,N为圆心,以大于MN的长为半径作弧,两弧相交于点O;③连接AP,交BC于点E.若CE=3,BE=5,则AC的长为()A. 4B. 5C. 6D. 7参考答案:C【分析】直接利用基本作图方法得出AE是∠CAB的平分线,进而结合全等三角形的判定与性质得出AC=AD,再利用勾股定理得出AC的长.【详解】过点E作ED⊥AB于点D,由作图方法可得出AE是∠CAB的平分线,∵EC⊥AC,ED⊥AB,∴EC=ED=3,在Rt△ACE和Rt△ADE中,,∴Rt△ACE≌Rt△ADE(HL),∴AC=AD,∵在Rt△EDB中,DE=3,BE=5,∴BD=4,设AC=x,则AB=4+x,故在Rt△ACB中,AC2+BC2=AB2,即x2+82=(x+4)2,解得:x=6,即AC的长为:6.故选C.【点睛】此题主要考查了基本作图以及全等三角形的判定与性质、勾股定理等知识,正确得出BD的长是解题关键.8. 已知函数是上的增函数,那么实数a的取值范围是()A. B. C. D.参考答案:A略9. 定义在上的函数满足:恒成立,若,则与的大小关系为()A. B.C. D. 的大小关系不确定参考答案:【知识点】导数的应用.B12【答案解析】A 解析:设则,时R上的增函数,,即,故选A.【思路点拨】构造函数则,时R上的增函数,,即.10. 若命题“或”与命题“非”都是真命题,则A.命题不一定是假命题 B.命题一定是真命题C.命题不一定是真命题 D.命题与命题同真同假参考答案:B略二、填空题:本大题共7小题,每小题4分,共28分11. 已知集合,集合,在集合A中任取一个元素p,则p∈B的概率是▲.参考答案:答案:12. 已知向量、的夹角为,且,,则.参考答案:13. 函数的单调递减区间是________________.参考答案:(3,+∞)略14. 对于一切实数x,令[x]表示不大于x的最大整数,记f(x)= [x],若a n=f()(n∈N+),S n为数列{a n}的前n项和,则S4n= .参考答案:2n2-n略15. 函数有如下命题:(1)函数图像关于轴对称(2)当时,是增函数,时,是减函数(3)函数的最小值是(4)当或时,是增函数,其中正确命题的序号。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
无锡市普通高中2017年秋学期高三期终调研考试试卷数学I 卷一、填空题:(本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置.......上..) 1.已知集合{1,3}A =,{1,2,}B m =,若A B B =,则实数m = .2.若复数312a ii+-(a R ∈,i 为虚数单位)是纯虚数,则实数a = . 3.某高中共有学生2800人,其中高一年级960人,高三年级900人,现采用分层抽样的方法,抽取140人进行体育达标检测,则抽取高二年级学生人数为 . 4.已知,{1,2,3,4,5,6}a b ∈,直线1:210l x y +-=,2:30l ax by -+=,则直线12l l ⊥的概率为 .5.根据如图所示的伪代码,当输入a 的值为3时,最后输出的S 的值为 . 6.直三棱柱111ABC A B C -中,已知AB BC ⊥,3AB =,4BC =,15AA =,若三棱柱的所有顶点都在同一球面上,则该球的表面积为 .7.已知变量,x y 满足242x x y x y c ≥⎧⎪+≤⎨⎪-≤⎩,目标函数3z x y =+的最小值为5,则c 的值为 .8.函数cos(2)(0)y x ϕϕπ=+<<的图像向右平移2π个单位后,与函数sin(2)3y x π=-的图像重合,则ϕ= .9.已知等比数列{}n a 满足2532a a a =,且4a ,54,72a 成等差数列,则12na a a ⋅⋅⋅的最大值为 .10.过圆2216x y +=内一点(2,3)P -作两条相互垂直的弦AB 和CD ,且AB CD =,则四边形ACBD 的面积为 .11.已知双曲线2222:1(0,0)x y C a b a b -=>>与椭圆2211612x y +=的焦点重合,离心率互为倒数,设12,F F 分别为双曲线C 的左,右焦点,P 为右支上任意一点,则212PF PF 的最小值为 .12.在平行四边形ABCD 中,4AB =,2AD =,3A π∠=,M 为DC 的中点,N 为平面ABCD 内一点,若||||AB NB AM AN -=-,则AM AN ⋅= .13.已知函数()f x =2212211,211log (),22x x x x x x ⎧+-≤-⎪⎪⎨+⎪>-⎪⎩,2()22g x x x =---.若存在a R ∈,使得()()0f a g b +=,则实数b 的取值范围是 .14.若函数2()(1)||f x x x a =+-在区间[1,2]-上单调递增,则实数a 的取值范围是 .二、解答题 (本大题共6小题,共90分.解答应写出文字说明、证明过程或演算步骤.) 