综合实验-溶胶凝胶法制备

合集下载

溶胶凝胶法制备二氧化钛的实验流程

溶胶凝胶法制备二氧化钛的实验流程

溶胶凝胶法制备二氧化钛的实验流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor.I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!溶胶-凝胶法制备二氧化钛的实验过程详解溶胶-凝胶法是一种广泛应用于制备纳米材料,特别是二氧化钛(TiO2)的化学合成方法。

实验溶胶凝胶法制备纳米二氧化钛实验

实验溶胶凝胶法制备纳米二氧化钛实验

实验八溶胶-凝胶法制备纳米二氧化钛实验一、实验目的1、掌握溶胶-凝胶法制备纳米粒子的原理;2、了解TiO2纳米粒子光催化机理;二、实验原理溶胶-凝胶法Sol-Gel法是指无机物或金属醇盐经过溶液、溶胶、凝胶而固化,再经热处理而成的氧化物或其它化合物固体的方法;溶胶凝胶法制备TiO2纳米粒子是通过钛酸四丁酯的水解和缩聚反应来实现的,其分步水解方程式为:TiORn+H2OTiOHORn-1+ROHTiOHORn-1+H2OTiOH2ORn-2+ROH……反应持续进行,直到生成TiOHn.缩聚反应:—Ti—OH+HO—Ti——Ti—O—Ti+H2O—Ti—OR+HO—Ti——Ti—O—Ti+ROH最后获得氧化物的结构和形态依赖于水解与缩聚反应的相对反应程度,当金属-氧桥-聚合物达到一定宏观尺寸时,形成网状结构从而溶胶失去流动性,即凝胶形成;三、原料及设备仪器1、原料:钛酸正四丁脂分析纯、无水乙醇分析纯、冰醋酸分析纯、盐酸分析纯、蒸馏水2、设备仪器:电磁搅拌器、恒温干燥箱、高温炉四、实验步骤以钛酸正丁酯TiOC4H94为前驱物,无水乙醇C2H5OH为溶剂,冰醋酸CH3COOH为螯合剂,从而控制钛酸正丁酯均匀水解,减小水解产物的团聚,得到颗粒细小且均匀的二氧化钛溶胶;1、室温下量取10mL钛酸丁酯,缓慢滴入到35mL无水乙醇中,用磁力搅拌器强力搅拌10min,混合均匀,形成黄色澄清溶液A;2、将2mL冰醋酸和10mL蒸馏水加到另35mL无水乙醇中,剧烈搅拌,得到溶液B,滴入2-3滴盐酸,调节pH值使pH=3;3、室温水浴下,在剧烈搅拌下将溶液A缓慢滴入溶液B中;4、滴加完毕后得浅黄色溶液,40℃水浴搅拌加热,约1h后得到白色凝胶倾斜烧瓶凝胶不流动;5、置于80℃下烘干,大约20h,得黄色晶体,研磨,得到淡黄色粉末;6、在600℃下热处理2h,得到二氧化钛纯白色粉体;五、思考题1、溶胶-凝胶法制备材料有哪些优点2、纳米二氧化钛粉体有哪些用途六、实验报告要求实验报告按照学校统一模板书写,包括下列内容:1、实验名称、目的和实验步骤;2、解答思考题;。

溶胶凝胶法实验报告

溶胶凝胶法实验报告

一、实验目的1. 了解溶胶凝胶法制备纳米TiO2微粉的原理和方法。

2. 掌握溶胶凝胶法制备纳米TiO2微粉的实验步骤和操作技巧。

3. 通过实验,观察纳米TiO2微粉的形貌和性能,分析影响制备效果的因素。

二、实验原理溶胶凝胶法是一种将前驱体溶液转化为凝胶,再通过干燥、烧结等步骤制备纳米材料的方法。

该方法具有工艺简单、成本低、可控性强等优点。

在本实验中,以钛酸丁酯为前驱体,通过水解、缩合反应制备纳米TiO2微粉。

三、实验材料与仪器1. 实验材料:- 钛酸丁酯- 无水乙醇- 水合肼- 氢氧化钠- 去离子水2. 实验仪器:- 电子天平- 磁力搅拌器- 恒温水浴锅- 超声波清洗器- 干燥箱- 扫描电子显微镜(SEM)- X射线衍射仪(XRD)四、实验步骤1. 配制前驱体溶液:将钛酸丁酯与无水乙醇按一定比例混合,搅拌均匀。

2. 水解反应:将配制好的前驱体溶液置于磁力搅拌器中,加入一定量的水合肼,控制反应温度在80℃左右,搅拌反应2小时。

3. 缩合反应:在反应体系中加入一定量的氢氧化钠溶液,继续搅拌反应2小时。

4. 干燥:将反应得到的凝胶在干燥箱中干燥24小时,得到干燥的TiO2微粉。

5. 性能测试:使用SEM和XRD对制备的TiO2微粉进行形貌和结构表征。

五、实验结果与分析1. 形貌分析:通过SEM观察,制备的TiO2微粉呈球形,粒径分布均匀,平均粒径约为50nm。

2. 结构分析:通过XRD分析,制备的TiO2微粉具有锐钛矿型结构,晶粒尺寸约为20nm。

3. 影响因素分析:- 反应温度:随着反应温度的升高,TiO2微粉的粒径逐渐减小,但超过一定温度后,粒径反而增大。

- 反应时间:反应时间越长,TiO2微粉的粒径越小,但过长的反应时间会导致部分微粉团聚。

- 水合肼和氢氧化钠的用量:适量的水合肼和氢氧化钠有利于TiO2微粉的生成,但过量会降低微粉的粒径。

六、实验结论1. 溶胶凝胶法是一种制备纳米TiO2微粉的有效方法,具有工艺简单、成本低、可控性强等优点。

溶胶-凝胶法制备TiO2-SiO2复合粉体

溶胶-凝胶法制备TiO2-SiO2复合粉体

2011-2012第1学期期末综合实验报告溶胶-凝胶法制备TiO2-SiO2复合粉体姓名:学号:0812207123班级:材本0804指导教师:何静题目:溶胶-凝胶法制备TiO2-SiO2复合粉体一、实验目的及要求(1)了解并撑握进行科学研究的过程,提高学生的逻辑思维能力,为以后进行科学研究奠定基础。

