指数规律与证明:人教版八年级数学整数指数幂教案解析

合集下载

人教版数学八年级上册15.2.3.1《整数指数幂》教学设计2

人教版数学八年级上册15.2.3.1《整数指数幂》教学设计2

人教版数学八年级上册15.2.3.1《整数指数幂》教学设计2一. 教材分析《整数指数幂》是人教版数学八年级上册第15章的教学内容,这部分内容是对幂的运算规则的进一步拓展。

通过学习整数指数幂,学生可以更好地理解幂的概念,掌握幂的运算方法,并为后续学习分数指数幂和实数指数幂打下基础。

二. 学情分析学生在学习本节课之前,已经学习了幂的概念和幂的运算规则,对幂的基本概念和运算方法有一定的了解。

但部分学生可能对幂的运算规则理解不够深入,对于一些复杂指数幂的运算可能会感到困惑。

因此,在教学过程中,需要关注学生的学习情况,针对学生的掌握情况,进行有针对性的教学。

三. 教学目标1.理解整数指数幂的概念,掌握整数指数幂的运算方法。

2.能够运用整数指数幂的运算方法解决实际问题。

3.培养学生的逻辑思维能力和解决问题的能力。

四. 教学重难点1.重点:整数指数幂的概念,整数指数幂的运算方法。

2.难点:对于一些复杂指数幂的运算,如何运用运算方法进行简化。

五. 教学方法1.采用问题驱动的教学方法,通过提出问题,引导学生思考,激发学生的学习兴趣。

2.使用案例教学法,通过具体的例子,让学生理解和掌握整数指数幂的运算方法。

3.采用小组合作学习的方式,让学生在小组内进行讨论和交流,提高学生的合作能力和解决问题的能力。

六. 教学准备1.准备相关的教学案例,用于引导学生进行思考和练习。

2.准备教学PPT,用于辅助教学。

3.准备练习题,用于巩固学生的学习成果。

七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾幂的概念和幂的运算规则,为新课的学习做好铺垫。

2.呈现(15分钟)介绍整数指数幂的概念,并通过PPT展示整数指数幂的运算方法。

3.操练(20分钟)让学生进行整数指数幂的运算练习,教师进行个别指导。

4.巩固(10分钟)让学生通过PPT上的练习题进行巩固,教师进行讲解和指导。

5.拓展(10分钟)让学生运用整数指数幂的运算方法解决实际问题,教师进行讲解和指导。

《整数指数幂》说课教案与评析

《整数指数幂》说课教案与评析

《整数指数幂》说课教案与评析【说课教案】《整数指数幂》选自人教版义务教育课程标准试验教科书《数学》八班级上册第22章第2节第3课时.下面我将从内容和内容解析、目标和目标解析、教学问题诊断分析、教学过程设计、目标检测设计五个方面,阐述我对这节课的设计.一、内容和内容解析1.内容整数指数幂及运算性质.2.内容解析整数指数幂是在正整数指数幂的基础上,对幂指数的进一步探究和推广.它是幂的延伸和进展,也是对幂的认识的一次提升,为后续科学记数法完整体系的构建奠定了基础.正整数指数幂的运算性质推广到整数指数幂,采纳的是从非常到一般的不完全归纳法完成的. 验证的关键是将非正整数指数幂转化成正整数指数幂,这一过程蕴含着类比的思想和化归的思想.运算性质适用范围的扩大,使性质得到更广泛的应用,从而给式的运算带来更大的便利.基于以上分析,确定本节课的教学重点:对整数指数幂运算性质的理解及运用.二、目标和目标解析1.目标〔1〕理解数学规定:当n为正整数时,a-n =■〔a≠0〕的合理性,体会类比的思想.〔2〕整数指数幂运算性质的推广,体会化归的思想.〔3〕依据运算性质进行运算.2.目标解析达成〔1〕的标识:类比a0=1 〔a≠0〕的规定,同学能够体会数学规定:a-n =■〔a≠0〕的意义和合理性.达成〔2〕的标识:同学在老师的引领下,能够通过独立思索、合作沟通,完成对运算性质的验证和推广.体会化归思想在问题讨论中的作用.达成〔3〕的标识:同学能够依据算式的形式和特点,选择恰当的性质进行运算.三、教学问题诊断分析同学简单将a-n =■〔a≠0〕理解成是证明出来的;对于整数指数幂运算性质的推导,同学简单受已有阅历〔正整数指数幂的运算性质〕的影响,试图将其转化成乘方的形式解决. 克服第一个难点,关注同底数幂除法性质的限定条件,通过类比让同学理解a-n =■〔a≠0〕是为了让同底数幂除法的性质能够适用于m 基于以上分析,本节课的教学难点为:整数指数幂运算性质的推导.四、教学过程设计数学课堂教学是有理、有序、有效的育人活动. 合理的教学设计往往会达到事半功倍的效果. 依据课程标准教学建议的要求,本节课的教学将从以下五个环节开展:回顾·设疑·导课、探究·沟通·推广、应用·对比·感悟、总结·归纳·提升、作业·巩固·加深.环节一、回顾·设疑·导课【教学内容】同学独立思索,得出结论,完成填空.师生共同回顾正整数指数幂的运算性质. 老师提出:假如将性质中限定条件里的“正”字去掉,性质是否还成立呢?【设计意图】设置疑问,使同学带着深厚的爱好和数学思索走进课堂,从而引出课题.这里没有采纳计算训练的方式来回顾旧知,目的是让同学对运算性质的本身有更清晰、更精确的认识,为接下来的性质推广及后续的应用奠定基础.环节二、探究·沟通·推广【教学内容】提出问题:同底数幂除法的运算性质在m不大于n的状况下,还能否运用呢?计算:a3÷a3;a3÷a5 .a3÷a3 =1a3-3=a0,即:a3÷a3=a3-3a3÷a5 =■a3-5 =a-2即:a3÷a5 =a3-5同学依据分式的基本性质,由约分不难得出这两个算式的结果.老师在和同学共同回顾a0=1 〔a≠0〕的意义的基础上,通过类比得出规定:a-2 =■〔a≠0〕.类似地,为了让同底数幂除法的运算性质能够适用于a5÷a8 ,a2÷a6 这样的运算,应当做出什么规定?同学通过思索得出问题的答案.概括起来,为了让同底数幂除法的运算性质能够适用于m 体会数学规定:一般地,当n为正整数时,a-n =■〔a≠0〕的意义及合理性. 正是由于有了这样的数学规定,同底数幂除法的运算性质才能够解决m 【设计意图】以同底数幂除法的运算性质作为讨论的载体,以问题的形式创设情境,类比a0=1 〔a≠0〕,说明 a-n =■〔a ≠0〕这一数学规定的意义及合理性,在引出负整数指数幂的同时,去掉了同底数幂除法运算性质中m 【教学内容】通过前面的学习,我们知道am中指数已经由原来的非负整数扩大到全体整数,那么我们是否可以继续弱化性质中的限定条件呢?去掉“正”字,探究性质是否成立.老师示范:a-4÷a3 =■÷a3 =■÷■=■=a-4-3即:a-4÷a3 =a-4-3同学沟通合作,完成对算式a5÷a-3 ,a-2÷a-5 ,a0÷a-6的验证.【设计意图】通过前面的讨论,同学对am中的指数又有了新的认识,由原来的非负整数扩大到全体整数,由此,老师提出是否可以继续弱化性质中的限定条件,去掉“正”字,探究性质是否成立. 同学在老师举例验证的引领和示范下,通过类比和转化验证性质的成立,体会化归思想在问题解决中的作用,进而实现同底数幂除法运算性质的再次推广.【教学内容】我们再来看一下其他几条性质,它们限定条件中的“正”字也可以去掉吗?我们来选择同底数幂乘法的运算性质进行验证.活动要求:1.类比同底数幂除法的讨论过程,写出几个同底数幂乘法的算式,要留意指数的多样性. 2.先独立思索,再小组合作,结合算式验证.【设计意图】类比同底数幂除法运算性质的推广,对同底数幂乘法的运算性质进行探究. 同学依据活动要求,通过独立思索、合作沟通、汇报展示的方式,经受查找讨论素材、推理归纳的过程,进而验证了性质的正确性.对于其他几条性质,由于探究的方法非常相近,因此,由老师说明其正确性,并没有让同学逐一推导,而是采纳课后思索完成.这样既节约了时间、提高了课堂效率,同时也留白给同学,扩大了同学思索的空间.环节三、应用·对比·感悟【教学内容】例题:计算〔1〕a-2÷a5 ,〔2〕2*-2y·3*y-3 ,〔3〕〔a-1b2〕3,〔4〕〔■〕-2 .练习:计算〔1〕*2y-3〔*-1y〕3 ,〔2〕a-2b2·〔a2b-2〕-3 ,〔3〕〔2ab2c-3〕-2÷〔a-2b〕3 .【设计意图】例题、习题的选择遵循了由简到繁、由浅入深的原则,同学独立思索并沟通做法.在加深对性质的理解的基础上,通过对比实现解题方法上的优化.真正把课堂交给同学,让同学成为课堂的主人.环节四、总结·归纳·提升【教学内容】问题解决到这里,本节课也即将进入尾声,请同学们谈谈这节课你在知识上和方法上的收获和体会.am÷an=am-n本节课,我们以同底数幂除法的运算性质作为讨论的主线,类比a0 =1〔a≠0〕,规定了:一般地,当n为正整数时, a-n =■〔a≠0〕.并以此作为基础,逐层弱化了性质中的限定条件,进而将正整数指数幂的运算性质推广到整数指数幂,从而使运算更加简便.随着学习的深入,幂的指数还可以扩大到有理数的范围.【设计意图】认知技能的提升来源于不断的反思和总结,首先由同学畅谈本节课知识上和方法上的收获和体会,然后老师再现本节课的讨论脉络和知识体系,加深同学对本节课内容的理解和把握,实现对本节课的提升.环节五、作业·巩固·加深【教学内容】课后作业:必做题:89页1题、2题;选做题:91页7题.【设计意图】布置作业是为了巩固本节课所学知识,同时依据不同程度的同学设计了分层次作业.【板书设计】略.【设计意图】板书设计力图保持概括性、系统性以及示范性等.五、目标检测设计有梯度的目标检测题目,让不同的同学在学习中都得到收获,表达人人学有价值的数学,使不同的同学在数学上得到不同的进展.计算:〔1〕〔*-2y2〕〔3*2y〕-2 〔2〕〔2a2bc-1〕〔abc〕-2 〔3〕6*2yz÷〔-2*y-2z-1〕〔4〕〔3*2yz-1〕2÷〔2*-1y-2〕3 课堂教学本身就是一种带有缺憾的艺术,我深知在我的教学设计中同样伴随着这样或那样的不足,但这恰恰是让我不断走向成熟的关键,我特别珍惜这次历练的机会,同时也真诚地期望各位专家予以指导!。