15.(本小题满分14分)如图,ABCD 是菱形,DE ⊥平面ABCD ,//AF DE ,2DE AF = (1)求证:AC ⊥平面BDE ; (2)求证://AC 平面BEF .16.(本小题满分14分)在ABC ∆中,角,,A B C 的对边分别为,,a b c ,3cos 4A =,C=2A . (1)求cosB 的值;(2)若24ac =,求ABC ∆的周长.如图,点C 为某沿海城市的高速公路出入口,直线BD 为海岸线,3CAB π∠=,AB BD ⊥,BC 是以A 为圆心,半径为1km 的圆弧型小路.该市拟修建一条从C 通往海岸的观光专线CP PQ -,其中P 为BC 上异于,B C 的一点,PQ 与AB 平行,设PAB θ∠=.(1)证明:观光专线CP PQ -的总长度随θ的增大而减小;(2)已知新建道路PQ 的单位成本是翻新道路CP 的单位成本的2倍.当θ取何值时,观光专线CP PQ -的修建总成本最低?请说明理由.18.(本小题满分16分)已知椭圆2222:1(0,0)x y E a b a b+=>>的离心率为2,12,F F 分别为左,右焦点,,A B 分别为左,右顶点,原点O 到直线BD 设点P 在第一象限,且PB x ⊥轴,连接PA 交椭圆于点C . (1)求椭圆E 的方程;(2)若三角形ABC 的面积等于四边形OBPC 的面积,求直线P A 的方程;(3)求过点B ,C ,P 的圆方程(结果用t 表示).已知数列{}n a 满足121111(1)(1)(1)n na a a a ---=,*n N ∈,n S 是数列{}n a 的前n 项的和.(1)求数列{}n a 的通项公式;(2)若p a ,30,q S 成等差数列,p a ,18,q S 成等比数列,求正整数,p q 的值; (3)是否存在*k N ∈{}n a 中的项?若存在,求出所有满足条件的k 的值;若不存在,请说明理由.20.(本小题满分16分)已知函数()(32)xf x e x =-,()(2)g x a x =-,其中,a x R ∈. (1)求过点(2,0)和函数()y f x =的图像相切的直线方程; (2)若对任意x R ∈,有()()f x g x ≥恒成立,求a 的取值范围; (3)若存在唯一的整数0x ,使得00()()f x g x <,求a 的取值范围.数学II (加试题)21.选修4-2:矩阵与变换 已知矩阵34A a b ⎡⎤=⎢⎥⎣⎦,若矩阵A 属于特征值1λ的一个特征向量为112α⎡⎤=⎢⎥-⎣⎦,属于特征值2λ的一个特征向量为23α⎡⎤=⎢⎥-⎣⎦.求矩阵A .22.选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,直线l的参数方程是122x t y m ⎧=⎪⎪⎨⎪=+⎪⎩(t 是参数),以原点为极点,x 轴的正半轴为极轴建立极坐标系,若圆C 的极坐标方程是4sin ρθ=,且直线l 与圆C相交,求实数m 的取值范围.23.某公司有,,,A B C D 四辆汽车,其中A 车的车牌尾号为0,,B C 两辆车的车牌尾号为6,D 车的车牌尾号为5,已知在非限行日,每辆车都有可能出车或不出车.已知,A D 两辆汽车每天出车的概率为34,,B C 两辆汽车每天出车的概率为12,且四辆汽车是否出车是相互独立的.该公司所在地区汽车限行规定如下:(1)求该公司在星期四至少有2辆汽车出车的概率;(2)设ξ表示该公司在星期一和星期二两天出车的车辆数之和,求ξ的分布列和数学期望.24.在四棱锥P ABCD -中,ABP ∆是等边三角形,底面ABCD 是直角梯形,90DAB ∠=︒,//AD BC ,E 是线段AB 的中点,PE ⊥底面ABCD ,已知22DA AB BC ===. (1)求二面角P CD AB --的正弦值;(2)试在平面PCD 上找一点M ,使得EM ⊥平面PCD .参考答案一、填空题1.3 2.6 3.47 4.1125.21 6.50π 7.5 8.6π9.1024 10.19 11.答案:8 12.答案:6 13.答案:(2,0)-14.答案:7(,1][,)2-∞-+∞二、简答题(本大题共6小题,共90分.解答题应写出文字说明、证明过程或演算步骤.) 15.解:(1)证明:因为DE ⊥平面ABCD ,所以DE AC ⊥. 因为ABCD 是菱形,所以AC BD ⊥, 因为DE BD D ⋂= 所以AC ⊥平面BDE . (2)证明:设AC BD O =,取BE 中点G ,连结,FG OG ,所以,1//2OG DE 且12OG DE =.因为//AF DE ,2DE AF =,所以//AF OG 且AF OG =, 从而四边形AFGO 是平行四边形,//FG AO . 因为FG ⊂平面BEF ,AO ⊄平面BEF , 所以//AO 平面BEF ,即//AC 平面BEF .16.解:(1)因为3cos 4A =, 所以2cos cos 22cos 1C A A ==-2312()148=⨯-=.