(2)提高学生的实验动手能力和科学分析能力,使学生通过这次锻炼能够撑握科学实验的过程,从而激发对科学研究的兴趣。

(3)通过本次综合实验,使学生把书本上的理论和实际结合起来,从而达到学以致用的目的。

(4)写出完整的实验报告,重点分析实验结果并进行详细的讨论,提高学生的数据处理能力。

二、实验原理溶胶—凝胶法是一种湿法化学工艺,由金属醇盐或其它盐类溶解在醇醚等有机溶剂中形成均匀的溶液,溶液再通过水解和缩聚反应形成溶胶,进一步的聚合反应经过溶胶—凝胶转变形成凝胶。

在低温阶段发生的溶胶到凝胶的转变过程,可以用来制备涂层。

采用溶胶—凝胶法的基本过程是:易于水解的金属化合物(无机盐)在某种溶剂中与水发生反应,经过水解与缩聚过程而逐渐凝胶化。

其基本的反应过程是水解反应和聚合反应。

反应方程式如下(以合成氧化钛为例):水解反应:Ti-OR+H2O→Ti-OH+ROH聚合反应:Ti-OH+RO-Ti→Ti-O-Ti+ROHTi-OH+OH-Ti→Ti-O-Ti+H2O式中:R﹦C4H9由于溶胶—凝胶法是目前广为采用的纳米粉体制备方法,因此本研究采用溶胶-凝胶法制备TiO2-SiO2超细粉体。

即采用钛酸丁酯、正硅酸乙脂为主要原料,加入去离子水和无水乙醇配制成反应溶液,并加入乙酰丙酮作抑制剂以缓解钛酸丁酯的强烈水解作用,从而形成均匀而透明的溶胶。

溶胶经干燥、煅烧后制备成TiO2-SiO2粉体。

三、实验内容(1)撑握TiO2光催化剂的制备机理及方法。

(2)探究溶胶pH值的变化对TiO2-SiO2溶胶性能的影响机理及规律。

(3)考察水浴温度的不同对TiO2-SiO2溶胶性能的影响及规律。

溶胶——凝胶法制备

溶胶——凝胶法制备

溶胶—凝胶法制备Y3Al5O12:Ce荧光粉一、实验目的1. 了解溶胶—凝胶法制备粉体的基本原理。

2. 掌握Y3Al5O12:Ce荧光粉等发光材料的合成方法。

3. 掌握材料的物相组成、显微结构、发光性能等表征技术。

二、实验原理自1994年日本科学家Shuji Nakamura在GaN基材料上研制出第一只蓝光LED以来, 半导体照明技术逐渐成为业界的研究热点。

因具有省电、体积小、发热量低、寿命长、响应快、抗震耐冲、可回收、无污染、可平面封装、易开发成轻薄短小产品等优点,使白光LED 正成为新一代照明光源的发展方向。

目前,白光LED工艺主要是采用蓝光LED芯片来激发黄色荧光粉YAG:Ce,其产品已获得工业化应用。

现行制备YAG:Ce的主要方法是固相烧结法,但其合成温度高、荧光粉形状不规则、粒径偏大、粉碎导致光损失,严重影响其使用性能。

溶胶—凝胶(Sol—gel)法就是将金属氧化物或氢氧化物的浓溶液变为凝胶,再将凝胶干燥后进行煅烧,然后制得氧化物超微细粉的方法。

这种方法适用于能形成溶胶且溶胶可以转化为凝胶的氧化物系。

溶胶—凝胶法作为当前制备各种功能材料和结构材料的重要方法,其反应物以分子(离子)形式相互溶合,可以直接进行分子量级的化学反应,从而大大降低了材料的合成温度,这就为较低温合成粉体材料提供了可行途径。

三、实验原料、仪器设备1. 实验原料:氧化钇,九水硝酸铝,六水硝酸铈,柠檬酸,硝酸,氨水,去离子水,无水乙醇2. 仪器设备:磁力搅拌器,烧杯,量筒,研钵,药勺,陶瓷坩埚,pH计,电子天平,胶头滴管,毛刷,水浴箱,离心机,真空干燥箱,马弗炉,X-射线衍射仪四、实验步骤1. 称取0.559g氧化钇粉体,倒入100mL烧杯中,再加入适量的硝酸,在磁力加热搅拌器上溶解氧化钇,控制处理温度为50℃,搅拌至获得无色透明的溶液。

2. 将步骤1得到的硝酸钇溶液加热至干燥状态,使多余的硝酸挥发掉。

3. 称量3.145g九水硝酸铝、0.0364g六水硝酸铈、2.819g柠檬酸,将这些试剂倒入步骤1的烧杯中。

溶胶-凝胶法制备掺氟二氧化锡

溶胶-凝胶法制备掺氟二氧化锡

景德镇陶瓷学院测试技术综合性实验题目:溶胶-凝胶法制备掺氟二氧化锡(FTO)透明导电薄膜学号:姓名:院(系):专业:指导教师:二○一○年十二月溶胶-凝胶法制备掺氟二氧化锡(FTO)透明导电薄膜摘要透明导电薄膜是一种重要的光电材料,透明导电薄膜既有高导电性,又在可见光范围内有很高的透光性,在光电产业中有着很高的应用前景,己经成为微电子学、光电子学、磁电子学、材料表面改性、传感器、太阳能利用、液晶显示等新兴交叉科学的重要材料基础。

透明导电薄膜本身具有高的载流子浓度,是电的良导体;并在不同的电磁波频率范围内具有光选择性,它会反射红外光,并吸收紫外光,又使可见光穿透。

由于具有这些优异的特性,使其在太阳能电池、液晶显示器、气体传感器、飞机和汽车导热窗玻璃(防雾和防结冰)等领域得到广泛应用。

透明导电薄膜的质量主要体现在薄膜的结构、表面形貌、在其可见光区的透射率和电阻率。

FTO即SnO2掺杂F的透明导电薄膜材料,因其具有良好的透光率,导电性等光电特性,现今已愈来愈受到导电薄膜界的重视。

本文以溶胶一凝胶法制备出FTO透明导电薄膜。

经XRD分析表明,FTO薄膜为四方金红石结构,其晶格常数为:a=0.4738nm,c=0.3191nm,晶粒大小为40.5nm.扫描电镜拍照了它的表观形貌,如图4所示。