最新人教版八年级数学上册《整数指数幂》精品教案

最新人教版八年级数学上册《整数指数幂》精品教案

15.2.3整数指数曷第1课时整数指数惠【知识与技能】理解并掌握整数指数幕的意义,能进行有关整数指数累的运算.【过程与方法】在经历探索、类比、归纳、思考等活动过程中,体会由正整数指数幕扩充到整数指数幕的意义.【情感态度】进一步增强学生的数学思维和逻辑推理能力,增强数学学习兴趣,激发求知欲.【教学重点】整数指数塞的意义及运算方法.【教学难点】负整数指数幕的意义.一敦学15程一、情境导入,初步认识(1)当n为正整数时,胪表示的实际意义是什么?(2)正整数指数塞的运算性质有哪些?【教学说明】教师设置问题,师生共同回顾,并一一予以解释,为负整数指数罂做好铺垫.教师讲课前,先让学生完成“自主预习”.思考一般地,a1"中指数m可以是负整数吗?如果可以,那么负整数指数幕am表示什么?【教学说明】设置思考,可激发学生的学习兴趣,增强解决相关问题的能力.二、思考探究,获取新知试一试计算:a34-a5(aWO)方法—•: a34-a5=^- =l/a2;J方法二:a3 4- a>=a3 5=a-2.比较上述两个结论,你有何发现?由此你是否能找出a・m与1/心的关系呢?【归纳结论】数学中规定:一般地,当n为正整数时,a-Jla" (aWO),即日(aWO)是a11的倒数.观察下列计算过程:3「3 c-5 Q-3+《-5》曰 R 「-5 「3 十(-5)a * a =~5 =a =a,即Q・Q = a , a-3+( -5)。

;0 -5 1 1 1 0+(-5) 日f] 0 -5 0 + (-5)a • a = 1 •—= — = «,即 a・a = a . a a你有何发现?与同伴交流.【归纳结论】心・d=am+n这条性质对于m, n为任意整数情形仍然适用.思考类似上面的探究过程,tt(ab)m=a m - b m, (a m) n=a m,n,心.agm-n及(色尸二aW中的指数m、n能否也都可以是正整数、0或负整数呢?b不妨谈谈你的看法并与同伴交流.【归纳结论】正整数指数落的所有运算法则在整数范围内都是成立的.试一试1.填空:(1)3°=X二;(2)( -3)° =,( -3)2=;(3)6°=,b~~ = ( b 7^0 ).2.计算:⑴心一- (x-'y)2;(2)(2 就 --3广2川°-%)3.【教学说明】在学生通过自主探究相互交流获得感性认识基础上,设置上述两个问题,第1题较为简单,学生可轻松完成.笫2题也有意让学生先自主探索,寻找出结论.教师巡视,然后予以评讲.在评讲过程中,针对学生出现的问题予以解释,让出现问题的同学加深理解.三、典例精析,掌握新知例1计算:(1)( - 3//)-2 (2 ) 4:巧;z -r ( - 2x 2小).解:(1)原式=(-3)-2a-26-lx(-2) =-7-^ - a-2b2 =1 -212 b~—a b = r;9 9a2(2)原式= [4 4-( -2) ] - x i-(-2)y2-i2i-(-n = _2x3yz2.例2下列等式是否正确?为什么?/ 1 \ m n m - n(1) a - a = a * a ;(2)[打”.缶力/ 1 \ . •«m-n十(一〃) m -n . m . w解:(1), a - a = a = a = a • a ,.. a - am -n— a• a ;【教学说明】以上两例均可由学生自主完成,教师巡视,最后予以简评即可.四、运用新知,深化理解1.计算:⑴3-2;(2)一2-3;(3)由;(4)2。

人教版八年级上册15.2.3整数指数幂(教案)

