高二数学试卷练习题及答案
高二数学考试卷(附解答)
高二数学考试卷(附解答)高二数学考试卷(附解答)一、选择题(每题4分,共20分)1. 若函数f(x) = 2x + 1是单调递增函数,则实数a的取值范围是:A. a > -1B. a ≤ -1C. a > 1D. a ≤ 1解答:A. a > -12. 已知等差数列的前5项和为35,公差为3,首项为:A. 5B. 10C. 15D. 20解答:B. 103. 若复数z满足|z - 1| = |z + 1|,则z在复平面上对应的点位于:A. 实轴B. 虚轴C. 第一象限D. 第二象限解答:B. 虚轴4. 设函数g(x) = x^3 - 3x,下列说法正确的是:A. g(x)在(-∞, 0)上单调递增B. g(x)在(0, +∞)上单调递减C. g(x)的极小值点为x = 0D. g(x)的极大值点为x = 0解答:C. g(x)的极小值点为x = 05. 若平面α与平面β的交线为直线l,且直线l与直线a平行,则直线a与平面α的关系为:A. 在平面α内B. 平行于平面αC. 与平面α相交D. 在平面α的延长线上解答:B. 平行于平面α二、填空题(每题4分,共20分)1. 已知等比数列的前3项分别为2,4,__,则该数列的公比为______。
解答:8,22. 函数f(x) = x^2 - 4x + 3的图象与坐标轴的交点个数为______。
解答:33. 若矩阵A的行列式为2,则矩阵A的逆矩阵的元素满足______。
解答:元素乘以-1/2后与原矩阵对应元素相等4. 设平面α与平面β的夹角为θ,则sinθ等于______。
解答:平面α与平面β的法向量夹角的余弦值5. 已知三角形ABC的三边长分别为a,b,c,且cosA = 1/2,则三角形ABC的形状为______。
解答:等腰三角形或直角三角形三、解答题(每题10分,共30分)1. (10分)已知函数f(x) = x^2 - 4x + 3,求f(x)的最小值及取得最小值的x值。
北京市2023-2024学年高二上学期期中数学试题含答案
北京市2023—2024学年第一学期期中阶段练习高二数学(答案在最后)2023.11班级____________姓名____________学号____________本试卷共3页,共150分.考试时长120分钟.考生务必将答案写在答题纸上,在试卷上作答无效.一、选择题:本大题共10道小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项符合题目的要求.把正确答案涂写在答题卡上相应的位置..................1.已知(1,3),(3,5)A B --,则直线AB 的斜率为()A.2 B.1C.12D.不存在【答案】A 【解析】【分析】由斜率公式,可求出直线AB 的斜率.【详解】由(1,3),(3,5)A B --,可得35213AB k --==--.故选:A.2.圆222430x y x y +-++=的圆心为().A.(1,2)-B.(1,2)- C.(2,4)- D.(2,4)-【答案】A 【解析】【分析】先将圆的一般方程化为标准方程,从而可求出其圆心坐标.【详解】由222430x y x y +-++=,得22(1)(2)2x y -++=,所以圆心为(1,2)-,故选:A3.一个椭圆的两个焦点分别是()13,0F -,()23,0F ,椭圆上的点P 到两焦点的距离之和等于8,则该椭圆的标准方程为()A.2216428x y += B.221167x y += C.221169x y += D.22143x y +=【答案】B 【解析】【分析】利用椭圆的定义求解即可.【详解】椭圆上的点P 到两焦点的距离之和等于8,故28,4a a ==,且()13,0F -,故2223,7c b a c ==-=,所以椭圆的标准方程为221167x y +=.故选:B4.任意的k ∈R ,直线13kx y k -+=恒过定点()A.()0,0 B.()0,1 C.()3,1 D.()2,1【答案】C 【解析】【分析】将直线方程整理成斜截式,即可得定点.【详解】因为13kx y k -+=,即()31y k x =-+,所以直线13kx y k -+=恒过定点()3,1.故选:C.5.已知圆221:1C x y +=与圆222:870C x y x +-+=,则圆1C 与圆2C 的位置关系是()A.相离B.相交C.内切D.外切【答案】D 【解析】【分析】求出两圆的圆心和半径,得到12124C C r r ==+,得到两圆外切.【详解】圆221:1C x y +=的圆心为()10,0C ,半径为11r =,圆()22222:87049C x y x x y +-+=⇒-+=,故圆心()24,0C ,半径为23r =,则12124C C r r ==+,所以圆1C 与圆2C 的位置关系是外切.故选:D6.过点1,22P ⎛⎫- ⎪⎝⎭的直线l 与圆2214x y +=有公共点,则直线l 的倾斜角取值范围是()A.π5π,26⎡⎤⎢⎥⎣⎦ B.2π,π3⎡⎫⎪⎢⎣⎭C.π22π,3⎡⎤⎢⎥⎣⎦D.5π,π6⎡⎫⎪⎢⎣⎭【答案】A 【解析】【分析】利用直线与圆的位置关系及倾斜角与斜率的关系计算即可.【详解】易知圆的半径为12,圆心为原点,当倾斜角为π2时,即直线l 方程为12x =-,此时直线l 与圆相切满足题意;当斜率存在时,不妨设直线l方程为122y k x ⎛⎫=++ ⎪⎝⎭,则圆心到其距离为12d =≤,解不等式得33k ≤-,所以直线l 的倾斜角取值范围为π5π,26⎡⎤⎢⎥⎣⎦故选:A7.“1a =-”是“直线1:430l ax y +-=与直线()2:320l x a y +-+=平行的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A 【解析】【分析】求出当12l l //时实数的值,再利用集合的包含关系判断可得出结论.【详解】当12l l //时,()34a a -=,即2340a a --=,解得1a =-或4.当1a =-时,直线1l 的方程为430x y -+=,直线2l 的方程为420x y -+=,此时12l l //;当4a =时,直线1l 的方程为304x y +-=,直线2l 的方程为20x y ++=,此时12l l //.因为{}1-{}1,4-,因此,“1a =-”是“直线1:430l ax y +-=与直线()2:320l x a y +-+=平行”的充分不必要条件.故选:A.8.如图,在平行六面体1111ABCD A B C D -中,12AA AD AB ===,2BAD π∠=,113BAA A AD π∠=∠=,则11AB AD ⋅=()A.12B.8C.6D.4【答案】B 【解析】【分析】根据空间向量加法的运算性质,结合空间向量数量积的运算性质和定义进行求解即可.【详解】()()21111111AB AD AB AA AD AA AB AD AB AA AD AA AA ⋅=+⋅+=⋅+⋅+⋅+ 211110222228,22AB AD ⇒⋅=+⨯⨯+⨯⨯+= 故选:B9.数学家欧拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半.这条直线被后人称为三角形的欧拉线,已知△ABC 的顶点()2,0A ,()1,2B ,且AC BC =,则△ABC 的欧拉线的方程为()A.240x y --=B.240x y +-=C.4210x y ++=D.2410x y -+=【答案】D 【解析】【分析】由题设条件求出AB 垂直平分线的方程,且△ABC 的外心、重心、垂心都在垂直平分线上,结合欧拉线的定义,即垂直平分线即为欧拉线.【详解】由题设,可得20212AB k -==--,且AB 中点为3(,1)2,∴AB 垂直平分线的斜率112AB k k =-=,故垂直平分线方程为131()12224x y x =-+=+,∵AC BC =,则△ABC 的外心、重心、垂心都在垂直平分线上,∴△ABC 的欧拉线的方程为2410x y -+=.故选:D10.曲线33:1C x y +=.给出下列结论:①曲线C 关于原点对称;②曲线C 上任意一点到原点的距离不小于1;③曲线C 只经过2个整点(即横、纵坐标均为整数的点).其中,所有正确结论的序号是A.①② B.②C.②③D.③【答案】C 【解析】【分析】将(),x y --代入,化简后可确定①的真假性.对x 分成0,0,01,1,1x x x x x <=<<=>等5种情况进行分类讨论,得出221x y +≥,由此判断曲线C 上任意一点到原点的距离不小于1.进而判断出②正确.对于③,首先求得曲线C 的两个整点()()0,1,1,0,然后证得其它点不是整点,由此判断出③正确.【详解】①,将(),x y --代入曲线33:1C x y +=,得331x y +=-,与原方程不相等,所以曲线C 不关于原点对称,故①错误.②,对于曲线33:1C x y +=,由于331y x =-,所以y =,所以对于任意一个x ,只有唯一确定的y和它对应.函数y =是单调递减函数.当0x =时,有唯一确定的1y =;当1x =时,有唯一确定的0y =.所以曲线C 过点()()0,1,1,0,这两点都在单位圆上,到原点的距离等于1.当0x <时,1y >,所以221x y +>>.当1x >时,0y <,所以221x y +>>.当01x <<时,01y <<,且()()()()223322221110x y x y x y x x y y -+=+-+=-+-<,所以221x y +>>.综上所述,曲线C 上任意一点到原点的距离不小于1,所以②正确.③,由②的分析可知,曲线C 过点()()0,1,1,0,这是两个整点.由331x y +=可得()331x y -=-,当0x ≠且1x ≠时,若x 为整数,31x -必定不是某个整数的三次方根,所以曲线C 只经过两个整点.故③正确.综上所述,正确的为②③.故选:C【点睛】本小题主要考查根据曲线方程研究曲线的性质,属于中档题.二、填空题:本大题共5小题,共25分.把答案填在答题纸中相应的横线上................11.已知空间()2,3,1a = ,()4,2,b x =- ,a b ⊥ ,则b =_____.【答案】【解析】【分析】根据空间向量的垂直,根据数量积的坐标表示,建立方程,结合模长公式,可得答案.【详解】由a b ⊥ ,且()2,3,1a = ,()4,2,b x =- ,则860a b x ⋅=-++=r r ,解得2x =,故b =r.故答案为:12.已知过点(0,2)的直线l 的方向向量为(1,6),点(,)A a b 在直线l 上,则满足条件的一组,a b 的值依次为__________.【答案】1;8【解析】【分析】根据方向向量设出直线l 的方程,再由点(0,2)求出其方程,从而得出62b a =+,即可得出答案.【详解】直线l 的方向向量为(1,6),可设直线l 的方程为60x y C -+=因为点(0,2)在直线l 上,所以2C =,即直线l 为620x y -+=所以620a b -+=,即62b a =+可取1a =,则8b =故答案为:1;813.在正方体ABCD A B C D -''''中,E 是C D ''的中点,则异面直线DE 与AC 所成角的余弦值为______.【答案】10【解析】【分析】利用正方体的特征构造平行线,利用勾股定理及余弦定理解三角形即可.【详解】如图所示,取A B ''的中点F ,易得//AF DE ,则FAC ∠或其补角为所求角,不妨设正方体棱长为2,则,3,AF FC FC AC '====,由余弦定理知:222cos 210AF AC FC FAC AF AC +-∠==⋅,则FAC ∠为锐角,即异面直线DE 与AC 所成角.故答案为:1010.14.将一张坐标纸对折,如果点()0,m 与点()()2,22m m -≠重合,则点()4,1-与点______重合.【答案】()1,2--【解析】【分析】先求线段AB 的中垂线方程,再根据点关于直线对称列式求解即可.【详解】已知点()0,A m 与点()2,2B m -,可知线段AB 的中点为1,122mm M ⎛⎫-+ ⎪⎝⎭,且212AB mk m -==--,则线段AB 的中垂线的斜率1k =,则线段AB 的中垂线方程为1122m m y x ⎛⎫⎛⎫-+=--⎪ ⎪⎝⎭⎝⎭,即20x y -+=,设点()4,1-关于直线20x y -+=的对称点为(),a b ,则114412022b a a b -⎧=-⎪⎪+⎨-+⎪-+=⎪⎩,解得12a b =-⎧⎨=-⎩,所以所求点为()1,2--.故答案为:()1,2--.15.给定两个不共线的空间向量a 与b,定义叉乘运算:a b ⨯ .规定:(i )a b ⨯ 为同时与a,b垂直的向量;(ii )a,b ,a b ⨯三个向量构成右手系(如图1);(iii )sin ,a b a b a b ⨯=.如图2,在长方体1111ABCD A B C D -中,2AB AD ==,14AA =.给出下列四个结论:①1AB AD AA ⨯= ;②AB AD AD AB ⨯=⨯;③()111AB AD AA AB AA AD AA +⨯=⨯+⨯ ;④()11111ABCD A B C D V AB AD CC -=⨯⋅.其中,正确结论的序号是______________.【答案】①③④【解析】【分析】由新定义逐一核对四个选项得答案.【详解】解: ||||||sin902214AB AD AB AD ⨯=︒=⨯⨯=,且1AA 分别与,AB AD 垂直,∴1AB AD AA ⨯= ,故①正确;由题意,1AB AD AA ⨯= ,1AD AB A A ⨯=,故②错误;AB AD AC +=,∴11|()|||41AB AD AA AC AA +⨯=⨯=⨯= 且1()AB AD AA +⨯ 与DB 共线同向, 1||2418AB AA ⨯=⨯⨯= ,1AB AA ⨯ 与DA 共线同向,1||2418AD AA ⨯=⨯⨯= ,1AD AA ⨯ 与DB共线同向,11||AB AA AD AA ∴⨯+⨯= 11AB AA AD AA ⨯+⨯ 与DB共线同向,故③正确;11()||||||sin90cos022416AB AD CC AB AD CC ⨯=⨯⨯︒⨯︒=⨯⨯=,故④成立.故答案为:①③④.三、解答题:本大题共6题,共85分.解答应写出文字说明、演算步骤或证明过程,并把答案...写在答题纸中相应位置上............16.在平面直角坐标系中,已知(3,9),(2,2),(5,3)A B C -,线段AC 的中点M ;(1)求过M 点和直线BC 平行的直线方程;(2)求BC 边的高线所在直线方程.