2018年华东师大版八年级下册数学教案全册
华东师大版八年级数学下全册教案
第17章 分式§17.1.1 分式的概念教学目标:1、经历实际问题的解决过程,从中认识分式,并能概括分式2、使学生能正确地判断一个代数式是否是分式3、能通过回忆分数的意义,类比地探索分式的意义及分式的值如某一特定情况的条件,渗透数学中的类比,分类等数学思想。
教学重点:探索分式的意义及分式的值为某一特定情况的条件。
教学难点:能通过回忆分数的意义,探索分式的意义。
教学过程:一、做一做(1)面积为2平方米的长方形一边长3米,则它的另一边长为_____米;(2)面积为S 平方米的长方形一边长a 米,则它的另一边长为________米;(3)一箱苹果售价p 元,总重m 千克,箱重n 千克,则每千克苹果的售价是___元;二、概括: 形如BA (A 、B 是整式,且B 中含有字母,B ≠0)的式子,叫做分式.其中A 叫做分式的分子,B 叫做分式的分母. 整式和分式统称有理式, 即有理式 整式,分式.三、例题:例1 下列各有理式中,哪些是整式?哪些是分式?(1)x 1; (2)2x ; (3)y x xy +2; (4)33y x -. 解:属于整式的有:(2)、(4);属于分式的有:(1)、(3).注意:在分式中,分母的值不能是零.如果分母的值是零,则分式没有意义.例如,在分式aS 中,a ≠0;在分式nm -9中,m ≠n. 例2 当x 取什么值时,下列分式有意义?(1)11-x ; (2)322+-x x . 分析 要使分式有意义,必须且只须分母不等于零.解 (1)分母1-x ≠0,即x ≠1.所以,当x ≠1时,分式11-x 有意义. (2)分母23+x ≠0,即x ≠-23. 所以,当x ≠-23时,分式322+-x x 有意义. 四、练习:P5习题17.1第3题(1)(3)1.判断下列各式哪些是整式,哪些是分式? 9x+4, x 7 , 209y +, 54-m , 238y y -,91-x2. 当x 取何值时,下列分式有意义?(1) (2) (3) 3. 当x 为何值时,分式的值为0? (1) (2) (3) 五、小结:什么是分式?什么是有理式?六、作业:P5习题17.1第1、2题,第3题(2)(4)教学反思:§17.1.2 分式的基本性质教学目标:1、掌握分式的基本性质,掌握分式约分方法,熟练进行约分,并了解最简分式的意义。
华东师大版八年级下册数学教案全册
第16章 分式§16.1.1 分式的概念教学目标:1、知识与技能:经历实际问题的解决过程,从中认识分式,并能概括分式 的意义。
2、过程与方法:使学生能正确地判断一个代数式是否是分式,能通过回忆 分数的意义,类比地探索分式的意义。
3、情感态度与价值观:渗透数学中的类比,分类等数学思想。
教学重点:探索分式的意义及分式的值为某一特定情况的条件。
教学难点:能通过回忆分数的意义,探索分式的意义。
教学过程:一、做一做(1)面积为2平方米的长方形一边长3米,则它的另一边长为_____米; (2)面积为S 平方米的长方形一边长a 米,则它的另一边长为________米; (3)一箱苹果售价p 元,总重m 千克,箱重n 千克,则每千克苹果的售价是___元; 二、概括:形如BA(A 、B 是整式,且B 中含有字母,B ≠0)的式子,叫做分式.其中 A 叫做分式的分子,B 叫做分式的分母.整式和分式统称有理式, 即有理式 整式,分式.三、例题:例1 下列各有理式中,哪些是整式?哪些是分式?(1)x 1; (2)2x; (3)y x xy +2; (4)33y x -.解:属于整式的有:(2)、(4);属于分式的有:(1)、(3).注意:在分式中,分母的值不能是零.如果分母的值是零,则分式没有意义.例如,在分式aS中,a ≠0;在分式n m -9中,m ≠n.例2 当x 取什么值时,下列分式有意义?(1)11-x ; (2)322+-x x .分析 要使分式有意义,必须且只须分母不等于零. 解 (1)分母1-x ≠0,即x ≠1.所以,当x ≠1时,分式11-x 有意义.(2)分母23+x ≠0,即x ≠-23.所以,当x ≠-23时,分式322+-x x 有意义.四、练习:P5习题17.1第3题(1)(3)1.判断下列各式哪些是整式,哪些是分式? 9x+4, x 7 , 209y +, 54-m , 238y y -,91-x2. 当x 取何值时,下列分式有意义? (1) (2) (3)3. 当x 为何值时,分式的值为0?(1) (2) (3) 五、小结:什么是分式?什么是有理式? 六、作业:P5习题17.1第1、2题,第3题(2)(4) 七、教学反思:通过分式概念的教学,让学生懂得了什么时分式,知道了分式与整式的区别,了解了分式成立的条件,为以后的学习打好了基础。
华东师大版八年级数学下全册教案
第17章 分式§17.1.1 分式的概念教学目标:1、经历实际问题的解决过程,从中认识分式,并能概括分式2、使学生能正确地判断一个代数式是否是分式3、能通过回忆分数的意义,类比地探索分式的意义及分式的值如某一特定情况的条件,渗透数学中的类比,分类等数学思想。
教学重点:探索分式的意义及分式的值为某一特定情况的条件。
教学难点:能通过回忆分数的意义,探索分式的意义。
教学过程:一、做一做(1)面积为2平方米的长方形一边长3米,则它的另一边长为_____米;(2)面积为S 平方米的长方形一边长a 米,则它的另一边长为________米;(3)一箱苹果售价p 元,总重m 千克,箱重n 千克,则每千克苹果的售价是___元;二、概括: 形如BA (A 、B 是整式,且B 中含有字母,B ≠0)的式子,叫做分式.其中?A 叫做分式的分子,B 叫做分式的分母.整式和分式统称有理式, 即有理式 整式,分式.三、例题:例1 下列各有理式中,哪些是整式?哪些是分式?(1)x 1; (2)2x ; (3)y x xy +2; (4)33y x -. 解:属于整式的有:(2)、(4);属于分式的有:(1)、(3).注意:在分式中,分母的值不能是零.如果分母的值是零,则分式没有意义.例如,在分式a S 中,a ≠0;在分式nm -9中,m ≠n. 例2 当x 取什么值时,下列分式有意义?(1)11-x ; (2)322+-x x . 分析 要使分式有意义,必须且只须分母不等于零.解 (1)分母1-x ≠0,即x ≠1.所以,当x ≠1时,分式11-x 有意义. (2)分母23+x ≠0,即x ≠-23. 所以,当x ≠-23时,分式322+-x x 有意义. 四、练习:P5习题17.1第3题(1)(3)1.判断下列各式哪些是整式,哪些是分式? 9x+4, x 7 , 209y +, 54-m , 238y y -,91-x 2. 当x 取何值时,下列分式有意义?(1) (2) (3) 3. 当x 为何值时,分式的值为0? (1) (2) (3) 五、小结:什么是分式?什么是有理式?六、作业:P5习题17.1第1、2题,第3题(2)(4)教学反思:§17.1.2 分式的基本性质教学目标:1、掌握分式的基本性质,掌握分式约分方法,熟练进行约分,并了解最简分式的意义。