从图4中看出,膜表面由均匀致密的晶粒组成。

关键词:二氧化锡 FTO薄膜溶胶-凝胶法透明导电薄膜1前言综述国内外关于氧化锡透明导电薄膜制备的有关文献,掺氟氧化锡薄膜的制备主要是以喷涂、高温热分解、CVD等方法为主,氟源主要是NH4F或HF,用溶胶一凝胶法的很少,原因在于掺杂剂的选择非常困难,尤其对于无机盐溶胶一凝胶法来说更是如此,如何选择掺杂剂使得在能够有效掺杂的条件下不影响薄膜的质量,应该是溶胶一凝胶法法制备FTO薄膜的首要问题。

2实验过程2.1以金属无机盐氯化亚锡为原料,利用溶胶一凝胶法制备二氧化锡溶胶,然后用提拉法制备FTO透明导电薄膜,薄膜用500摄氏度进行热处理,热处理后用玻璃刀把薄膜裁成3mm*3mm大小样品;将二氧化锡溶胶烘干后500摄氏度煅烧成粉末,用研钵进行研磨,细度要求过200目筛。

溶胶—凝胶法制备ZnO薄膜

溶胶—凝胶法制备ZnO薄膜

溶胶—凝胶法制备ZnO薄膜一、本文概述本文旨在探讨溶胶-凝胶法制备ZnO薄膜的工艺及其相关特性。

ZnO薄膜作为一种重要的半导体材料,在光电子器件、太阳能电池、气体传感器等领域具有广泛的应用前景。

溶胶-凝胶法作为一种制备薄膜材料的常用技术,具有工艺简单、成本低廉、易于控制等优点,因此受到广大研究者的关注。

本文将首先介绍溶胶-凝胶法的基本原理和步骤,然后详细阐述制备ZnO薄膜的具体过程,包括前驱体溶液的配制、溶胶的制备、凝胶的形成以及薄膜的成膜过程。

接着,我们将讨论制备过程中可能影响薄膜性能的因素,如溶胶浓度、凝胶温度、退火条件等,并通过实验验证这些因素的影响。

我们将对制备得到的ZnO薄膜进行表征和分析,包括其结构、形貌、光学性能和电学性能等方面。

通过对比不同制备条件下的薄膜性能,优化制备工艺参数,为实际应用提供指导。

本文的研究结果有望为ZnO薄膜的制备和应用提供有益的参考。

二、溶胶—凝胶法原理溶胶-凝胶法(Sol-Gel)是一种湿化学方法,用于制备无机材料,特别是氧化物薄膜。

该方法基于溶液中的化学反应,通过控制溶液中的化学反应条件,使溶液中的物质发生水解和缩聚反应,从而生成稳定的溶胶。

随着反应的进行,溶胶中的颗粒逐渐增大并相互连接,形成三维网络结构,最终转化为凝胶。

在制备ZnO薄膜的溶胶-凝胶法中,通常使用的起始原料是锌的盐类(如硝酸锌、醋酸锌等)和溶剂(如乙醇、水等)。

锌盐在溶剂中溶解形成溶液,然后通过加入水或其他催化剂引发水解反应。

水解产生的锌离子与溶剂中的羟基(OH-)结合,形成氢氧化锌(Zn(OH)2)的胶体颗粒。

这些胶体颗粒在溶液中均匀分散,形成溶胶。

随着反应的进行,溶胶中的氢氧化锌颗粒逐渐长大,并通过缩聚反应相互连接,形成三维的凝胶网络。

凝胶网络中的空隙被溶剂填充,形成湿凝胶。

湿凝胶经过陈化、干燥和热处理等步骤,去除溶剂和有机残留物,同时促进ZnO晶体的生长和结晶,最终得到ZnO薄膜。

溶胶凝胶法制备drx材料

溶胶凝胶法制备drx材料

溶胶凝胶法制备drx材料
溶胶凝胶法是一种常用的材料制备方法,可以用于制备DRX材料。

具体步骤如下:
1. 准备溶胶:将所需的金属离子溶解在适当的溶剂中,形成溶胶。

可以选择不同的溶剂和金属离子组合,以得到所需的DRX材料。

2. 混合凝胶:将溶胶慢慢滴入适当的凝胶剂中,搅拌均匀。

凝胶剂的选择要根据所需的DRX材料来确定,以使得溶胶中的金属离子能够逐渐聚集形成凝胶。

3. 凝胶成型:将混合凝胶倒入模具中,通过调整溶胶和凝胶剂的比例和浓度,可以控制凝胶的形状和大小。

4. 凝胶成熟:将模具中的凝胶置于适当的条件下,例如室温或加热等,让凝胶逐渐成熟。

成熟的凝胶会形成均匀的结构,并且具有所需的DRX材料的化学组成。

5. 凝胶烧结:将成熟的凝胶进行烧结处理,以去除溶剂和凝胶剂,并形成DRX材料的致密结构。

烧结温度和时间要根据所需的DRX 材料来确定。

6. DRX材料制备完成:经过烧结处理后,溶胶凝胶法制备的DRX材料即可得到。

可以通过各种表征方法来验证其化学组成、结构和性能。

需要注意的是,溶胶凝胶法制备DRX材料的具体步骤和参数会根据所选的金属离子和溶剂、凝胶剂的不同而有所差异,需要根据具体情况进行调整和优化。

溶胶-凝胶法制备TiO2纳米薄膜材料材料化学实验1

溶胶-凝胶法制备TiO2纳米薄膜材料材料化学实验1

溶胶-凝胶法制备TiO 2纳米薄膜材料1、实验原理溶胶-凝胶法是以金属醇盐的水解和缩合反应为基础的,其反应过程可以用以下方程式表示:金属醇盐M(OR)n 溶于有机溶剂与水发生水解反应:xROH OR OH M O xH n OR M x n x +→+-)()()(2此反应可持续进行下去,直到生成M(OH)n 。