【答案】(1)3170x y -+=(2)30x y +=【解析】【分析】(1)根据(3,9),(2,2),(5,3)A B C -,求得点M 的坐标,和直线直线BC 的斜率,写出直线方程;(2)根据13BC k =,得到BC 边的高线的斜率,写出直线方程;【小问1详解】解:因为(3,9),(2,2),(5,3)A B C -,所以()1,6M ,13BC k =,所以过M 点和直线BC 平行的直线方程为()1613y x -=-,即3170x y -+=;【小问2详解】因为13BC k =,所以BC 边的高线的斜率为-3,所以BC 边的高线所在直线方程()933y x -=-+,即30x y +=17.如图,在边长为2的正方体1111ABCD A B C D -中,E 为线段1BB 的中点.(1)求证:1//BC 平面1AED ;(2)求点1A 到平面1AED 的距离;(3)直线1AA 与平面1AED 所成角的正弦值.【答案】(1)证明见解析(2)43(3)23【解析】【分析】(1)证明出四边形11ABC D 为平行四边形,可得出11//BC AD ,利用线面平行的判定定理可证得结论成立;(2)以点A 为坐标原点,AD 、AB 、1AA 所在直线分别为x 、y 、z 轴建立空间直角坐标系,利用空间向量法可求得点1A 到平面1AED 的距离;(3)利用空间向量法可求得直线1AA 与平面1AED 所成角的正弦值.【小问1详解】证明:在正方体1111ABCD A B C D -中,11//AB C D 且11AB C D =,故四边形11ABC D 为平行四边形,则11//BC AD ,因为1BC ⊄平面1AED ,1AD ⊂平面1AED ,因此,1//BC 平面1AED .【小问2详解】解:以点A 为坐标原点,AD 、AB 、1AA 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系,则()0,0,0A 、()10,0,2A 、()0,2,1E 、()12,0,2D ,所以,()10,0,2AA = ,()12,0,2AD = ,()0,2,1AE = ,设平面1AED 的法向量为(),,n x y z = ,则122020n AD x z n AE y z ⎧⋅=+=⎪⎨⋅=+=⎪⎩ ,取2z =-,可得()2,1,2n =- ,所以,点1A 到平面1AED 的距离为143AA n d n⋅== .【小问3详解】解:因为11142cos ,233AA n AA n AA n ⋅<>===⨯⋅ ,因此,直线1AA 与平面1AED 所成角的正弦值为23.18.已知圆C 的圆心在直线20x y -=上,且与x 轴相切于点()1,0.(1)求圆C 的方程;(2)若圆C 直线:0l x y m -+=交于A ,B 两点,____,求m 的值.从下列三个条件中任选一个补充在上面问题中并作答:条件①:圆C 被直线l 分成两段圆弧,其弧长比为2:1;条件②:2AB =;条件③:90ACB ∠=︒.【答案】(1)()()22124x y -+-=(2)答案见解析【解析】【分析】(1)利用几何关系求出圆心的坐标即可;(2)任选一个条件,利用选择的条件,求出圆心到直线的距离,然后列方程求解即可.【小问1详解】设圆心坐标为(),C a b ,半径为r .由圆C 的圆心在直线20x y -=上,知:2a b =.又 圆C 与x 轴相切于点()1,0,1a ∴=,2b =,则02r b =-=.∴圆C 圆心坐标为()1,2,则圆C 的方程为()()22124x y -+-=【小问2详解】如果选择条件①:120ACB ∠=°,而2CA CB ==,∴圆心C 到直线l 的距离1cos 60d CA =⨯= ,则1d ==,解得1m +或1+.如果选择条件②和③:AB =,而2CA CB ==,∴圆心C 到直线l 的距离d =,则d ==,解得1m =-或3.如果选择条件③:90ACB ∠=︒,而2CA CB ==,∴圆心C 到直线l 的距离cos 45d CA ⨯== ,则d ==,解得1m =-或3.19.如图,四棱锥P ABCD -中,AD ⊥平面ABP ,,90,2,3,BC AD PAB PA AB AD BC m ∠=︒==== ,E 是PB 的中点.(1)证明:AE ⊥平面PBC ;(2)若二面角C AE D --的余弦值是33,求m 的值;(3)若2m =,在线段A 上是否存在一点F ,使得PF CE ⊥.若存在,确定F 点的位置;若不存在,说明理由.【答案】(1)证明见解析(2)1(3)不存在,理由见解析【解析】【分析】(1)推导出⊥BC 平面PAB .,AE BC AE PB ⊥⊥.由此能证明AE ⊥平面PBC ;(2)建立空间直角坐标系A xyz -,利用向量法能求出m 的值;(3)设()()0,0,03F t t ≤≤,当2m =,()0,0,2C ,()()2,0,,1,1,2PF t CE ==-- ,由PF CE ⊥知,0PF CE ⋅= ,220,1t t --==-,这与03t ≤≤矛盾,从而在线段AD 上不存在点F ,使得PF CE ⊥.【小问1详解】证明:因为AD ⊥平面PAB ,BC AD ∥,所以⊥BC 平面PAB ,又因为AE ⊂平面PAB ,所以AE BC ⊥.在PAB 中,PA AB =,E 是PB 的中点,所以AE PB ⊥.又因为BC PB B = ,,BC PB ⊂平面PBC ,所以AE ⊥平面PBC .【小问2详解】因为AD ⊥平面PAB ,,AB PA ⊂平面PAB ,所以,AD AB AD PA ⊥⊥,又因为PA AB ⊥,所以如图建立空间直角坐标系A xyz -.则()()()()()()0,0,0,0,2,0,0,2,,1,1,0,2,0,0,0,0,3A B C m E P D ,则()0,2,AC m = ,()1,1,0AE = ,设平面AEC 的法向量为 =s s .则00AC n AE n ⎧⋅=⎪⎨⋅=⎪⎩ 即200y mz x y +=⎧⎨+=⎩,令1x =,则1y =-,2z m =,故21,1,n m ⎛⎫=- ⎪⎝⎭.因为AD ⊥平面PAB ,PB ⊂平面PAB ,所以AD PB ⊥,又AE PB ⊥,,,AD AE A AD AE ⋂=⊂平面AED ,所以PB ⊥平面AED .又因为()2,2,0PB =- ,所以取平面AED 的法向量为()2,2,0PB =-所以cos ,3n PB n PB n PB⋅== ,3=,解得21m =.又因为0m >,所以1m =;【小问3详解】结论:不存在.理由如下:证明:设()()0,0,03F t t ≤≤.当2m =时,()0,0,2C ,()()2,0,,1,1,2PF t CE =-=-- ,由PF CE ⊥知0PF CE ⋅= ,220,1t t --==-,这与03t ≤≤矛盾,所以在线段AD 上不存在点F ,使得PF CE ⊥.20.已知圆()22:1C x a y -+=与直线1y x --=交于M 、N 两点,点P 为线段MN 的中点,O 为坐标原点,直线OP 的斜率为13-.(1)求a 的值及MON △的面积;(2)若圆C 与x 轴交于,A B 两点,点Q 是圆C 上异于,A B 的任意一点,直线QA 、QB 分别交:4l x =-于,R S 两点.当点Q 变化时,以RS 为直径的圆是否过圆C 内的一定点,若过定点,请求出定点;若不过定点,请说明理由.【答案】(1)12,2MON a S =-=(2)()4-【解析】【分析】(1)先确定直线OP 的方程,联立直线方程求得P 点坐标,利用垂径定理及两直线垂直的斜率关系计算可得a ,再根据点到直线的距离公式、弦长公式计算求面积即可;(2)设QA 方程,含参表示QB 方程,求出,R S 坐标,从而求出以RS 为直径的圆的方程,利用待定系数法计算即可.【小问1详解】由题知:直线OP 方程为13y x =-,则由113y x y x =--⎧⎪⎨=-⎪⎩,得到3212x y ⎧=-⎪⎪⎨⎪=⎪⎩,即31,22P ⎛⎫- ⎪⎝⎭, 点P 为线段MN 的中点,MN PC ∴⊥,即1021132MN PC k k a -⋅=-⨯=-+,2a ∴=-,即圆心−2,0;C ∴到直线=1y x --距离为2d ==,MN ∴==,又O 到直线=1y x --的距离为22,MN 边上的高为22.11222MON S ∴=⨯= .【小问2详解】由上可知()()3,0,1,0A B --,不妨设直线QA 的方程为()3y k x =+,其中0k ≠,在直线QA 的方程中,令4x =-,可得()4,R k --,因为QA QB ⊥,则直线QB 的方程为()11y x k =-+,在直线QB 的方程中,令4x =-,可得3y k =,即点34,S k ⎛⎫- ⎪⎝⎭,则线段RS 的中点为234,2k F k ⎛⎫-- ⎪⎝⎭,半径平方为2232k k ⎛⎫+ ⎪⎝⎭,所以,以线段MN 为直径的圆的方程为()2222233422k k x y k k ⎛⎫⎛⎫-+++-= ⎪ ⎪⎝⎭⎝⎭,即()2223430k x y y k -++--=,由()2430031x y x ⎧+-=⎪=⎨⎪-<<-⎩,解得40x y ⎧=-+⎪⎨=⎪⎩,因此,当点Q 变化时,以RS 为直径的圆恒过圆C内的定点()4-+.21.已知{}1,2,,n S = ,A S ⊆,{}12,T t t S =⊆,记{}(),1,2i i A x x a t a A i ==+∈=,用X 表示有限集合X 的元素个数.(1)若4n =,12A A =∅ ,分别指出{}1,2,3A =和{}1,2,4A =时,集合T 的情况(直接写出结论);(2)若6n =,12A A =∅ ,求12A A ⋃的最大值;(3)若7n =,4A =,则对于任意的A ,是否都存在T ,使得12A A =∅ 说明理由.【答案】(1){}1,4(2)10(3)不一定存在,理由见解析【解析】【分析】(1)由已知得12t t a b -≠-,其中,a b A ∈,当{}1,2,3A =时,12t t ,相差3;由此可求得T ,当{}1,2,4A =时,同理可得;(2)若6n =,12A A =∅ ,{}123456S =,,,,,,当{}2,3,4,5,6A =时,则12t t ,相差5,所以{}1,6T =,A 中至多有5个元素,所以12,A A 也至多有5个元素,求出12,A A 得出结果;(3)举反例{}1,2,5,7A =和{}{}1,2,3,4,1,6A T ==,根据题意检验即可说明.【小问1详解】若12A A =∅ ,则12t t a b -≠-,其中,a b A ∈,否则12t a t b +=+,12A A ⋂≠∅,若4n =,当{}1,2,3A =时,211-=,312-=,所以121,2t t -≠,则1t ,2t 相差3,因为1,2,3,4S =,{}12,T t t S =⊆,所以{}1,4T =;当{}1,2,4A =时,211-=,422-=,413-=,所以121,2,3t t -≠,因为1,2,3,4S =,{}12,T t t S =⊆,所以T 不存在;【小问2详解】若6n =,12A A =∅ ,{}123456S =,,,,,,当A S =时,211-=,514-=,523-=,716-=,72=5-,752-=,所以A S ≠,121,2,3,4,5t t -≠,所以T 不存在;所以A 中至多有5个元素;当{}2,3,4,5,6A =时,321-=,422-=,523-=,624-=,所以121,2,3,4t t -≠,则1t ,2t 相差5,所以{}1,6T =;{}(),1,2i i A x x a t a A i ==+∈=,所以{}1345,6,7A =,,,{}28910,11,12A =,,,{}12345,6,7,8910,11,12A A = ,,,,.因为A 中至多有5个元素,所以1A ,2A 也至多有5个元素,所以12A A ⋃的最大值为10.【小问3详解】不一定存在,理由如下:例如{}1,2,5,7A =,则211-=514-=,523-=,716-=,72=5-,752-=,则1t ,2t 相差不可能1,2,3,4,5,6,这与{}{}12,1,2,3,4,5,6,7T t t =⊆矛盾,故不都存在T ;例如{}{}1,2,3,4,1,6A T ==,不妨令121,6t t ==,则{}{}122,3,4,5,7,8,9,10A A ==,满足12A A =∅ .【点睛】关键点点睛:对于新定义问题,要充分理解定义,并把定义进行转化为已知的知识点或结论,方便解题.。
数学练习题及答案高二
数学练习题及答案高二第一节:选择题1. 若函数 f(x) = ax^2 + bx + c 的图象开口向上,且在点 P(-1, 3) 有极值,那么 a, b, c 的关系是()(A) a ≠ 0, b = 0, c ≠ 0;(B) a ≠ 0, b ≠ 0, c ≠ 0;(C) a ≠ 0, b ≠ 0, c = 0;(D) a ≠ 0, b = 0, c = 0;答案:(A)解析:由题可知,函数图象开口向上,所以a ≠ 0。
又因为在点 P(-1, 3) 有极值,极值对应的 x 坐标为 -1,代入函数可得 f(-1) = -a + b - c。
由于函数开口向上,所以该极值为极小值,即 f(-1) = -a + b - c > 0。
再结合a ≠ 0,可以得出 b = 0,因为如果b ≠ 0,则在 x = -1 附近 f(-1)不可能为正值。
所以,a ≠ 0,b = 0,c ≠ 0。
2. 已知函数 y = 2x^2 + 3x - 2 的图象与 x 轴交于点 A、B两个地方,那么点 A、B 的纵坐标分别是()(A) 0,-3;(B) -2,0;(C) 0,-2;(D) -3,0;答案:(C)解析:当函数与 x 轴交于点 A、B 时,函数值 y = 2x^2 + 3x - 2 = 0。
可以通过因式分解或二次方程求根公式来解。
将方程 2x^2 + 3x - 2 = 0 因式分解为 (2x + 1)(x - 2) = 0,得到两个解:x = -1/2,x = 2。
所以,点 A 的纵坐标为 y(A) = 2(-1/2)^2 + 3(-1/2) - 2 = -2,点 B 的纵坐标为 y(B) = 2(2)^2 + 3(2) - 2 = -2。
因此,点 A、B 的纵坐标分别是 0、-2。
第二节:填空题1. 给定矩阵 A = [1 2 3; -1 0 1],则 A 的转置矩阵为 ______。
答案:[1 -1; 2 0; 3 1]解析:矩阵的转置就是将原矩阵的行变为列,列变为行。
高二数学试题大全
高二数学试题答案及解析1.已知关于的方程C:.(1)若方程表示圆,求的取值范围;(2)若圆与直线:相交于两点,且=,求的值.【答案】解:(1)方程C可化为………………2分显然时方程C表示圆。
