相遇问题经典题型

合集下载

相遇问题练习题

相遇问题练习题

相遇问题练习题一、选择题1. 甲乙两人分别从A、B两地同时出发,相向而行,甲的速度为每小时5公里,乙的速度为每小时3公里,A、B两地相距15公里,两人相遇时甲走了多少公里?A. 5公里B. 6公里C. 7.5公里D. 10公里2. 一辆汽车和一辆摩托车同时从相距120公里的两地出发,汽车的速度为每小时60公里,摩托车的速度为每小时40公里,它们相遇时,汽车行驶了多少时间?A. 1小时B. 1.5小时C. 2小时D. 3小时3. 甲乙两船从河的两岸同时出发,甲船的速度为每小时20公里,乙船的速度为每小时15公里,它们在河中相遇后,甲船继续向前行驶了1小时到达对岸,求河宽是多少公里?A. 35公里B. 30公里C. 25公里D. 20公里二、填空题4. 甲乙两车分别从A、B两地同时出发,相向而行,甲车速度为x公里/小时,乙车速度为y公里/小时,A、B两地相距d公里,它们相遇时,甲车行驶了____公里。

5. 某校两支运动队从学校出发,分别向东西两个方向进行训练,东行队伍速度为每小时10公里,西行队伍速度为每小时8公里,2小时后两支队伍相距____公里。

6. 甲乙两船在静水中的速度分别为每小时a公里和每小时b公里,它们从河的两岸同时出发,相向而行,相遇时甲船行驶了c公里,求河宽为____公里。

三、解答题7. 甲乙两车从相距300公里的两地同时出发,甲车以每小时60公里的速度向东行驶,乙车以每小时40公里的速度向西行驶。

求它们相遇时各自行驶了多少时间?8. 甲乙两船在河中相向而行,甲船从上游出发,乙船从下游出发,甲船速度为每小时25公里,乙船速度为每小时20公里,两船相遇后,甲船继续行驶1小时到达下游,求河宽。

9. 甲乙两人分别从A、B两地出发,甲以每小时4公里的速度向B地前进,乙以每小时6公里的速度向A地前进,两人在距离A地10公里处相遇。

求A、B两地的实际距离。

四、应用题10. 某城市举行马拉松比赛,起点和终点相距42.195公里。

相遇问题经典题型

相遇问题经典题型

相遇问题经典题型经典习题1:两列火车同时从两地相对开出,甲列火车每小时行86千米,乙列火车每小时行102千米,经过5小时两车在途中相遇,求两地相距多少千米?(86+102)×5=940千米或者86×5+102×5=940千米经典习题2:甲、乙两人分别从相距20千米的两地同时出发相向而行,甲每小时走6千米,经过2小时后两人相遇,问乙每小时行多少千米?20÷2-6=4千米或者(20-6×2)÷2=4千米经典习题3:王明和妹妹两人从相距2000米的两地相向而行,王明每分钟行110米,妹妹每分钟行90米,如果一只狗与王明同时同向而行,每分钟行500米,遇到妹妹后,立即回头向王明跑去,遇到王明再向妹妹跑去,这样不断来回,直到王明和妹妹相遇为止。

狗共行了多少米?要求狗跑的路程,必须知道狗的速度和狗跑的时间,狗的速度是每分钟500米,狗的时间其实就是王明和妹妹相遇的时间。

相遇时间/狗跑的时间:2000÷(110+9=)=10(分钟)狗跑的路程:500×10=5000(米)经典习题4:甲每小时行7千米,乙每小时行5千米,两人由相隔18千米的两地相背而行,几小时后两人相隔54千米?其实两人真正相隔的是(54-18)千米(54-18)÷(7+5)=3小时经典习题5:甲乙两艘舰由相距418千米的两个港口同时相对开出,甲舰每小时行36千米,乙舰每小时行34千米,开出1小时候,甲舰因有紧急任务返回原港,又立即起航与乙舰继续相对开出,经过多少小时两舰相遇?其实两艘军舰行驶的总距离是(418+36×2)千米(418+36×2)÷(36+34)=7小时经典习题6:甲地到乙地快车每小时行32千米,慢车每小时行18千米,如果两车同时从甲乙两地相对开出,可在距中点35千米的地方相遇,甲乙两地相距是多少千米??35×2÷(32-18)=5小时——相遇时间(32+18)×5=250千米——甲乙距离。

小学相遇问题大全(例题解析11道练习题21道)

小学相遇问题大全(例题解析11道练习题21道)

相遇问题【含义】两个运动的物体同时由两地出发相向而行,在途中相遇。

这类应用题叫做相遇问题。

【数量关系】相遇时间=总路程÷(甲速+乙速)总路程=(甲速+乙速)×相遇时间【解题思路和方法】简单的题目可直接利用公式,复杂的题目变通后再利用公式。

例1、甲乙两人分别从相距20千米的两地同时出发相向而行,甲每小时走6千米,乙每小时走4千米,两人几小时后相遇?分析:相遇时间=路程和÷速度和=20÷(6+4)=2小时例2、甲乙两人分别从A、B两地同时出发相向而行,甲每小时行48千米,乙每小时行42千米,两车在离中点18千米处相遇,求AB两地间的距离分析:“两车在离中点18千米处相遇”,由于甲的速度更快,说明他们相遇时,甲过了中点18千米,而乙离中点18千米,那甲比乙多走了18+18=36千米,一小时甲比乙多走48-42=6千米,我们就可以算出相遇时间:36÷6=6小时,再依公式路程和=速度和×相遇时间=(48+42)×6=540千米例3、甲乙两人同时从A到B地,甲每分钟行250米,乙每分钟行90米,甲到达B地后立即返回A地,在离B地1200米处与乙相遇,A、B两地相距多少千米?分析:画图,从图中我们可以知道,甲比乙多走了2个1200,甲每分钟比乙多走250-90=160米,我们就可以求出总共走了多少时间:2×1200÷160=15分钟,那么A、B两地相距:250×15-1200=2550米例4、甲乙两车同时从A、B两地相向而行,在距A地60千米处第一次相遇,各自到达对方出发点后立即返回,途中又在距A地40千米处相遇,A、B两地相距多少千米?分析:第一次相遇时,两车合走了一个全程,此时甲走了60千米第二次相遇时,两车合走了三个全程,甲应走了60×3=180千米,这时甲离A地还有40千米,加上这40千米,甲正好走了两个全程,所以一个全程应为:(180+40)÷2=110千米。