华东师大版八年级数学下全册教案
第17章 分式§17.1.1 分式的概念教学目标:1、经历实际问题的解决过程,从中认识分式,并能概括分式2、使学生能正确地判断一个代数式是否是分式3、能通过回忆分数的意义,类比地探索分式的意义及分式的值如某一特定情况的条件,渗透数学中的类比,分类等数学思想。
教学重点:探索分式的意义及分式的值为某一特定情况的条件。
教学难点:能通过回忆分数的意义,探索分式的意义。
教学过程:一、做一做(1)面积为2平方米的长方形一边长3米,则它的另一边长为_____米;(2)面积为S 平方米的长方形一边长a 米,则它的另一边长为________米;(3)一箱苹果售价p 元,总重m 千克,箱重n 千克,则每千克苹果的售价是___元;二、概括: 形如BA (A 、B 是整式,且B 中含有字母,B ≠0)的式子,叫做分式.其中?A 叫做分式的分子,B 叫做分式的分母. 整式和分式统称有理式, 即有理式 整式,分式.三、例题:例1 下列各有理式中,哪些是整式?哪些是分式?(1)x 1; (2)2x ; (3)y x xy +2; (4)33y x -. 解:属于整式的有:(2)、(4);属于分式的有:(1)、(3).注意:在分式中,分母的值不能是零.如果分母的值是零,则分式没有意义.例如,在分式a S 中,a ≠0;在分式nm -9中,m ≠n. 例2 当x 取什么值时,下列分式有意义?(1)11-x ; (2)322+-x x . 分析 要使分式有意义,必须且只须分母不等于零.解 (1)分母1-x ≠0,即x ≠1.所以,当x ≠1时,分式11-x 有意义. (2)分母23+x ≠0,即x ≠-23. 所以,当x ≠-23时,分式322+-x x 有意义. 四、练习:P5习题17.1第3题(1)(3)1.判断下列各式哪些是整式,哪些是分式? 9x+4, x 7 , 209y +, 54-m , 238y y -,91-x 2. 当x 取何值时,下列分式有意义?(1) (2) (3) 3. 当x 为何值时,分式的值为0? (1) (2) (3) 五、小结:什么是分式?什么是有理式?六、作业:P5习题17.1第1、2题,第3题(2)(4)教学反思:§17.1.2 分式的基本性质教学目标:1、掌握分式的基本性质,掌握分式约分方法,熟练进行约分,并了解最简分式的意义。
华东师大版八年级下册数学教案全册
第16章 分式§16.1.1 分式的概念教学目标:1、知识与技能:经历实际问题的解决过程,从中认识分式,并能概括分式 的意义。
2、过程与方法:使学生能正确地判断一个代数式是否是分式,能通过回忆 分数的意义,类比地探索分式的意义。
3、情感态度与价值观:渗透数学中的类比,分类等数学思想。
教学重点:探索分式的意义及分式的值为某一特定情况的条件。
教学难点:能通过回忆分数的意义,探索分式的意义。
教学过程:一、做一做(1)面积为2平方米的长方形一边长3米,则它的另一边长为_____米;(2)面积为S 平方米的长方形一边长a 米,则它的另一边长为________米;(3)一箱苹果售价p 元,总重m 千克,箱重n 千克,则每千克苹果的售价是___元;二、概括: 形如BA (A 、B 是整式,且B 中含有字母,B ≠0)的式子,叫做分式.其中 A 叫做分式的分子,B 叫做分式的分母.整式和分式统称有理式, 即有理式 整式,分式.三、例题:例1 下列各有理式中,哪些是整式哪些是分式 (1)x 1; (2)2x ; (3)y x xy +2; (4)33y x -. 解:属于整式的有:(2)、(4);属于分式的有:(1)、(3).注意:在分式中,分母的值不能是零.如果分母的值是零,则分式没有意义.例如,在分式aS 中,a ≠0;在分式n m -9中,m ≠n. 例2 当x 取什么值时,下列分式有意义(1)11-x ; (2)322+-x x . 分析 要使分式有意义,必须且只须分母不等于零.解 (1)分母1-x ≠0,即x ≠1.所以,当x ≠1时,分式11-x 有意义. (2)分母23+x ≠0,即x ≠-23. 所以,当x ≠-23时,分式322+-x x 有意义. 四、练习:P5习题第3题(1)(3)1.判断下列各式哪些是整式,哪些是分式 9x+4, x 7 , 209y +, 54-m , 238y y -,91-x 2. 当x 取何值时,下列分式有意义(1) (2) (3) 3. 当x 为何值时,分式的值为0(1) (2) (3)五、小结: 什么是分式什么是有理式六、作业:P5习题第1、2题,第3题(2)(4)七、教学反思:通过分式概念的教学,让学生懂得了什么时分式,知道了分式与整式的区别,了解了分式成立的条件,为以后的学习打好了基础。
2018年华师大版八年级数学下册全册教案
16.1分式16.1.1从分数到分式一、 教学目标1. 了解分式、有理式的概念.2.理解分式有意义的条件,分式的值为零的条件;能熟练地求出分式有意义的条件,分式的值为零的条件.二、重点、难点1.重点:理解分式有意义的条件,分式的值为零的条件.2.难点:能熟练地求出分式有意义的条件,分式的值为零的条件.三、课堂引入1.让学生填写P4[思考],学生自己依次填出:710,a s ,33200,sv .2.学生看P3的问题:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用实践,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?请同学们跟着教师一起设未知数,列方程.设江水的流速为x 千米/时.轮船顺流航行100千米所用的时间为v +20100小时,逆流航行60千米所用时间v-2060小时,所以v +20100=v-2060.3. 以上的式子v +20100,v -2060,a s ,sv ,有什么共同点?它们与分数有什么相同点和不同点?五、例题讲解P5例1. 当x 为何值时,分式有意义.[分析]已知分式有意义,就可以知道分式的分母不为零,进一步解出字母x 的取值范围.[提问]如果题目为:当x 为何值时,分式无意义.你知道怎么解题吗?这样可以使学生一题二用,也可以让学生更全面地感受到分式及有关概念.(补充)例2. 当m 为何值时,分式的值为0? (1) (2) (3) [分析] 分式的值为0时,必须同时..满足两个条件:○1分母不能为零;○2分子为零,这样求出的m 的解集中的公共部分,就是这类题目的解.