在ABC ∆中,因为3cos 4A =,所以sin 4A =,因为1cos 8C =,所以sin C ==,所以9cos cos()sin sin cos cos 16B A B A B A B =-+=-=. (2)根据正弦定理sin sin a c A C =,所以23a c =, 又24ac =,所以4a =,6c =.2222cos 25b a c ac B =+-=,5b =.所以ABC ∆的周长为15. 17.解:(1)由题意,3CAP πθ∠=-,所以3CP πθ=-,又cos 1cos PQ AB AP θθ=-=-, 所以观光专线的总长度()1cos 3f πθθθ=-+-cos 13πθθ=--++,03πθ<<,因为当03πθ<<时,'()1sin 0f θθ=-+<,所以()f θ在(0,)3π上单调递减,即观光专线CP PQ -的总长度随θ的增大而减小. (2)设翻新道路的单位成本为(0)a a >, 则总成本()(22cos )3g a πθθθ=-+-(2cos 2)3a πθθ=--++,03πθ<<,'()(12sin )g a θθ=-+,令'()0g θ=,得1sin 2θ=,因为03πθ<<,所以6πθ=, 当06πθ<<时,'()0g θ<,当63ππθ<<时,'()0g θ>.所以,当6πθ=时,()g θ最小.答:当6πθ=时,观光专线CP PQ -的修建总成本最低.18.解:(1)因为椭圆2222:1(0)x y E a b a b+=>>的离心率为2,所以222a c =,b c =, 所以直线DB的方程为y x b =+, 又O 到直线BD的距离为3=, 所以1b =,a =所以椭圆E 的方程为2212x y +=.(2)设)P t,0t>,直线PA的方程为y x=+,由2212xyy x⎧+=⎪⎪⎨⎪=⎪⎩,整理得2222(4)280t x x t+++-=,解得:Cx=,则点C的坐标是24)4tt+,因为三角形ABC的面积等于四边形OBPC的面积,所以三角形AOC的面积等于三角形BPC的面积,21424AOCtSt∆==+,12PBCS t∆=⨯⨯=,则32244t t=+,解得t=.所以直线PA的方程为20x y-+=.(3)因为B,)P t,2224(,)44tCt t++,所以BP的垂直平分线2ty=,BC的垂直平分线为2224ty xt=-+,所以过,,B C P三点的圆的圆心为2)2t,则过,,B C P三点的圆方程为222(()2tx y+-42222(4)4t tt=++,即所求圆方程为22x x y+284tyt-+=+.19.解:(1)因为121111(1)(1)(1)n na a a a ---=,*n N ∈, 所以当1n =时,11111a a -=,12a =, 当2n ≥时, 由1211(1)(1)a a --11(1)n n a a -=和12111111(1)(1)(1)n n a a a a -----=, 两式相除可得,111n n na a a --=,即11(2)n n a a n --=≥ 所以,数列{}n a 是首项为2,公差为1的等差数列. 于是,1n a n =+.(2)因为p a ,30,q S 成等差数列,p a ,18,q S 成等比数列,所以26018p q p q a S a S +=⎧⎪⎨=⎪⎩,于是654p q a S =⎧⎪⎨=⎪⎩,或546p q a S =⎧⎪⎨=⎪⎩. 当654p qa S =⎧⎪⎨=⎪⎩时,16(3)542p q q +=⎧⎪⎨+=⎪⎩,解得59p q =⎧⎨=⎩,当546pq a S =⎧⎪⎨=⎪⎩时,154(3)62p q q +=⎧⎪⎨+=⎪⎩,无正整数解,所以5p =,9q =.(3)假设存在满足条件的正整数k *()m a m N =∈, 1m =+,平方并化简得,22(22)(23)63m k +-+=, 则(225)(221)63m k m k ++--=,所以225632211m k m k ++=⎧⎨--=⎩,或225212213m k m k ++=⎧⎨--=⎩,或22592217m k m k ++=⎧⎨--=⎩,解得:15m =,14k =或5m =,3k =,3m =,1k =-(舍去),综上所述,3k =或14.20.解(1)设切点为00(,)x y ,'()(31)x f x e x =+,则切线斜率为00(31)xe x +, 所以切线方程为0000(31)()x y y e x x x -=+-,因为切线过(2,0),所以00000(32)(31)(2)x x e x e x x --=+-,化简得200380x x -=,解得080,3x =. 