《人教版四年级小学数学相遇问题100道》

《人教版四年级小学数学相遇问题100道》

《人教版四年级小学数学相遇问题100道》姓名:__________ 班级:__________ 学号:__________一、基础相遇问题(共5题)1.甲、乙两人分别从A、B 两地同时出发相向而行,甲每小时走5 千米,乙每小时走4 千米,经过3 小时后两人相遇,A、B 两地相距多少千米?2.小明和小红同时从学校和图书馆相向而行,小明每分钟走60 米,小红每分钟走50 米,经过8 分钟两人相遇,学校和图书馆相距多少米?3.一辆汽车和一辆摩托车同时从相距240 千米的两地相向而行,汽车每小时行60 千米,摩托车每小时行40 千米,几小时后两车相遇?4.甲乙两地相距360 千米,A、B 两车分别从甲乙两地同时出发相向而行,A 车每小时行80 千米,B 车每小时行70 千米,经过几小时两车相遇?5.小强和小亮同时从相距180 米的两地相向而行,小强每分钟走10 米,小亮每分钟走8 米,几分钟后两人相遇?二、稍复杂的相遇问题(共5题)6.甲、乙两人同时从A、B 两地出发相向而行,甲每小时走6 千米,乙每小时走5 千米,两人相遇后继续前进,到达对方出发地后立即返回,第二次相遇时共走了6 小时,A、B 两地相距多少千米?7.一辆客车和一辆货车同时从相距450 千米的两地相向而行,客车每小时行80 千米,货车每小时行70 千米,几小时后两车相距90 千米?8.甲乙两人在环形跑道上跑步,跑道一圈长400 米,甲每分钟跑280 米,乙每分钟跑240 米,两人同时同地同向出发,经过多少分钟甲第一次追上乙?如果两人同时同地反向出发,经过多少分钟两人第一次相遇?9.小明和小红同时从相距1200 米的两地相向而行,小明每分钟走70 米,小红每分钟走50 米,途中小明因事停留了2 分钟,两人相遇时各走了多少米?10.一辆汽车和一辆摩托车同时从A、B 两地相向而行,汽车每小时行60 千米,摩托车每小时行40 千米,两车相遇后汽车又行了 4 小时到达B 地,A、B 两地相距多少千米?三、多人相遇问题(共5题)11.甲、乙、丙三人同时从A 地出发到B 地,甲每小时走6 千米,乙每小时走5 千米,丙每小时走4 千米,甲到达B 地后立即返回,在距B 地12 千米处与乙相遇,A、B 两地相距多少千米?12.小明、小红和小刚同时从学校出发去公园,小明每分钟走60 米,小红每分钟走50 米,小刚每分钟走40 米,小明到达公园后立即返回,在距公园80 米处与小红相遇,学校到公园有多远?13.甲乙丙三人在环形跑道上跑步,甲每分钟跑200 米,乙每分钟跑180 米,丙每分钟跑160 米,三人同时同地同向出发,经过多少分钟甲第一次追上乙?再经过多少分钟甲第一次追上丙?14.一辆客车、一辆货车和一辆小轿车同时从甲地开往乙地,客车每小时行80 千米,货车每小时行70 千米,小轿车每小时行100 千米,小轿车到达乙地后立即返回,在距乙地60 千米处与客车相遇,甲乙两地相距多少千米?15.甲、乙、丙、丁四人同时从A 地出发到B 地,甲每小时走8 千米,乙每小时走7 千米,丙每小时走 6 千米,丁每小时走5 千米,甲到达B 地后立即返回,在距B 地20 千米处与乙相遇,此时丙、丁相距多少千米?四、不同速度的相遇问题(共5题)16.甲、乙两人分别从相距240 千米的A、B 两地同时出发,甲每小时走40 千米,乙每小时走60 千米,几小时后两人相遇?17.一辆汽车和一辆自行车同时从相距180 千米的两地相向而行,汽车每小时行60 千米,自行车每小时行15 千米,几小时后两车相遇?18.小明和小刚同时从相距1500 米的两地相向而行,小明每分钟走80 米,小刚每分钟走70 米,两人相遇时小明比小刚多走了多少米?19.甲乙两人在一条长400 米的环形跑道上跑步,甲每分钟跑260 米,乙每分钟跑240 米,两人同时同地反向出发,几分钟后两人第一次相遇?20.一辆卡车和一辆摩托车同时从相距320 千米的两地相向而行,卡车每小时行50 千米,摩托车每小时行70 千米,两车相遇时卡车行了多少千米?五、行程变化的相遇问题(共5题)21.甲、乙两人同时从A、B 两地出发相向而行,甲每小时走5 千米,乙每小时走4 千米,途中甲休息了 2 小时,结果两人在距中点10 千米处相遇,A、B 两地相距多少千米?22.一辆汽车和一辆摩托车同时从相距360 千米的两地相向而行,汽车每小时行80 千米,摩托车每小时行60 千米,汽车在途中加油停了1 小时,两车相遇时汽车行了多少千米?23.小明和小红同时从相距1200 米的两地相向而行,小明每分钟走70 米,小红每分钟走50 米,小明中途休息了3 分钟,两人相遇时各走了多少分钟?24.甲乙两人在环形跑道上跑步,跑道一圈长480 米,甲每分钟跑300 米,乙每分钟跑240 米,甲先跑了20 秒后乙才出发,两人同向而行,经过多少分钟甲第一次追上乙?25.一辆客车和一辆货车同时从A、B 两地相向而行,客车每小时行70 千米,货车每小时行60 千米,两车相遇后继续前进,到达对方出发地后立即返回,第二次相遇时客车比货车多行了120 千米,A、B 两地相距多少千米?六、有停留时间的相遇问题(共5题)26.甲、乙两人同时从相距270 千米的A、B 两地出发相向而行,甲每小时走60 千米,乙每小时走40 千米,乙中途停留了3 小时,结果两人在途中相遇,甲走了多少小时?27.小明和小刚同时从相距1600 米的两地相向而行,小明每分钟走80 米,小刚每分钟走60 米,小刚中途休息了4 分钟,两人相遇时各走了多少分钟?28.