[答案] (1)m=0 (2)m=2 (3)m=1六、随堂练习1.判断下列各式哪些是整式,哪些是分式? 9x+4, x 7 , 209y +, 54-m , 238y y -,91-x 2. 当x 取何值时,下列分式有意义?(1) (2) (3) 3. 当x 为何值时,分式的值为0? 1-m m 32+-m m 112+-m m 4522--x x x x 235-+23+x xx x --21(1) (2) (3)七、课后练习 1.列代数式表示下列数量关系,并指出哪些是正是?哪些是分式?(1)甲每小时做x 个零件,则他8小时做零件 个,做80个零件需 小时.(2)轮船在静水中每小时走a 千米,水流的速度是b 千米/时,轮船的顺流速度是 千米/时,轮船的逆流速度是 千米/时.(3)x 与y 的差于4的商是 .2.当x 取何值时,分式 无意义? 3. 当x 为何值时,分式的值为0? 八、答案:六、1.整式:9x+4, 209y +, 54-m 分式: x 7 , 238y y -,91-x 2.(1)x ≠-2 (2)x ≠ (3)x ≠±2 3.(1)x=-7 (2)x=0 (3)x=-1七、1.18x, ,a+b, b a s +,4y x -; 整式:8x, a+b, 4y x -; 分式:x80, b a s + 2. X = 3. x=-1课后反思:16.1.2分式的基本性质一、教学目标1.理解分式的基本性质.2.会用分式的基本性质将分式变形.二、重点、难点1.重点: 理解分式的基本性质.2.难点: 灵活应用分式的基本性质将分式变形.三、例、习题的意图分析1.P7的例2是使学生观察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后应用分式的基本性质,相应地把分子(或分母)乘以或除以了这个整式,填到括号里作x x 57+xx 3217-x 802332xx x --21231-+x x为答案,使分式的值不变.2.P9的例3、例4地目的是进一步运用分式的基本性质进行约分、通分.值得注意的是:约分是要找准分子和分母的公因式,最后的结果要是最简分式;通分是要正确地确定各个分母的最简公分母,一般的取系数的最小公倍数,以及所有因式的最高次幂的积,作为最简公分母.教师要讲清方法,还要及时地纠正学生做题时出现的错误,使学生在做提示加深对相应概念及方法的理解.3.P11习题16.1的第5题是:不改变分式的值,使下列分式的分子和分母都不含“-”号.这一类题教材里没有例题,但它也是由分式的基本性质得出分子、分母和分式本身的符号,改变其中任何两个,分式的值不变.“不改变分式的值,使分式的分子和分母都不含‘-’号”是分式的基本性质的应用之一,所以补充例5.四、课堂引入1.请同学们考虑: 与 相等吗? 与 相等吗?为什么?2.说出 与 之间变形的过程, 与 之间变形的过程,并说出变形依据? 3.提问分数的基本性质,让学生类比猜想出分式的基本性质.五、例题讲解P7例2.填空:[分析]应用分式的基本性质把已知的分子、分母同乘以或除以同一个整式,使分式的值不变.P11例3.约分:[分析] 约分是应用分式的基本性质把分式的分子、分母同除以同一个整式,使分式的值不变.所以要找准分子和分母的公因式,约分的结果要是最简分式.P11例4.通分:[分析] 通分要想确定各分式的公分母,一般的取系数的最小公倍数,以及所有因式的最高次幂的积,作为最简公分母.(补充)例5.不改变分式的值,使下列分式的分子和分母都不含“-”号.a b 56--, y x 3-, n m --2, n m 67--, yx 43---。
[初中数学]2018年春八年级数学下册全一册学案(47份) 华东师大版3
课题 分式的加减【学习目标】1.让学生理解并掌握分式的加减法法则,并会运用法则进行分式的加减运算.2.使学生在掌握分式的加减法法则的基础上,用法则进行分式的混合运算.【学习重点】同分母、异分母分式的加减运算以及混合运算.【学习难点】异分母分式的加减运算与混合运算.行为提示:创设问题情景导入,激发学生的求知欲望.行为提示:让学生阅读教材,尝试完成“自学互研”的所有内容,并适时给学生提供帮助,大部分学生完成后,进行小组交流.知识链接:1.同分母分式加减法则:a b ±c b =a±c b. 2.异分母分式加减法则:a b ±c d =ad bd ±bc bd =ad ±bc bd. 解题思路:1.如果分母字母的顺序不一样时,应调整顺序,注意“-”号的处理.2.如果所得结果不是最简分式,应通过约分进行化简.情景导入 生成问题【旧知回顾】1.分式的乘除运算法则是什么?分式的乘方法则呢?(请分别用式子表示)解:a b ·c d =ac bd ,a b ÷c d =a b ·d c =ad bc ,(a b )n =a n b n (n 为正整数,且n≥2). 2.(1)甲工程队完成一项工程需n 天,乙工程队要比甲多用3天才能完成这项工程,两队共同工作一天完成这项工程的几分之几?(只列算式)(2)某厂2014、2015、2016三年的生产总值分别为a ,b ,c(单位:万元且a<b<c),则2016年的生产总值的增长率比2015年的生产总值的增长率提高了多少?(只列算式)解:(1)1n +1n +3;(2)c -b b -b -a a. 自学互研 生成能力知识模块一 分式的加减运算【自主探究】1.同分母的分式相加减:分母不变,分子相加减.2.异分母的分式相加减:先通分,变为同分母的分式,然后再加减.3.试一试:计算:(1)b a +2a ;(2)2a 2-3ab. 解:(1)原式=b +2a; (2)原式=2b a 2b -3a a 2b =2b -3a a 2b. 【合作探究】范例1:计算:(1)5x +3y x 2-y 2-x -y x 2-y 2; (2)b a 2-b 2-a b 2-a 2. 解:(1)原式=5x +3y -(x -y )x 2-y 2=4(x +y )(x +y )(x -y )=4x -y; (2)原式=b a 2-b 2+a a 2-b 2=a +b (a +b )(a -b )=1a -b. 范例2:计算:(1)12p +3q +12p -3q; (2)12m 2-9-2m -3.方法指导:当分子运算中的多项式遇到“-”号时,多项式应带括号.学习笔记:1.分式的加减乘除及混合运算顺序与有理数的运算顺序一样.2.分子、分母的“-”号提到分式本身的前边,特别注意:当分子运算中的多项式遇到“-”号时,多项式应带括号.3.分式运算的结果一定要化为最简分式.行为提示:教师结合各组反馈的疑难问题分配任务,各组展示过程中,教师引导其他组进行补充、纠错、释疑,然后进行总结评比.学习笔记:检测的目的在于让学生熟练掌握分式的运算,同时注重培养化简求值时“整体代入”的方法. 