人教版八年级上册15.2.3整数指数幂(教案)
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了整数指数幂的基本概念、运算规则以及在实际生活中的应用。通过实践活动和小组讨论,我们加深了对整数指数幂的理解。我希望大家能够掌握这些知识点,并在日常生活和学习中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
-通过实际应用题,如科学计数法、几何图形的相似变换等,展示指数幂在实际问题中的应用。
2.教学难点等于1;
-幂运算中底数与指数的相互影响,如(a*b)^n不等于a^n * b^n;
-在实际问题中,如何正确识别并运用整数指数幂。
举例解释:
-难点讲解a的负整数幂和零次幂,可以通过图形面积、分数幂的倒数关系来帮助学生理解;
在教学过程中,我采用了小组讨论和实验操作的方式,让学生们自己探索指数幂在实际生活中的应用。这种做法收到了很好的效果,学生们积极参与,课堂氛围活跃。但同时我也发现,有些小组在讨论时可能会偏离主题,需要我及时引导回到正轨。
在讲解指数幂的运算规则时,我发现学生们对于乘方的分配律理解不够深刻,容易将(a*b)^n误认为是a^n * b^n。针对这一点,我通过对比讲解和大量练习,帮助他们纠正了这个误区。我也意识到,这部分内容需要反复巩固,确保学生们能够熟练掌握。
五、教学反思
在上完了这节关于整数指数幂的课程后,我对自己教学过程中的几个方面进行了反思。首先,我发现学生们对于指数幂的定义和基本性质的理解还是比较扎实的。通过具体的例子和图形的辅助,他们能够较好地掌握a^n的含义。然而,我也注意到在讲解负整数幂和零次幂的时候,学生们表现出了一定的困惑。我意识到,这部分内容需要更多的实际例子和直观演示,以便让学生们更好地理解。

最新人教版八年级数学上册《整数指数幂》教学设计(精品教案)

最新人教版八年级数学上册《整数指数幂》教学设计(精品教案)

课题:整数指数幂【学习目标】1.掌握整数指数幂的运算性质.2.进行简单的整数范围内的幂运算.【学习重点】掌握整数指数幂的运算性质,尤其是负整数指数幂的运算.【学习难点】认识负整数指数幂的产生过程及幂运算法则的扩展过程. 情景导入 生成问题旧知回顾:正整数指数幂的运算性质:(1)同底数幂的乘法:a m ·a n =a m +n (m 、n 是正整数).(2)幂的乘方:(a m )n =a mn (m 、n 是正整数).(3)积的乘方:(ab)n =a n b n (n 是正整数).(4)同底数幂的除法:a m ÷a n =a m -n (a≠0,m 、n 是正整数,m>n).(5)分式的乘方:⎝ ⎛⎭⎪⎪⎫a b n =a n b n (n 是正整数).(6)0是指数幂:a 0=1(a≠0).自学互研 生成能力知识模块一 探究负整数指数幂的运算法则(一)自主学习阅读教材P 142~P 143思考之前,完成下面的内容:思考:53÷55=________;a 3÷a 5=________.思路一:53÷55=5355=5353·52=152;a 3÷a 5=a 3a 5=a 3a 3·a 2=1a 2. 思路二:53÷55=53-5=5-2;a 3÷a 5=a 3-5=a -2.(二)合作探究由以上计算得出:152=5-2,1a 2=a -2. 归纳:一般地,当n 为正整数时,a -n =1a n (a≠0),即a -n 是a n 的倒数.引入负整数指数和0指数后,“回顾”中的(1)~(6)整数指数幂运算性质,指数的取值范围推广到m ,n 是任意整数的情形.填空:(x -1y 2)-3=x 3y 6,(12a 2b 3)-1=2a 2b3. 知识模块二 整数指数幂运算法则的综合运用(一)自主学习阅读教材P 143思考后~P 144,完成下列问题:计算:(1)3-2+⎝ ⎛⎭⎪⎪⎫32-1; 解:原式=79; (2)|-3|-(5-π)0+⎝ ⎛⎭⎪⎪⎫14-1+(-1)2015. 解:原式=5.(二)合作探究1.计算: (1)38-⎝ ⎛⎭⎪⎪⎫-12-2+(3+1)0;解:原式=2-4+1=-1;(2)⎝ ⎛⎭⎪⎪⎫-110-3+⎝ ⎛⎭⎪⎪⎫130-2×3.14-(-3)3×0.3-1+(-0.1)-2. 解:原式=-1 000+900×3.14+90+100=2 016.2.已知:⎝ ⎛⎭⎪⎪⎫13-m =2,13n =5,求92m -n 的值.解:∵⎝ ⎛⎭⎪⎪⎫13-m =2,3m =2,∴13n =5,∴3-n =5, ∴92m -n =(32)2m -n =34m -2n =(3m )4×(3-n )2=24×25=400. 练习:计算:(1)x 2y -3(x -1y)3;(2)(2ab 2c -3)-2÷(a -2b)3.解:(1)原式=x 2y 3·y 3x 3=1x; (2)原式=a 4c 64b 7. 交流展示 生成新知1.将阅读教材时“生成的问题”和通过“自主学习、合作探究”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一 探究负整数指数幂的运算法则知识模块二 整数指数幂运算法则的综合运用检测反馈 达成目标1.计算:(1)⎝ ⎛⎭⎪⎪⎫23-2×⎝ ⎛⎭⎪⎪⎫23-1; (2)(-4)-3×(-4)3;解:原式=94×32=278; 解:原式=-164×(-64)=1;(3)2a 3b -23a -1b ; (4)(3-1)0+⎝ ⎛⎭⎪⎪⎫13-1-(-5)2-|-1|. 解:原式=23a 4b -3=2a 43b 3; 解:原式=1+3-5-1=-2.2.若3n=127,求2n -2的值. 解:∵3n=133,∴3n =3-3.∴n =-3.∴2n -2=2-5=132. 课后反思 查漏补缺1.本节课学到了什么知识?还有什么困惑?2.改进方法。

人教版数学八年级上册15.2.3.1《整数指数幂》教学设计1

人教版数学八年级上册15.2.3.1《整数指数幂》教学设计1

人教版数学八年级上册15.2.3.1《整数指数幂》教学设计1一. 教材分析《整数指数幂》是人教版数学八年级上册第15章“指数与对数”的一部分,本节课主要让学生理解整数指数幂的概念,掌握有理数指数幂的运算性质。

教材通过引入幂的概念,让学生从具体实例中感受幂的意义,从而过渡到整数指数幂的定义和运算性质。

二. 学情分析学生在七年级时已经学习了有理数的乘方,对幂的概念有了一定的了解。

但八年级的学生对幂的概念的理解还停留在表面,对幂的运算性质还没有系统的认识。

因此,在教学过程中,需要引导学生从具体实例中抽象出幂的概念,让学生通过自主探究、合作交流,理解并掌握整数指数幂的运算性质。

三. 教学目标1.理解整数指数幂的概念,掌握有理数指数幂的运算性质。

2.培养学生观察、分析、抽象、概括的能力,提高学生的逻辑思维能力。

3.培养学生的自主探究、合作交流的能力,提高学生的数学素养。

四. 教学重难点1.重点:整数指数幂的概念,有理数指数幂的运算性质。

2.难点:对整数指数幂的理解,有理数指数幂的运算性质的运用。

五. 教学方法采用问题驱动法、案例分析法、自主探究法、合作交流法等,引导学生从具体实例中抽象出幂的概念,让学生通过自主探究、合作交流,理解并掌握整数指数幂的运算性质。

六. 教学准备1.准备相关实例,用于引导学生理解幂的概念。

2.准备PPT,用于展示教学内容和引导学生进行自主探究。

3.准备练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾七年级学习的有理数的乘方,让学生回忆幂的概念。