一辆汽车和一辆摩托车同时从相距300 千米的两地相向而行,汽车每小时行75 千米,摩托车每小时行45 千米,汽车中途停留了2 小时,两车相遇时摩托车行了多少千米?29.甲乙两人在环形跑道上跑步,跑道一圈长500 米,甲每分钟跑250 米,乙每分钟跑200 米,甲先跑了30 秒后乙才出发,乙中途休息了 1 分钟,两人相遇时各跑了多少分钟?30.一辆客车和一辆货车同时从A、B 两地相向而行,客车每小时行80 千米,货车每小时行70 千米,客车中途停留了3 小时,结果两车在距中点40 千米处相遇,A、B 两地相距多少千米?七、往返相遇问题(共5题)31.甲、乙两人同时从A、B 两地出发相向而行,甲每小时走6 千米,乙每小时走5 千米,两人相遇后继续前进,到达对方出发地后立即返回,第二次相遇时共走了3 小时,A、B 两地相距多少千米?32.一辆汽车和一辆摩托车同时从相距240 千米的两地相向而行,汽车每小时行70 千米,摩托车每小时行50 千米,两车相遇后继续前进,到达对方出发地后立即返回,第三次相遇时汽车行了多少千米?33.小明和小红同时从学校和图书馆相向而行,小明每分钟走60 米,小红每分钟走50 米,两人相遇后继续前进,到达对方出发地后立即返回,第二次相遇时小明比小红多走了200 米,学校和图书馆相距多少米?34.甲乙两人在环形跑道上跑步,跑道一圈长400 米,甲每分钟跑280 米,乙每分钟跑240 米,两人同时同地同向出发,第二次相遇时甲比乙多跑了多少米?35.一辆客车和一辆货车同时从A、B 两地相向而行,客车每小时行80 千米,货车每小时行70 千米,两车相遇后继续前进,到达对方出发地后立即返回,第二次相遇时两车一共行了多少千米?八、分阶段的相遇问题(共5题)36.甲、乙两人同时从A、B 两地出发相向而行,甲每小时走5 千米,乙每小时走4 千米,两人相遇后继续前进,甲到达B 地后立即返回,当甲回到A 地时,乙距A 地还有3 千米,A、B 两地相距多少千米?37.一辆汽车和一辆摩托车同时从相距300 千米的两地相向而行,汽车每小时行80 千米,摩托车每小时行60 千米,汽车先行了1 小时后摩托车才出发,两车相遇时汽车行了多少千米?38.小明和小红同时从相距1000 米的两地相向而行,小明每分钟走70 米,小红每分钟走50 米,走了一段时间后两人相距200 米,这时他们走了多少分钟?39.甲乙两人在环形跑道上跑步,跑道一圈长480 米,甲每分钟跑320 米,乙每分钟跑280 米,甲先跑了60 米后乙才出发,当甲第二次追上乙时,他们各跑了多少米?40.一辆客车和一辆货车同时从A、B 两地相向而行,客车每小时行90 千米,货车每小时行80 千米,客车先行了2 小时后货车才出发,两车相遇时客车比货车多行了多少千米?九、带条件限制的相遇问题(共5题)41.甲、乙两人同时从A、B 两地出发相向而行,甲每小时走6 千米,乙每小时走5 千米,两人相遇后继续前进,到达对方出发地后立即返回,第二次相遇时甲比乙多走了12 千米,A、B 两地相距多少千米?42.一辆汽车和一辆摩托车同时从相距280 千米的两地相向而行,汽车每小时行80 千米,摩托车每小时行60 千米,两车相遇时汽车比摩托车多行了40 千米,两车行驶了多少小时?43.小明和小红同时从相距1400 米的两地相向而行,小明每分钟走80 米,小红每分钟走60 米,小明到达中点后又走了100 米与小红相遇,两人相遇时各走了多少分钟?44.甲乙两人在环形跑道上跑步,跑道一圈长540 米,甲每分钟跑300 米,乙每分钟跑270 米,甲在乙后面180 米处同时同向出发,经过多少分钟甲第一次追上乙?45.一辆客车和一辆货车同时从A、B 两地相向而行,客车每小时行85 千米,货车每小时行75 千米,两车相遇时距中点30 千米,A、B 两地相距多少千米?十、实际应用中的相遇问题(共5题)46.甲乙两地相距420 千米,一辆汽车从甲地开往乙地,每小时行70 千米,同时一辆摩托车从乙地开往甲地,每小时行50 千米,两车几小时后相遇?47.小明和小刚同时从学校和家相向而行,学校到家的距离是1200 米,小明每分钟走80 米,小刚每分钟走60 米,两人几分钟后相遇?48.一个工程队和一个运输队同时从工地和材料场相向而行,两地相距360 千米,工程队每小时行60 千米,运输队每小时行40 千米,几小时后两队相遇?49.甲乙两人同时从相距1800 米的两地相向而行,甲每分钟走100 米,乙每分钟走80 米,途中甲掉了东西停留了 2 分钟,两人相遇时各走了多少分钟?50.一辆公交车和一辆出租车同时从公交总站和机场相向而行,两地相距240 千米,公交车每小时行60 千米,出租车每小时行80 千米,两车几小时后相遇?十一、速度变化的相遇问题(共3题)51.甲、乙两人同时从A、B 两地出发相向而行,甲每小时走5 千米,乙每小时走4 千米,走了一段时间后,甲的速度提高到每小时 6 千米,乙的速度提高到每小时5 千米,又经过3 小时两人相遇,A、B 两地相距多少千米?52.一辆汽车和一辆摩托车同时从相距270 千米的两地相向而行,汽车每小时行70 千米,摩托车每小时行50 千米,行驶了一段时间后,汽车速度变为每小时80 千米,摩托车速度变为每小时60 千米,两车又经过 2 小时相遇,两车一开始行驶了多少小时?53.小明和小红同时从相距1500 米的两地相向而行,小明每分钟走80 米,小红每分钟走70 米,走了一会儿后,小明速度变为每分钟90 米,小红速度变为每分钟80 米,两人又走了4 分钟相遇,他们一开始走了多少分钟?。