………………4分(2)圆的方程化为圆心 C(1,2),半径…6分则圆心C(1,2)到直线l:x+2y-4=0的距离为………………………………………………8分,有解得m=4 …………10分【解析】略2.函数在区间上的图像如图所示,则n可能是()A.1B.2C.3D.4【答案】A【解析】略3.曲线上的点到直线的最短距离是()A.B.C.D.0【答案】A【解析】略4.直线经过P(2,1),Q(m∈R)两点,那么直线的倾斜角的取值范围是()A.[0,π)B.[0,]∪[,π)C.[0,]D.[0,]∪(,π)【答案】D【解析】略5.设,分别是椭圆E:+=1(0﹤b﹤1)的左、右焦点,过的直线与E相交于A、B 两点,且,,成等差数列。
(1)求;(2)若直线的斜率为1,求b的值。
【答案】(1)由椭圆定义知又 (4)(2)L的方程式为y=x+c,其中设,则A,B 两点坐标满足方程组 (6)化简得则 (8)因为直线AB的斜率为1,所以即 . (10)则解得.【解析】略6.给出下列命题:①已知,则;②为空间四点,若不构成空间的一个基底,那么共面;③已知,则与任何向量都不构成空间的一个基底;④若共线,则所在直线或者平行或者重合.正确的结论为()【答案】①②④)【解析】略7.设x,y满足约束条件,若目标函数z ="ax" + by(a > 0 ,b > 0)的最大值为12 ,则的最小值为A.B.C.D.4【答案】A【解析】略8.已知,则().A. B. C. D.A. B. C. D.【答案】C【解析】略9.如图,在△ABC中,AB=AC,∠C=720,⊙O过A、B两点且与BC相切于点B,与AC交于点D,连结BD,若BC=,则AC=【答案】2【解析】略10.(本小题满分12分)某中心接到其正东、正西、正北方向三个观测点的报告:正西、正北两个观测点同时听到了一声巨响,正东观测点听到的时间比其他两观测点晚4s. 已知各观测点到该中心的距离都是1020m. 试确定该巨响发生的位置.(假定当时声音传播的速度为340m/ s :相关各点均在同一平面上).【答案】巨响发生在接报中心的西偏北45°距中心处。
高二数学试题大全
高二数学试题答案及解析1.已知函数的图象与轴切于(1,0)点,则函数的极值是()A.极大值为,极小值为0B.极大值为0,极小值为C.极大值为0,极小值为-D.极大值为-,极小值为0【答案】A【解析】略2.已知△BCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB=60°,E、F分别是AC、AD上的动点,且(1)求证:不论λ为何值,总有平面BEF⊥平面ABC;(2)当λ为何值时,平面BEF⊥平面ACD?【答案】(1)∵AB⊥平面BCD,∴AB⊥CD,CD⊥BC,AB∩BC=B∴CD⊥平面ABC.又∴EF∥CD,∴EF⊥平面ABC, EF平面BEF, 所以平面BEF⊥平面ABC(2)∵CD⊥平面ABC ∴平面ABC⊥平面ACD,BE平面ABC, 只需BE⊥AC,就有BE⊥平面ACD,从而就有平面BEF⊥平面ACD。
∵BC=CD="1," ∠BCD=90°,∴,又∠ADB=60°,∴当BE⊥AC时,,即当λ=时,平面BEF⊥平面ACD。
【解析】略3.若命题“”为真,“”为真,则A.p真q真B.p假q假C.p真q假D.p假q真【答案】D【解析】略4.抛掷一枚质地均匀的硬币,如果连续抛掷1000次,那么第999次出现正面朝上的概率是()A.B.C.D.【答案】D【解析】略5.一人在打靶中连续射击两次,事件“至少有一次中靶”的互斥事件是()A.至多有一次中靶B.两次都中靶C.两次都不中靶D.只有一次中靶【答案】C【解析】略6.方程()所表示的直线恒过点()A.(2,3)B.(-2,-3 )C.(-2,3)D.(3,-2)【答案】C【解析】略7.请先阅读:在等式的两边对x求导.由求导法则得化简后得等式利用上述想法(或者其他方法),试由等式,证明【答案】证明:在等式两边对x求导得.移项得(*)【解析】略8.已知△ABC的内角A、B、C所对的边分别为且,.(1) 若,求的值;(2) 若△ABC的面积,求的值.【答案】解:(1) ∵cosB=>0,且0<B<π,∴sinB=. ……2分由正弦定理得,……4分. ……6分(2) ∵S△ABC=acsinB=4,……8分∴,∴c="5. " ……10分由余弦定理得b2=a2+c2-2accosB,∴.……12分【解析】略9.若点P在曲线上移动,求经过P的切线的倾斜角的取值范围()A.B.C.D.【答案】B【解析】略10.的展开式中的系数是(※)A.B.C.3D.4【答案】A【解析】略11.函数在区间上有最小值,则函数在区间上一定()A.有最小值B.有最大值C.是减函数D.是增函数【答案】D【解析】略12.(本小题满分12分)对一切正整数n都成立,求正整数a的最大值,若不等式******.k.&s.5*u.c.o~m并用数学归纳法证明你的结论。
2023-2024学年北京市丰台区高二上学期期末练习数学试卷+答案解析
2023-2024学年北京市丰台区高二上学期期末练习数学试卷一、单选题:本题共10小题,每小题5分,共50分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知直线l经过,两点,则直线l的倾斜角为()A. B. C. D.2.已知数列的前n项和为,且,,则()A. B. C.1 D.33.已知抛物线的焦点为F,点在抛物线C上.若,则()A.2B.3C.4D.54.已知椭圆的焦点在x轴上,则m的取值范围是()A. B. C. D.5.如图,在四面体OABC中,,,点M在OC上,且,N为AB 的中点,则()A. B.C. D.6.已知椭圆的左、右焦点分别为,,点P在椭圆C上.若,则的面积为()A.2B.4C.8D.97.月相是指天文学中对于地球上看到的月球被太阳照亮部分的称呼年,爱尔兰学者在大英博物馆所藏的一块巴比伦泥板上发现了一个记录连续15天月相变化的数列,记为,其将满月等分成240份,且表示第i天月球被太阳照亮部分所占满月的份数.例如,第1天月球被太阳照亮部分占满月的,即;第15天为满月,即已知的第1项到第5项是公比为q的等比数列,第5项到第15项是公差为d的等差数列,且q,d均为正整数,则()A.40B.80C.96D.1128.已知点P在由直线,和所围成的区域内含边界运动,点Q在x轴上运动.设点,则的最小值为()A. B. C. D.9.如图,在棱长为2的正方体中,E为棱的中点,F为棱上一动点.给出下列四个结论:①存在点F,使得平面;②直线EF与所成角的最大值为;③点到平面的距离为;④点到直线的距离为其中所有正确结论的个数为()A.1B.2C.3D.410.过双曲线的右焦点F引圆的切线,切点为P,延长FP交双曲线C的左支于点若,则双曲线C的离心率为()A. B. C. D.二、填空题:本题共5小题,每小题5分,共25分。
11.已知向量,,若与共线,则__________.12.双曲线的渐近线方程为__________.13.已知等差数列的前n项和为,能够说明“对,若,则”是假命题的的一个通项公式为__________.14.在平面直角坐标系xOy中,已知点,点Q在圆上运动,当取最大值时,PQ 的长为__________.15.已知是各项均为正数的无穷数列,其前n项和为,且给出下列四个结论:①;②各项中的最大值为2;③,使得;④,都有其中所有正确结论的序号是__________.三、解答题:本题共6小题,共72分。
新高考高二数学试卷及答案
一、选择题(本大题共12小题,每小题5分,共60分)1. 若函数f(x) = 2x + 1,则f(3)的值为()A. 7B. 8C. 9D. 102. 已知等差数列{an}中,a1 = 2,公差d = 3,则a10的值为()A. 29B. 30C. 31D. 323. 若函数f(x) = x^2 - 2x + 1,则f(x)的对称轴为()A. x = 1B. x = -1C. y = 1D. y = -14. 已知复数z = 2 + 3i,则|z|的值为()A. 5B. 6C. 7D. 85. 若不等式x^2 - 4x + 3 > 0,则x的取值范围为()A. x < 1 或 x > 3B. x < 3 或 x > 1C. x < 2 或 x > 2D. x < 1 或 x < 36. 已知等比数列{bn}中,b1 = 2,公比q = 3,则b5的值为()A. 162B. 243C. 216D. 817. 若函数f(x) = |x| + 1,则f(-2)的值为()A. 3B. 1C. -3D. -18. 已知复数z = 4 - 3i,则z的共轭复数为()A. 4 + 3iB. 4 - 3iC. -4 + 3iD. -4 - 3i9. 若不等式2x - 3 < 5,则x的取值范围为()A. x < 4B. x < 2C. x > 4D. x > 210. 已知等差数列{an}中,a1 = 5,公差d = -2,则a6的值为()A. -7B. -8C. -9D. -1011. 若函数f(x) = x^3 - 3x^2 + 4x - 1,则f(1)的值为()A. -1B. 0C. 1D. 212. 已知复数z = 3 + 4i,则z的模长为()A. 5B. 6C. 7D. 8二、填空题(本大题共6小题,每小题5分,共30分)13. 已知等差数列{an}中,a1 = 3,公差d = 2,则a10的值为______。
2024学年北京理工大学附中高二数学上学期期中练习试卷附答案解析
2024学年北京理工大学附中高二数学上学期期中练习试卷一、单选题(本大题共10小题)1.直线30y --=的倾斜角是()A .30°B .60︒C .120︒D .150︒2.正方体1111ABCD A B C D -的棱长为a ,则棱1BB 到面11AAC C 的距离为()A .3a B .a C .2a D .3.如图所示,在平行六面体ABCD ﹣A 1B 1C 1D 1中,1111AA D C BB +-=()A .1AB B .DC C .AD D .BA4.已知直线()12:20,:2120l ax y l x a y +-=+++=,若21l l //,则a =()A .1-或2B .1C .1或2-D .2-5.已知l m ,为两条不同的直线,αβ,为两个不同的平面,则下列结论正确的是()A .若l m αβαβ⊂⊂∥,,,则lmB .若l m l m αβ⊂⊂,,∥,则αβ∥C .若l m m l αββ⋂=⊂⊥,,,则αβ⊥D .若n l l n αβαβα⊥⋂=⊂⊥,,,,则l β⊥6.如图,将半径为1的球与棱长为1的正方体组合在一起,使正方体的一个顶点正好是球的球心,则这个组合体的体积为()A .716π+B .7566π+C .718π+D .1π+7.已知直线:l y kx b =+,22:1O x y +=e ,则“||1b <”是“直线l 与O 相交”的()A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件8.已知直线l :20ax y --=和点(2,1)P ,(3,2)Q -,若l 与线段PQ 相交,则实数a 的取值范围是()A .3243a -≤≤B .34a ≤-或23a ≥C .4332a -≤≤D .43a ≤-或32a ≥9.当曲线1y =330kx y k --+=有两个相异的交点时,实数k 的取值范围是A .120,5⎛⎫⎪⎝⎭B .2,25⎛⎤ ⎥⎝⎦C .20,5⎛⎤ ⎥⎝⎦D .122,5⎡⎫⎪⎢⎣⎭10.人脸识别是基于人的脸部特征进行身份识别的一种生物识别技术.主要应用距离测试样本之间的相似度,常用测量距离的方式有3种.设()11,A x y ,()22,B x y ,则欧几里得距离(),D A B =;曼哈顿距离()1212,d A B x x y y =-+-,余弦距离()(),1cos ,e A B A B =-,其中()cos ,cos ,A B OA OB =(O 为坐标原点).若点()2,1M ,(),1d M N =,则(),e M N 的最大值为()A .1-B .110-C .2515-D .1-二、填空题(本大题共5小题)11.两平行直线12:3420:3410l x y l x y ++=+-=,之间的距离是12.如图,在正方体1111ABCD A B C D -中,M ,N 分别为DB ,11AC 的中点,则直线1A M 和BN 的夹角的余弦值为13.已知圆22:(1)4C x y +-=,过点P 作圆的切线,则切线方程为.14.已知直线l 过点()4,1P 且与x 轴、y 轴的正半轴分别交于A 、B 两点,O 为坐标原点,当三角形OAB 面积取最小值时直线l 的斜率为.15.如图,在正方体1111ABCD A B C D -中,P 为1AC 的中点,1AQ t AB =,[]0,1t ∈,则下列说法正确的(请把正确的序号写在横线上)①1PQ A B⊥②当12t =时,//PQ 平面11BCC B③当13t =时,PQ 与CD 所成角的余弦值为11④当14t =时,1A Q ⊥平面1PAB 三、解答题(本大题共4小题)16.已知ABC V 的顶点(1,5)A -,(2,1)B --,(4,7)C .(1)求边BC 上的高AD 所在直线的方程;(2)求边BC 上的中线AD 所在直线的方程;(3)求ABC V 的面积.17.已知四边形ABCD 为正方形,O 为AC ,BD 的交点,现将三角形BCD 沿BD 折起到PBD 位置,使得PA AB =,得到三棱锥P ABD -.(1)求证:平面PBD ⊥平面ABD ;(2)棱PB 上是否存在点G ,使平面ADG 与平面ABD 夹角的余弦值为PG PB;若不存在,说明理由.18.如图,在四棱锥P ABCD -中,底面ABCD 是边长为1的正方形,Q 为棱PD 的中点.(1)求证:PB ∥平面ACQ ;(2)若BA PD ⊥,再从条件①、条件②、条件③中选择若干个作为已知,使四棱锥P ABCD -唯一确定,并求:(i )直线PC 与平面ACQ 所成角的正弦值;(ii )点P 到平面ACQ 的距离.条件①:二面角P CD A --的大小为45 ;条件②:2PD =条件③:AQ PC ⊥.19.设二次函数23y x =-的图象与两坐标轴的交点分别记为M ,N ,G ,曲线C 是经过这三点的圆.(1)求圆C 的方程;(2)过(1,0)P -作直线l 与圆C 相交于A ,B 两点.(i )||||PA PB ⋅是否是定值?如果是,请求出这个定值;(ii )设(0,2)Q -,求22||||QA QB +的最大值.参考答案1.【答案】B【详解】解:由直线30y --=得直线的斜率k =又直线的倾斜角为α,且[)0,180α∈︒︒,所以tan α=60α=︒故选:B.2.