然后给出具体实例,如正方形的面积、球的体积等,让学生感受幂的意义。

2.呈现(10分钟)利用PPT展示整数指数幂的定义和运算性质,引导学生从具体实例中抽象出幂的概念,让学生理解整数指数幂的意义。

3.操练(10分钟)让学生进行自主探究,尝试解决一些与整数指数幂相关的问题,如:计算幂的值、判断两个幂是否相等等。

教师在这个过程中给予学生适当的引导和帮助。

最新初中人教版数学人教八年级上册《整数指数幂》教学设计

最新初中人教版数学人教八年级上册《整数指数幂》教学设计

《15.2分式的运算——整数指数幂》教学设计一、内容与内容解析1.内容负整数指数幂的意义,整数指数幂的运算性质.2.内容解析负整数指数幂的引入,类比于零指数幂的学习经验.它把指数幂的概念从非负整数扩大到全体整数.指数幂的运算性质从正整数指数幂的运算推广到全体整数幂的运算,并实现了幂的除法运算可以转化为幂的乘法运算,将整数指数幂的5条运算性质归结为3条.它也为构建完整的科学记数法奠定基础.综上所述,本课的教学重点是:整数指数幂的运算性质.二、目标与目标解析1.目标(1)理解负整数指数幂意义规定的合理性.(2)理解整数指数幂的运算性质,能运用整数指数幂的运算性质进行计算.(3)经历非负整数指数幂的运算性质推广到全体整数指数幂的过程.2.目标解析达成目标(1)的标志是:对于被除式的指数小于除式的指数的同底数幂的除法,学生分别应用分式的运算法则和同底数幂的除法法则计算,从计算结果需保持一致性,理解负整数指数幂意义规定的合理性.达成目标(2)的标志是:当负整数指数幂参与运算时,学生能直接利用整数指数幂的运算性质解题,而不是先急于转化为分式的形式.达成目标(3)的标志是:在师生合作,共同归纳同底数幂的乘法法则从整数指数幂推广到全体整数指数幂的基础上,学生能合作互助,从特殊到一般的归纳整数指数幂的运算性质.三、教学问题诊断分析学生已学习非负整数指数幂、正整数指数幂的5个运算性质和分式的运算.学生能类比0指数幂理解负整数指数幂意义规定的合理性.负整数指数幂是首次出现,继而把幂的运算性质又扩充到整数的范围,学生的理解需要一定时间的适应.当负整数指数幂参与运算时,很难直接利用性质计算.要类比数系扩充提出拓展幂的指数范围的基本思路,通过幂的除法与分式运算的关系,在保持幂的运算法则逻辑一致的要求下合理规定负整数指数幂,促进学生对幂性质的理解.综上所述:本课的教学难点:整数指数幂运算性质的理解.四、教学过程设计(一)负整数指数幂的理解我们知道整式的乘法运算以运算律及5条幂的运算性质为基础.问题1 当n 为正整数时,n a 表示什么意义?当n 为0时,0a 表示什么意义?追问1:为什么规定0=1(0)a a ≠?师生活动:学生口答,教师板书.特别对于0a ,教师引导学生回忆规定的合理性,并理解0a ≠的条件. 001m m m mm m m m a a a a a a a a a -≠÷==÷==当时,(分式的除法法则)(同底数幂的除法法则)为了使同底数幂相除的性质同样适用于上式的左边,得到0a a a a m m m m ==÷-,因此可以把幂的指数拓展到0,定义0=1(0)a a ≠.设计意图:复习非负整数指数幂,为学习负整数指数幂埋下伏笔.问题2 如果为了使n m a a ÷在n m <时也有意义,且同底数幂相除的性质仍然成立,那么需要怎样定义负整数指数幂?追问1:你能计算35a a ÷ 吗? 师生活动:35a a ÷=2531a a a =. 追问2:为了使同底数幂除法性质仍然成立,需要有怎样的规定?追问3:当0a ≠时,34(0)n a a a n --->、、分别表示什么意义?师生活动:学生相互交流,教师总结:当n 是正整数时,1(0).n n a a a-=≠即:(0)n n a a a -≠是 的倒数. 设计意图:通过举例、计算、比较,让学生类比零指数幂的学习,理解负整数指数幂的意义及规定的合理性.问题3 你现在能说出当m 分别是正整数、0、负整数时,m a 分别表示什么意义? 追问1:当m 是负整数时,()0m aa ≠表示整式还是分式? 追问2:当0a ≠时,1m ma a -与是什么关系? 师生活动:学生相互交流.教师总结:引入负整数指数幂后,指数的取值范围就推广到全体整数;有负整数指数幂后,还可以更简便地表示分式.设计意图:建立新旧知识的联系,让学生加深对负整数指数幂的理解.练习1 填空:20202(1)3_____3______(2)(3)_____(3)_____(3)___________(0)b b b ---==-=-===≠,;,;,. 设计意图:通过复习,类比思考并理解负整数指数幂的意义,通过练习加以巩固.(二)幂运算性质的推广问题3 引入负整数指数和0指数后,引入负整数指数和0指数后,m n m n a a a+⋅=(m ,n 是正整数)这条性质能否推广到m ,n 是任意整数的情形?追问1:我们从特殊情形入手进行研究.你能举几个不同类型的同底数幂相乘的例子吗?追问2:你计算的依据是什么?追问3:根据计算的结果,你认为同底数的幂的运算法则能否推广到m ,n 是任意整数的情形?师生活动:学生分类举例,计算,验证归纳.教师引导学生关注计算的依据,总结:m n m n a a a +⋅=(m ,n 是整数)例如:35353521((1a a a a a aa -⋅=⋅==负整数指数幂的意义)分式的乘法)(分式的约分) 另一方面,)5(3221-+-==a a a所以有353(5)a a a +-⋅=设计意图:从特殊到一般,经历运算性质推广的验证过程,加深理解负整数指数幂引入的意义,并为其它正整数幂的运算性质的推广奠定基础.问题4 类似地,你能用负整数指数幂和0指数幂对于其他正整数指数幂的运算性质进行试验,看看这些性质能否推广到,m n 是任意整数的范围?师生活动:学生小组分组,每组试验一条性质,选小组代表发言.教师监督每位学生的参与度.设计意图:再一次经历运算性质的推广过程,理解整数指数幂的运算性质.(三)整数指数幂性质的应用例 计算2325212322223(1)(2)(3)()(4)()b a a a a b a b a b ------⎛⎫÷ ⎪⎝⎭⋅;;;. 师生活动:学生先独立思考,尝试解决.师生共同分析,教师板书.教师引导学生按以下四个步骤解题:(1)判断运算类型;(2)选择运算法则;(3)结果化简;(4)检验正确性.设计意图:直接应用整数指数幂的运算性质计算,让学生感知计算方法的简洁性,加深对性质的理解.练习2 计算:(1)2313()x y x y --;(2)23223(2)()ab c a b ---÷.师生活动:学生独立完成,二位学生黑板板书,然后交流.教师巡视、辅导、总结. 设计意图:巩固整数指数幂的运算性质(四)整数指数幂性质的简化问题4 在有理数和整式运算中,除法可以转化为乘法进行运算,引入负整数指数幂后,幂的运算中,除法是否也可转化为乘法呢?师生活动:学生思考,回答.教师引导归纳:除以n a 转化为乘以n a-,所以整数指数幂的运算性质可以归纳为: (,m n m n a a a m n +⋅=是整数);(,m n mn a a m n =()是整数);()(,n n n ab a b m n =是整数);设计意图:简化运算性质,再次体会负整数指数幂的意义.(五)课堂小结根据以下问题回顾本节课所学的知识.(1)当n 分别为正整数、0、负整数时,na 分别表示什么意义?(2)引入负整数指数幂后,有哪些好处?(3)进行整数指数幂的运算时,要注意什么?设计意图:使学生进一步理解整数指数幂的意义,总结整数指数幂的运算方法,建立新旧知识的联系,促进学生数学思维品质的优化.(六)布置作业习题15.2第7题.五、板书设计。