相遇问题的应用题30道

相遇问题的应用题30道

相遇问题的应用题30道1. 甲、乙两人分别从相距 120 千米的 A、B 两地同时出发,相向而行。

甲每小时行 30 千米,乙每小时行 20 千米,几小时后两人相遇?解析:两人相向而行,他们的相对速度为甲的速度加上乙的速度,即 30 + 20 = 50 千米/小时。

根据时间 = 路程÷速度,可得相遇时间为 120÷50 = 2.4 小时。

2. 小明和小红同时从学校和家出发,相向而行,小明每分钟走 60 米,小红每分钟走 50 米,经过 10 分钟相遇。

学校到家的距离是多少米?解析:两人的速度和为 60 + 50 = 110 米/分钟,10 分钟相遇,所以路程 = 速度×时间,即 110×10 = 1100 米。

3. 甲车每小时行 40 千米,乙车每小时行 50 千米,两车同时从相距 360 千米的两地相向而行,几小时相遇?解析:相对速度为 40 + 50 = 90 千米/小时,相遇时间 = 360÷90 = 4 小时。

4. 两艘轮船同时从相距 480 千米的两个港口相对开出,甲船每小时行 35 千米,乙船每小时行 45 千米,几小时后两船相遇?解析:速度和为 35 + 45 = 80 千米/小时,相遇时间 = 480÷80 = 6 小时。

5. 甲、乙两地相距 560 千米,一辆客车和一辆货车同时从两地相对开出,客车每小时行 80 千米,货车每小时行 60 千米,几小时后两车相遇?解析:相对速度为 80 + 60 = 140 千米/小时,相遇时间 = 560÷140 = 4 小时。

6. 明明和亮亮在周长为 400 米的环形跑道上跑步,明明每秒跑 5 米,亮亮每秒跑 3 米,他们同时从同一地点出发,反向而行,多长时间后两人第一次相遇?解析:反向而行,相对速度为 5 + 3 = 8 米/秒,跑道周长为 400 米,相遇时间= 400÷8 = 50 秒。

相遇问题经典题型及变式题

相遇问题经典题型及变式题

相遇问题经典题型及变式题一、题型概述相遇问题是行程问题中最重要的一种类型,它研究的是物体在行进方向上相遇的问题。

行程问题中的相遇问题的特点是:两个物体同时出发,行走方向一致,行走的路程之和等于第三方的长度。

解题时,通常采用“速度和×时间=路程”的方法。

二、经典题型1. 相向而行(同时出发)例1:甲、乙两列火车从两地相对开出,甲车每小时行驶55千米,乙车每小时行驶45千米,两列火车在两地相对开出后3小时相遇,求两地的路程有多长?【分析】此题主要考查了一元一次方程的应用,关键是弄清题意,表示出两人和行的速度,根据已知相遇时间,根据路程=速度×时间,列出方程即可解答。

【解答】解:设两地的路程有x千米,由题意得:(55+45) ×3=xx=345答:两地的路程有345千米.2. 相背而行例2:小李和小张同时以4千米/时的速度相背而行,他们走了半小时后,小李调头往回走,半小时后与小张相遇,求小李的往返行程有多长?【分析】相背而行的两人在半小时后相遇时走的总路程是两倍的小李的往返行程,可求出两人的总路程,再根据小李的速度求出小李的往返行程.【解答】解:设小李的往返行程为x千米.由题意得:(4+4)×(0.5+0.5×2)=x解得:x=16.答:小李的往返行程为16千米.3. 同向而行(一前一后)例3:甲、乙两人从相距100千米的两地同时出发,甲的速度是每小时25千米,乙的速度是每小时行15千米,问经过多长时间甲、乙两人相距最近?最近距离是多少?【分析】本题属于追及问题,两人相距最近就是两人之间的距离最短,此时甲还没有追上乙.应分两种情况进行讨论:如果甲先走一小段时间,那么根据时间=路程÷速度及甲、乙的路程差等于两地之间的距离列式求解;如果乙先走一小段时间,那么根据时间=路程÷速度及甲此时还没有追上乙列式求解.【解答】解:(1)当甲先走一小段时间时,根据时间=路程÷速度可得:$t = \frac{100 - 15t}{25}$;解得:$t = \frac{40}{7}$.此时甲、乙之间的距离为$25 \times \frac{40}{7} - 100 = \frac{75}{7}$(千米).(2)当乙先走一小段时间时,根据时间=路程÷速度可得:$t = \frac{25t - 100}{25}$;解得:$t = \frac{8}{3}$.此时甲、乙之间的距离为$100 - 25 \times \frac{8}{3} = \frac{75}{3}$(千米).答:经过$\frac{40}{7}$小时或$\frac{8}{3}$小时甲、乙两人相距最近,最近距离分别是$\frac{75}{7}$千米或$\frac{75}{3}$千米.三、变式题——动态题型的讨论方式(包括等量关系)与上面几道题型的比较题型异同;经典题型的推广结果以及它们的变式;一道应用题的多种思路及一题多解在思维锻炼方面的价值等。