【答案】C【详解】如图,连接1111,A C B D ,它们交于点O ,正方形中1111AC B D ⊥,又1AA ⊥平面1111D C B A ,11B D ⊂平面1111D C B A ,所以111AA B D ⊥,1111111,,AA A C A AA A C ⋂=⊂平面11AAC C ,所以11B D ⊥平面11AAC C ,所以1B O 的长即为棱1BB 到面11AAC C 的距离,而122B O a =,所以所求距离为2a .故选:C .3.【答案】B【详解】由题中所给平行六面体1111ABCD A B C D -可知,11AA BB →→=,11D C DC →→=,故111111AA D C BB D C DC →→→→→+-==.故选:B 4.【答案】B【分析】由条件结合直线平行结论列方程求a ,并对所得结果进行检验.【详解】因为1l ∥2l ,()12:20,:2120l ax y l x a y +-=+++=,所以()112a a +=⨯,所以220a a +-=,解得2a =-或1a =,当2a =-时,1:220l x y -+=,2:220l x y -+=,直线12,l l 重合,不满足要求,当1a =时,1:20+-=l x y ,2:10l x y ++=,直线12,l l 平行,满足要求,故选B.5.【答案】D【详解】A ,若l m αβαβ⊂⊂∥,,,则lm 或异面,故该选项错误;B ,若l m l m αβ⊂⊂,,∥,则αβ∥或相交,故该选项错误;C ,若l m m l αββ⋂=⊂⊥,,,则α,β不一定垂直,故该选项错误;D ,若n l l n αβαβα⊥⋂=⊂⊥,,,,则利用面面垂直的性质可得l β⊥,故该选项正确.故选:D.6.【答案】A【分析】该组合体可视作一个正方体和78个球体的组合体,进而求出体积.【详解】由题意,该组合体是一个正方体和78个球体的组合体,其体积为33747111836+⨯π⨯=+π.故选:A.7.【答案】A【详解】由题意可得直线:l y kx b =+与22:1O x y +=e 相交,则2211b k <⇒<+当||1b <时,满足221b k <+,即“||1b <”是“直线l 与O 相交”的充分条件;当直线:l y kx b =+与22:1O x y +=e 相交时,不一定有||1b <,比如2,3b k ==也满足,所以“||1b <”是“直线l 与O 相交”的充分不必要条件.故选:A.8.【答案】D【详解】由直线l :20ax y --=可知直线l 必过定点A (0,2)-,且直线l 的斜率为a ,如下图所示:由斜率公式可知,直线AP 的斜率为213022AP k --==-,直线AQ 的斜率为2240(3)3AQ k --==---,若l 与线段PQ 相交,只需要32AP a k ≥=或43AQ a k ≤=-,故实数a 的取值范围是43a ≤-或32a ≥.故选:D.9.【答案】D 【详解】如图所示:∵曲线1y =,直线330kx y k --+=,∴()2214x y +-=,1y ≤,()33y k x =-+,圆心()0,1O ,直线过定点()3,3,直线过()2,1时,有两个交点,此时13k =-+,2k =,直线与下半圆相切时,2=,125k =,∴1225k ≤<.故答案选D .10.【答案】C【详解】设(),N x y ,则(),211d M N x y =-+-=,即211x y -+-=,可知211x y -+-=表示正方形ABCD ,其中()()()()2,0,3,1,2,2,1,1A B C D ,即点N 在正方形ABCD 的边上运动,因为()()2,1,,OM ON x y ==,由图可知:当()cos ,cos ,M N OM ON = 取到最小值,即,OM ON最大,点N 有如下两种可能:①点N 为点A ,则()2,0ON = ,可得()cos ,cos ,M N OM ON ==②点N 在线段CD 上运动时,此时ON 与DC同向,不妨取()1,1ON = ,则()cos ,cos ,M N OM ON ==;因为>(),e M N 的最大值为2515-.故选:C.11.【答案】35【分析】直接利用两条平行直线间的距离公式计算即可.【详解】两条平行直线1l :3420x y ++=与2l :3410x y +-=之间的距离为35=.故答案为:35.12.【答案】23【详解】以D 为坐标原点,1,,DA DC DD 所在直线分别为,,x y z 轴,建立空间直角坐标系,设正方体棱长为2,则()()()()12,0,2,1,1,0,2,2,0,1,1,2A M B N ,故1A M 和BN 的夹角的余弦值为114263A M BN A M BN⋅===⋅.故答案为:2313.【答案】5y =+【详解】因为22(21)4+-=,所以点P 在圆上,设切线的斜率为k ,则1CP k k ⋅=-,,3PC k k ==∴=.则切线方程为25y x x =+=+.故答案为:5y =+14.【答案】14-/0.25-【详解】设s 0,()0,B b ,其中,0a b >,设直线l 的方程为1x ya b+=,因为直线l 过点()4,1P ,所以411a b+=,由基本不等式可得411a b =+≥所以4≥,16ab ≥,当且仅当41a b=,即8a =,2b =时取等号,所以ab 的最小值为16,此时OAB △的面积取最小值8,直线l 的斜率为201084-=--.故答案为:14-.15.【答案】①②③【详解】建立如图所示的空间直角坐标系,设正方体的棱长为1,则(),0,Q t t ,所以111,,222QP t t ⎛⎫=-- ⎪⎝⎭ ,()11,0,1A B =- ,所以10QP A B ⋅=,所以1PQ A B ⊥,①正确;当12t =时,110,,022QP BC ⎛⎫== ⎪⎝⎭,所以//PQ BC ,又⊂BC 平面11BCC B ,PQ ⊄平面11BCC B ,从而//PQ 平面11BCC B ,②正确;当13t =时,111,,626QP ⎛⎫= ⎪⎝⎭,D=1,0,0,所以PQ 与CD所成角的余弦值为16cos ,11DC QP DC QP DC QP ⋅==,③正确;当14t =时,113,0,44A Q ⎛⎫=- ⎪⎝⎭ ,()11,0,1AB = ,111310442A Q AB ⋅=-=-≠ ,所以1AQ 不垂直于1AB ,所以1AQ 不垂直于平面1PAB ,④错误.故答案为:①②③.16.【答案】(1)34170x y +-=(2)40x y +-=(3)14【详解】(1)因为(1,5)A -,(2,1)B --,(4,7)C ,所以7(1)44(2)3BC k --==--,所以34AD k =-,则边BC 上的高AD 所在直线的方程为()3514y x -=-+,即34170x y +-=;(2)由题意可知M 是BC 的中点,所以()1,3M ,从而边BC 上的中线AM 所在直线的方程为315311y x --=---,即40x y +-=;(3)由题意知,边BC 所在直线的方程为()()()()127142y x ----=----,即4350x y -+=,所以点A 到直线BC 的距离145h =,又10BC ==,所以ABC V 的面积为11141014225BC h ⋅=⨯⨯=.17.【答案】(1)证明见解析(2)存在,12PGPB =【详解】(1)因为四边形ABCD 为正方形,所以OA OB OC OD ===,,OC OB OA OB ⊥⊥,所以折起后,OA OB OP OD ===,OP OB ⊥,由于折起前有222OA OB AB +=,且折起后PA AB =,所以折起后有222OA OP PA +=,即OP OA ⊥,又OP OB ⊥,OA OB O = ,,OA OB ⊂平面ABD ,所以OP ⊥平面ABD ,又OP ⊂平面PBD ,所以平面PBD ⊥平面ABD .(2)存在,理由如下:由(1)知OP OB ⊥,OP OA ⊥,OA OB ⊥,所以以O 为原点,以OA 为x 轴,以OB 为y 轴,以OP 为z轴建立空间直角坐标系,设1OA =,则()1,0,0A ,()0,1,0B ,()0,1,0D -,()0,0,1P ,则()1,1,0AD =-- ,()0,1,1PB =- ,()1,0,1AP =- ,假设存在满足题意的点G ,设()()0,,01PG PB λλλλ==-≤≤ ,则()1,,1AG AP PG λλ=+=-- ,设平面ADG 的法向量为(),,n x y z = ,则·0·0AD nAG n ⎧=⎪⎨=⎪⎩ ,即()010x y x y z λλ--=⎧⎨-++-=⎩,令1x =,得1y =-,11z λλ+=-,即11,1,1n λλ+⎛⎫=- ⎪-⎝⎭ ,易知平面ABD 的一个法向量为()0,0,1m = ,因为平面ADG 与平面ABD夹角的余弦值为,所以·cos ,n m n m n m 〈〉=整理得22520λλ-+=解得12λ=或2λ=(舍),所以在棱PB 上存在点G ,使平面ADG 与平面ABD夹角的余弦值为12PG PB =.18.【答案】(1)证明见解析(2)(i )13;(ii)3【详解】(1)(1)连接BD ,交AC 于O ,连接OQ ,底面ABCD 是正方形,故O 是BD 的中点,又因为Q 为棱PD 的中点,所以,在PBD △中OQ ∥PB ,而OQ ⊂平面,ACQ PB ⊄平面ACQ ,所以PB ∥平面ACQ .(2)选①②:因为四边形ABCD 是正方形,所以,,BA AD AD CD BA ⊥⊥∥CD ,又因为BA PD ⊥,所以CD PD ⊥,因为二面角P CD A --的大小为45 ,平面PAD ⋂平面,,ABCD CD AD CD PD CD =⊥⊥,所以45ADP ∠= ,在PAD △中,2222cos 1PA AD PD AD PD ADP ∠=+-⋅⋅=,所以222PA AD PD +=,故PA AD ⊥,又因为,,,BA AD BA PD AD PD D AD PD ⊥⊥⋂=⊂、平面PAD ,所以BA ⊥平面PAD ,选①③:因为四边形ABCD 是正方形,所以,,BA AD AD CD BA ⊥⊥∥CD ,又因为BA PD ⊥,所以CD PD ⊥,因为二面角P CD A --的大小为45 ,平面PAD ⋂平面,,ABCD CD AD CD PD CD =⊥⊥,所以45ADP ∠= ,因为,,,CD PD CD AD AD PD D AD PD ⊥⊥⋂=⊂、平面PAD ,所以CD ⊥平面PAD ,又因为AQ ⊂平面PAD ,所以CD AQ ⊥,又因为,,AQ PC PC CD C PC CD ⊥⋂=⊂、平面PCD ,所以AQ ⊥平面PCD ,因为PD ⊂平面PCD ,所以AQ PD ⊥,又因为Q 为PD 中点,所以PA AD =,所以45APD ADP ∠∠== ,所以90PAD ∠= ,即PA AD ⊥,因为BA ∥,CD CD ⊥平面PAD ,所以BA ⊥平面PAD ,选②③:因为四边形ABCD 是正方形,所以,AD CD BA ⊥∥CD ,因为,,,CD PD CD AD AD PD D AD PD ⊥⊥⋂=⊂、平面PAD ,所以CD ⊥平面PAD ,又因为AQ ⊂平面PAD ,所以CD AQ ⊥,又因为,,AQ PC PC CD C PC CD ⊥⋂=⊂、平面PCD ,所以AQ ⊥平面PCD ,因为PD ⊂平面PCD ,所以AQ PD ⊥,又因为Q 为PD 中点,所以1PA AD ==,在PAD △中,222PA AD PD +=,故PA AD ⊥,因为BA ∥,CD CD ⊥平面PAD ,所以BA ⊥平面PAD ,选①②③同上.以A 为原点,,,AB AD AP 为,,x y z 轴建立空间直角坐标系,则()()()()110,0,0,1,1,0,0,1,0,0,,,0,0,122A C D Q P ⎛⎫ ⎪⎝⎭,故()()110,,,1,1,0,1,1,122AQ AC PC ⎛⎫===- ⎪⎝⎭,令(),,m x y z = 为面ACQ 的一个法向量,则110,220.m AQ y z m AC x y ⎧⋅=+=⎪⎨⎪⋅=+=⎩令1x =,则()1,1,1m =- ,(i)因为1cos ,3m PC m PC m PC⋅=== ,所以直线PC 与平面ACQ 所成角的正弦值为13,(ii )由(i )知点P 到平面ACQ的距离133PC =.19.【答案】(1)()2214x y ++=(2)(i )||||PA PB ⋅是定值,定值为2;(ii)12+【详解】(1)设二次函数23y x =-与x 轴分别交于,M N ,与y 轴交于点G ,令0y =,则x =即)(),M N ,令0x =,则=3y -,则()0.3G -,设圆C 的方程为220x y Dx Ey F ++++=,将点M 、N 、G的坐标代入可得3030930F F E F ⎧-+=⎪⎪++=⎨⎪-+=⎪⎩,解得023D E F =⎧⎪=⎨⎪=-⎩,则22230x y y ++-=,化为标准式为()2214x y ++=.(2)||||PA PB ⋅是定值.(i )当直线l 的斜率不存在时,则l 方程为1x =-,联立()22141x y x ⎧++=⎪⎨=-⎪⎩,可得11x y =-⎧⎪⎨=⎪⎩或11x y =-⎧⎪⎨=⎪⎩,即()()1,1,1A B --,则1PA =,1PB =,则2PA PB ⋅=;当直线l 的斜率存在时,设l 方程为()1y k x =+,设1,1,2,2,联立直线与圆的方程()()22114y k x x y ⎧=+⎪⎨++=⎪⎩,消去y 可得()()()222212230k x k k x k k +++++-=,由韦达定理可得()22121222223,11k k k k x x x x k k -++-+==++,且PA =PB =,则()()()212111PA PB k x x ⋅==+++()()()()222221212222311111k k k k k k x x x x k k -+++-++=++++=++()222121k k -=+⨯=+;综上所述,2PA PB ⋅=是定值.(ii )由(i )可知,当直线l的斜率不存在时,()()1,1,1A B --,且()0,2Q -,则())222115QA =-++=+()()222115QB =-+=-,则2210QA QB +=;当直线l 的斜率存在时,设l 方程为()1y k x =+,则()()222222112222QA QB x kx k x kx k +=+++++++()()()()222221212124288k x x k k x x k k =++++++++()()()()()2222222222242231224288111k k k kk k k k k k k k k k ⎡⎤⎡⎤+-++-⎢⎥⎢⎥=+-⨯++⨯+++⎢⎥++⎢⎥+⎣⎦⎣⎦()()2222222244(2)2(23)28811k k k k k k k k k k k k +-++=-+-++++++()22414141k k k k -+=+++()241141k k k -=++224(1)44141k k k -+++=++24(1)101k k +=++令1t k =+,则1k t =-222224(1)4410101011(1)22k t tQA QB k t t t ++=+=+=+++--+令24()1022tf t t t =+-+当0t =,即1k =-时,(0)10f =;当0t ≠,即1k ≠-时,244()10102222tf t t t t t =+=+-++-;2+(,)t t ∈-∞-⋃+∞当2+t t =t =,11k t =-=时,()f t取最大值12+所以()22max 12QA QB +=+。