解:(1)原式=2p -3q (2p +3q )(2p -3q )+2p +3q (2p +3q )(2p -3q )=4p 4p 2-9q 2; (2)原式=12(m +3)(m -3)-2(m +3)(m +3)(m -3)=12-2(m +3)(m +3)(m -3)=12-2m -6(m +3)(m -3)=-2(m -3)(m +3)(m -3)=-2m +3. 知识模块二 分式的混合运算【自主探究】分式的混合运算:要注意运算顺序,式与数有相同的混合运算顺序,先乘方,再乘除,然后加减,最后得出结果,分子、分母要进行约分,注意运算的结果要是最简分式.【合作探究】范例3:计算:⎝ ⎛⎭⎪⎫x +2x 2-2x -x -1x 2-4x +4÷x -4x . 分析:先算括号里面的减法,再把除法转变为乘法.解:原式=⎣⎢⎡⎦⎥⎤x +2x (x -2)-x -1(x -2)2·x x -4=(x +2)(x -2)-x (x -1)x (x -2)2·x x -4=x 2-4-x 2+x (x -2)2(x -4)=1(x -2)2 =1x 2-4x +4. 交流展示 生成新知1.将阅读教材时“生成的新问题”和通过“自主探究、合作探究”得出的结论展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一 分式的加减运算知识模块二 分式的混合运算检测反馈 达成目标【当堂检测】见所赠光盘和学生用书;【课后检测】见学生用书.课后反思 查漏补缺1.收获:________________________________________________________________________2.存在困惑:________________________________________________________________________。
华东师大版八年级数学下全册教案
第17章分式§17.1.1分式的概念教学目标:1、经历实际问题的解决过程,从中认识分式,并能概括分式2、使学生能正确地判断一个代数式是否是分式3、能通过回忆分数的意义,类比地探索分式的意义及分式的值如某一特定情况的条件,渗透数学中的类比,分类等数学思想。
教学重点:探索分式的意义及分式的值为某一特定情况的条件。
教学难点:能通过回忆分数的意义,探索分式的意义。
教学过程:一、做一做(1)面积为2平方米的长方形一边长3米,则它的另一边长为_____米;(2)面积为S 平方米的长方形一边长a 米,则它的另一边长为________米;(3)一箱苹果售价p 元,总重m 千克,箱重n 千克,则每千克苹果的售价是___元;二、概括: 形如BA (A 、B 是整式,且B 中含有字母,B ≠0)的式子,叫做分式.其中?A 叫做分式的分子,B 叫做分式的分母. 整式和分式统称有理式,即有理式 整式,分式.三、例题:例1 下列各有理式中,哪些是整式?哪些是分式?(1)x 1;(2)2x ;(3)y x xy +2;(4)33y x -. 解:属于整式的有:(2)、(4);属于分式的有:(1)、(3).注意:在分式中,分母的值不能是零.如果分母的值是零,则分式没有意义.例如,在分式a S 中,a ≠0;在分式nm -9中,m ≠n. 例2 当x 取什么值时,下列分式有意义?(1)11-x ;(2)322+-x x . 分析要使分式有意义,必须且只须分母不等于零.解(1)分母1-x ≠0,即x ≠1.所以,当x ≠1时,分式11-x 有意义. (2)分母23+x ≠0,即x ≠-23. 所以,当x ≠-23时,分式322+-x x 有意义. 四、练习:P5习题17.1第3题(1)(3)1.判断下列各式哪些是整式,哪些是分式? 9x+4,x 7,209y +,54-m ,238y y -,91-x 2.当x 取何值时,下列分式有意义?(1)(2)(3) 3.当x 为何值时,分式的值为0? (1)(2)(3) 五、小结:什么是分式?什么是有理式?六、作业:P5习题17.1第1、2题,第3题(2)(4)教学反思:§17.1.2分式的基本性质教学目标:1、掌握分式的基本性质,掌握分式约分方法,熟练进行约分,并了解最简分式的意义。
华东师大版八年级数学下全册教案
第17章 分式§17.1.1 分式的概念教学目标:1、经历实际问题的解决过程,从中认识分式,并能概括分式2、使学生能正确地判断一个代数式是否是分式3、能通过回忆分数的意义,类比地探索分式的意义及分式的值如某一特定情况的条件,渗透数学中的类比,分类等数学思想。
教学重点:探索分式的意义及分式的值为某一特定情况的条件。
教学难点:能通过回忆分数的意义,探索分式的意义。
教学过程:一、做一做(1)面积为2平方米的长方形一边长3米,则它的另一边长为_____米;(2)面积为S 平方米的长方形一边长a 米,则它的另一边长为________米;(3)一箱苹果售价p 元,总重m 千克,箱重n 千克,则每千克苹果的售价是___元;二、概括: 形如BA (A 、B 是整式,且B 中含有字母,B ≠0)的式子,叫做分式.其中?A 叫做分式的分子,B 叫做分式的分母. 整式和分式统称有理式, 即有理式 整式,分式.三、例题:例1 下列各有理式中,哪些是整式?哪些是分式?(1)x 1; (2)2x ; (3)y x xy +2; (4)33y x -. 解:属于整式的有:(2)、(4);属于分式的有:(1)、(3).注意:在分式中,分母的值不能是零.如果分母的值是零,则分式没有意义.例如,在分式a S 中,a ≠0;在分式nm -9中,m ≠n. 例2 当x 取什么值时,下列分式有意义?(1)11-x ; (2)322+-x x . 分析 要使分式有意义,必须且只须分母不等于零.解 (1)分母1-x ≠0,即x ≠1.所以,当x ≠1时,分式11-x 有意义. (2)分母23+x ≠0,即x ≠-23. 所以,当x ≠-23时,分式322+-x x 有意义. 四、练习:P5习题17.1第3题(1)(3)1.判断下列各式哪些是整式,哪些是分式? 9x+4, x 7 , 209y +, 54-m , 238y y -,91-x 2. 当x 取何值时,下列分式有意义?(1) (2) (3) 3. 当x 为何值时,分式的值为0? (1) (2) (3) 五、小结:什么是分式?什么是有理式?六、作业:P5习题17.1第1、2题,第3题(2)(4)教学反思:§17.1.2 分式的基本性质教学目标:1、掌握分式的基本性质,掌握分式约分方法,熟练进行约分,并了解最简分式的意义。
华东师大版八年级数学下全册教案
第17章 分式§17.1.1 分式的概念教学目标:1、经历实际问题的解决过程,从中认识分式,并能概括分式2、使学生能正确地判断一个代数式是否是分式3、能通过回忆分数的意义,类比地探索分式的意义及分式的值如某一特定情况的条件,渗透数学中的类比,分类等数学思想。