相遇问题常见题型

相遇问题常见题型

相遇问题常见题型
相遇问题是一类常见的数学问题,在日常生活中也有很多应用。

以下是相遇问题的常见题型:
两人相向而行,相遇时距离终点多少?
例如:甲、乙两人相向而行,甲每小时行6千米,乙每小时行4千米,两人相遇时距离终点12千米。

求他们相遇的时间。

解析:根据甲、乙的速度和相遇时距离终点的距离,可以列出方程求解。

两人同向而行,追及时距离原点的距离。

例如:甲、乙两人同向而行,甲每小时行6千米,乙每小时行4千米,甲在后面追乙,8小时后追上。

求甲、乙原来的距离。

解析:根据甲、乙的速度和追及时的时间,可以列出方程求解。

两车相向而行,总路程和速度之和。

例如:A、B两地相距500公里,甲车每小时行60公里,乙车每小时行50公里,两车从两地出发相向而行。

求两车的速度之和。

解析:根据两地的距离和甲、乙车的速度,可以列出方程求解。

两车同向而行,速度之差乘以时间等于距离。

例如:甲车每小时行60公里,乙车每小时行50公里,两车从同一地点出发同向而行。

求3小时后两车之间的距离。

解析:根据两车的速度和同向行驶的时间,可以列出方程求解。

总之,相遇问题是一类常见的数学问题,需要根据具体情况进行分析和求解。

在解决相遇问题时,需要注意相对速度、同向速度、相遇时间等因素,灵活运用方程进行求解。

相遇问题练习题

相遇问题练习题

相遇问题练习题一、基础题1. 甲、乙两人同时从A、B两地出发,相向而行,甲的速度为5米/秒,乙的速度为3米/秒。

两地相距1200米,求他们相遇所需的时间。

2. 甲、乙、丙三人同时从同一地点出发,甲向东走,乙向南走,丙向北走。

甲的速度为4米/秒,乙和丙的速度都是3米/秒。

求2分钟后,三人之间的距离。

3. 甲、乙两人同时从A、B两地出发,相向而行,甲的速度是乙的1.5倍。

当他们相遇时,甲已经走了600米,求乙走的路程。

二、提高题1. 甲、乙两人同时从A、B两地出发,相向而行。

甲的速度为6米/秒,乙的速度为4米/秒。

两地相距1500米,求他们相遇时,甲比乙多走了多少米。

2. 甲、乙、丙三人同时从同一地点出发,甲向东走,乙向南走,丙向北走。

甲的速度为5米/秒,乙的速度为4米/秒,丙的速度为3米/秒。

求5分钟后,三人之间的最短距离。

3. 甲、乙两人同时从A、B两地出发,相向而行。

甲的速度为8米/秒,乙的速度为5米/秒。

当他们相遇时,甲已经走了全程的3/5,求A、B两地相距多少米。

三、综合题1. 甲、乙、丙三人同时从A、B、C三地出发,相向而行。

甲、乙两地相距1200米,乙、丙两地相距800米。

甲、乙、丙的速度分别为5米/秒、4米/秒、3米/秒,求他们相遇时,各自行驶的路程。

2. 甲、乙两人同时从A、B两地出发,相向而行。

甲的速度为7米/秒,乙的速度为5米/秒。

两地相距2100米,求他们相遇后,甲继续前行与B地相遇的时间。

3. 甲、乙、丙三人同时从同一地点出发,甲向东走,乙向南走,丙向北走。

甲、乙、丙的速度分别为6米/秒、5米/秒、4米/秒。

求10分钟后,三人所形成的三角形面积。

四、应用题1. 一辆火车从A站出发,以80公里/小时的速度向东行驶,同时另一辆火车从B站出发,以100公里/小时的速度向西行驶。

A、B两站相距600公里,两火车何时相遇?2. 小明和小华同时从家出发,小明以5公里/小时的速度向公园走去,小华以6公里/小时的速度向学校走去。

小学相遇问题练习题精选

小学相遇问题练习题精选

小学相遇问题练习题精选
1. 甲、乙、丙三人在操场上相遇,甲比乙先到达,乙比丙先到达,问谁最后到达。

答:丙最后到达。

2. 甲、乙、丙、丁四人在一起赛跑,甲比乙慢一分钟到达终点,乙比丙慢一分钟到达终点,丙比丁慢一分钟到达终点,问谁最先到达终点。

答:丁最先到达终点。

3. 甲、乙、丙、丁四人在操场上相遇,甲比乙早到15分钟,
丙比丁早到20分钟,问谁先到达操场。

答:甲先到达操场。

4. 甲、乙、丙、丁四个人在跑步比赛中,四人的速度都不相同,最后结果是丙第一,丁第二,问甲、乙的相对位置关系。

答:无法确定甲、乙的相对位置关系。

5. 甲、乙、丙三人在比赛中,三人的速度相等,甲比乙早3分钟到达终点,乙比丙早6分钟到达终点,问谁最后到达终点。

答:丙最后到达终点。

六年级相遇问题经典题型

六年级相遇问题经典题型

六年级相遇问题经典题型相遇问题是六年级数学中的经典题型之一,也是数学中最具挑战性的问题之一。

这类问题让我们思考两个或更多个运动物体在不同的速度和方向下移动,他们在未来的某一时刻是否会相遇。

这类问题需要我们清楚地了解速度、时间和距离之间的关系。

在解决这类问题时,我们常使用的方法是建立关于两个运动物体的距离和时间的方程。

下面,我将通过一些具体的例子来帮助我们更好地理解和解决这类问题。

例1:机车追击问题问题描述:甲乙两台机车在同一直线上行驶,甲车速度为40 km/h,乙车速度为50 km/h。

乙车发现甲车后,立即开始追赶,问需要追多长时间才能赶上甲车?解析:在这个问题中,我们需要确定乙车追上甲车的时间。

我们可以设甲车和乙车相遇的时间为t,此时甲车与乙车距离记为D。

甲车在t小时内行驶的距离为40t km。

相遇时,乙车追上甲车,因此乙车行驶的距离加上相遇时乙车与甲车的距离等于甲车行驶的距离,即50t + D = 40t。

我们可以整理这个方程,得到D = 10t。

根据题意,乙车的速度比甲车的速度快10 km/h。

根据问题,我们可以得到追上甲车所需时间t为t = D / 10,带入D = 10t的方程中,得到D = t。

所以乙车追上甲车的时间为t = D / 10 = t小时。

在这个问题中,我们可以得出结论:乙车追上甲车所需的时间是相遇时距离的1/10。

例2:两船相对而行问题问题描述:A船从A码头出发,速度为25 km/h。

b船从B码头出发,速度为15 km/h。

两船相对而行可以靠近一艘岛屿,问首次靠岸的位置与离说的距离是什么?解析:在这个问题中,我们需要确定两船相对运动的距离和时间。

我们可以设两船相对运动的时间为t,此时两船的相对速度记为V。

船B在t小时内行驶的距离为15t km。

两船靠近岛屿的位置与离岛屿的距离为D。

根据题意,在两船相遇时,船A行驶过的距离加上此时两船的距离等于船B行驶的距离,即25t + D = 15t。

行程问题:相遇问题应用题(小升初专项练习)六年级数学小考总复习(含答案)

行程问题:相遇问题应用题(小升初专项练习)六年级数学小考总复习(含答案)

行程问题:相遇问题应用题(小升初专项练习)六年级数学小考总复习(含答案)一、相遇问题常见公式。

1、两者相遇路程=两者速度和×相遇时间2、相遇时间=两者相遇路程÷两者速度和3、两者速度和=两者相遇路程÷相遇时间4、两者速度和=甲的速度+乙的速度5、两者相遇路程=甲走的路程+乙走的路程6、甲的速度=两者相遇路程÷相遇时间-乙的速度7、甲行走的路程=两者相遇路程-乙行走的路程二、解决实际问题的技巧。

1、解答相遇此类问题,首先要弄清题目的题意,按照题意画出路程、时间或速度的相关线段图;然后分析各数量之间的关系;最后选择最适合的解答方法。

2、相遇问题除了要弄清路程、速度与两者相遇时间之外,须注意一些其他重要的细节:(1)两者是否是同一起点、同时出发。

如果有谁先出发了,先行走了路程,要考虑先出发者所走的路程值对题目的影响,该加还是该减掉。

(2)两者所行走的方向是否一致:梳理清楚两者是相向、同向,还是背向的。

方向不一样,处理问题就会不一样。

(3)所行走的路线是环形的,还是直线型的。

如果是环形的,要考虑再次相遇的可能。

【典型例题】1、小恬骑车从家出发去距离3.5千米远的图书馆,同一时间小琳从图书馆出来朝小恬家的方向骑来,14分钟后两人刚好相遇。

小恬每分钟骑车130米,那么小琳每分钟骑车多少米?【例题分析】这道题目是典型的路程相遇问题,已知相遇路程和相遇时间,只需要运用公式:甲的速度=相遇路程÷相遇时间-乙的速度代入相关的数量,求出答案即可。