人教版数学八年级上册15.2.3整数指数幂(第2课时)优秀教学案例

人教版数学八年级上册15.2.3整数指数幂(第2课时)优秀教学案例
二、教学目标
(一)知识与技能
1.理解整数指数幂的性质,掌握有理数乘方与整数指数幂之间的关系。
2.学会运用整数指数幂的性质进行简单的运算,并能解决实际问题。
3.了解整数指数幂在数学及其他学科中的应用,提高学生的数学素养。
(二)过程与方法
1.通过复习有理数乘方,引导学生自然地过渡到整数指数幂的学习,为新课的教学做好铺垫。
(二)问题导向
1.针对整数指数幂的性质,设计一系列具有启发性的问题,引导学生主动发现、总结规律。
2.充分利用课堂提问,了解学生对整数指数幂知识的理解程度,及时调整教学策略。
3.结合生活实际,提出与整数指数幂相关的问题,激发学生的思考,提高他们的数学应用能力。
(三)小合作
1.划分学习小组,鼓励学生相互讨论、交流,培养他们的合作精神。
五、案例亮点
1.情境创设:本节课通过多媒体展示与整数指数幂相关的实际问题,激发学生的学习兴趣,使他们能够主动参与课堂。这种情境创设的方式不仅能够吸引学生的注意力,还能够帮助学生更好地理解整数指数幂在现实生活中的应用,提高他们的学习积极性。
2.问题导向:教师针对整数指数幂的性质设计了一系列具有启发性的问题,引导学生主动发现、总结规律。这种问题导向的教学方法能够培养学生的逻辑思维能力,帮助他们更好地理解和掌握整数指数幂的知识。
在教学过程中,我注重启发式教学,引导学生主动发现、总结规律,培养学生的逻辑思维能力。同时,我关注学生的个体差异,针对不同程度的学生给予适当的辅导,使他们在课堂上都能得到有效的锻炼。课堂上,我采用小组合作、讨论交流的方式,激发学生的合作精神,提高他们的沟通与协作能力。此外,我还注重培养学生的数学素养,让学生在学习过程中感受数学的美,从而提高他们对数学的热爱与自信心。

八年级数学上册《整数指数幂》教学案 新人教版

八年级数学上册《整数指数幂》教学案 新人教版

《整数指数幂》教学案
知识目标:
1.知道负整数指数幂n n
a a 1=-(a ≠0,n 是正整数). 2.掌握整数指数幂的运算性质.
3.会用科学计数法表示小于1的数.
重点:掌握整数指数幂的运算性质.
难点:会用科学计数法表示小于1的数.
学习过程:
一,导入新课
复习已学过的正整数指数幂的运算性质:
n m n m a
a a +=⋅(m,n 是正整数);
mn n m a a =)((m,n 是正整数);
n n n b a ab =)((n 是正整数);
n m n m a a a -=÷( a ≠0,m,n 是正整数,m >n);
n n
n b
a b a =)((n 是正整数);
≠0时,10=a 。

二,自主学习:
自学书本P18-22
归纳:=-n a ;
科学记数法:用负指数表示小数的时候,第一个有效数字前面0的个数和负指数有何关
系?
三,学生展示:
完成书本P21-22的练习
四,教师点评:
五,当堂检测: 1,计算:
(4) x -4÷x
-3 0
3))3
2)((1(11)7)(2(--43)3
1()31)(3(-⨯
2、用科学记数法表示下列各数:
(1)0.0000321 (2)-0.00012
3、下列是用科学记数法表示的数,写出原来的数。

(1)2×10-8 (2)7.001×10-6
4,计算:
(1) 0222)-(-6x x +
(2)32)2()13(---÷-x x
(3) ()2
2155x x ⎛⎫⋅ ⎪⎝⎭。

人教版数学八年级上册教学设计15.2.3《整数指数幂》

人教版数学八年级上册教学设计15.2.3《整数指数幂》

人教版数学八年级上册教学设计15.2.3《整数指数幂》一. 教材分析《整数指数幂》是人教版数学八年级上册第15章“指数与指数幂”的一部分,本节内容是在学生已经掌握了有理数的乘方、分数指数幂的基础上进行学习的。

本节课主要让学生了解整数指数幂的概念,掌握整数指数幂的运算性质,并能运用整数指数幂解决实际问题。

二. 学情分析学生在学习本节课之前,已经掌握了有理数的乘方和分数指数幂的知识,具备了一定的数学基础。

但整数指数幂的概念和运算性质较为抽象,学生可能难以理解和掌握。

因此,在教学过程中,需要教师通过生动的实例和生活中的实际问题,引导学生理解和掌握整数指数幂的概念和运算性质。

三. 教学目标1.了解整数指数幂的概念,掌握整数指数幂的运算性质。

2.能够运用整数指数幂解决实际问题。

3.培养学生的逻辑思维能力和数学素养。

四. 教学重难点1.整数指数幂的概念。

2.整数指数幂的运算性质。

3.运用整数指数幂解决实际问题。

五. 教学方法1.采用问题驱动法,引导学生通过思考和讨论,自主探索整数指数幂的概念和运算性质。

2.用生活中的实际问题,激发学生的学习兴趣,提高学生运用数学知识解决实际问题的能力。

3.利用多媒体课件,生动形象地展示整数指数幂的概念和运算性质,帮助学生理解和记忆。

六. 教学准备1.多媒体课件。

2.教学素材(生活中的实际问题)。

3.练习题。

七. 教学过程1.导入(5分钟)利用多媒体课件,展示一些生活中的实际问题,如:“电线塔的高度”、“楼层的高度”等,引导学生思考如何用数学知识来解决这些问题。

2.呈现(10分钟)介绍整数指数幂的概念,通过实例和讲解,让学生理解整数指数幂的意义。

3.操练(10分钟)让学生进行一些整数指数幂的运算,巩固学生对整数指数幂的理解。

4.巩固(10分钟)通过一些练习题,让学生进一步理解和掌握整数指数幂的运算性质。

5.拓展(10分钟)引导学生思考如何运用整数指数幂解决实际问题,让学生运用所学知识解决实际问题。

整数指数幂-人教版八年级数学上册教案

整数指数幂-人教版八年级数学上册教案

整数指数幂-人教版八年级数学上册教案教学目标1.理解指数幂的概念,并用自己的话表达出来。

2.掌握整数指数幂的运算规律和性质。

3.能够根据指数幂的性质解决实际问题。

4.发扬探究精神,积极探讨指数幂的应用。

教学重点1.整数指数幂的定义。

2.整数指数幂的运算规律和性质。

教学难点1.运用指数幂的性质解决实际问题。

2.学生掌握的指数幂知识的自主运用能力。

教学过程一、引入1.通过背景介绍引入本节课的内容,即整数指数幂的概念与性质。

2.让学生思考实际问题,并引导学生思考与指数幂相关的数学问题,激发学生学习的兴趣。

二、教学内容1.整数指数幂的定义:•定义:对于任意正整数 a,n,n>1,则a n表示 a 的 n 次方,称为 a 的 n 次幂。

2.运算规律和性质:•a m∗a n=a m+n;•(a m)n=a m∗n;•a m/a n=a m−n;•a0=1。

3.示例演示:通过具体的例子解释以上知识。

三、练习与巩固1.完成课本上的相关练习,包括填空、选择题和计算题。

2.根据给出的实际问题,让学生用指数幂的知识解决问题。

四、总结与提高1.总结本节课的重点内容,并与学生一起回顾整个学习过程。

2.提高:通过拓展练习加深学生对指数幂的理解与运用,让他们在未来的学习中可以更好地应用这些知识。

教学效果评估1.观察学生在课堂练习和解决实际问题的表现。

2.分发测验,了解学生掌握的指数幂知识程度和运用能力。

教学反思与改进1.教学过程中要注意理解学生的思维模式和思考方法,让他们在学习中更容易理解和运用相关的数学知识。

2.强化实际应用,让学生学会将学到的知识与实际问题相结合,提高他们的解决问题的能力。

八年级上册数学教案《整数指数幂》

八年级上册数学教案《整数指数幂》

八年级上册数学教案《整数指数幂》学情分析本节课是初中数学的较为重要的知识点之一,这是在学习了正整数指数幂和0指数幂的基础上,对整数的指数幂的进一步深入和拓展;另一方面,又为学习整数的负指数幂等知识起到了一定的巩固作用,为高中学习分数指数幂打下坚实的基础。