高二数学试卷带答案解析
高二数学试卷带答案解析考试范围:xxx;考试时间:xxx分钟;出题人:xxx姓名:___________班级:___________考号:___________1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.一个车间为了规定工时定额,需要确定加工零件所花费的时间,由此进行了5次实验,收集数据如下:零件数:个加工时间:分钟由以上数据的线性回归方程估计加工100个零件所花费的时间为()附:回归直线的斜率和截距的最小二乘估计公式分别为,.A. 124分钟B. 150分钟C. 162分钟D. 178分钟2.是正数,则三个数的大小顺序是( )A.B.C.D.3.已知,若函数有3个或4个零点,则函数的零点个数为()A.或 B. C.或 D.或或4.命题:,则是()A.B.C.D.5.P(x,y)是上任意一点,是其两个焦点,则的取值范围是()A. B. C. D.6.函数处的切线方程是A. B. C. D.7.函数在上最大,最小值分别为A.5,-15 B.5,4 C.-4,-15 D.5,-168.轴围成的图形的面积是()A.1 B. C.2 D.9.在中,角的对边分别为,向量,,若,且,则角,的大小为( ).A .,B ., C ., D .,10.已知定义在R 上的函数满足,当时,下面选项中最大的一项是( )A .B .C .D .11.复数(i 是虚数单位)的在复平面上对应的点位于第 象限A .一B .二C .三D .四12.(2015秋•陕西校级月考)若平面α的法向量为,直线l 的方向向量为,直线l 与平面α的夹角为θ,则下列关系式成立的是( ) A .cos θ= B .cos θ= C .sin θ= D .sin θ=13.已知点在直线上运动,则的最小值为( )A .B .C .D .14.不等式的解集为( ) A . B .C .D .15.抛物线的焦点坐标为 ( ) A .B .C .D .16.用数学归纳法证明“当为正奇数时,能被整除”,第二步归纳假设应写成( )A .假设正确,再推正确;B .假设正确,再推正确;C .假设正确,再推正确;D .假设正确,再推正确。
高二数学练习题及答案解析
高二数学练习题及答案解析[注意:本文只提供题目及答案解析,不提供排版格式,文章体裁为说明文]一、选择题1.设函数f(x)=2x^3-3x^2-2x+1,下列命题正确的是()A.函数f(x)为奇函数B.函数f(x)为偶函数C.函数f(x)的奇次项系数之和为0D.函数f(x)的偶次项系数之和为0答案与解析:B. 函数f(x)为偶函数对于任意实数x,有f(-x)=2(-x)^3-3(-x)^2-2(-x)+1=2x^3-3x^2+2x+1=f(x)。
因此,f(x)满足f(-x)=f(x),即为偶函数。
2.已知等差数列{an}的前n项和Sn=n^2+3n,则其第一项a1等于()A. 3B. 4C. 5D. 6答案与解析:B. 4设等差数列的公差为d,根据前n项和公式Sn=n(a1+an)/2,代入已知条件可以得到n(2a1+(n-1)d)/2=n^2+3n。
化简可得2a1+(n-1)d=2n+6,由此可知,对于任意n,2a1+(n-1)d都是一个等差数列的前n项和。
观察等式两边的系数,可以发现2n+6的系数是2,即2a1+(n-1)d的系数也是2。
因此,等差数列的公差d=2。
代入已知条件Sn=n^2+3n,可以得到n^2+3n=n(a1+an)/2=na1+n(n-1)d/2=n[a1+(n-1)d]/2。
化简可得n^2+3n=4n^2-2n,整理得到3n=3n^2-2n,解得n=2。
此时Sn=2^2+3*2=10。
又因为Sn=na1+n(n-1)d/2=2a1+2(a1+d)=4a1+2d。
代入Sn=10和d=2,解得a1=4。
二、填空题1.已知函数f(x)=x^3+ax^2+bx+c,若f(1)=12,f(2)=9,f(3)=6,则a+b+c=()。
答案与解析:-6代入f(1)=12,可以得到1^3+a+b+c=12,化简得到a+b+c=12-1=11。
代入f(2)=9,可以得到2^3+2^2a+2b+c=9,化简得到8+4a+2b+c=9。
高二数学试题大全
高二数学试题答案及解析1.已知x与y之间的一组数据是:(0,1),(1,3),(2,5),(3,7),则y与x之间的回归方程必经过()A.(2,2)B.(1.5,0)C.(1,2)D.(1.5,4)【答案】D【解析】略2.若命题“”为假,且“”为假,则A.或为假B.真C.假D.不能判断的真假【答案】C【解析】略3.复数的共轭复数为()A.,B.,C.D.【答案】C【解析】略4.图1是一个几何体的三视图,根据图中数据,可得该几何体的表面积是(▲ )A.9B.10C.11D.12【答案】D【解析】略5.已知直线,给出下列四个命题:①若②若③若④若其中正确的命题是(▲ )A.①④B.②④C.①③④D.①②④【答案】A【解析】略6.若,为虚数单位,且,则______▲____7.定义在上的函数满足,的导函数的图像如图所示,若两正数、满足,则的取值范围是()A.B.C.D.【答案】D【解析】略8.如图是一几何体的三视图,正视图是一等腰直角三角形,且斜边长为2,侧视图为一直角三角形,俯视图为一直角梯形,且,则异面直线与所成角的正切值是(第15题图)【答案】【解析】略9.数据的方差为,平均数为,则数据的平均数为标准差为.【答案】【解析】略10.设p:,q:,若q是p的必要而不充分条件,则实数a的取值范围是()A.B.C.D.【解析】略11.【答案】(1)证明:因为四边形ABCD为正方形。
所以以点C为原点。
建立如图所示空间直角坐标系。
则A(0,-2,0),B(2,0,0),C(0,0,0),D(0,0,2),E(0,-2,2).因为M为AD的中点,所以M(0,-1,1)..(5分)。
(2)设平面EAB的一个法向量为则取y=-1,则x=1.则则平面AEB与平面EBC的夹角大小为。
——————————10分。
(3)由(1)知为平面EBC的一个法向量,.又——————12分【解析】略12.已知O、A、B是平面上的三个点,直线AB上有一点C,满足2+=0,则=() A.2-B.-+2C.-D.-+【答案】A【解析】略13.函数f(x)=x3-3x+1在闭区间[-3,0]上的最大值、最小值分别是()A. 1,-1B. 3,-17C. 1,-17D.9,-19【答案】B【解析】略14.已知满足约束条件则的取值范围为()A.B.C.D.【答案】C【解析】略15.,除以88的余数是w_w w.k#s5_u.c o*m【答案】C【解析】略16.设袋中有80个红球,20个白球,若从袋中任取10个球,则其中恰有6个红球的概率为()A.B.C.D.【答案】D【解析】略17.设是虚数单位,则复数的虚部是()A.B.C.D.【答案】D【解析】略18.(本小题满分12分)已知直线与双曲线交于A、B两点,(1)若以AB线段为直径的圆过坐标原点,求实数a的值。
2024高二数学试题及答案
2024高二数学试题及答案一、选择题(每题3分,共30分)1. 若函数f(x)=x^2-4x+m,且f(1)=-3,则m的值为:A. 0B. 1C. 2D. 3答案:B2. 已知圆的方程为(x-3)^2+(y+1)^2=16,该圆的半径为:A. 2B. 4C. 6D. 8答案:B3. 若直线l的方程为y=2x+3,且与x轴交于点A,与y轴交于点B,则|AB|的长度为:A. 5B. √5C. √10D. √13答案:D4. 已知数列{an}的通项公式为an=2n+1,求该数列的前n项和Sn:A. n^2+2nB. n^2+nC. n^2+2n+1D. n^2+n+1答案:A5. 函数f(x)=x^3-3x^2+2在区间[0,2]上的最大值为:A. 0B. 1C. 2D. 3答案:C6. 已知向量a=(2,-1),b=(1,3),则向量a与向量b的数量积为:A. 1B. -1C. 5D. -5答案:C7. 若复数z满足|z-1|=2,且|z|=3,则z的实部为:A. 1B. 2C. -1D. -2答案:B8. 已知双曲线C的方程为x^2/a^2-y^2/b^2=1,且双曲线的渐近线方程为y=±(1/2)x,则a与b的关系为:A. a=2bB. a=b/2C. b=2aD. b=a/2答案:A9. 已知函数f(x)=x^2-4x+3,求f(x)的单调递增区间:A. (-∞,2)B. (2,+∞)C. (-∞,2)∪(2,+∞)D. (-∞,+∞)答案:B10. 若矩阵A=\[\begin{bmatrix}1 & 2 \\ 3 & 4\end{bmatrix}\],求矩阵A的行列式:A. -2B. 2C. -5D. 5答案:A二、填空题(每题3分,共15分)11. 已知等差数列{an}的首项a1=1,公差d=2,则该数列的第10项a10为________。
答案:1912. 函数f(x)=x^2-6x+8的顶点坐标为________。
高二数学试题大全
高二数学试题答案及解析1.命题“任给x∈R,x2-x+3>0”的否定是.【答案】存在x∈R,x2-x+3≤0【解析】根据全称命题的否定是特称命题得“任给x∈R,x2-x+3>0”的否定是“存在x∈R,x2-x+3≤0”2.设直线x=t与函数,的图像分别交与点M、N,则当达到最小时t的值为(▲)A.1B.C.D.【答案】C【解析】略3.一圆形纸片的圆心为,是圆内不同于的一定点,是圆周上一动点,把纸片折叠使与重合,然后抹平纸片,折痕为,若与交于点,则点的轨迹是:()A.椭圆B.双曲线C.抛物线D.圆【答案】A【解析】略4.下列变量中不是分类变量的是( )A.近视B.成绩C.性别D.饮酒【答案】B【解析】略5.设集合A={1,2,3,5,7},B={3,4,5},则A.{1,2,3,4,5,B.{3,4,5}C.{5}D.{1,2}7}【答案】A【解析】略6.椭圆的一个焦点为,点在椭圆上.如果线段的中点在轴上,那么点的纵坐标是(**** )A.±B.±C.±D.±【答案】A【解析】略7.从数字1、2、3、4、5中任取两个不同的数字构成一个两位数,则这个两位数大于40的概率为()A.B.C.D.【答案】B【解析】略8.已知点及椭圆上任意一点,则最大值为【答案】【解析】略9.如果把个位数是1,且恰有3个数字相同的四位数叫做“好数”,那么在由1,2,3,4四个数字组成的有重复数字的四位数中,“好数”共有个.【答案】12【解析】略10.已知函数,则与两函数图象的交点个数为()A.B.C.D.【答案】C【解析】略11.设全集,集合,,则()A.B.C.D.【答案】B【解析】略12.已知球O的表面积为4p,A、B、C为球面上三点,面OAB面ABC,A、C两点的球面距离为,B、C两点的球面距离为,则A、B两点的球面距离为A.B.C.D.【答案】C【解析】略13.如图,在长方体中,点在棱的延长线上,且.(Ⅰ)求证:∥平面;(Ⅱ)求证:平面平面;(Ⅲ)求四面体的体积.【答案】四面体D1B1AC的体积【解析】解:(Ⅰ)证明:连四边形是平行四边形则又平面,平面//平面(Ⅱ)由已知得则由长方体的特征可知:平面而平面,则平面又平面平面平面(Ⅲ)四面体D1B1AC的体积14.已知向量,向量,且,则实数等于()A.B.C.D.【答案】A【解析】略15.(本小题满分16分)已知点为椭圆上的任意一点(长轴的端点除外),、分别为左、右焦点,其中a,b为常数.(1)若点P在椭圆的短轴端点位置时,为直角三角形,求椭圆的离心率.(2)求证:直线为椭圆在点P处的切线方程;(3)过椭圆的右准线上任意一点R作椭圆的两条切线,切点分别为S、T.请判断直线ST是否经过定点?若经过定点,求出定点坐标,若不经过定点,请说明理由.【答案】(1)(2)详见解析(3)【解析】(1)因为点P在椭圆的短轴端点位置时,为等腰三角形,又为直角三角形,因此椭圆的离心率为(2)证明直线为椭圆切线,一般方法为先将直线方程与椭圆方程联立,消去y可得关于x的一元二次方程,再证其判别式为零(3)研究直线过定点问题,一般先表示出直线方程,这可利用第(2)小题的结论得:切线SR的方程为,切线TR的方程为,把分别代入得:从而得ST的方程为因此ST过定点试题解析:记.(1)当点P在椭圆的短轴端点位置时,为直角三角形,则有,得.所以,此时椭圆的离心率为.(2)点在椭圆上,得.把代入方程,得,所以点在直线上,联列方程组,消去y可得,解得,即方程组只有唯一解.所以,直线为椭圆在点P处的切线方程.(3)由题可设、、.由(2)结论可知,切线SR的方程为①切线TR的方程为②把分别代入方程①、②,可得③和④由③、④两式,消去,可得,即有,所以,点、、三点共线,所以,直线ST经过定点,定点坐标为【考点】直线与椭圆位置关系16.某中学为了解学生数学课程的学习情况,在3000名学生中随机抽取200名,并统计这200名学生的某次数学考试成绩,得到了样本的频率分布直方图(如下图).根据频率分布直方图推测这3000名学生在该次数学考试中成绩小于60分的学生数是.【答案】600【解析】由直方图可知成绩小于60分的概率为,所以3000名学生在该次数学考试中成绩小于60分的学生数是【考点】频率分布直方图17.(2011•福建)某日用品按行业质量标准分成五个等级,等级系数X依次为1,2,3,4,5.现从一批该日用品中随机抽取20件,对其等级系数进行统计分析,得到频率分布表如下:(Ⅰ)若所抽取的20件日用品中,等级系数为4的恰有3件,等级系数为5的恰有2件,求a、b、c的值;(Ⅱ)在(Ⅰ)的条件下,将等级系数为4的3件日用品记为x1,x2,x3,等级系数为5的2件日用品记为y1,y2,现从x1,x2,x3,y1,y2,这5件日用品中任取两件(假定每件日用品被取出的可能性相同),写出所有可能的结果,并求这两件日用品的等级系数恰好相等的概率.