【解答】3.5千米=3500米3500÷14-130=250-130=120(米)答:小琳每分钟骑车120米。

【培优练习】1、小客车从长泾镇到杨梅镇要行驶3小时,大货车从杨梅镇到长泾镇要行驶6小时。

两车分别从长泾镇和杨梅镇同时出发,多久后两车会相遇?2、两列高铁同时从两地相对开出,经过 32 个小时后,两列高铁在途中相遇。

相遇问题题型

相遇问题题型

路程问题题型一、相遇问题(相向而行或相对而行求和)1、甲、乙两车分别从A、B两地同时出发,相向而行,甲车每小时行驶50千米,乙车每小时行驶30千米,3小时相遇,甲、乙两城相距多少千米?甲路程+乙路程=总路程50×3+30×3速度和×时间=总路程(50+30)×32、A、B两地相距240千米,两车分别从A、B两地同时出发,相向而行,甲车每小时行驶50千米,乙车每小时行驶30千米,几小时相遇?总路程÷速度和=时间240÷(50+30)3、A、B两地相距240千米,甲乙两车分别从A、B两地同时出发,相向而行,3小时相遇,甲车每小时行驶50千米,乙车每小时行驶多少千米?思路一:先求甲车的路程,用总路程—甲路程再求出乙车的路程,然后用乙路程÷时间=乙的速度。

50×3=150(千米)240-150=90(千米)90÷3=30(千米)思路二:总路程÷时间=速度和240÷3=80(千米)速度和—甲速度=乙速度80-50=30(千米)4、甲、乙两车分别从A、B两地同时出发,相向而行,甲车每小时行驶50千米,乙车每小时行驶30千米,3小时后他们相距15千米,甲、乙两城相距多少千米?思路:先求甲乙的总路程,再加剩余的路程50×3+30×3+15(50+30)×3+15二、相背问题(相背而行或相反而行求和)5、甲、乙两个工程队同时从同一地点分别向东、西两个方向铺设管道,甲队每天铺设200米,乙队每天铺设150米,求5天后,两个工程队一共铺设多少米?甲路程+乙路程=总路程200×5+150×5速度和×时间=总路程(200+150)×5三、同向问题(两个物体都是从A到B求差)6、甲、乙两车同时从东城开到西城,甲车每小时行驶80千米,乙车每小时行驶60千米,3小时后,两车相距多少千米?大路程-小路程=路程差50×3-30×3速度差×时间=路程差(50-30)×3。

小升初--相遇问题(专项整理--经典)

小升初--相遇问题(专项整理--经典)

相遇问题(专题整理)一、一次相遇问题1、一列快车和一列慢车,同时从甲、乙两站出发,相向而行,经过6小时相遇,相遇后快车继续行驶3小时后到达乙站。

已知慢车每小时行45千米,甲、乙两站相距多少千米?(已知相遇时间及两车的速度,速度待解?求两地相距!)2、甲、乙二人分别以每小时3千米和5千米的速度从A、B两地相向而行.相遇后二人继续往前走,如果甲从相遇点到达B地共行4小时,那么A、B两地相距多少千米?(已知两车的速度及相遇时间,时间待解?求两地相距!)3.一列快车从甲城开往乙城,每小时行65千米,一列客车同时从乙城开往甲城,每小时行60千米,两列火车在距中点20千米处相遇,相遇时两车各行了多少千米?(已知两车的速度及距中点距离,转化为追及问题求出时间?求各行距离!)4、兄弟两人同时从家里出发到学校,路程是1400米。

哥哥骑自行车每分钟行200米,弟弟步行每分钟行80米,在行进中弟弟与刚到学校就立即返回来的哥哥相遇。

从出发到相遇,弟弟走了多少米?相遇处距学校有多少米?(已知两车的速度及行驶总距离,求出时间?求各行距离!)5、有两只蜗牛同时从一个等腰三角形的顶点A出发(如图),分别沿着两腰爬行。

一只蜗牛每分钟行2.5米,另一只蜗牛每分钟行2米,8分钟后在离C点6米处的P点相遇,BP的长度是多少米?(已知速度及时间,求出距离!)6、甲、乙两人从相距1100米的两地相向而行,甲每分钟走65米,乙每分钟走75米,乙带了一只狗和乙同时出发,狗以每分钟210米的速度向甲奔去,遇到甲后立即回头向乙奔去,遇到乙后又回头向甲奔去,直到甲、乙两人相遇时狗才停止。

这只狗共奔跑了多少路程?(已知速度及距离,求出相遇时间!)二、两次相遇问题(已知两次相遇点,求全程或相遇点之间的距离)例题1、甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地4千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地3千米处第二次相遇,求两次相遇地点之间的距离.解:第二次相遇两人总共走了3个全程,所以甲一个全程里走了4千米,三个全程里应该走4*3=12千米,通过画图,我们发现甲走了一个全程多了回来那一段,就是距B地的3千米,所以全程是12-3=9千米,所以两次相遇点相距9-(3+4)=2千米。

相遇问题题型及解答

相遇问题题型及解答

相遇问题题型及解答一、相遇问题模型相遇问题通常涉及两个物体或人物在某个时间段内以不同的速度向对方移动。

此类问题中,我们需要根据题目描述建立数学模型。

通常,我们用以下符号表示问题:v1:第一个物体的速度v2:第二个物体的速度t:相遇所需时间d:相遇点与起始点的距离根据速度、时间和距离之间的关系,我们可以得到以下方程:d = (v1 + v2) × t这个方程描述了两物体在时间t 内相遇的距离d。