教学目的1、了解负整数指数幂的意义。

2、掌握整数指数幂的性质,并运用它进行计算。

3、会利用10的负整数次幂,用科学记数法表示绝对值小于1的数。

教学重点掌握整数指数幂的性质,并运用它进行计算。

教学难点会利用10的负整数次幂,用科学记数法表示绝对值小于1的数。

教学方法讲授法、讨论法、练习法教学过程一、复习导入正整数指数幂的概念及运算性质当n是正整数时,a n = a·a· … ·an个a正整数指数幂有以下运算性质:(1)a m · a n = a m+n(m,n是正整数);(2)(a m)n = a mn(m,n是正整数);(3)(ab)n = a n b n(4)a m ÷ a n = a m-n(a≠0,m,n是正整数,m>n)(5)(a/b)n = a n / b n(n是正整数)分式的乘方法则此外,我们还学习过0指数幂,即当a≠0时,a0 = 1。

二、学习新知1、思考a m 中指数m可以是负整数吗?如果可以,那么负整数指数幂a m表示什么?当a≠0时,计算a3÷a5 = a3 / a3·a2 = 1/a2a3÷a5 = a3-5 = a-2同一种计算的两种结果a-2 =1/a2数学规定,当n是正整数时,a-n =1/a n(a≠0)引入负整数指数幂后,指数的取值范围就推广到全体整数。

2、填空(1)2-1 = 1/2 3-1 = 1/3 x-1 = 1/x(2)2-2 = 1/4 3-2 = 1/6(3)(-4)-2 = 1/16 (-4-2) = -1/163、思考以上是同底数幂相除的情形,在引入负整指数和0指数后,同底数幂相乘的性质能否推广到指数是任意整数?计算(1)其中一个是负指数:a3 · a-5 = a-2 = a3+(-5)(2)两个都是负指数:a-3 · a-5 = a-8 = a(-3)+(-5)(3)一个0指数一个负指数:a0 · a-5 = a-5 = a0+(-5)总结,a m· a n = a m+n这条性质对于m,n是任意整数的情形仍然适用。

人教版八年级数学上册15.2.3.1《整数指数幂》教学设计

人教版八年级数学上册15.2.3.1《整数指数幂》教学设计

人教版八年级数学上册15.2.3.1《整数指数幂》教学设计一. 教材分析人教版八年级数学上册15.2.3.1《整数指数幂》是指数幂的基础内容,主要让学生理解整数指数幂的概念,掌握有理数指数幂的运算性质。

本节课内容在学生的知识体系中起到了承上启下的作用,为后续学习分数指数幂和实数指数幂打下基础。

二. 学情分析八年级的学生已经学习了有理数的乘方,对乘方的概念和运算规则有一定的了解。

但在理解和运用方面还存在一定的困难,特别是对负整数指数幂和零指数幂的理解。

因此,在教学过程中,需要引导学生深入理解整数指数幂的概念,并通过大量的练习让学生熟练掌握有理数指数幂的运算性质。

三. 教学目标1.了解整数指数幂的概念,掌握有理数指数幂的运算性质。

2.培养学生运用数学知识解决实际问题的能力。

3.培养学生合作学习、积极探究的精神。

四. 教学重难点1.整数指数幂的概念。

2.有理数指数幂的运算性质。

3.运用整数指数幂解决实际问题。

五. 教学方法采用问题驱动法、案例分析法、合作学习法等多种教学方法,引导学生主动探究,提高学生运用数学知识解决实际问题的能力。

六. 教学准备1.教学课件:制作课件,展示整数指数幂的概念和有理数指数幂的运算性质。

2.练习题:准备适量的练习题,巩固所学知识。

3.教学素材:收集一些实际问题,作为课堂拓展的内容。

七. 教学过程1.导入(5分钟)利用PPT展示一些生活中的实际问题,如温度计、海拔等,引导学生思考这些实际问题与整数指数幂之间的关系。

2.呈现(10分钟)讲解整数指数幂的概念,通过PPT展示相关例题,让学生理解并掌握整数指数幂的定义。

3.操练(10分钟)让学生独立完成PPT上的练习题,巩固对整数指数幂的理解。

教师巡回指导,解答学生的疑问。

4.巩固(10分钟)讲解有理数指数幂的运算性质,通过PPT展示相关例题,让学生理解并掌握有理数指数幂的运算规则。

5.拓展(10分钟)让学生运用所学知识解决PPT上的实际问题,培养学生的实际应用能力。

人教版数学八年级上册15.2.3整数指数幂(第1课时)优秀教学案例

人教版数学八年级上册15.2.3整数指数幂(第1课时)优秀教学案例
在实际教学中,我了解到学生对于整数指数幂的理解存在一定的困难,主要表现在对幂运算规律的掌握不牢固,以及对实际应用问题解决的不够熟练。因此,在教学过程中,我需要针对这些难点进行讲解,引导学生通过自主探究、合作交流的方式,突破学习障碍,提高数学素养。同时,注重数学与生活的联系,让学生感受到数学的实用性,激发学习兴趣。
5.作业小结:布置具有针对性的作业,巩固学生所学知识,要求学生对自己的学习过程进行反思,提高自我认知能力。同时,及时批改和反馈作业,帮助学生巩固知识,提高学生的学习效果。
本节课案例亮点突出,教学策略得当,注重学生主体地位,充分调动学生的学习积极性,提高学生的数学素养。在教学过程中,教师以生活情境导入,激发学生学习兴趣;通过问题导向、小组合作等方式,培养学生的思考能力、合作能力和解决问题能力;最后进行总结归纳,布置针对性作业,帮助学生巩固知识,提高学习效果。整个教学过程流畅自然,充分体现了教师的教育智慧和教学艺术。
(二)问题导向
1.设计具有挑战性的数学问题,引导学生独立思考、主动探究;
2.引导学生提出问题,激发学生的思考和讨论。
在教学过程中,我将精心设计具有启发性的问题,引导学生主动探究整数指数幂的运算性质。同时,鼓励学生提出问(三)小组合作
1.组织学生进行小组讨论,培养学生的合作交流能力;
三、教学策略
(一)情景创设
1.生活情境:结合生活实际,创设与整数指数幂相关的情境,如计算手机号码中的数字排列组合等,让学生在情境中感受整数指数幂的应用;
2.数学情境:通过展示幂运算的实例,引导学生发现整数指数幂的规律,激发学生的探究欲望。
在教学过程中,我将注重情境的创设,让学生在真实的情境中感受数学与生活的紧密联系,激发学生的学习兴趣。通过生活情境和数学情境的结合,引发学生的思考,促进学生对整数指数幂的理解。