【答案】(Ⅰ)a=0.1,b=0.15,c=0.1;(Ⅱ)见解析.【解析】(I)通过频率分布表得推出a+b+c=0.35.利用等级系数为4的恰有3件,等级系数为5的恰有2件,分别求出b,c,然后求出a.(II)根据条件列出满足条件所有的基本事件总数,“从x1,x2,x3,y1,y2,这5件日用品中任取两件,等级系数相等”的事件数,求解即可.解:(I)由频率分布表得a+0.2+0.45+b+c=1,即a+b+c=0.35.因为抽取的20件日用品中,等级系数为4的恰有3件,所以b==0.15 等级系数为5的恰有2件,所以c==0.1从而a=0.35﹣0.1﹣0.15=0.1所以a=0.1,b=0.15,c=0.1.(II)从x1,x2,x3,y1,y2,这5件日用品中任取两件,所有可能的结果为:{x1,x2},{x1,x3},{x1,y1},{x1,y2},{x2,x3},{x2,y1},{x2,y2},{x3,y1},{x3,y2},{y1,y2}设事件A表示“从x1,x2,x3,y1,y2,这5件日用品中任取两件,等级系数相等”,则A包含的基本事件为:{x1,x2},{x1,x3},{x2,x3},{y1,y2}共4个,又基本事件的总数为:10故所求的概率P(A)==0.4【考点】概率的应用.18.(2015秋•福建期末)已知关于x的不等式ax﹣b<0的解集是(3,+∞),则关于x的不等式的解集是.【答案】[﹣3,2).【解析】由题意可得a<0,且=3,关于x的不等式,转化为≤0,解得即可.解:∵关于x的不等式ax﹣b<0,即 ax<b的解集是(3,+∞),∴a<0,且=3.∴关于x的不等式,即≤0,即≤0,即(x+3)(x﹣2)≤0,且x﹣2≠0,求得﹣3≤x<2,故答案为:[﹣3,2).【考点】一元二次不等式的解法.19.已知数列{an }的前n项和,等比数列{bn},b1=a1,b4是a4与a5的等差中项.(1)求数列{an },{bn}的通项公式;(2)记cn =an•bn,求数列{cn}的前n项和Tn.【答案】(1)an=2n﹣1,;(2)【解析】(1)求出数列{an }的首项a1,利用n≥2,,求出通项公式,然后求解.(2)化简cn =an•bn,利用错位相减法求解数列的{cn}的前n项和Tn.解:(1)数列{an }的前n项和,所以a1=S1=1…(1分)n≥2,…(2分)当n=1,也满足an=2n﹣1…(3分)所以…(4分)b 1=a1=1,2b4=a4+a5=7+9,所以b4=8,…(6分),所以q=2,所以…(7分)(2),①…(8分)②…(9分)①式减去②式得:…(10分)=﹣3﹣(2n﹣3)•2n…(11分)∴…(12分)【考点】数列的求和.20.下列关于圆锥曲线的命题:其中真命题的序号.(写出所有真命题的序号).①设A,B为两个定点,若|PA|﹣|PB|=2,则动点P的轨迹为双曲线;②设A,B为两个定点,若动点P满足|PA|=10﹣|PB|,且|AB|=6,则|PA|的最大值为8;③方程2x2﹣5x+2=0的两根可分别作椭圆和双曲线的离心率;④双曲线﹣=1与椭圆有相同的焦点.【答案】②③【解析】①利用双曲线的定义判断.②利用椭圆的定义判断.③利用椭圆和双曲线的离心率的取值范围判断.④利用双曲线和椭圆的方程和定义判断.解:①根据双曲线的定义可知,满足|PA|﹣|PB|=2的动点P不一定是双曲线,这与AB的距离有关系,所以①错误.②由|PA|=10﹣|PB|,得|PA|+|PB|=10>|AB|,所以动点P的轨迹为以A,B为焦点的图象,且2a=10,2c=6,所以a=5,c=3,根据椭圆的性质可知,|PA|的最大值为a+c=5+3=8,所以②正确.③方程2x2﹣5x+2=0的两个根为x=2或x=,所以方程2x2﹣5x+2=0的两根可分别作椭圆和双曲线的离心率,所以③正确.④由双曲线的方程可知,双曲线的焦点在x轴上,而椭圆的焦点在y轴上,所以它们的焦点不可能相同,所以④错误.故正确的命题为②③.故答案为:②③.【考点】命题的真假判断与应用.21.在极坐标系中,已知两点,则两点间的距离是 .【答案】【解析】把两点坐标化为直角坐标为,所以两点间的距离为.【考点】点的极坐标与直角坐标的互化及两点间的距离公式.22.设椭圆的两个焦点分别为,点在椭圆上,且,,则该椭圆的离心率为.【答案】【解析】在中,,,设,则.【考点】椭圆的定义.【易错点晴】本题的考点是椭圆定义的考查,即的等式关系和几何意义.由给定的条件可知三角形不仅是直角三角形,也可以得到其中一个锐角,由此可用来表示直角三角形的三个边,再根据椭圆的定义便可建立等式关系,求得椭圆的离心率.椭圆中研究的关系不仅选择填空会考有时解答题也会出,它是研究椭圆基础.23.已知,试用反证法证明中至少有一个不小于1.【答案】详见解析【解析】反证法关键是先假设:均小于1,再根据条件推出矛盾:试题解析:解:假设均小于1,即,则有而矛盾所以原命题成立【考点】反证法24.已知集合,,则()A.B.C.D.【答案】B【解析】,,所以,故选B.【考点】1.二次不等式的解法;2.对数函数的性质;3.集合的运算.25.若函数的导函数在区间上的图象关于直线对称,则函数在区间上的图象可能是()A.①④B.②④C.③④D.②③【答案】C【解析】因为函数的导函数在区间上的图象关于直线对称,即导函数要么无增减性,要么在直线两侧单调性相反;对于①,由图得,在处切线的斜率最小,在处的切线的斜率最大,故导函数图象不关于对称,所以不正确;对于②,由图得,在处切线的斜率最大,在处的切线的斜率最小,故导函数图象不关于对称,所以不正确;对于③,由图得,原函数为一次函数,其导函数为常数函数,故导函数的图象关于对称,所以正确;对于④,由图得,原函数有一对称中心,在直线与原函数图象的交点处,故导函数图象关于直线对称,所以正确,故选C.【考点】导数与函数的关系及函数的对称性的判定.【方法点晴】本题主要考查了函数单调性与其导函数之间的关系、函数图象的对称性的判定与证明,解答此类题目,要注意运用课本定义的灵活运用,是对课本知识的深化和探究,属于中档试题,同时也是易错题,本题的解答中因为函数的导函数在区间上的图象关于直线对称,即导函数要么无增减性,要么在直线两侧单调性相反,从而根据图象得到结论.26.已知函数则的值为.【答案】【解析】由题意,得,所以,解得,所以.【考点】导数的运算.27.函数在上的最大值和最小值分别是()A.5,-15B.5,-4C.-4,-15D.5,-16【答案】A【解析】对函数求导得,由于,所以在上是减函数,在上是增函数,而,所以在上的最大值和最小值分别是,故选A.【考点】1、导数在函数研究中的应用;2、单调区间,极值.28.当时,曲线与曲线有相同的()A.焦点B.准线C.焦距D.离心率【答案】C【解析】并且曲线可化为,其表示焦点在轴上的双曲线,并且焦距为,而曲线表示焦点在轴上的椭圆,其焦距为,所以曲线与曲线有相同的焦距,故选C.【考点】1、椭圆及其焦距;2、双曲线及其焦距.29.若f(x)=﹣x2+bln(x+2)在(﹣1,+∞)上是减函数,则b的取值范围是()A.[﹣1,+∞)B.(﹣1,+∞)C.(﹣∞,﹣1]D.(﹣∞,﹣1)【答案】C【解析】先对函数进行求导,根据导函数小于0时原函数单调递减即可得到答案.解:由题意可知,在x∈(﹣1,+∞)上恒成立,即b<x(x+2)在x∈(﹣1,+∞)上恒成立,由于y=x(x+2)在(﹣1,+∞)上是增函数且y(﹣1)=﹣1,所以b≤﹣1,故选C30.已知函数,若关于的函数有8个不同的零点,则实数的取值范围是____________.【答案】【解析】因为函数,其中,作出的简图,由图象可得,当在上任取一值时,都有四个不同的与的值对应,再结合题中关于的函数有8个不同的零点,可知关于的方程有两个不同的实数根,且,则【考点】函数的图象与一元二次方程根的分布,数形结合思想.【易错点晴】本题考查了函数的图象与一元二次方程根的分布的知识,采用数形结合的方法来解决,结合图像去解题使问题变得直观简单,数形结合思想是高考要求学生必须具备的一种重要的数学解题思想,能够变抽象思维为形象思维有助于把握数学问题的本质,一元二次的根的分布是很重要的数学基础知识,学习时不能忽视.31.若向量=(1,1),=(2,5),=(3,x)满足条件(8-)·=30,则x=()A.6B.5C.4D.3【答案】【解析】据题知,又满足条件,可得,解得.故本题选.【考点】向量的共线的坐标运算;向量坐标的线性运算32.已知中心在坐标原点,焦点在轴上的椭圆,离心率为且过点,过定点的动直线与该椭圆相交于两点.(1)若线段中点的横坐标是,求直线的方程;(2)在轴上是否存在点,使为常数?若存在,求出点的坐标;若不存在,请说明理由.【答案】(1);(2).【解析】(1)椭圆的离心率公式,及的关系,求得,得到椭圆的方程;设出直线的方程,将直线方程代入椭圆,用舍而不求和韦达定理方法表示出中点坐标,此时代入已知中点的横坐标,即可求出直线的方程;(2)假设存在点,使为常数,分别分当与轴不垂直时以及当直线与轴垂直时,求出点的坐标,最后综合两种情况得出结论.试题解析:(1)易求椭圆的方程为,直线斜率不存在时显然不成立,设直线,将代入椭圆的方程,消去整理得,设,则,因为线段的中点的横坐标为,解得,所以直线的方程为(2)假设在轴上存在点,使得为常数,①当直线与轴不垂直时,由(1)知,所以,因为是与无关的常数,从而有,此时②当直线与轴垂直时,此时结论成立,综上可知,在轴上存在定点,使,为常数.【考点】直线与椭圆的综合问题.【方法点晴】本题主要考查了直线与椭圆的综合问题,其中解答中涉及到椭圆的标准方程及其简单的几何性质,直线与圆锥曲线的位置关系的应用等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,此类问题的解答中把直线的方程代入椭圆的方程,转化为根与系数的关系,以及韦达等量是解答的关键,试题有一定的难度,属于中档试题.33.若正实数满足,且不等式恒成立,则实数的取值范围是()A.B.C.D.【答案】B【解析】由,得,不等式可化为恒成立,化简得.根据基本不等式,有,所以.即,解得.所以,解得.【考点】基本不等式.34.已知中心在坐标原点的椭圆经过,且点的其右点焦点.(Ⅰ)求椭圆的方程.(Ⅱ)是否存在平行于的直线,使得直线与椭圆有公共点,且直线与的距离等于4 ?若存在,求出直线的方程;若不存在,说明理由.【答案】(Ⅰ);(Ⅱ)直线不存在.【解析】(Ⅰ)先设出椭圆的标准方程,进而根据焦点和椭圆的定义求得和,进而求得,则椭圆的方程可得.(Ⅱ)先假设直线存在,设出直线方程与椭圆方程联立消去,进而根据判别式大于求得的范围,进而根据直线与的距离求得,最后验证不符合题意,则结论可得.试题解析:(Ⅰ)依题意,可设椭圆的方程为,由题意:解的又,所以故椭圆的方程为.(Ⅱ)假设存在符合题意的直线,设其方程为.由得.因为直线与椭圆由公共点,所以,解的另一方面,由直线与距离得,解得由于,所以符合题意的直线不存在35.已知,函数.(1)当时,求函数的单调递增区间;(2)若函数在上单调递减,求的取值范围.【答案】(1) ;(2) 在上单调递减.【解析】(1)先求函数导数,再求导函数零点,根据导函数符号确定单调区间; (2) 函数在上单调递减,等价于对都成立,再根据一元二次不等式恒成立得其判别式非正,解不等式可得的取值范围.试题解析: (1) 当时,,令,即,即,解得,函数的单调递增区间是.(2) 若函数在上单调递减,则对都成立,即对都成立,即对都成立,,解得,当时,函数36.参数方程(为参数)所表示的曲线是()A.B.C.D.【答案】D【解析】由,则,分别代入可得,当时,,当时,,所以表示的图形为选项D,故选D.37.设随机变量ξ的概率分布列为(k=0,1,2,3),则__.【答案】【解析】随机变量ξ的概率分布列为(k=0,1,2,3),且,,即.38.函数在内有极小值,则()A.B.C.D.【答案】A【解析】∵,∴,由题意在(0,1)上与x轴有交点,故,∴,故选A【考点】本题考查了极值的定义点评:熟练掌握导数的运算及极值的定义是解决此类问题的关键,属基础题39.如图,直四棱柱底面直角梯形,∥,,是棱上一点,,,,,.(1)求异面直线与所成的角;(2)求证:平面.【答案】(1);(2)证明见解析.【解析】(1)本题中由于有两两垂直,因此在求异面直线所成角时,可以通过建立空间直角坐标系,利用向量的夹角求出所求角;(2)同(1)我们可以用向量法证明线线垂直,以证明线面垂直,,,,易得当然我们也可直线用几何法证明线面垂直,首先,这由已知可直接得到,而证明可在直角梯形通过计算利用勾股定理证明,,,因此,得证.(1)以原点,、、分别为轴、轴、轴建立空间直角坐标系.则,,,. 3分于是,,,异面直线与所成的角的大小等于. 6分(2)过作交于,在中,,,则,,,, 10分,.又,平面. 12分【考点】(1)异面直线所成的角;(2)线面垂直.40.已知,观察下列不等式:①,②③,…,则第个不等式为 .【答案】【解析】∵①,②③,∴猜想第n个不等式为【考点】本题考查了归纳推理点评:掌握归纳推理的概念是解决此类问题的关键,属基础题41.已知函数,且.(1)若,求实数的取值范围;(2)求使成立的的值.【答案】(1)(2)【解析】(1)利用对数的运算性质解方程得出,再利用的单调性列方程组解出;(2)由题设可知,解方程得出的值.试题解析:(1)由已知,代入函数解析式,求得.由,可得函数由函数在定义域上单调递增,所以可得:,解得;(2)因为,可得,解得.42.从混有张假钞的张百元钞票中任意抽取两张,将其中一张放到验钞机上检验发现是假钞,则两张都是假钞的概率是_________.【答案】【解析】设事件表示“抽到的两张都是假钞”,事件表示“抽到的两张至少有一张假钞”,则所求的概率即为,因为,所以,故答案为.【考点】条件概率.【方法点睛】本题主要考查了条件概率的求法,考查了等可能事件的概率,体现了转化的思想,注意准确理解题意,看是在什么条件下发生的事件,本题是求条件概率,而不是古典概型,属于基础题.解答时,先设表示“抽到的两张都是假钞”,表示“抽到的两张至少有一张假钞”,则所求的概率即为,再根据条件概率的公式求解.43.已知,是的导函数.(1)求的极值;(2)证明:对任意实数,都有恒成立;(3)若在时恒成立,求实数的取值范围.【答案】(Ⅰ)见解析(Ⅱ)见解析(Ⅲ).【解析】(Ⅰ)由题意得处,进而,分和两种情况讨论,即可求解;(Ⅱ)由,则要证,只需证.令,利用导数得出函数的性质,即可作出证明.(Ⅲ)由(Ⅱ)知恒成立,可得,分和两种情况讨论,即可求解实数的值.试题解析:(Ⅰ),,,当时,恒成立,无极值;当时,,即,由,得;由,得,所以当时,有极小值.(Ⅱ)因为,所以,要证,只需证.令,则,且,得;,得,∴在上单调递减,在上单调递增,∴,即恒成立,∴对任意实数,都有恒成立.(Ⅲ)令,则,注意到,由(Ⅱ)知恒成立,故,①当时,,,于是当时,,即成立.