同吋也发生金属醇盐的缩聚反 应,分为失水缩聚和失醇缩聚:O H M O M M OH OH M 2+----→--+--(失水缩聚)ROH M O M M OH OR M +----→--+--(失醇缩聚)由于-M-0-M-桥氧键的形成,使得相邻两胶粒联在一起,这就是导致凝胶的胶粒间相互结合的机理。

2、实验部分2.1、实验药品及主要实验仪器实验药品:钛酸丁酯(化学纯)、冰醋酸、浓盐酸、二次蒸馏水,无水乙醇。

实验仪器:磁力加热搅拌器、电子天平、温度计、PH 计(PH 试纸)、恒温干燥箱、马弗炉、径直提拉制膜装置(如果没有手工也可以)、XRD 、量筒、烧杯、普通玻璃片(此用作为TiO 2基体)等。

2.2、实验预处理采用普通玻璃作为制备Ti02薄膜的基体,需要保证玻璃表面洁净,否则,经热处理后得不到均匀连续的Ti02膜。

基片清洗过程一般为:首先取出玻璃先用自来水清洗几遍,然后用二次蒸馏水清几遍洗,最后将玻璃片用无水乙醇清洗,干燥即可。

烧杯、量筒等容器用蒸馏水洗净、烘干后备用。

2.3实验具体步骤(1)、精确称取11.35g 钛酸丁酯,准确量取3ml 冰醋酸和12.60ml 无水乙醇。

(2)、常温下将钛酸丁酯和冰醋酸加到无水乙醇烧杯中,快速搅拌0.5h 使其均匀混合,得淡黄色透明混合溶液A 。

(3)、量取2.40 mL H 2O( 经二次蒸馏) 和4.80 mL 无水乙醇配成的溶液,并向混合溶液中滴加浓盐酸, 调pH 约为 1, 充分搅拌得到均匀溶液B 。

(4)、剧烈搅拌下将溶液 B 以约12滴/ min 的速率缓慢滴加到溶液A 中, 滴加完毕得到均匀透明的溶胶,缓慢将温度升至约40度, 继续搅拌3 h 左右, 通过溶剂慢慢挥发得半透明湿凝胶.2.4 Ti02薄膜的制备采用浸渍提拉技术制备Ti02薄膜的操作过程:将处理过的洁净的玻璃基体浸入到已配制好的Ti02溶胶中,均匀用力提拉得到Ti02湿膜。

实验三 溶胶-凝胶法合成TiO2纳米粉体

实验三 溶胶-凝胶法合成TiO2纳米粉体

盐的水解盐的水解-聚合反应 1)无机盐的水解 无机盐的水解1)无机盐的水解-聚合反应
金属醇盐的水解2) 金属醇盐的水解-聚合反应
溶胶溶胶-凝胶的转化
溶胶的浓度小于10% 体系中含有大量的溶剂(水或醇) 溶胶的浓度小于10%,体系中含有大量的溶剂(水或醇). 10 可通过化学方法控制溶胶中电解质的浓度,实现胶凝 可通过化学方法控制溶胶中电解质的浓度, 作用,胶凝化过程只是体系失去流动性, 体积不减小或 作用 , 胶凝化过程只是体系失去流动性, 只略为减小。 只略为减小。 也可蒸发溶胶体系中的溶剂, 使胶体颗粒互相靠近, 也可蒸发溶胶体系中的溶剂 , 使胶体颗粒互相靠近 , 制得凝胶. 制得凝胶.
凝胶(gel) 凝胶(gel): 可以通过改变某种条件(如降低温度或控制 可以通过改变某种条件(如降低温度或控制 溶胶中电解质的浓度等 使胶体溶液(sol) 溶胶中电解质的浓度等)使胶体溶液(sol)中的 溶胶颗粒不能发生相互位移, 溶胶颗粒不能发生相互位移,整个胶体溶液失去 流动性,变成半刚性的固相体系, 流动性,变成半刚性的固相体系,此种固相体系 就是凝胶体( gel) 就是凝胶体 ( gel ) , 这种由溶胶转变为凝胶的 过程被称为胶凝作用(gelation)。 )
钛酸四丁脂在酸性条件下, 钛酸四丁脂在酸性条件下,水解产物为含钛离子溶胶
Ti(O-C4H9)4 + 4H2O
Ti(OH)4 + 4C4H9OH
含钛离子溶液中钛离子通常与其它离子相互作用 形成复杂的网状基团, 形成复杂的网状基团,最后形成稳定凝胶
Ti(OH)4 +Ti(O-C4H9)4 Ti(OH)4 + Ti(OH)4
溶胶溶胶-凝胶合成法的基本过程
起始原料: 金属无机盐(硝酸盐、氯化物等), 金属醇盐, 起始原料: 金属无机盐( 硝酸盐、氯化物等), 金属醇盐, 醋酸 盐, 草酸盐和金属有机化合物等 基本过程: 基本过程: 将原料(前驱体)分散(溶解)在溶剂(水或有机溶剂) (1) 将原料(前驱体)分散(溶解)在溶剂(水或有机溶剂)中,经过 水解(或醇解)反应,反应生成物缩合聚集形成溶胶; 水解(或醇解)反应,反应生成物缩合聚集形成溶胶; 再经过胶凝作用或蒸出溶剂等制成凝胶; (2) 再经过胶凝作用或蒸出溶剂等制成凝胶; 最后经过干燥和热处理制备出粉体粒子和所需材料. (3) 最后经过干燥和热处理制备出粉体粒子和所需材料

溶胶-凝胶法制备TiO2薄膜

溶胶-凝胶法制备TiO2薄膜

实验名称:溶胶-凝胶法制备TiO2纳米薄膜材料纳米材料由于颗粒尺寸的微细化,使得纳米粉体在保持原物质化学性质的同时,与块状材料相比,在磁性、光吸收、热阻、化学活性、催化和熔点等方面表现出奇异的性能。

纳米TiO2具有五大效应:1.体积效应,当纳米粒子的尺寸与传导电子的德布罗意波相当或更小时,周期性的边界条件将被破坏,磁性、内压、光吸收、热阻、化学活性、催化性及熔点等都较普通粒子发生了很大的变化,这就是纳米粒子的体积效应;2.表面效应,表面效应是指纳米粒子表面原子与总原子数之比随着粒径的变小而急剧增大后所引起的性质上的变化,表现出很大的化学和催化活性;3.量子尺寸效应,粒子尺寸下降到一定值时,费米能级接近的电子能级由准连续能级变为分立能级的现象称为量子尺寸效应;4.宏观量子隧道效应,微观粒子具有贯穿势垒的能力称为隧道效应;5.介电限域效应。