教学重点:探索分式的意义及分式的值为某一特定情况的条件。
教学难点:能通过回忆分数的意义,探索分式的意义。
教学过程:一、做一做(1)面积为2平方米的长方形一边长3米,则它的另一边长为_____米;(2)面积为S 平方米的长方形一边长a 米,则它的另一边长为________米;(3)一箱苹果售价p 元,总重m 千克,箱重n 千克,则每千克苹果的售价是___元;二、概括: 形如BA (A 、B 是整式,且B 中含有字母,B ≠0)的式子,叫做分式.其中 A 叫做分式的分子,B 叫做分式的分母. 整式和分式统称有理式, 即有理式 整式,分式.三、例题:例1 下列各有理式中,哪些是整式?哪些是分式?(1)x 1; (2)2x ; (3)y x xy +2; (4)33y x -. 解:属于整式的有:(2)、(4);属于分式的有:(1)、(3).注意:在分式中,分母的值不能是零.如果分母的值是零,则分式没有意义.例如,在分式a S 中,a ≠0;在分式n m -9中,m ≠n.例2 当x 取什么值时,下列分式有意义?(1)11-x ; (2)322+-x x . 分析 要使分式有意义,必须且只须分母不等于零.解 (1)分母1-x ≠0,即x ≠1.所以,当x ≠1时,分式11-x 有意义. (2)分母23+x ≠0,即x ≠-23. 所以,当x ≠-23时,分式322+-x x 有意义. 四、练习:P5习题17.1第3题(1)(3)1.判断下列各式哪些是整式,哪些是分式? 9x+4, x 7 , 209y +, 54-m , 238y y -,91-x 2. 当x 取何值时,下列分式有意义?(1) (2) (3) 3. 当x 为何值时,分式的值为0? (1) (2) (3) 4522--x xx x 235-+23+x x x 57+x x 3217-x x x --221五、小结:什么是分式?什么是有理式?六、作业:P5习题17.1第1、2题,第3题(2)(4)教学反思:§17.1.2 分式的基本性质教学目标:1、掌握分式的基本性质,掌握分式约分方法,熟练进行约分,并了解最简分式的意义。
(完整版)2018华东师大版八年级下册数学教案全册
第16章 分式§16.1.1 分式的概念教学目标:1、知识与技能:经历实际问题的解决过程,从中认识分式,并能概括分式的意义。
2、过程与方法:使学生能正确地判断一个代数式是否是分式,能通过回忆分数的意义,类比地探索分式的意义。
3、情感态度与价值观:渗透数学中的类比,分类等数学思想。
教学重点:探索分式的意义及分式的值为某一特定情况的条件。
教学难点:能通过回忆分数的意义,探索分式的意义。
教学过程:一、做一做(1)面积为2平方米的长方形一边长3米,则它的另一边长为_____米;(2)面积为S 平方米的长方形一边长a 米,则它的另一边长为________米;(3)一箱苹果售价p 元,总重m 千克,箱重n 千克,则每千克苹果的售价是___元;二、概括: 形如BA (A 、B 是整式,且B 中含有字母,B ≠0)的式子,叫做分式.其中 A 叫做分式的分子,B 叫做分式的分母.整式和分式统称有理式, 即有理式 整式,分式.三、例题:例1 下列各有理式中,哪些是整式?哪些是分式? (1)x 1; (2)2x ; (3)y x xy +2; (4)33y x -. 解:属于整式的有:(2)、(4);属于分式的有:(1)、(3).注意:在分式中,分母的值不能是零.如果分母的值是零,则分式没有意义.例如,在分式aS 中,a ≠0;在分式n m -9中,m ≠n. 例2 当x 取什么值时,下列分式有意义?(1)11-x ; (2)322+-x x . 分析 要使分式有意义,必须且只须分母不等于零.解 (1)分母1-x ≠0,即x ≠1.所以,当x ≠1时,分式11-x 有意义. (2)分母23+x ≠0,即x ≠-23. 所以,当x ≠-23时,分式322+-x x 有意义. 四、练习:P5习题17.1第3题(1)(3)1.判断下列各式哪些是整式,哪些是分式? 9x+4, x 7 , 209y +, 54-m , 238y y -,91-x 2. 当x 取何值时,下列分式有意义?(1) (2) (3) 3. 当x 为何值时,分式的值为0?(1) (2) (3) 五、小结: 什么是分式?什么是有理式?六、作业:P5习题17.1第1、2题,第3题(2)(4)七、教学反思:通过分式概念的教学,让学生懂得了什么时分式,知道了分式与整式的区别,了解了分式成立的条件,为以后的学习打好了基础。
华东师大版八年级下册数学教案全册
华东师大版八年级下册数学教案全册第17章 分式§17.1.1 分式的概念教学目标:1、知识与技能:经历实际问题的解决过程,从中认识分式,并能概括分式 的意义。
2、过程与方法:使同学们能正确地判断一个代数式是否是分式,能通过回忆 分数的意义,类比地探索分式的意义。
3、情感态度与价值观:渗透数学中的类比,分类等数学思想。
教学重点:探索分式的意义及分式的值为某一特定情况的条件。
教学难点:能通过回忆分数的意义,探索分式的意义。
教学过程:一、做一做(1)面积为2平方米的长方形一边长3米,则它的另一边长为_____米; (2)面积为S 平方米的长方形一边长a 米,则它的另一边长为________米; (3)一箱苹果售价p 元,总重m 千克,箱重n 千克,则每千克苹果的售价是___元; 二、概括:形如BA(A 、B 是整式,且B 中含有字母,B ≠0)的式子,叫做分式.其中 A 叫做分式的分子,B 叫做分式的分母.整式和分式统称有理式, 即有理式 整式,分式.三、例题:例1 下列各有理式中,哪些是整式?哪些是分式?(1)x 1; (2)2x; (3)y x xy +2; (4)33y x -.解:属于整式的有:(2)、(4);属于分式的有:(1)、(3).注意:在分式中,分母的值不能是零.如果分母的值是零,则分式没有意义.例如,在分式aS中,a ≠0;在分式n m -9中,m ≠n.例2 当x 取什么值时,下列分式有意义?(1)11-x ; (2)322+-x x .分析 要使分式有意义,必须且只须分母不等于零. 解 (1)分母1-x ≠0,即x ≠1.所以,当x ≠1时,分式11-x 有意义.(2)分母23+x ≠0,即x ≠-23. 所以,当x ≠-23时,分式322+-x x 有意义.四、练习:P5习题17.1第3题(1)(3)1.判断下列各式哪些是整式,哪些是分式? 9x+4, x 7 , 209y +, 54-m , 238y y -,91-x2. 当x 取何值时,下列分式有意义? (1) (2) (3)3. 当x 为何值时,分式的值为0?(1) (2) (3) 五、小结:什么是分式?什么是有理式? 六、作业:P5习题17.1第1、2题,第3题(2)(4) 七、教学反思:通过分式概念的教学,让同学们懂得了什么时分式,知道了分式与整式的区别,了解了分式成立的条件,为以后的学习打好了基础。