②当时,由()可得().,故当时,,于是当时,,不成立.综上,的取值范围为.点睛:本题主要考查了函数性质的综合应用问题,其中解答中涉及到利用到时研究函数的单调性,利用导数研究函数的极值与最值,以及不等关系的证明,同时着重考查了分类讨论思想的应用,合理构造新函数,正确利用导数研究函数的性质是解答的关键.=1,是数列的前n项和.44.已知各项均为正数的数列中,a1若对任意,,求常数p的值及数列的通项公式.【答案】,.=1及,得,所以.【解析】由a1由,得,得,所以,由于,所以,即,由等差数列的定义可得数列是首项为1,公差为的等差数列,所以数列的通项公式.45.在中,已知,,,则a等于A.B.6C.或6D.【答案】A【解析】由余弦定理得4812-2×××()=84,所以.故选A.46.下列说法正确的是()A.若,B.若,C.若,则D.若,则与不是共线向量【答案】C【解析】由于向量不能比较大小,所以A错误;,,但是不相等,B错误;如,则方向相同,所以,所以C正确;若,则与是共线向量,所以D错误,综上故选C.【考点】1、向量的模;2、向量相等;3、共线向量.47.下列函数中,在(0,+∞)上为增函数的是( )A.y=sin2x B.y=x3-x C.y=x e x D.y=-x+ln(1+x)【答案】C【解析】A 在R上是周期函数,,导函数在(0,+∞)上有正有负,故原函数有增有减;.B 在(0,+∞),有正有负,所以原函数不是增函数,C ,恒成立,故原函数单调递增;D ,在(0,+∞)上导函数为负,原函数应该是减函数.故选C.点睛:判断函数的单调性的方法,可以根据导函数的正负来判断原函数的单调性.48.已知△ABC的三个顶点A、B、C及平面内一点P满足++=0,若实数λ满足:+=λ,则λ的值为()A.2B.C.3D.6【答案】C【解析】已知△ABC的三个顶点A、B、C及平面内一点P满足,说明是的重心,设为的中点,则,则,,,则.选C.【点睛】有关平面向量的线性运算问题是高考常见考试题,要记住三角形重心的一个重要结论,重心分中线为1:2两部分,因此才有.另外还要注意使用向量的中点公式.49.某大学随机抽取20个班,调查各班中有网上购物经历的人数,所得数据的茎叶图如图所示,则这20个班有网购经历的人数的众数为( )A.24B.35C.37D.48【答案】B【解析】出现了次,其他数据出现的次数都小于,众数为,故选B.50.如图,在空间四边形中,,分别是的中点,,求所成角【答案】【解析】取的中点,连接,则,,所以(或其补角)是直线所成的角.在中,根据中位线定理可知,,,再由余弦定理可知:,进而可得答案.试题解析:如图所示,取的中点,连接,∵分别是的中点,∴,∴或其补角即为异面直线与所成的角,又,∴,在中,由余弦定理可得:,∴异面直线与所成的角为.51.抛物线C1:的焦点与双曲线C2:的右焦点的连线交C1于第一象限的点M.若C1在点M处的切线平行于C2的一条渐近线,则p=________.【答案】【解析】由已知得抛物线的焦点坐标为双曲线的右焦点坐标为(2,0),所以上述两点连线的方程为.双曲线的渐近线方程为y=±x.对函数y=x2求导得,y′=x.设M(x0,y),则x=,即x0=p,代入抛物线方程得,y=p.由于点M在直线上,所以p+×=1,解得p=.点睛:(1)求曲线的切线要注意“过点P的切线”与“在点P处的切线”的差异,过点P的切线中,点P不一定是切点,点P也不一定在已知曲线上,而在点P处的切线,必以点P为切点.(2)利用导数的几何意义解题,主要是利用导数、切点坐标、切线斜率之间的关系来进行转化.以平行、垂直直线斜率间的关系为载体求参数的值,则要求掌握平行、垂直与斜率之间的关系,进而和导数联系起来求解.52.为数列的前项和,已知,.(1)求的通项公式;(2)设,求数列的前项和.【答案】(1);(2).【解析】已知数列的递推关系中含有前n项和与第n项的关系,求数列的通项公式,一般分两步,第一步n=1时,第二步,常用前n项和减去前n-1项和(两式相减)去处理,化为与的关系后,再求通项公式;关于裂项相消法求数列的和,关键是裂项时要注意系数,相消后要注意剩余的项不重不漏.试题解析:当时,,因为,所以,当时,,即,因为,所以,所以数列是首项为3,公差为2的等差数列,且.(2)由(1)知,,则数列前项和为.【点睛】数列的递推关系中为与的关系,求数列的通项公式,一般分两步,第一步n=1时,得出所表达的含义;第二步当时,常用两式相减去处理,化为与的关系后,再求通项公式;数列求和常用方法有错位相减法、倒序相加法、裂项相消法、分组求和法等;关于裂项相消法求数列的和,关键是裂项时要注意系数,相消后要注意剩余的项要准确.53.已知直线与平行,则他们之间的距离是()A.B.C.D.【答案】B【解析】直线6x+my+14=0可化为3x+4y+7=0,∴两平行线之间的距离d=故选B54.设p:x<3,q:-1<x<3,则p是q成立的条件(用“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”填空).【答案】必要不充分【解析】,是成立的必要不充分条件.【考点】充分必要条件.55.命题“若,则”的否命题是()A.若,则B.若,则C.若,则D.若,则【答案】C【解析】由否命题的定义“条件、结论同时换质”可知原命题的否命题是“若,则”,故选C.【考点】否命题定义的应用.56.(2015秋•淄博校级期末)“x2﹣2x﹣3>0成立”是“x>3成立”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B【解析】结合不等式的解法,利用充分条件和必要条件的定义进行判断即可.解:由x2﹣2x﹣3>0得x>3或x<﹣1,∴“x2﹣2x﹣3>0成立”是“x>3成立”的必要不充分条件,故选:B.【考点】必要条件、充分条件与充要条件的判断.57.已知集合,,求的取值范围.【答案】.【解析】,说明中元素都属于.只是要注意的是这种表示形式的集合可能是空集,因此要分类讨论.试题解析:,若,得,符合题意.。
高二数学练习题大题带答案
高二数学练习题大题带答案一、选择题1. 已知函数f(x)=3x^2+2x-1,则f(-2)的值为A. -17B. -11C. 1D. 7答案:B. -112. 若三角形ABC中,∠B=60°,且AB=AC,则下列结论中错误的是A. ∠A=60°B. ∠C=60°C. AB=BCD. ∠BAC=180°答案:D. ∠BAC=180°3. 已知等差数列的首项为-2,公差为4,则该数列的前n项和为Sn=2n^2+7n,则n的值为A. 0B. 1/2C. 2D. 4答案:C. 2二、填空题1. 二次函数y=ax^2+bx+c(a≠0),若图象与x轴交于点(3,0),且顶点坐标为(2,3),则a的值为______,b的值为______。
答案:a=1,b=-62. 若a、b、c为互不相等的实数,且满足等式a^2+b^2+c^2=1,则a+b+c=______。
答案:0三、解答题1. 解下列方程组:x+y=4x-y=2解答:将两个方程相加得:2x=6,解得x=3将x=3代入第一个方程得:3+y=4,解得y=1所以方程组的解为x=3,y=1。
2. 某工程队需要10天完成一项工程,现在工程队决定增加人手,如果增加4人则可提前2天完成工程。
求原来工程队的人数。
解答:设原来工程队的人数为x人。
根据题意可得以下方程:10x = 8(x + 4)解方程可得:10x = 8x + 32化简后得:2x = 32解得x = 16所以原来工程队的人数为16人。
四、简答题1. 什么是函数?答:函数是一个集合的输入和输出之间的对应关系。
对于函数而言,每个输入都有唯一的输出。
2. 什么是等差数列?请给出一个等差数列的例子。
答:等差数列是指一个数列中,从第二个数起,每个数与前一个数的差等于同一个常数。
例如:1, 4, 7, 10, 13就是一个等差数列,其中公差为3。
五、证明题证明:两个互余的角相加等于90°。
北京市丰台区2023-2024学年高二下学期期中考试数学试卷(B卷)含答案
丰台区2023-2024学年度第二学期期中练习高二数学(B 卷)考试时间:120分钟(答案在最后)第I 卷(选择题共40分)一、选择题:共10小题,每小题4分.在每小题给出的四个选项中,选出符合题目要求的一项.(1)已知函数()cos 2f x x =,则()f x 的导数()f x '=(A )sin 2x-(B )2sin 2x-(C )sin 2x(D )2sin 2x(2)若随机变量2)(3N σξ~,,则)(3P ξ=≤(A )0.4(B )0.5(C )0.6(D )0.7(3)现有甲、乙、丙、丁4人从宫灯、纱灯、吊灯这三种灯笼中任意选购1种,则不同的选购方式有(A )321⨯⨯种(B )432⨯⨯种(C )43种(D )34种(4)抛掷一颗质地均匀的骰子,事件{}135A =,,,事件{}12456B =,,,,,则|P A B =()(A )15(B )25(C )35(D )45(5)若2340123441a a x a x x a x a x =+++++(),则1234a a a a +++=(A )15(B )16(C )20(D )24(6)某班从3名男同学和4名女同学中选取3人参加班委会选举,要求男女生都有,则不同的选法种数是(A )60(B )45(C )35(D )30(7)某次社会实践活动中,甲、乙两班的同学在同一个社区进行民意调查.甲、乙两班人数之比为5:3,甲班女生占甲班总人数的23,乙班女生占乙班总人数的13.则该社区居民遇到一位进行民意调查的同学恰好是女生的概率为(A )19(B )29(C )12(D )1324(8)某种新产品的社会需求量y 与时间t 存在函数关系()y f t =.经过一段时间的市场调研,估计社会需求量y 的市场饱和水平为500万件,且()f t 的导函数f t '()满足:))500)))(((((0f t kf t f t k ->='.若0f y =(0),则函数()f t 的图象可能为(A )①②(B )①③(C )②④(D )③④(9)已知定义在R 上的函数()f x ,()g x 的导函数分别为()()f x g x '',,且满足()()()()0f x g x f x g x '+<',当a x b <<时,下列结论正确的是(A )()()()()f x g b f b g x >(B )()()()()f x g a f a g x >(C )()()()()f xg x f b g b >(D )()()()()f xg x f a g a >(10)已知函数()ln f x x =和()1g x ax =+.若存在01[,)ex ∈+∞,使得00()()f xg x =-恒成立,则实数a 的取值范围是(A )21[2e,]e-(B )21[,2e]e-(C )21[,e 2e](D )21[,2e]e第Ⅱ卷(非选择题共110分)二、填空题:共5小题,每小题5分,共25分.(11)用1,2,3,4这四个数字可以组成___个无重复数字的四位数.(12)已知离散型随机变量ξ的分布列如表所示,则m =___,()D ξ=___.(13)函数()f x =的导数()f x '=___.(14)已知5*)1((n x n x+∈N 的展开式中存在常数项,写出一个满足条件的n 的值:___.(15)莱布尼茨三角形(如下图)具有很多优美的性质,给出下列四个结论:①第8行第2个数是172;②111111(,2)(1)C (1)C C r r r n n n r r n n n n ++-+=∈-++N ≤;③当2024n =时,中间一项为1012202412025C ;④当n 是偶数时,中间的一项取得最小值;当n 是奇数时,中间的两项相等,且同时取得最小值.其中所有正确结论的序号是___.三、解答题:共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.(16)(本小题14分)已知函数32(2)21x a x x x b f =-++在2x =处取得极小值5.(Ⅰ)求实数a ,b 的值;(Ⅱ)求()f x 在区间[03],上的最小值.(17)(本小题14分)从4名男生和3名女生中选出4人去参加一项创新大赛.(Ⅰ)如果从男生和女生中各选2人,那么有多少种选法?(Ⅱ)如果男生甲和女生乙至少要有1人被选中,那么有多少种选法?(Ⅲ)如果恰有2人获得了本次比赛的冠军、亚军,那么有多少种获奖方式?(18)(本小题14分)为了增加系统的可靠性,人们经常使用“备用冗余设备”(即正在使用的设备出故障时才启动的设备).已知某计算机网络的服务器采用的是“一用两备”(即一台正常设备,两台备用设备)的配置,这三台设备中,只要有一台能正常工作,计算机网络就不会断掉.如果三台设备各自能正常工作的概率都为0.9,它们之间相互不影响,设能正常工作的设备台数为X .(Ⅰ)求X 的分布列;(Ⅱ)求计算机网络不会断掉的概率.(19)(本小题14分)已知函数()ln f x x x =.(Ⅰ)求曲线()y f x =在点()1(1)f ,处的切线方程;(Ⅱ)求()f x 的极值;(Ⅲ)若关于x 的方程()f x k =有两个实数根,直接写出实数k 的取值范围.(20)(本小题14分)某地旅游局对本地区民宿中普通型和品质型两类房间数量进行了调研,随机选取了10家民宿,统计得到各家民宿两类房间数量如下表:(Ⅰ)若旅游局随机从乙、丙2家民宿中各选取2个房间,求选出的4个房间均为普通型的概率;(Ⅱ)从这10家中随机选取4家民宿,记其中普通型房间不低于17间的有X 家,求X 的分布列和数学期望.(21)(本小题15分)民宿甲乙丙丁戊己庚辛壬癸普通型19541713189201015品质型61210111091285已知函数()()0ekx xf x k =≠.(Ⅰ)若1k =,求()f x 的单调区间;(Ⅱ)若()f x 在区间(11)-,上单调递增,求实数k 的取值范围.(考生务必将答案写在答题卡上,在试卷上作答无效)丰台区2023-2024学年度第二学期期中练习高二数学(B )卷参考答案第Ⅰ卷(选择题共40分)题号12345678910答案BBCBADDBCB第Ⅱ卷(非选择题共110分)二、填空题(每小题5分,共25分)(11)24;(12)23;29(13)22(1)x+-;(14)6;(答案不唯一)(15)①③④.(注:15题给出的结论中,有多个符合题目要求.全部选对得5分,不选或有错选得0分,其他得3分.)三、解答题(共85分)(16)(本小题14分)解:(Ⅰ)因为()26212f x x ax '=-+,且()f x 在2x =处取极小值5,所以()2244120f a '=-+=,得9a =,所以()222912f x x x x b =-++.