这一系列效应导致了纳米材料在熔点﹑蒸气压﹑光学性质﹑化学反应性﹑磁性﹑超导及塑性形变等许多物理和化学方面都显示出特殊的性能。

基于上述特点,纳米TiO2具有广阔的应用前景。

利用纳米TiO2作光催化剂,可处理有机废水,其活性比普通TiO2(约10 μm)高得多;利用其透明性和散射紫外线的能力,可作食品包装材料、木器保护漆、人造纤维添加剂、化妆品防晒霜等;利用其光电导性和光敏性,可开发一种TiO2感光材料。

如何开发、应用纳米TiO2,已成为各国材料学领域的重要研究课题。

纳米TiO2的制备方法主要有:(1)惰性气体下蒸发凝聚法。

通常由具有清洁表面的、粒度为1-100nm的微粒经高压成形而成,纳米陶瓷还需要烧结。

国外用上述惰性气体蒸发和真空原位加压方法已研制成功多种纳米固体材料,包括金属和合金,陶瓷、离子晶体、非晶态和半导体等纳米固体材料。

我国也成功的利用此方法制成金属、半导体、陶瓷等纳米材料。

(2)化学方法:1.水热法,包括水热沉淀、合成、分解和结晶法,适宜制备纳米氧化物;2.水解法,包括溶胶-凝胶法、溶剂挥发分解法、乳胶法和蒸发分离法等。

溶胶凝胶法制备纳米二氧化钛的工艺条件实验

溶胶凝胶法制备纳米二氧化钛的工艺条件实验

溶胶凝胶法制备纳米二氧化钛的工艺条件实验【实验目的】1.掌握溶胶-凝胶法基本原理2.了解纳米TiO2的制备方法【背景介绍】纳米TiO2是一种n型半导体材料,晶粒尺寸介于1~100 nm,其晶型有两种:金红石型和锐钛型。

由于纳米TiO2比表面积大,表面活动中心多,因而具有独特的表面效应、小尺寸效应、量子尺寸效应和宏观量子隧道效应等,呈现出许多特有的物理、化学性质,在涂料、造纸、陶瓷、化妆品、工业催化剂、抗菌剂、环境保护等行业具有广阔的应用前景。

20世纪70年代末日本专利首次公开了纳米TiO2的制备方法,20世纪80年代才开始正式生产。

纳米TiO2的制备方法可归纳为物理方法和化学方法。

物理制备方法主要有机械粉碎法、惰性气体冷凝法、真空蒸发法、溅射法等;物理化学综合法又可大致分为气相法和液相法。

目前的工业化应用中,最常用的方法还是物理化学综合法。

本实验主要讨论溶胶-凝胶法( Sol - Gel法)制备纳米二氧化钛的最佳工艺条件的选择。

【仪器与试剂】试剂:钛酸丁酯(化学纯) 、无水乙醇(分析纯) 、95%乙醇(分析纯) 、冰醋酸(化学纯) 、羟基丙酯纤维素(化学纯) 、三乙胺(化学纯)。

仪器:电子天平,恒温磁力搅拌器,真空干燥箱,管式气氛炉,烧杯等玻璃仪器。

【实验步骤】1.样品的制备(1) 取17 mL的钛酸丁酯加入到盛有40 mL的无水乙醇的分液漏斗中混匀,得到溶液A;(2) 另取10 mL冰醋酸和42. 5mL的95%乙醇混匀得到溶液B;(3) 将A溶液缓慢地滴加到B溶液中并且用磁力搅拌器迅速地搅拌,得到透明的胶体;(4)室温下自然风干一段时间后再在烘箱中105℃左右进行烘干得到干凝胶;(5)将干凝胶研磨成粉,再置于马福炉中进行煅烧,得到二氧化钛微粒。

2. 样品的表征(1) 用激光粒度分布仪(Nano-S 90,JeolCO.,JAPAN)测定TiO2微粒的粒径和粒度分布。

【结果与讨论】(1) 解释红外光谱图,对各峰进行确认。

溶胶凝胶法制备氧化铁纳米材料

溶胶凝胶法制备氧化铁纳米材料

溶胶凝胶法制备氧化铁纳米材料一、实验原料硫酸亚铁:FeSO4·7H2O,分析纯;柠檬酸:C6H8O7·H2O,分析纯;聚乙二醇6000:化学纯,平均分子量为5500~7000;无水乙醇:分析纯;去离子水。

二、实验步骤将烧杯依次用质量分数15%的盐酸、去离子水在超声清洗仪中洗涤。

以去离子水与无水乙醇混合物作溶剂(体积比为3∶2),将质量分数分别为8.3%~9.2%、1.1%~1.5%、1.8%~2.3%的柠檬酸、硫酸亚铁和聚乙二醇加入上述溶剂,并在磁力搅拌的条件下溶解以配制前驱物。

在80~85℃水浴蒸发至湿凝胶,130℃条件下干燥发泡以获得干凝胶,凝胶在一定温度下煅烧而得氧化铁粉体。

三、表征测试1、粒径分析①开机预热15-20分钟。

②运行颗粒粒径测量分析系统。

③向样品池中倒入分散介质,分散介质液面没过进水口上侧边缘,打开排水阀,当看到排水管有液体流出时关闭排水阀(排出循环系统的气泡),开启循环泵,使循环系统中充满液体,然后关掉循环泵。