20.3 数据的离散程度-2018年八年级下册数学名师教案(华师大版)
20.3 数据的离散程度-2018年八年级下册数学名师教案(华师大版)一、教学目标1.认识数据的离散程度,并了解离散程度的度量方式。
2.掌握计算一组数据的极差、平均差和标准差的方法。
3.能够正确应用离散程度的概念和计算方法解决实际问题。
4.培养学生对于数据的整体观察能力和数据分析能力。
二、教学重点1.了解离散程度的概念和度量方式。
2.掌握计算极差、平均差和标准差的方法。
3.能够正确运用离散程度的概念和计算方法解决实际问题。
三、教学内容3.1 离散程度的概念离散程度是用来描述数据分布的相对分散情况的指标。
当数据的离散程度较大时,说明数据之间的差异较大,分布相对分散;当数据的离散程度较小时,说明数据之间的差异较小,分布相对集中。
3.2 离散程度的度量方式常用的度量离散程度的方式包括极差、平均差和标准差。
3.2.1 极差极差是一组数据中最大值与最小值之间的差。
计算极差的方法为:极差 = 最大值 - 最小值3.2.2 平均差平均差是一组数据各个数据与平均值之差的绝对值的平均值。
计算平均差的方法为:平均差= (∑|数据-平均值|) / 数据个数3.2.3 标准差标准差是一组数据各个数据与平均值之差的平方的平均值的平方根。
计算标准差的方法为:标准差= √( (∑(数据-平均值)^2) / 数据个数 )3.3 应用离散程度解决实际问题学生通过实例分析,将离散程度的概念和计算方法应用于解决实际问题。
四、教学过程4.1 引入教师通过举例引入离散程度的概念,引发学生的思考和探究欲望。
4.2 讲解离散程度的度量方式教师分别讲解极差、平均差和标准差的计算方法,并给出具体的例子进行演示。
4.3 实例分析与计算学生根据给定的实例,运用所学的离散程度的概念和计算方法进行分析和计算,并将结果加以解释。
4.4 拓展应用教师出示更复杂的实际问题,要求学生应用所学的知识解决问题,并呈现解题过程和结果。
五、教学资源1.讲义:离散程度的概念和计算方法。
2018年华东师大版八年级(下册)数学教学案全册
第16章 分式§16.1.1 分式的概念教学目标:1、知识与技能:经历实际问题的解决过程,从中认识分式,并能概括分式的意义。
2、过程与方法:使学生能正确地判断一个代数式是否是分式,能通过回忆分数的意义,类比地探索分式的意义。
3、情感态度与价值观:渗透数学中的类比,分类等数学思想。
教学重点:探索分式的意义及分式的值为某一特定情况的条件。
教学难点:能通过回忆分数的意义,探索分式的意义。
教学过程:一、做一做(1)面积为2平方米的长方形一边长3米,则它的另一边长为_____米;(2)面积为S 平方米的长方形一边长a 米,则它的另一边长为________米;(3)一箱苹果售价p 元,总重m 千克,箱重n 千克,则每千克苹果的售价是___元;二、概括: 形如BA (A 、B 是整式,且B 中含有字母,B ≠0)的式子,叫做分式.其中 A 叫做分式的分子,B 叫做分式的分母.整式和分式统称有理式, 即有理式 整式,分式.三、例题:例1 下列各有理式中,哪些是整式?哪些是分式?(1)x 1; (2)2x ; (3)y x xy +2; (4)33y x -. 解:属于整式的有:(2)、(4);属于分式的有:(1)、(3).注意:在分式中,分母的值不能是零.如果分母的值是零,则分式没有意义.例如,在分式aS 中,a ≠0;在分式n m -9中,m ≠n. 例2 当x 取什么值时,下列分式有意义?(1)11-x ; (2)322+-x x . 分析 要使分式有意义,必须且只须分母不等于零.解 (1)分母1-x ≠0,即x ≠1.所以,当x ≠1时,分式11-x 有意义. (2)分母23+x ≠0,即x ≠-23. 所以,当x ≠-23时,分式322+-x x 有意义. 四、练习:P5习题17.1第3题(1)(3)1.判断下列各式哪些是整式,哪些是分式? 9x+4, x 7 , 209y +, 54-m , 238y y -,91-x 2. 当x 取何值时,下列分式有意义?(1) (2) (3) 3. 当x 为何值时,分式的值为0? (1) (2) (3) 五、小结:什么是分式?什么是有理式?六、作业:P5习题17.1第1、2题,第3题(2)(4)七、教学反思: 通过分式概念的教学,让学生懂得了什么时分式,知道了分式与整式的区别,了解了分4522--x x x x 235-+23+x x x 57+xx 3217-x x x --221式成立的条件,为以后的学习打好了基础。
华东师大版八年级数学下全册教案
第17章 分式§ 分式的概念教学目标:1、经历实际问题的解决过程,从中认识分式,并能概括分式2、使学生能正确地判断一个代数式是否是分式3、能通过回忆分数的意义,类比地探索分式的意义及分式的值如某一特定情况的条件,渗透数学中的类比,分类等数学思想。
教学重点:探索分式的意义及分式的值为某一特定情况的条件。
教学难点:能通过回忆分数的意义,探索分式的意义。
教学过程:一、做一做(1)面积为2平方米的长方形一边长3米,则它的另一边长为_____米;(2)面积为S 平方米的长方形一边长a 米,则它的另一边长为________米;(3)一箱苹果售价p 元,总重m 千克,箱重n 千克,则每千克苹果的售价是___元;二、概括: 形如BA (A 、B 是整式,且B 中含有字母,B ≠0)的式子,叫做分式.其中A 叫做分式的分子,B 叫做分式的分母.整式和分式统称有理式, 即有理式 整式,分式.三、例题:例1 下列各有理式中,哪些是整式哪些是分式(1)x 1; (2)2x ; (3)y x xy +2; (4)33y x -. 解:属于整式的有:(2)、(4);属于分式的有:(1)、(3).注意:在分式中,分母的值不能是零.如果分母的值是零,则分式没有意义.例如,在分式a S 中,a ≠0;在分式nm -9中,m ≠n. 例2 当x 取什么值时,下列分式有意义(1)11-x ; (2)322+-x x . 分析 要使分式有意义,必须且只须分母不等于零.解 (1)分母1-x ≠0,即x ≠1.所以,当x ≠1时,分式11-x 有意义. (2)分母23+x ≠0,即x ≠-23. 所以,当x ≠-23时,分式322+-x x 有意义. 四、练习:P5习题第3题(1)(3)1.判断下列各式哪些是整式,哪些是分式 9x+4, x 7 , 209y +, 54-m , 238y y -,91-x 2. 当x 取何值时,下列分式有意义(1) (2) (3) 3. 当x 为何值时,分式的值为0 (1) (2) (3) 五、小结:什么是分式什么是有理式六、作业:P5习题第1、2题,第3题(2)(4)教学反思:§ 分式的基本性质教学目标:1、掌握分式的基本性质,掌握分式约分方法,熟练进行约分,并了解最简分式的意义。