8年级上册数学人教版教案《整数指数幂》

8年级上册数学人教版教案《整数指数幂》

《15.2.3整数指数幂》教案一、教学目标1.理解负整数指数幂的意义.2.熟练运用整数指数幂运算性质进行运算以及用科学记数法表示小于1的正数.二、教学重点及难点重点:理解负整数指数幂的意义,掌握整数指数幂的运算性质以及用科学记数法表示小于1的正数.难点:解负整数指数幂的产生过程和意义以及用科学记数法表示小于1的正数.三、教学用具电脑、多媒体、课件四、相关资源图片五、教学过程(一)复习导入1.乘方的意义:n n a a a a a a =⋅⋅⋅⋅个.n 是什么数?(n 是正整数).2.正整数指数幂的运算性质:(1)同底数的幂的乘法:m n m n a a a +⋅=(m ,n 是正整数);(2)幂的乘方:m n mn a a =()(m ,n 是正整数); (3)积的乘方:n n n ab a b =()(n 是正整数);(4)同底数的幂的除法:m n m n a a a -÷=(a ≠0,m ,n 是正整数且m >n );(5)商的乘方:nn n a a b b=()(b ≠0,n 是正整数). 3.0指数幂的意义:01a =(a ≠0).学生独立完成,教师在巡视中发现学生普遍存在的问题,通过提问学生并以讲解的方式澄清问题,扫除学习障碍.设计意图:复习旧知,巩固基础,为学习新知识做好准备;同时摸清学生学习情况,适当调整教学策略.(二)探究新知1.观察同底数幂的除法:m n m n a a a-÷=(a ≠0,m ,n 是正整数且m >n ),是否必须要求m >n ,当m =n 或m <n 时会如何?当m =n 时,即01a =(a ≠0).2.计算: (1)5722÷;(2)47a a ÷0a ≠();(3)2m m a a +÷(a ≠0,m 是正整数).教师提出问题,学生思考,独立解决;教师展示学生的不同答案.(1)55772212222÷==(约分),575722222--÷==(幂运算性质),故22122-=; (2)447731=a a a a a ÷=(约分),47473a a a a --÷==(幂运算性质),故331a a -=; (3)2221m m m m a a a a a++÷==(约分),2(2)2m m m m a a a a +-+-÷==(幂运算性质),故221a a-=. 3.观察上面三个问题所得结果,你能得出什么结论?数学中规定:一般地,当n 是正整数时,1n n aa -=(a ≠0). 这就是说,0n a a -≠()是n a 的倒数. 例如:11a a -=,551a a-= 负整数指数幂的引入,将指数的取值范围扩大到了全体整数.4.请用负整数指数幂验证下列等式是否成立:(1)353(5)a aa -+-⋅=, 335323(5)55211a a a a a a a a a --+-⋅=⋅====; (2)32(3)2a a --⨯=(), 3226(3)23611a a a a a---⨯====()(); (3)3ab -=()33a b --⋅, 333333111ab a b ab a b---==⋅=⋅()(); (4)35(3)(5)a a a -----÷=,53552(3)(5)331a a a a a a a a -----÷=⋅===; (5)222a a b b---=(), 222222222211a b b a b a b a a a b b-----===⋅=⋅=()(). 运用类比学习的方法,让学生快速掌握负整数指数幂的运算性质.5.整数指数幂的性质:幂指数扩展为全体整数后,正整数指数幂的运算性质仍适用.(1)同底数的幂的乘法:m n m n a a a+⋅=(a ≠0,m ,n 是整数); (2)幂的乘方:m n mn a a=()(a ≠0,m ,n 是整数); (3)积的乘方:n n n ab a b =()(a ≠0,b ≠0,n 是整数); (4)同底数的幂的除法:m n m n a a a -÷=(a ≠0,m ,n 是整数);(5)商的乘方:nn n a a b b=()(a ≠0,b ≠0,n 是整数). 6.能否将整数指数幂的5条性质进行适当合并?根据整数指数幂的运算性质,当m ,n 为整数时,m n m n a a a -÷=,m n m n a a a ()--+⋅= m n a -=,因此,m n m n a a a a -÷=⋅,即同底数幂的除法m n a a ÷可以转化为同底数幂的乘法m n a a -⋅.特别地,1a a b a b b -=÷=⋅,所以n a b ()=1n a b ()-⋅,即商的乘方n a b()可以转化为积的乘方1n a b ()-⋅. 这样,整数指数幂的运算性质可以归结为:(1)m n m n a a a +⋅=(a ≠0,m ,n 是整数);(2)m n mn a a =()(a ≠0,m ,n 是整数); (3)n n n ab a b =()(a ≠0,b ≠0,n 是整数).设计意图:提出问题,让学生自己发现与前面所学知识的不同,经历负整数指数幂的产生过程,让学生独立发现结论,并叙述,加深学生对整数指数幂意义的理解;逐步完善限制条件,让学生明确底数与指数的取值范围,得出整数指数幂的运算性质.(三)例题解析【例】计算:(1)25a a -÷;(2)322b a ()-;(3)123a b ()-;(4)22223a b a b ()---⋅. 解:(1)2525771a a a a a----÷===;(2)33264222246b b b a a a a b()()()-----===; (3)61231323363b a b a b a b a ()()()---===; (4)22223222323a b a b a b a b ()()()-------⋅= 82266888b a b a b a b a .---=== 设计意图:通过例题的讲解,帮助学生更加深刻的理解整数指数幂的运算性质.(四)再探新知1.探索:11011010.-==;2100110100.-==; 0001._____=;00001._______=;000001._______=;…;00100001101000n 个()个( ) .==. 答案:31101000 -=,411010000 -=,5110100000-=,n ,-n . 2.如何用科学记数法表示0.004 7和0.000 076 3呢? 0.004 7=4.7×0.00134.710-=⨯,0.000 076 3=7.63×0.000 0157.6310-=⨯.3.观察上面两个等式,你能发现什么?规律:对于一个小于1的正数,从小数点前的第一个0算起至小数点后第一个非0数字前有几个0,用科学记数法表示这个数时,10的指数就是负几.即小于1的正数可以用科学记数法为10n a -⨯的形式,其中1≤a <10,n 是正整数. 设计意图:在用科学记数法表示大于1的数和引入负整指数幂的基础上,用科学记数法表示小于1的正数,构建科学记数法完整的知识体系.六、课堂小结1.负整数指数幂:一般地,当n 是正整数时,1n na a -=(a ≠0). 2.用科学记数法表示小于1的正数:写成10na -⨯的形式,其中(1≤a <10,n 是正整数).设计意图:通过小结,使学生梳理本节所学内容,对本节课的整体有所把握,了解新旧知识的区别与联系,及新知的形成过程,提炼出思想方法,使学生的思维得以升华.七、板书设计15.2.3 整数指数幂负整数指数幂:一般地,当n 是正整数时,1n n a a-=(a ≠0). 用科学记数法表示小于1的正数:写成10n a -⨯的形式,其中(1≤a <10,n 是正整数).。