二、相遇问题的解题思路在解决相遇问题时,我们需要先理解问题的基本信息,包括物体的速度、相遇的时间和地点。

然后,根据上述方程,我们可以求出相遇时两物体各自走过的距离。

三、相遇问题的常见题型及解答两物体同时出发,相向而行,求相遇时间。

例题:A和B两人分别从甲、乙两地同时出发,相向而行,A的速度是5km/h,B的速度是3km/h,相遇时距离甲地10km,求相遇时间。

解答:根据题目信息,我们可以列出以下方程:(5+3)×t=10×2,解得t=5小时。

两物体不同时出发,相向而行,求相遇时间。

例题:A和B两人分别从甲、乙两地出发,A先行一段时间后B再出发,相向而行,A的速度是5km/h,B的速度是3km/h,相遇时距离甲地10km,求相遇时间。

解答:根据题目信息,我们可以列出以下方程:(5+3)×t=10×2+5×t,解得t=10小时。

两物体同向而行,求相遇时间。

例题:A和B两人从同一地点同向而行,A的速度是5km/h,B的速度是3km/h,相遇时距离起点20km,求相遇时间。

解答:根据题目信息。

四、相遇问题的应用场景相遇问题可以应用于各种场景,如道路交通、航空航天、管道物流等。

在道路交通中,两车相向而行在某点相遇的情况经常发生,需要我们根据双方的速度和相遇时间来计算各自的行驶距离。

在航空航天中,两个飞行器可能需要相向而行进行对接操作,这时候也需要用到相遇问题的知识和计算方法。

相遇问题经典题型及变式题

相遇问题经典题型及变式题

相遇问题经典题型及变式题
相遇问题是数学中的一个经典题型,涉及到两个或多个物体在不同的速度、不同的起始位置下同时开始运动,判断它们是否会在某一时刻相遇。

以下是一些常见的相遇问题题型及其变式题:
1. 同一起点,不同速度:两个物体在同一起点,以不同的速度开始运动,问它们是否会在某一时刻相遇?例如,甲以每小时5公里的速度向东行走,乙以每小时8公里的速度向西行走,它们会在多长时间后相遇?
2. 不同起点,相同速度:两个物体在不同的起点,以相同的速度开始运动,问它们是否会在某一时刻相遇?例如,甲从A 点以每小时10公里的速度向东行走,乙从B点以每小时10
公里的速度向西行走,它们会在哪个位置相遇?
3. 不同起点,不同速度:两个物体在不同的起点,以不同的速度开始运动,问它们是否会在某一时刻相遇?例如,甲从A 点以每小时5公里的速度向东行走,乙从B点以每小时8公里的速度向西行走,它们会在哪个位置相遇?
4. 多个物体同时运动:多个物体以不同的速度、不同的起始位置同时开始运动,问它们是否会在某一时刻全部相遇?例如,甲从A点以每小时5公里的速度向东行走,乙从B点以每小时8公里的速度向西行走,丙从C点以每小时10公里的速度向东行走,它们会在哪个位置相遇?
这些问题可以通过使用速度、时间、位置的关系来解决,通常可以使用方程或者图像法来求解。

可以根据具体的题目条件,利用等式、方程或者图像来解决相遇问题,并得出相遇的时间、位置等结果。

相遇问题题型

相遇问题题型

相遇问题题型
一、两地之间的距离。

1.给出两人的速度以及某次相遇的时间,求两地距离。

例题1:A大学的小李和B大学的小孙分别从自己学校同时出发,不断往返于A、B两地之间。

现已知小李的速度为85米/分钟,小孙的速度为105米/分钟,且经过12分钟后两人第三次相遇。

问AB两地距离为多少?
⒉题干中给出的是相遇地点的位置,比如相遇点距离两地的距离,或者是距离中点的距离,由于相遇时两人处于同一位置,所以我们只需要考虑其中一人的路程变化就可以了。

例题2:甲从A地、乙从B地同时以均匀的速度相向而行,第一次相遇离A地6千米,继续前进,到达对方起点后立即返回,在离B地3千米处第二次相遇,则A、B两地相距多少千米?
二、求相遇次数。

在题干中会给出两地之间的距离,给出甲,乙两者的速度,让考生解答在一定时间内甲,乙两人会相遇多少次。

面对这种类型的题,我们只需运用(2n-1)SAB≤时间×速度和便可以求解出最后的答案。

例题3:甲、乙两人在相距50米的A、B两端的水池里沿直线来回游泳,甲的速度是1米/秒,乙的速度是2米/秒。

他们同时分别从水池的两端出发,来回游了10分钟,如果不计转向的时间,那么在这段时间内他们共相遇了多少次?
三、求时间。

题干中给出两地间距,给出两者的速度,求第n次相遇的时间。

对于这种类型的题只要明白从出发到第一次,第二次,第三次......第n次相遇时间之间的比例关系为1:3:5:......:(2n-1)即可。

例题4:老张和老王分别从相距1800米的A地,B地相向而行,老张每分钟走40米,老王每分钟走50米,两人在A、B两地来回行走,不计转向时间,问老王,老张出发多长时间第五次相遇?。

行程问题(相遇问题)五道典型例题(附解题思路及答案)

行程问题(相遇问题)五道典型例题(附解题思路及答案)

行程问题(相遇问题)五道典型例题(附解题思路及答案)行程问题(相遇问题)五道典型例题(附解题思路及答案)行程问题中的相遇问题同一般行程问题一样,也是研究速度,时间和路程三者数量之间关系的问题。

只是一般的行程问题研究的是一个物体的运动,而相遇问题研究的是两个物体的运动,它研究的速度包含两个物体的速度,路程也是两个物体的路程。

下面我们通过五道典型例题来分析下如何解答相遇问题。

1、甲乙两车同时从AB两地相对开出。

如果甲每小时行驶40千米,乙车每小时行5O千米,5小时后相遇。

求AB两地相距多少千米?解题思路:此题是相遇问题中最简单的一种类型。

解题方法有两种。

第一种方法:根据速度x时间=路程,分别算出甲乙两车各自的路程,然后相加,就是AB两地的距离。

方法二:因为两车行使时间相同,可以先算出两车速度和,再根据速度x时间=路程,用速度和x时间算出两车行的总路程,即AB两地的距离。

答案:方法一:40x5=200千米50x5=250千米200十250=450(千米)答:AB两地相距450千米。

方法二:(40十50)x5=450(千米)答:AB两地相距450千米。

2、甲乙两车同时从AB两地相对开出,如果甲每小时行驶40千米,乙每小时行50千米,5小时后,两车相距10千米。

求AB两地最大相距多少千米?最小相距多少千米?解题思路:此题是相遇问题中稍复杂的一种类型。

两车行了5小时后还没相遇,此时相距10千米,这时求出的是AB两地的最大距离。

另一种情况是两车相遇后仍继续行驶,到再次相距10千米时用时5小时,此时求出的则是AB两地的最小距离。

解题方法,根据速度x时间=路程,分别算出甲乙两车各自的路程,然后相加,再加上10千米,就是AB两地的最大距离。

根据速度x时间=路程,分别算出甲乙两车各自的路程,然后相加,再减去10千米,就是AB两地的最小距离。

答案: 40×5=200千米50×5=250千米200十250十10=460(千米)200+250-10=440(千米)'答:AB两地最大相距460千米,最小相距440千米。

相遇问题练习题及答案

相遇问题练习题及答案

相遇问题练习题及答案1、甲城到乙城的公路长470千米。

快慢两汽车同时从两城相对开出,快车每小时行50千米,慢车每小时行44千米,;两车经过多长时间相遇?2、甲乙两车从两地同时出发相向而行,甲车每小时行40千米,乙车每小时行60千米,经过3小时相遇。