华东师大版八年级数学下全册教案
华东师大版八年级数学下全册教案第17章分式§教学目标:1、经历实际问题的解决过程,从中认识分式,并能概括分式2、使学生能正确地判断一个代数式是否是分式3、能通过回忆分数的意义,类比地探索分式的意义及分式的值如某一特定情况的条件,渗透数学中的类比,分类等数学思想。
教学重点:探索分式的意义及分式的值为某一特定情况的条件。
教学难点:能通过回忆分数的意义,探索分式的意义。
教学过程:一、做一做(1)面积为2平方米的长方形一边长3米,则它的另一边长为_____米;(2)面积为S平方米的长方形一边长a米,则它的另一边长为________米;(3)一箱苹果售价p元,总重m千克,箱重n千克,则每千克苹果的售价是___元;二、概括:A(A、B是整式,且B中含有字母,B≠0)的式子,叫形如B做分式.其中 A 叫做分式的分子,B 叫做分式的分母.整式和分式统称有理式, 即有理式 整式,分式.三、例题:例1 下列各有理式中,哪些是整式?哪些是分式?(1)x 1; (2)2x ; (3)y x xy +2; (4)33yx -. 解:属于整式的有:(2)、(4);属于分式的有:(1)、(3). 注意:在分式中,分母的值不能是零.如果分母的值是零,则分式没有意义.例如,在分式a S 中,a ≠0;在分式nm -9中,m ≠n.例2 当x 取什么值时,下列分式有意义?(1)11-x ; (2)322+-x x . 分析 要使分式有意义,必须且只须分母不等于零. 解 (1)分母1-x ≠0,即x ≠1.所以,当x ≠1时,分式11-x 有意义. (2)分母23+x ≠0,即x ≠-23. 所以,当x ≠-23时,分式322+-x x 有意义. 四、练习:P5习题17.1第3题(1)(3)1.判断下列各式哪些是整式,哪些是分式?9x+4, x 7 , 209y +, 54-m , 238y y -,91-x 2. 当x 取何值时,下列分式有意义?4522--x x xx 235-+23+x(1) (2) (3) 3. 当x 为何值时,分式的值为0?(1) (2) (3)五、小结:什么是分式?什么是有理式? 六、作业:P5习题17.1第1、2题,第3题(2)(4) 教学反思:§教学目标:1、掌握分式的基本性质,掌握分式约分方法,熟练进行约分,并了解最简分式的意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第16章 分式§16.1.1 分式的概念教学目标:1、知识与技能:经历实际问题的解决过程,从中认识分式,并能概括分式 的意义。
2、过程与方法:使学生能正确地判断一个代数式是否是分式,能通过回忆 分数的意义,类比地探索分式的意义。
3、情感态度与价值观:渗透数学中的类比,分类等数学思想。
教学重点:探索分式的意义及分式的值为某一特定情况的条件。
教学难点:能通过回忆分数的意义,探索分式的意义。
教学过程:一、做一做(1)面积为2平方米的长方形一边长3米,则它的另一边长为_____米; (2)面积为S 平方米的长方形一边长a 米,则它的另一边长为________米; (3)一箱苹果售价p 元,总重m 千克,箱重n 千克,则每千克苹果的售价是___元; 二、概括:形如BA(A 、B 是整式,且B 中含有字母,B ≠0)的式子,叫做分式.其中 A 叫做分式的分子,B 叫做分式的分母.整式和分式统称有理式, 即有理式 整式,分式.三、例题:例1 下列各有理式中,哪些是整式?哪些是分式?(1)x 1; (2)2x ; (3)y x xy +2; (4)33yx -.解:属于整式的有:(2)、(4);属于分式的有:(1)、(3).注意:在分式中,分母的值不能是零.如果分母的值是零,则分式没有意义.例如,在分式aS 中,a ≠0;在分式n m -9中,m ≠n.例2 当x 取什么值时,下列分式有意义?(1)11-x ; (2)322+-x x .分析 要使分式有意义,必须且只须分母不等于零. 解 (1)分母1-x ≠0,即x ≠1.所以,当x ≠1时,分式11-x 有意义.(2)分母23+x ≠0,即x ≠-23.所以,当x ≠-23时,分式322+-x x 有意义.四、练习:P5习题17.1第3题(1)(3)1.判断下列各式哪些是整式,哪些是分式? 9x+4, x 7 , 209y +, 54-m , 238y y -,91-x2. 当x 取何值时,下列分式有意义? (1) (2) (3)3. 当x 为何值时,分式的值为0?(1) (2) (3) 4522--x x x x 235-+23+x x x 57+xx 3217-x x x --221五、小结:什么是分式?什么是有理式?六、作业:P5习题17.1第1、2题,第3题(2)(4)七、教学反思:通过分式概念的教学,让学生懂得了什么时分式,知道了分式与整式的区别,了解了分式成立的条件,为以后的学习打好了基础。
§16.1.2 分式的基本性质教学目标:1、知识与技能:掌握分式的基本性质,掌握分式约分方法,熟练进行约分并了解最简分式的意义。
2、过程与方法:使学生理解分式通分的意义,掌握分式通分的方法及步骤。
3、情感态度与价值观:能通过回忆分数的意义,类比地探索分式的性质,渗透数学中的类比,分类等数学思想。
教学重点:让学生知道约分、通分的依据和作用,学会分式约分与通分的方法。
教学难点:1、分子、分母是多项式的分式约分;2、几个分式最简公分母的确定。
教学过程:一、分式的基本性质分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变. 用式子表示是:MB MA B A M B M A B A ÷÷=⨯⨯=, ( 其中M 是不等于零的整式)。