当00x =时,切线方程为2y x =-, 当083x =时,切线方程为8833918y e x e =-. (2)由题意,对任意x R ∈有e (32)(2)x x a x -≥-恒成立, ①当(,2)x ∈-∞时,max (32)(32)[]22x x e x e x a a x x --≥⇒≥--, 令(32)()2x e x F x x -=-,则22(38)'()(2)x e x x F x x -=-,令'()0F x =得0x =,max ()(0)1F x F ==,故此时1a ≥.②当2x =时,恒成立,故此时a R ∈.③当(2,)x ∈+∞时,min (32)(32)[]22x x e x e x a a x x --≤⇒≤--, 令8'()03F x x =⇒=,83min 8()()93F x F e ==,故此时839a e ≤.综上:8319a e ≤≤.(3)因为()()f x g x <,即(32)(2)x e x a x -<-,由(2)知83(,1)(9,)a e ∈-∞+∞, 令(32)()2x e x F x x -=-,则当(,2)x ∈-∞,存在唯一的整数0x 使得00()()f x g x <, 等价于(32)2x e x a x -<-存在唯一的整数0x 成立, 因为(0)1F =最大,5(1)3F e -=,1(1)F e =-,所以当53a e <时,至少有两个整数成立, 所以5[,1)3a e∈. 当(2,)x ∈+∞,存在唯一的整数0x 使得00()()f x g x <, 等价于(32)2x e x a x ->-存在唯一的整数0x 成立, 因为838()93F e =最小,且3(3)7F e =,4(4)5F e =,所以当45a e >时,至少有两个整数成立,所以当37a e ≤时,没有整数成立,所有34(7,5]a e e ∈. 综上:345[,1)(7,5]3a e e e ∈. 数学Ⅱ(附加题)21.解:由矩阵A 属于特征值1λ的一个特征向量为112α⎡⎤=⎢⎥-⎣⎦可得, 1341122a b λ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦,即113822a b λλ-=⎧⎨-=-⎩; 得210a b ==,由矩阵A 属于特征值2λ的一个特征向量为223α⎡⎤=⎢⎥-⎣⎦, 可得23423a b λ⎡⎤⎡⎤=⎢⎥⎢⎥-⎣⎦⎣⎦23⎡⎤⎢⎥-⎣⎦,即226122233a b λλ-=⎧⎨-=-⎩; 得239a b -=,解得1211a b =-⎧⎨=-⎩.即341211A ⎡⎤=⎢⎥--⎣⎦, 22.解:由4sin ρθ=,得24sin ρρθ=,所以224x y x +=,即圆C 的方程为22(2)4x y +-=,又由12x t y m ⎧=⎪⎪⎨⎪=+⎪⎩,消t0y m -+=,由直线l 与圆C 相交, 所以|2|22m -<,即26m -<<. 23.解:(1)记该公司在星期四至少有两辆汽车出车为事件A , 则A :该公司在星期四最多有一辆汽车出车2211()()()42P A =122311()()()442C +1221119()()()22464C +=. ∴55()1()64P A P A =-=. 答:该公司在星期四至少有两辆汽车出行的概率为5564. (2)由题意,ξ的可能值为0,1,2,3,422111(0)()()2464P ξ===; 122111(1)()()()224P C ξ==1223111()()()4428C +=; 2211(2)()()24P ξ==22122311()()()422C ++123()4C 111()432=; 212131(3)()C ()()244P ξ==2122313()()428C +=; 22319(4)()()4264P ξ===.111395()2348328642E ξ=+⨯+⨯+⨯=. 答:ξ的数学期望为52. 24.解:(1)因为PE ⊥底面ABCD ,过E 作//ES BC ,则ES AB ⊥,以E 为坐标原点,EB 方向为x 轴的正半轴,ES 方向为y 轴的正半轴,EP 方向为z 轴的正半轴建立空间直角坐标系, 则(0,0,0)E ,(1,0,0)B ,(1,1,0)C ,(1,0,0)A -,(1,2,0)D -,P ,(2,1,0)CD =-,(1,1,PC =设平面PCD 的法向量为(,,)n x y z ,则20n CD x y ⋅=-+=,0n PC x y ⋅=+-=,解得=(1,2,3)n ,又平面ABCD 的法向量为(0,0,1)m =,所以cos ,||||1n m n m n m ⋅<>===+所以10sin ,4n m <>=. (2)设M 点的坐标为111(,,)x y z ,因为EM ⊥平面PCD ,所以//EM n ,即1112x y ==112y x =,11z =,又111(,,PM x y z =,(1,2,PD =-,(1,1,PC =,所以PM PC PD λμ=+=(,2,)λμλμ-+-,所以得1x λμ=-,11222()y x λμλμ=+==-,即9λμ=,1z =,12λ=,所以16μ=,所以M 点的坐标为15(,36。