(部编)人教数学八年级上册《15.2.3整数指数幂整数指数幂》教案33

(部编)人教数学八年级上册《15.2.3整数指数幂整数指数幂》教案33

整数指数幂的教学设计本节课是在学习了整数的正指数幂的根底上,对整数指数幂的进一步深入和拓展;另一方面,又为学习整数的负指数幂等知识起到了一定的稳固作用.教学目标:知识与技能:理解负指数幂的性质并能熟练使用于化简、计算;进一步熟练掌握整数指数幂的几个计算公式,并能灵活使用.过程与方法:通过探究负整数指数幂的性质,培养学生的观察水平和归纳总结水平.育人思想:协助学生清楚新旧知识的联系,学会知识的迁移,学会用所学的知识解决生活实际问题,进一步培养学生由特殊到一般、类比等数学思想,养成积极的学习态度和持续追求真理的人生态度.教学重点:整数指数幂的性质及其使用.教学难点:整数指数幂性质的推导证明.教学流程一、感知与尝试1.请同学们回归整数正指数幂的性质〔m,n为正整数〕:〔1〕a n=〔2〕同底数幂的乘法:a m a nm n〔3〕幂的乘方:〔a〕=n〔4〕积的乘方:〔ab〕=〔5〕同底数幂的除法:a m a nan〔6〕分式的乘方:〔〕=b〔7〕当a≠0时,a0=2.思考:a-n〔n为正整数〕又表示怎样的意义呢?当m,n为负整数,指数幂的运算性质还成立?3.出示课题和目标『设计过程:先引导学生回忆正整数指数幂的性质,然后请学生思考a-n的意义和负整数指数幂的性质是否也成立,引出本节课的课题和学习目标.』『设计意图:知识的回忆,协助学生分析前后知识的联系,进而协助学生建立知识网络,同时也减少了学生的畏难情绪,增加了学生探究本节课知识的积极性.也引出本节课的课题』二、合作与探究1.情境问题a m a n a mm〔m、n都为正整数〕,先将条件m,n都为正整数去掉,假设这个性质如以下情形仍然成立,请先填空,然后观察三组式子能得到的数量关系:〔1〕a2a2=a21;a2〔2〕-5=1;2225〔3〕(5)3(5)3=(5)33〔〕-5归纳:数学语言:a n=〔〕数学意义:『设计过程:请学生小组合作完成上面的空格,并引导学生仔细观察三组式子的构造特征,并思考能够得到怎样的等量关系.通过由特殊到一般的数学思想方法引导学生归纳出a n的意义.』『设计意图:在此过程培养学生发现问题、分析问题、解决问题、归纳总结的水平,协助学生再次熟悉由特殊到一般的数学思想方法.』判断以下是否准确?.(n n1)(2)〔〕b『设计过程:请小组合作,并请两位同学展示讲解.教师引导学生通过化归转换思想,归纳除法能够转换为幂的乘法.』『设计意图:加深学生对a n的理解掌握,为后面学生实行整数指数幂的计算通过了一种运算方法.』快问快答:-2-2 -2-2 2-2-2-3-2-3 2-3归纳:n〔-a〕n 『设计过程:请学生快速计算答复,引导学生根据结果归纳出〔-a〕结果的几种情形.』『设计意图:协助学生建立起前后知识存有的联系,归纳出当底数为负数的简单处理方法.培养学生观察总结水平.』例2.〔1〕25〔x2y2y4 a〔〕)(()3xy x 〔2〕(a1b2)3〔4〕2021023()332归纳:整数指数幂的运算性质:『设计过程:由老师引导学生完成例题,由特殊到一般的数学思想和类比法协助引导学生归纳出负整数指数幂的成立,继而得到整数指数幂.』『设计意图:学生再次熟悉由特殊到一般的数学思想、化归转换思想、类比法、数学运算的核心素养等等.培养了学生观察归纳水平.』练习:3〔2〕(a 2(a)2(a2〔1〕(b2)23)33)4a『设计过程:学生展示并讲解,教师点评.』『设计意图:稳固本节课的知识,培养学生的胆识和语言表达水平.』三、达成与升华1.计算化简:〔1〕(2x2y3z2)2(xy2z2)3-1-2〔2〕-2-3-8-1-12702『设计过程:学生独立完成,多媒体展示答案,小组内部互相点评,互相讲解.』『设计意图:稳固本节课的知识点,同时培养学生的合作意识以及学生了解其他同学的思维方法.』课堂小结〔1〕知识方面:〔2〕数学思想方法:〔3〕数学核心素养:『设计过程:学生回忆本节课的所学到的知识,引导学生建立知识网络体系.』『设计意图:培养学生课课总结的习惯.』作业〔1〕必做题:教材P147习题第7题1nm12mn〔2〕4,求1x2n的值.2,3(1x 81教学反思:本课时采用的?农村初中数学“试究升〞三层次教学育人实践研究?实行教学,充分体现了学生为主体和教师为主导的教学过程,由课前预习变课内预习,让学生在充分自主学习后实行探究,为学生的终身学习奠定根底,变学生的被动学习为主动学习,教学层层递进,让学生知道知识的发生与开展及生成过程,通过观察、猜测、验证、使用,在数学思想与素养方面得到了应有表达.。

人教版八年级数学上册教案: 15.2.3 整数指数幂

人教版八年级数学上册教案: 15.2.3 整数指数幂
重点:用科学记数法表示绝对值较小的数.
难点:含负指数的整数指数幂的运算,尤其是混合运算以及科学记数法中10的指数与小数点的关系.
┃教学过程设计┃
教学过程
设计意图
一、创设情境,导入新课
师:口答:(1)(3-2)2;(2)[(-4)-3]0;(3)5-3×52;
(4)(-0.5)-2;(5) ;(6)4.7×10-4.
问题3:继续举例探究:(am)n=amn,(ab)n=anbn, = 在整数指数幂范围内是否适用?
本问题由学生在小组内采用分类验证的方式合作完成,并分别抽取其中一个小组板演,力争让每一个同学都能完成对新知的探索活动.
由于用字母来验证幂的运算性质,需要分类讨论,比较抽象,对学生而言难度偏大,不利于学生接受,反而冲淡了幂的运算性质应用的主题.因此,采用了填空牵引的方式,通过提供探索的“脚手架”,帮助学生通过观察指数的变化,来感受运算的规律,内化探索方法,从而完成各个性质的扩充.
第2课时 负整数指数幂和科学计数法
【教学目标】
1.会利用10的负整数次幂,用科学记数法表示一些绝对值较小的数.
2.经历探索用10的负整数次幂来表示绝对值较小的数的过程,完善科学记数法,培养正向、逆向思维能力.
3.用科学记数法的形式渗透数学的简洁之美,通过完善科学记数法,培养对数学完美形式的追求.
【重点难点】
3.在数学公式中渗透公式的简洁美、和谐美,随着学习的知识范围的扩展,产生对新知识的渴望与追求的积极情感,形成辩证统一的哲学观和世界观.
【重点难点】
重点:掌握整数指数幂的运算性质,尤其是负整数指数幂的概念.
难点:认识负整数指数幂的产生过程及幂运算法则的扩展过程.
┃教学过程设计┃
教学过程
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

指数规律与证明:人教版八年级数学整数指数幂教案解析。

一、指数规律
对于整数指数幂a^m来说,当m>0时,有a^m=a*a*a*...(m个a 的积);当m=0时,有a^0=1;当m<0时,有a^m=1/a*(-m)。

对于指数幂的积,可以运用指数乘法法则进行计算。

即,当a和b都为底数时,(ab)^m=a^mb^m。

另外,指数规律还表现在整数指数幂的算术运算中。

具体来说,假设a、b是整数,m、n是非负整数,则有:
-a^m*a^n=a^(m+n)
-a^m/a^n=a^(m-n)
-(a^m)^n=a^(mn)
-(ab)^n=a^n*b^n
这些公式的运用可以方便我们进行指数幂的计算和推导,节省时间和精力。

二、指数幂的证明
对于指数幂的证明,有很多种方法,比如归纳法、递推法、二项式定理等。

这里我们以归纳法为例,来证明指数幂的规律。

我们需要证明当m=0时,有a^0=1。

这个比较简单,因为当m=0时,a^0=1,即任何数的0次方都等于1。

接下来,我们需要证明当m>0时,有a^m=a*a*a*...(m个a的积)。

这时,我们可以进行归纳证明。

假设当n=k时,有a^k=a*a*a*...(k个a的积)成立。

接下来,我们来证明当n=k+1时,也有a^(k+1)=a*a*a*...(k+1个a的积)。

根据指数幂的规律,当n=k+1时,有:
a^(k+1)=a^k*a
根据归纳假设,有:
a^k=a*a*a*...(k个a的积)
因此,可以得到:
a^(k+1)=a^k*a=a*a*a*...(k个a的积)*a=a*a*a*...(k+1个a的积)
这样,我们就证明了当n=k+1时,有a^(k+1)=a*a*a*...(k+1个a的积)。

归纳证明不仅仅适用于证明整数指数幂的规律,也适用于其他数学概念的证明。

通过这种方法,可以在特定条件下,通过归纳证明步
骤,推导出结论。

因此,学生在学习数学时,需要注重掌握这种证明方法。

整数指数幂的指数规律与证明是数学学习中的重要部分。

在学习过程中,我们需要掌握指数规律的基本原理,了解指数幂的运算规律,掌握证明方法,这样才能提高数学思维,建立数学素养,达到提高成绩的目的。

相关文档
最新文档