④点击“文件”“新建”选择合适的路径(如果之前已建有文件位置,可跳过这一步),然后再点“文件”“打开”找到刚才新建的文件夹打开。

点击“设置”“测试信息”然后“保存”“退出”后输入样品名称后点击保存。

⑤粒度分析仪打开循环泵,点“测试”按钮,然后在弹出框点击确定使测试软件进入基准测量状态;点击刷新,然后按“下一步”按钮,系统十秒后自动进入测试状态。

⑥软件自动到测试界面后,关闭循环泵和搅拌,抬起搅拌,将适量样品(根据遮光比控制加入样品的量)放入样品池中,如有必要可加入相应的分散剂。

⑦启动超声,并根据被测样品的分散难易程度选择适当的超声时间(一般为1-10分钟);启动搅拌器,并调节至适当的搅拌速速,使被测样品在样品池中分散均匀。

⑧启动循环泵,测试软件窗口显示测试数据,当数据稳定时,点击随机按钮存储测试数据。

⑨数据存储完毕,打开排水阀,被测液排放干净后关闭排水阀,加入清水或其他液体冲洗循环系统,重复冲洗至测试软件窗口粒度分布无显示时说明系统冲洗完毕;如果选择有机溶剂作为介质时,要清洗掉粘在循环系统内壁上的油性东西。

溶胶-凝胶化学法材料工艺实验报告

溶胶-凝胶化学法材料工艺实验报告

溶胶-凝胶化学法材料工艺实验报告
罗强材料物理112 2011034070
一、实验原理
溶胶凝胶法:溶胶凝胶法是以凝胶作为扩散和支持介质,使一些在溶液中进行的化学反应通过凝胶扩散缓慢进行,从而使溶解度较小的反应物在凝胶中逐渐形成晶体的方法。

二、实验仪器与药品
乙酸锌、电子天平、烧杯、玻璃棒、乙醇、量筒、乙醇胺、移液管、磁力搅拌器、燥箱、研钵、压片机、XRD衍射仪。

三、实验过程
1、计算实验所需的乙酸锌样品和乙醇胺的量,乙酸锌样品:10.8395g,乙醇胺:2.75mL。

2、用电子天平称取定量的乙酸锌样品置于烧杯中,用量筒量取100ml乙醇倒入烧杯。

3、把烧杯放入磁力搅拌器中在室温下搅拌5min。

4、用移液管量取2.75mL乙醇胺滴入烧杯中,把磁力搅拌器温度设置为60℃,控制搅拌速度。

当温度达到60℃时开始计时,30min后取出烧杯静置,并把搅拌器中的水倒掉。

5、由于时间原因,后续的制干凝胶、压片等工序均由老师完成。

6、用XRD衍射仪对压出来的片子进行衍射实验。

四、数据处理与分析
从图上可以看出我们组所得到的基片用XRD衍射仪测试时得到的最匹配物质就是ZnO。

会得到这样好的结果,主要是因为乙醇是易挥发性物质,在烘箱中制干凝胶时,乙醇会全部被蒸去,所以ZnO的浓度就很高。

五、实验思考
溶胶凝胶法制备材料最大的一个缺点就是周期长,所以这次试验制备的一些过程都由老师代替完成了,同学们动手的机会就相对少了一点。

但溶胶凝胶法制备材料是一种很普遍的方法,所以无论是在实验室还是在工业上这种方法都应用的比较多。

溶胶凝胶法详细实验步骤

溶胶凝胶法详细实验步骤

溶胶-凝胶法
1.仪器及试剂
试剂
钛酸丁脂(分析纯),无水乙醇(分析纯),冰醋酸(分析纯),蒸馏水
仪器
磁力搅拌器,搅拌子,量筒(10 mL, 50 mL),烧杯(100 mL),pH计,
烘箱,马弗炉
X一射线衍射(XRD-6000,XRD)和扫描电镜(KYKY2O08B,SEM)【Ps:我不知道实验室用来检测的仪器有哪些,看具体情况来做表征……】
2.实验步骤
1)配A、B液
A液:用量筒取10mL钛酸丁酯于烧杯中,在磁力搅拌棒搅拌下缓慢加入25mL 无水乙醇,混合均匀。

B液:用量筒取8mL蒸馏水于烧杯中,在磁力搅拌棒搅拌下缓慢加入24mL 无水乙醇,并加冰醋酸使溶液的pH=4.5,搅拌均匀,记录冰醋酸用量。

2)进行反应
在磁力搅拌棒搅拌下,将B溶液逐滴加入A溶液中,加完B液后继续搅拌2h,然后在空气中静置陈化(2-3h),获得TiO2湿溶胶。

3)焙烧
将湿溶胶置于设定温度为100℃的烘箱中干燥2 h,得到TiO2干凝胶,所得干凝胶在马弗炉(450-600℃)进行焙烧,烧结时间为 2 h,即可得到颗粒细小且均匀的纳米TiO
粉体.
2
4)产品表征
对所得的TiO2粉体的物相与形貌分别采用X一射线衍射(XRD-6000,XRD)和扫描电镜(KYKY2O08B,SEM)进行表征.。

溶胶—凝胶法制备薄膜型TiO2

溶胶—凝胶法制备薄膜型TiO2

浙江理工大学物理实验报告薄膜技术及应用姓名:刘彬学号:200920101017班级:应用化学物理实验室实验名称:溶胶一凝胶法制备薄膜型TiO2组别:1 日期:2010年12月23日成绩____________一、实验目的1•了解液溶胶凝胶法制备TiO2薄膜的原理。

2•掌握溶胶凝胶法制备薄膜的基本方法。

二、实验试剂钛酸四丁酯,乙醇,三乙醇胺三、实验原理溶胶凝胶法是将金属醇盐或无机盐作为前驱体,溶于溶剂(水或有机溶剂)中形成均匀的溶液,溶质与溶剂产生水解或醇解反应,反应生成物聚集成几个纳米左右的粒子并形成溶胶,再以溶胶为原料对各种基材进行涂膜处理,溶胶膜经凝胶化及干燥处理后得到干凝胶膜,最后在一定的温度下烧结即得到所需的涂层。

溶胶凝胶法制备薄膜不需要物理气相沉积法(PVD)和化学气相沉积法(CVD)那样复杂昂贵的设备,具有工艺简便,设备要求低以及适合于大面积制膜,而且薄膜化学组成比较容易控制,能从分子水平上设计、剪裁,特别适于制备多组元氧化物薄膜材料,已被认为是制备薄膜最有效的手段之。

四、实验过程:以钛酸四丁酯Ti(OC4H9)4为原料,按Ti(OC4H9)4:EtOH:H2O:C6H15NO3 (三乙醇胺)为10:35.8:0.52:4.40,将钛酸四丁酯溶于无水乙醇,再将少量乙醇与水混合,然后将两种溶液混合,用三乙醇胺作抑制剂,延缓钛酸四丁酯的强烈水解,磁力搅拌1h后,80C回流陈化10h,得到稳定,透明TiO2 溶胶。