与分数类似,根据分式的基本性质,可以对分式进行约分和通分.二、例3 约分(1)4322016xy y x -; (2)44422+--x x x分析 分式的约分,即要求把分子与分母的公因式约去.为此,首先要找出分子与分母的公因式.解(1)4322016xyy x -=-y xy x xy 544433⋅⋅=-y x 54. (2)44422+--x x x =2)2()2)(2(--+x x x =22-+x x . 约分后,分子与分母不再有公因式. 分子与分母没有公因式称为最简分式..... 三、练习:P5 练习 第1题:约分(1)(3)四、例4 通分(1)ba 21,21ab ; (2)y x -1,y x +1; (3)221y x -,xy x +21 解 (1)ba 21与21ab 的最简公分母为a 2b 2,所以b a 21=b b a b ⋅⋅21=22b a b , 21ab =a ab a ⋅⋅21=22ba a. (2)y x -1与yx +1的最简公分母为(x -y )(x +y ),即x 2-y 2,所以y x -1=))((1y x y x y x +-+⋅)(=22y x y x -+, y x +1=))(()(1y x y x y x -+-⋅=22y x y x --. 请同学们根据这两小题的解法,完成第(3)小题。
五、练习P5 练习 第2题:通分六、作业:P5练习 1约分:第(2)(4)题,习题17.1第4题 七、课后反思:(1)请你分别用数学语言和文字表述分式的基本性质; (2)分式的约分运算,用到了哪些知识?让学生发表,互相补充,归结为:①因式分解;②分式基本性质;③分式中符号变换规律;约分的结果是,一般要求分、分母不含“-”。
(3)把几个异分母的分式,分别化成与原来分式相等的同分母的分式,叫做分式的通分。
分式通分,是让原来分式的分子、分母同乘以一个适当的整式,根据分式基本性质,通分前后分式的值没有改变。
通分的关键是确定几个分式的公分母,从而确定各分式的分子、分母要乘以什么样的“适当整式”,才能化成同一分母。
确定公分母的方法,通常是取各分母所有因式的最高次幂的积做公分母,这样的公分母叫做最简公分母。
§16.2 分式的运算 §16.2.1 分式的乘除法教学目标:1、知识与技能:让学生通过实践总结分式的乘除法,并能较熟练地进行式的乘除法运算。
2、过程与方法:使学生理解分式乘方的原理,掌握乘方的规律,并能运用 乘方规律进行分式的乘方运算3、情感态度与价值观:引导学生通过分析、归纳,培养学生用类比的方法探索新知识的能力教学重点:分式的乘除法、乘方运算 教学难点:分式的乘除法、混合运算,以及分式乘法,除法、乘方运算中符号的确定。
教学过程:一、复习与情境导入1、(1) :什么叫做分式的约分?约分的根据是什么? (2):下列各式是否正确?为什么?2、尝试探究:计算:(1)a b b a 32232⋅; (2)b ab a 232÷.概括:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母.如果得到的不是最简分式,应该通过约分进行化简.分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.(用式子表示如右图所示)二、例题: 例1计算:(1)x b ay by x a 2222⋅; (2)222222xb yz a z b xy a ÷.回忆:如何计算10965⨯、4365÷?从中可以得到什么启解 (1)x b ay by x a 2222⋅=x b by ay x a 2222⋅⋅=33b a . (2)222222xb yz a z b xy a ÷=yz a x b z b xy a 222222⋅=33z x .例2计算:493222--⋅+-x x x x . 解 原式=)2)(2()3)(3(32-+-+⋅+-x x x x x x =23+-x x . 三、练习:P7 第1题 四、思考怎样进行分式的乘方呢?试计算:(1)(m n )3 (2)(mn)k (k 是正整数)(1)(mn )3 =m nm n m n ⋅⋅=)()(m m m n n n ••••=________; (2)(m n)k =个k m n m n m n ⋅⋅⋅=)()(m m m n n n •••••• =___________. 仔细观察所得的结果,试总结出分式乘方的法则.五、作业:P9习题19.2第1题 P7练习:第2题:计算 六、课后反思:1、怎样进行分式的乘除法?2、怎样进行分式的乘方?3、分式的乘除法是基本计算,学生务必重点掌握,为以后的学习打好基础。
回忆:如何计算5251+、6141+,§16.2.2 分式的加减法教学目标:1、知识与技能:使学生掌握同分母、异分母分式的加减,能熟练地进行同 分母,异分母分式的加减运算。
2、过程与方法:通过同分母、异分母分式的加减运算,复习整式的加减运 算、多项式去括号法则以及分式通分,培养学生分式运算的能力。
3、情感态度与价值观:渗透类比、化归数学思想方法,培养学生的能力。
教学重点:让学生熟练地掌握同分母、异分母分式的加减法。
教学难点:分式的分子是多项式的分式减法的符号法则,去括号法则应用。
教学过程:一、实践与探索1、回忆:同分母的分数的加减法法则:同分母的分数相加减,分母不变,把分子相加减。
2、试一试: 计算:(1)a a b 2+;(2)ab a 322-3、总结一下怎样进行分式的加减法?概括:同分母的分式相加减,分母不变,把分子相加减;异分母的分式相加减,先通分,变为同分母的分式,然后再加减. 二、例题1、例3计算:xy y x xy y x 22)()(--+ 2、例4 计算:1624432---x x . 分析..这里两个加项的分母不同,要先通分.为此,先找出它们的最简公分母. 注意到162-x =)4)(4(-+x x ,所以最简公分母是)4)(4(-+x x解 1624432---x x =)4)(4(2443-+--x x x =)4)(4(24)4)(4()4(3-+--++x x x x x =)4)(4(24)4(3-+-+x x x =)4)(4(123-+-x x x =)4)(4()4(3-+-x x x =43+x 三、练习:P9第1题(1)(3)、第2题(1)(3)四、作业:P9习题17.2第2、3、4题 五、课后反思:1、同分母分式的加减法:类似于同分母的分数的加减法;2、异分母分式的加减法步骤:①. 正确地找出各分式的最简公分母。
求最简公分母概括为:(1)取各分母系数的最小公倍数;(2)凡出现的字母为底的幂的因式都要取;(3)相同字母的幂的因式取指数最大的。
取这些因式的积就是最简公分母。
②. 准确地得出各分式的分子、分母应乘的因式。
③. 用公分母通分后,进行同分母分式的加减运算。
④. 公分母保持积的形式,将各分子展开。
⑤. 将得到的结果化成最简分式(整式)。
§16.3 可化为一元一次方程的分式方程(1)教学目标:1、知识与技能:使学生理解分式方程的意义,会按一般步骤解可化为一元一次方程的分式方程.2、过程与方法:使学生理解增根的概念,了解增根产生的原因,知道解分式方程须验根并掌握验根的方法.3、情感态度与价值观:使学生领会“转化”的思想方法,认识到解分式方程的关键在于将它转化为整式方程来解;培养学生自主探究的意识,提高学生观察能力和分析能力。