两地相距多少千米?3.甲乙两车从两地同时出发相向而行,乙车每小时行60千米,乙车每小时行的是甲车每小时行的1.5倍,经过3小时相遇。

两地相距多少千米?4.甲乙两车从两地同时出发相向而行,甲车每小时行40千米,乙车每小时比甲车多行20千米,经过3小时相遇。

两地相距多少千米?5.甲乙两车从两地同时出发相向而行,甲车每小时行40千米,乙车每小时行60千米,4小时后还相距20千米” 两地相距多少千米?6、A、B两地相距3300米,甲、乙两人同时从两地相对而行,甲每分钟走82米,乙每分钟走83米,已经行了15分钟,还要行多少分钟才可以相遇?7、甲乙两车从两地同时出发相向而行,甲车每小时行40千米,乙车每小时行60千米,经过3小时相遇。

相遇时两车各行了多少千米?8、甲乙两车从两地同时出发相向而行,甲车每小时行40千米,乙车每小时行60千米,经过3小时相遇。

相遇时哪辆车行的路程多?多多少?9、甲乙两车从两地同时出发相向而行,甲车每小时行40千米,乙车每小时行60千米,经过3小时相遇。

乙车行完全程要多少小时?10、电视机厂要装配2500台电视机,两个组同时装配,10天完成,一个组每天装配52台,另一个组每天装配多少台?11、甲乙两艘轮船同时从相距126千米的两个码头相对开出,3小时相遇,甲船每小时航行22千米,乙船每小时航行多少千米?甲船比乙船每小时多航行多少千米?12、甲地到乙地的公路长436千米。

两辆汽车从两地对开,甲车每小时行42千米,乙车每小时行46千米。

甲车开出2小时后,乙车才出发,再经过几小时两车相遇?13、一列快车从甲站开往乙站每小时行驶65千米,一列慢车同时从乙站开往甲站,每小时行驶60千米,相遇时快车比慢车多走10千米。

相遇问题的经典例题

相遇问题的经典例题

相遇问题的经典例题
例题:
张三和李四,这俩活宝啊,住在两个村子里。

张三的村子和李四的村子中间隔着一条笔直的大路,大路的长度是100千米。

张三呢,是个急性子,他骑个自行车,速度那叫一个快,每小时能骑15千米;李四呢,慢悠悠的,他步行,每小时只能走5千米。

有一天啊,他俩同时从自己的村子出发,朝着对方的村子走,就这么相向而行。

那你说,他俩经过多长时间能在路上相遇呢?
分析:
你想啊,张三和李四是对着走的,他们每过一个小时呢,两人之间的距离就会缩短。

缩短多少呢?就是张三一个小时走的路程加上李四一个小时走的路程,也就是千米。

那最开始他俩之间的距离是100千米啊,现在每小时能缩短20千米,那总共需要的时间就是总路程除以每小时缩短的路程,也就是小时。

所以啊,经过5小时,这俩人就能在路上相遇啦,到时候还不知道会唠些啥有趣的事儿呢。

相遇问题经典题型及变式题

相遇问题经典题型及变式题

相遇问题经典题型及变式题
相遇问题是一类经典的数学问题,描述的是两个或多个物体在同一起点出发,以不同的速度朝着同一方向移动,询问它们何时相遇的问题。

以下是一些相遇问题的经典题型和变式题:
1. 均速相遇:两个物体以相同的速度从两个不同的起点出发,向同一方向移动,问它们何时相遇。

变式题:两个物体速度不同,如何求它们的相遇时间?
2. 追及问题:两个物体从两个不同的起点出发,一个物体以一定的速度向前移动,另一个物体以较大的速度在后面追赶,问追击者何时追及被追者。

变式题:多个追及者以不同的速度从不同起点开始追击一个被追者,问何时被追者被追及?
3. 相对相遇:两个物体从两个不同的起点出发,一个物体以一定的速度向前移动,另一个物体以相同的速度反向移动,问它们何时相遇。

变式题:两个物体以不同的速度反向移动,如何求它们的相遇时间?
4. 多个物体相遇:多个物体从不同的起点出发,以不同的速度朝着同一方向移动,问它们何时全部相遇。

变式题:多个物体从不同的起点出发,速度不同,如何求它们相遇的时间?
5. 追及与相遇:给定两个物体的起点和速度,一个物体以一定的速度向前移动,另一个物体以较大的速度在后面追,问何时追及,然后再问何时相遇。

这些题目实际上是用速度和距离的关系进行求解,可以通过列方程、利用速度和时间的公式等方法解决。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

相遇问题经典题型
经典习题1:两列火车同时从两地相对开出,甲列火车每小时行86千米,乙列火车每小时行102千米,经过5小时两车在途中相遇,求两地相距多少千米?
(86+102)×5=940千米或者86×5+102×5=940千米
经典习题2:甲、乙两人分别从相距20千米的两地同时出发相向而行,甲每小时走6千米,经过2小时后两人相遇,问乙每小时行多少千米?
20÷2-6=4千米或者(20-6×2)÷2=4千米
经典习题3:王明和妹妹两人从相距2000米的两地相向而行,王明每分钟行110米,妹妹每分钟行90米,如果一只狗与王明同时同向而行,每分钟行500米,遇到妹妹后,立即回头向王明跑去,遇到王明再向妹妹跑去,这样不断来回,直到王明和妹妹相遇为止。

狗共行了多少米?
要求狗跑的路程,必须知道狗的速度和狗跑的时间,狗的速度是每分钟500米,狗的时间其实就是王明和妹妹相遇的时间.
相遇时间/狗跑的时间:2000÷(110+9=)=10(分钟)
狗跑的路程:500×10=5000(米)
经典习题4:甲每小时行7千米,乙每小时行5千米,两人由相隔18千米的两地相背而行,几小时后两人相隔54千米?
其实两人真正相隔的是(54-18)千米
(54-18)÷(7+5)=3小时
经典习题5:甲乙两艘舰由相距418千米的两个港口同时相对开出,甲舰每小时行36千米,乙舰每小时行34千米,开出1小时候,甲舰因有紧急任务返回原港,又立即起航与乙舰继续相对开出,经过多少小时两舰相遇?
其实两艘军舰行驶的总距离是(418+36×2)千米
(418+36×2)÷(36+34)=7小时
经典习题6:甲地到乙地快车每小时行32千米,慢车每小时行18千米,如果两车同时从甲乙两地相对开出,可在距中点35千米的地方相遇,甲乙两地相距是多少千米??
35×2÷(32-18)=5小时—-相遇时间(32+18)×5=250千米——甲乙距离。

相关文档
最新文档