将普通的载玻片分别用丙酮,乙醇,去离子水超声清洗20min后,以其作基底从TiO2溶胶中采用浸渍提拉法制备TiO2薄膜,提拉速度为4mm/s, 湿膜在80E干燥10min后,放入Nabertherm炉内,分别在400C, 500C,600C保温1h,取出自然冷却至室温,即制得TiO2纳米晶薄膜。

五、实验结果分析:1■薄膜XPS分析468 464 460 456 452Binding Enefgy/eV图1薄膜的XPS分析图1为薄膜样品中Ti元素X射线光电子能谱。

溶胶凝胶法制备SiO2凝胶

溶胶凝胶法制备SiO2凝胶
选择合适的催化剂,如盐酸、 硫酸等,以加速水解和聚合反 应。
干燥处理
将制备好的凝胶进行干燥处理, 除去残余溶剂和水分,得到 SiO2凝胶。
03
溶胶凝胶法制备SiO2凝胶的实 验步骤
实验前的准备
实验器材
确保实验室内具备所需的实验器 材,如烧杯、搅拌器、滴管、称 量纸等,并确保其清洁干燥。
试剂准备
根据实验需求,准备好适量的硅 酸乙酯、乙醇、蒸馏水等试剂, 并确保其质量合格。
玻璃材料
通过溶胶凝胶法制备的玻璃材料具有高透过率、低反射率 、高硬度和化学稳定性等优点,在光学、电子和建筑等领 域有广泛应用。
吸附剂
溶胶凝胶法制备的吸附剂具有高比表面积、高孔容、可调 孔径等优点,在气体分离、废水处理等领域有广泛应用。
02
SiO2凝胶的制备原理
SiO2凝胶的化学性质
稳定性
SiO2凝胶具有较高的热稳定性和化学稳定性,不易与 其他物质发生反应。
目前,溶胶凝胶法已经成为一种重要的材料制备技术,尤其在制备纳米材料和特种 陶瓷方面具有显著的优势。
溶胶凝胶法的应用领域
陶瓷材料
溶胶凝胶法制备的陶瓷材料具有高纯度、高致密性、高强 度等优点,广泛应用于电子、航空航天、能源等领域。
催化剂
溶胶凝胶法制备的催化剂具有高活性、高选择性、长寿命 等优点,在石油化工、环境保护等领域有广泛应用。
将制备好的SiO2凝胶进行洗涤 ,去除杂质,然后进行干燥处
理。
实验后处理与注意事项
废液处理
01
实验结束后,应将废液进行妥善处理,避免对环境造成污染。
实验记录
02
实验人员应及时记录实验过程和结果,以便后续分析和总结。
安全警示
03

溶胶凝胶制备实验报告(3篇)

溶胶凝胶制备实验报告(3篇)

第1篇一、实验目的1. 了解溶胶凝胶法制备陶瓷材料的基本原理和过程;2. 掌握溶胶凝胶法制备陶瓷材料的实验操作技巧;3. 熟悉陶瓷材料的性能测试方法。

二、实验原理溶胶凝胶法是一种以无机前驱体为原料,通过水解、缩聚反应形成溶胶,然后通过干燥、凝胶化、热处理等步骤制备陶瓷材料的方法。

该法制备的陶瓷材料具有纯度高、颗粒细、化学均匀性好等优点。

三、实验材料与仪器1. 实验材料:金属醇盐、水、乙醇、氨水、盐酸、硝酸等;2. 实验仪器:磁力搅拌器、烧杯、量筒、玻璃棒、烘箱、干燥器、电子天平、X 射线衍射仪(XRD)、扫描电子显微镜(SEM)等。

四、实验步骤1. 溶胶制备(1)将金属醇盐溶于乙醇中,配制成一定浓度的醇盐水溶液;(2)加入氨水调节pH值至7-8;(3)在室温下搅拌,使其充分水解;(4)加入适量的盐酸,调节pH值至5-6;(5)继续搅拌,形成均匀的溶胶。

2. 凝胶制备(1)将溶胶倒入烧杯中,室温下静置,使溶胶逐渐凝胶化;(2)待凝胶形成后,将其取出,用滤纸过滤;(3)将过滤后的凝胶放入烘箱中,于80℃下干燥12小时;(4)取出干燥后的凝胶,放入干燥器中备用。

3. 热处理(1)将干燥后的凝胶放入烘箱中,于600℃下煅烧2小时;(2)取出煅烧后的样品,放入干燥器中备用。

4. 性能测试(1)X射线衍射(XRD)测试:用于分析样品的物相组成;(2)扫描电子显微镜(SEM)测试:用于观察样品的微观形貌;(3)抗折强度测试:用于测试样品的力学性能。

五、实验结果与分析1. XRD测试结果实验制备的陶瓷材料主要由钙钛矿型结构组成,与理论值相符。

2. SEM测试结果实验制备的陶瓷材料表面光滑,无明显缺陷,微观形貌良好。

3. 抗折强度测试结果实验制备的陶瓷材料抗折强度达到30MPa,满足工程应用要求。

六、实验总结1. 通过溶胶凝胶法制备陶瓷材料,可以制备出具有良好性能的陶瓷材料;2. 实验过程中,应注意控制溶胶的pH值、凝胶化时间、干燥温度等参数,以获得最佳的制备效果;3. 溶胶凝胶法制备的陶瓷材料具有纯度高、颗粒细、化学均匀性好等优点,在工程应用中具有广泛的前景。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

综合实验:溶胶-凝胶法制备纳米TiO2微粉
1 实验目的:1. 用溶胶-凝胶法制备纳米TiO2微粉。

2.掌握溶胶-凝胶法制备纳米粒子的原理。

3.了解纳米粒子常用的表征手段。

2 实验原理
自70年代初发现二氧化钛电极具有光照下分解水的功能以来,有关二氧化钛半导体光催化剂的研究成为环境领域的一个热点。

用半导体光催化分解毒性有机物有两个优点:第一,适当选择催化剂,可以利用太阳能处理毒物,节约能源;第二,一些半导体的光生空穴具有很强的氧化能力,能彻底降解绝大多数有机物质,而且能将它们最后分解为二氧化碳、水和无机物,避免了用化学方法处理带来的二次污染。

制备纳米粒子的方法很多,如化学沉淀法、溶胶-凝胶法、水热法、微乳液法、反相胶团法、气相法等。

溶胶-凝胶法(Sol-Gel法)是指无机物或金属醇盐经过溶液、溶胶、凝胶而固化,再经热处理而成的氧化物或其它化合物固体的方法。

溶胶是指微小的固体颗粒悬浮分散在液相中,并且不停的进行布朗运动的体系。

根据粒子与溶剂间相互作用的强弱,通常将溶胶分为亲液型和憎液型两类。

由于界面原子的Gibbs自由能比内部原子高,溶胶是热力学不稳定体系。

凝胶是指胶体颗粒或高聚物分子互相交联,形成空间网状结构,在网状结构的孔隙中充满了液体(在干凝胶中的分散介质也可以是气体)的分散体系。

并非所有的溶胶都能转变为凝胶,凝胶能否形成的关键在于胶粒间的相互作用力是否足够强,以致克服胶粒-溶剂间的相互作用力。

对于热力学不稳定的溶胶,增加体系中粒子间结合所须克服的能垒可使之在动力学上稳定。

因此,胶粒间相互靠近或吸附聚合时,可降低体系的能量,并趋于稳定,进而形成凝胶。

该方法的优点是:(1)反应温度低,反应过程易于控制;(2)制品的均匀度和纯度高、均匀性可达分子或原子水平;(3)化学计量准确,易于改性,掺杂的范围宽(包括掺杂的量和种类);(4)从同一种原料出发,改变工艺过程即可获得不同的产品如粉料、薄膜、纤维等;(5)工艺简单,不需要昂贵的设备。

但目前该项技术还处于发展完善阶段,如采用的金属醇盐成本较高以及如何选择催化剂、溶液的pH值、水解、聚合温度以及防止凝胶在干燥过程中的开裂等。

随着科学工作者的不断努力,对溶胶-凝胶机理的进一步认识,其方法在制备新材料领域会得到更加广泛的应用。

钛酸四丁酯的水解反应为分步水解,方程式为:
Ti(OR)n+H2O Ti(OH)(OR)n-1+ROH
Ti(OH)(OR)n-1+H2O Ti(OH)2(OR)n-2+ROH
……
反应持续进行,直到生成Ti(OH)n.
缩聚反应:
—Ti—OH+HO—Ti——Ti—O—Ti+H2O
—Ti—OR+HO—Ti——Ti—O—Ti+ROH
最后获得氧化物的结构和形态依赖于水解与缩聚反应的相对反应程度,当金属-氧桥-聚合物达到一定宏观尺寸时,形成网状结构从而溶胶失去流动性,即凝胶形成。

纳米材料的表征方法包括:(1)粒度分析:激光粒度分析法、电镜法粒度分析法等;(2)形貌分析:扫描电镜、透射电镜、扫描探针显微镜和原子力显微镜等;(3)成分分析:包括体材料分析方法和表面与微区成分分析方法,体相材料分析方法有原子吸收光谱法,电感耦合等离子体发射法,X射线荧光光谱分析法。

表面与微区成分分析方法包括电子能谱分析法、电子探针分析方法、电镜-能谱分析方法和二次离子质谱分析方法等);(4)结构分析:X射线衍射,电子衍射等;(5)界面与表面分析:X射线光电子能谱分析,俄歇电子能谱仪等。

3 仪器和试剂
仪器:电磁搅拌器,离心机,恒温干燥厢,高温炉, TG/DTA320 热重/差热分析仪;Magna-550Ⅱ傅立叶变换红外光谱仪。

试剂:钛酸丁酯,无水乙醇,冰醋酸(各试剂均用A.R或C.P级产品)。

4 实验内容
4.1 样品制备
室温下将10mL钛酸四丁酯缓慢倒入50mL无水乙醇,放置几分钟,得到均匀透明的溶液(1),将10mL冰醋酸加入到10mL蒸馏水与40mL无水乙醇中,剧烈搅拌,得到溶液(2)。

再于剧烈搅拌下将已移入分液漏斗中的溶液(1)缓慢滴加到溶液(2)中,约25min滴完,得到均匀透明的溶胶,继续搅拌15min后,在室温下静置,待形成透明凝胶后,65℃下真空干燥,玛瑙碾磨,得到干凝胶粉末,再在500℃下于高温炉中煅烧2h便得到锐钛矿型TiO2纳米粉体。

改变溶液(2)的用量,探索凝胶形成条件。

4.2 反应产物表征
(1)将干燥后产物用TG/DTA320热重/差热分析仪进行热分析,条件:氮气气氛,升温速率为5℃/min,温度范围为室温至600℃。

(2)将煅烧后XRD分析。

思考题:
1.溶胶-凝胶法制备纳米氧化物过程中,哪些因素影响产物的粒子大小及其分布?
2.表面化学角度考虑,如何减少纳米粒子在干燥过程中的团聚?
3. 纳米粒子常用的表征手段有哪些?
参考文献
[1] K. TERABE,K. KATO,H. MIYAZAKI,S. YAMAGUCHI, A. IMAI wY. IGUCHI. Microstructure and crystallization behaviour of Ti02 precursor prepared by the sol-gel method using metal alkoxide,JOURNAL OF MATERIALS SCIENCE 29 (1994) 1617-1622
[2]YUTAKA HAGA,HEISHOKU Ant, RYUTOKU YOSOMIY Au. Photoconductive properties of TiO2 films prepared by the sol–gel method and its application, Journal of materials science 32 (1997) 3183-3188
[3]郭文华, 张军剑等. 溶胶-凝胶法及其制备纳米TiO2粉体的原理和研究进展[J]. 中国陶瓷工业, 2006, 13(5): 26-28.
[4]牛玉环, 李发堂等. 溶胶-凝胶法合成纳米TiO2 薄膜的研究进展[J].
材料导报, 2006, 20: 65-70.
[5]朱永法。

纳米材料的表征与测试技术,化学工业出版社,北京,2006。

相关文档
最新文档