又因为()245f b =+=,所以1b =.因为()f x 在区间()1,2上单调递减,在区间()2,+∞上单调递增,所以()f x 在2x =时取极小值,符合题意.……………6分(Ⅱ)()3229121f x x x x -+=+,所以()()()612f x x x '=--.令0f x '=(),解得1x =,或2x =.当x 变化时,(),()f x f x '的变化情况如表所示.因此,当2x =时,函数()3229121f x x x x -+=+有极小值,并且极小值为(2)5f =.又由于(0)1f =,(3)10f =,所以函数()3229121f x x x x -+=+在区间[0,3]上的最小值是1.…………14分(17)(本小题14分)解:(Ⅰ)如果从男生和女生中各选2人,选择方法数为:22436318C C =⨯=种…………4分(Ⅱ)如果男生中的甲和女生中的乙至少有1人被选中:男生甲被选中,女生乙没有被选中的方法数为:3510C =种;女生乙被选中,男生甲没有被选中的方法数为:3510C =种;男生甲和女生乙都被选中的方法数为:2510C =种;所以,男生甲和女生乙至少有1人被选中的方法数为30种.…………9分(Ⅲ)恰有2人获得了本次比赛的冠军、亚军的方法数为:4274420C A =种.…………14分(18)(本小题14分)解:(Ⅰ)由题意可知X 服从二项分布,即~(3,0.9)X B .033(0)C 0.9(10.9)0.001P X ==⨯⨯-=,1123(1)C 0.9(10.9)0.027P X ==⨯⨯-=,2213(2)C 0.9(10.9)0.243P X ==⨯⨯-=,3303(3)C 0.9(10.9)0.729P X ==⨯⨯-=,从而X 的分布列为X 0123P0.0010.0270.2430.729…………10分(Ⅱ)要使得计算机网络不会断掉,也就是要求能正常工作的设备至少有一台,即1X ≥ ,因此所求概率为:(1)1(1)1(0)10.0010.999P X P X P X =-<=-==-=≥ .…………14分(19)(本小题14分)解:(Ⅰ)因为()ln f x x x =,所以()1ln f x x '=+,则()11k f '==,()10.f =所以切线方程为10.x y --=……………4分(Ⅱ)由()1ln f x x '=+,()0,x ∈+∞,令()0f x '=即1ln 0x +=,解得1ex =.当x 变化时,(),()f x f x '的变化情况如表所示.所以()f x 在区间1(0,)e 上单调递减,在区间1(,)e+∞上单调递增,当1e x =()f x 有极小值11()e ef =-,无极大值.……11分(Ⅲ)1,0e(-)……14分(20)(本小题14分)解:(Ⅰ)设“从乙家民宿中选取2个房间,选到的2个房间均为普通型为事件A ;“从丙家民宿中选取2个房间,选到的2个房间均为普通型”为事件B ;所以选出的4间均为普通型房间的概率为22542266C C 4()()()C C 15P AB P A P B ==⨯=.……………5分(Ⅱ)记其中普通型房间不低于17间的有X 家,则X 的可能取值为0,1,2,3,4.()()464101346410C 10,C 14C C 81,C21P X P X ======()()()2246410314641044410C C 32,C 7C C 43,C 35C 14,C210P X P X P X =========用表格表示X 的分布列,如下表.158090241()01234 1.6.210210*********E X =⨯+⨯+⨯+⨯+⨯=所以……14分(21)(本小题15分)解:(Ⅰ)2e e 1()e ekx kx kx kx kx kx f x --'==若1k =,则1()ex x f x -'=,令()0f x '=,解得1x =.当x 变化时,(),()f x f x '的变化情况如表所示.所以()f x 的单调递增区间为(,1)-∞,单调递减区间为(1,).+∞……5分(Ⅱ)因为()()0e kx x f x k =≠所以2e e 1().e ekx kx kx kx kx kx f x --'==令()0f x '=,解得1x k=.①0k >时,当x 变化时,(),()f x f x '的变化情况如表所示.所以,()f x 在1(,k-∞上单调递增,在1(,)k +∞上单调递减.②0k <时,当x 变化时,(),()f x f x '的变化情况如表所示.所以,()f x 在1(,k-∞上单调递减,在1(,)k +∞上单调递增.若函数()f x 在区间()1,1-内单调递增,则0k >时,11k≥,即01k <≤;则0k <时,11k-≤,即10k -<≤;所以k 的范围是[1,0)(0,1]- .……………15分。
人教版高二上学期数学(选择性必修1)《3.1.2椭圆的标准方程及性质的应用》练习题及答案
人教版高二上学期数学(选择性必修1)《3.1.2椭圆的标准方程及性质的应用》练习题及答案学校:___________班级:___________姓名:___________学号:___________一、选择题1.直线y =kx -k 与椭圆x 29+y 24=1的位置关系为( ) A.相交 B.相切C.相离D.不确定2.直线y =kx +2和椭圆x 23+y 22=1有公共点,则k 的取值范围是( ) A.k <-63或k >63 B.k ≤-63或k ≥63C.-63<k <63D.-63≤k ≤633.德国天文学家开普勒发现天体运行轨道是椭圆,已知地球运行的轨道是一个椭圆,太阳在它的一个焦点上,轨道近日点到太阳中心的距离和远日点到太阳中心的距离之比是29∶30,那么地球运行轨道所在椭圆的离心率是( ) A.159 B.259 C.2959 D.30594.已知过圆锥曲线x 2m +y 2n =1上一点P (x 0,y 0)的切线方程为x 0x m +y 0y n =1.过椭圆x 212+y 24=1上的点A (3,-1)作椭圆的切线l ,则过点A 且与直线l 垂直的直线方程为( )A.x -y -3=0B.x +y -2=0C.2x +3y -3=0D.3x -y -10=05.美学四大构件是:史诗、音乐、造型(绘画、建筑等)和数学.素描是学习绘画的必要一步,它包括了明暗素描和结构素描,而学习几何体结构素描是学习素描最重要的一步.某同学在画“切面圆柱体”(用与圆柱底面不平行的平面去截圆柱,底面与截面之间的部分叫做切面圆柱体)的过程中,发现“切面”是一个椭圆(如图所示),若“切面”所在平面与底面成60°角,则该椭圆的离心率为( )A.12B.22C.32D.136.如图是一个篮球在太阳光照射下的影子,已知篮球的直径为22 cm ,现太阳光与地面的夹角为60°,则此椭圆形影子的离心率为( )A.13B.12C.22D.327.(多选)若直线y =kx +2与椭圆x 23+y 22=1相切,则斜率k 的值是( ) A.63 B.-63C.-33 D.33 8.(多选)如图所示,某探月卫星沿地月转移轨道飞向月球,在月球附近一点P 处变轨进入以月球球心F 为一个焦点的椭圆轨道Ⅰ绕月飞行,之后卫星在P 点处第二次变轨进入仍以F 为一个焦点的椭圆轨道Ⅱ绕月飞行,且轨道Ⅱ的右顶点为轨道Ⅰ的中心.设椭圆Ⅰ与Ⅱ的长半轴长分别为a 1和a 2,半焦距分别为c 1和c 2,离心率分别为e 1,e 2,则下列结论正确的是( )A .a 1+c 1>2(a 2+c 2)B .a 1-c 1=a 2-c 2C .e 1=e 2+12D .椭圆Ⅱ比椭圆Ⅰ更扁 二、填空题9.某隧道的拱线设计为半个椭圆的形状,最大拱高h 为6米(如图所示),路面设计是双向车道,车道总宽为87 米,如果限制通行车辆的高度不超过4.5米,那么隧道设计的拱宽d 至少应是________米.10.过点M(1,1)作斜率为-12的直线与椭圆C:x2a2+y2b2=1(a>b>0)相交于A,B两点,若M是线段AB的中点,则椭圆C的离心率为________11.若直线y=x+2与椭圆x2m+y23=1有两个公共点,则m的取值范围是________________12.罗马竞技场,建于公元72年到82年,是古罗马文明的象征,其内部形状近似为一个椭圆形,其长轴长约为188米,短轴长约为156米,竞技场分为表演区与观众区,中间的表演区也近似为椭圆形,其长轴长为86米,短轴长为54米,若椭圆的面积为πab(其中a,b分别为椭圆的长半轴长与短半轴长,π取3.14),已知观众区可以容纳9万人,由此推断,观众区每个座位所占面积约为________平方米(保留小数点后两位).三、解答题13.已知椭圆x2+8y2=8,在椭圆上求一点P,使P到直线l:x-y+4=0的距离最短,并求出最短距离.14.已知点A,B的坐标分别是(-1,0),(1,0),直线AM,BM相交于点M,且它们的斜率之积为-2.(1)求动点M 的轨迹方程;(2)若过点N ⎝ ⎛⎭⎪⎫12,1的直线l 交动点M 的轨迹于C ,D 两点,且N 为线段CD 的中点,求直线l 的方程.15.如图,某市新城公园将在长34米、宽30米的矩形地块内开凿一个“挞圆”形水池,水池边缘由两个半椭圆x 2a 2+y 2b 2=1(x ≤0)和y 2b 2+x 281=1(x ≥0)组成,其中a >b >9,“挞圆”内切于矩形(即“挞圆”与矩形各边均有且只有一个公共点).(1)求“挞圆”的方程;(2)在“挞圆”形水池内建一矩形网箱养殖观赏鱼,若该矩形网箱的一条边所在直线方程为y =t (t ∈(0,15)),求该网箱所占水面面积的最大值.参考答案及解析一、选择题1.A 解析:由⎩⎪⎨⎪⎧ y =kx -k ,x 29+y 24=1,消去y 得(4+9k 2)x 2-18k 2x +9k 2-36=0Δ=(-18k 2)2-4(4+9k 2)(9k 2-36)=576(2k 2+1),易知Δ>0恒成立∴直线y =kx -k 与椭圆x 29+y 24=1的位置关系为相交. 2.B 解析:将y =kx +2代入椭圆方程x 23+y 22=1,消去y ,可得(2+3k 2)x 2+12kx +6=0 ∴Δ=144k 2-24(2+3k 2)=72k 2-48∵直线和椭圆有公共点,∴72k 2-48≥0,∴k ≤-63或k ≥63. 3.A 解析:设椭圆的长半轴长为a ,半焦距为c ,由题意可得a -c a +c =2930整理得a =59c ,即c a =159. ∴地球运行轨道所在椭圆的离心率是159. 4.B 解析:过椭圆x 212+y 24=1上的点A (3,-1)的切线l 的方程为3x 12+(-y )4=1,即x -y -4=0,切线l 的斜率为1.与直线l 垂直的直线的斜率为-1,故过点A 且与直线l 垂直的直线方程为y +1=-(x -3),即x +y -2=0.5.C 解析:设椭圆长轴长为2a ,短轴长为2b ,由“切面”所在平面与底面成60°角可得2b 2a =cos 60°,即a =2b ,所以e =c a =a 2-b 2a 2=32. 6.B 解析:如图,l 1,l 2 是两条与球相切的直线,分别切于点A ,C ,与底面交于点B ,D ,设篮球的半径为R∴AC =2R =22,R =11过点C 作CE ∥BD 交l 1于点E ,则CE =BD在△ACE 中,CE =AC sin 60°,∴CE =22×23=2a ,∴a =223=2R 3,b =R ∴c =4R 23-R 2=33R ,∴e =c a =3R 32R 3=12. 7.AB 解析:由⎩⎪⎨⎪⎧ y =kx +2,x 23+y 22=1,得(3k 2+2)x 2+12kx +6=0,由题意知Δ=144k 2-24(3k 2+2)=0 解得k =±63. 8.ABC 解析:对A ,由题可知a 1=2a 2,c 1=a 2+c 2>2c 2,所以a 1+c 1>2(a 2+c 2),所以选项A正确;对B ,由a 1-c 1=|PF |,a 2-c 2=|PF |,得a 1-c 1=a 2-c 2,所以选项B 正确;对C ,由a 1=2a 2,c 1=a 2+c 2,得c 1a 1=a 2+c 22a 2=1+c 2a 22,即e 1=e 2+12,所以选项C 正确;对D ,根据选项C 知,2e 1=e 2+1>2e 2,所以e 1>e 2,即椭圆Ⅰ比椭圆Ⅱ更扁,所以选项D 错误.故选ABC .二、填空题9.答案:32解析:设椭圆方程为x 2a 2+y 236=1,当点(47,4.5)在椭圆上时,16×7a 2+⎝ ⎛⎭⎪⎫92236=1,解得a =16 ∵车辆高度不超过4.5米,∴a ≥16,d =2a ≥32,故拱宽至少为32米.10.答案:22解析:设A (x 1,y 1),B (x 2,y 2),则x 21a 2+y 21b2=1,① x 22a 2+y 22b 2=1.② ∵M 是线段AB 的中点,∴x 1+x 22=1,y 1+y 22=1. ∵直线AB 的方程是y =-12(x -1)+1,∴y 1-y 2=-12(x 1-x 2). 由①②两式相减可得x 21-x 22a 2+y 21-y 22b 2=0,即2a 2+⎝ ⎛⎭⎪⎫-12·2b 2=0.∴a =2b ,∴c =b ,∴e =c a =22. 11.答案:(1,3)∪(3,+∞)解析:∵x 2m +y 23=1表示椭圆,∴m >0且m ≠3. 由⎩⎪⎨⎪⎧ y =x +2,x 2m +y 23=1,得(m +3)x 2+4mx +m =0∴Δ=16m 2-4m (m +3)>0,解得m >1或m <0.∴m >1且m ≠3∴m 的取值范围是(1,3)∪(3,+∞).12.答案:0.22解析:由条件可得,竞技场的总面积为π×1882×1562=7 332π(平方米),表演区的面积为π×862×542=1 161π(平方米),故观众区的面积为7 332π-1 161π=6 171π(平方米),故观众区每个座位所占面积为6 171π90 000≈6 171×3.1490 000≈0.22(平方米).三、解答题13.解:设与直线x -y +4=0平行且与椭圆相切的直线方程为x -y +a =0(a ≠4) 由⎩⎨⎧ x 2+8y 2=8,x -y +a =0,消x 得9y 2-2ay +a 2-8=0 由Δ=4a 2-36(a 2-8)=0,解得a =3或a =-3∴与直线l 距离较近的切线为x -y +3=0,两条直线之间的距离即为所求最短距离 且直线x -y +3=0与椭圆的切点即为所求点P .故所求最短距离d =|4-3|2=22. 由⎩⎨⎧ x 2+8y 2=8,x -y +3=0,得⎩⎪⎨⎪⎧ x =-83,y =13,即P ⎝ ⎛⎭⎪⎫-83,13.14.解:(1)设M (x ,y ).因为k AM ·k BM =-2,所以y x +1·y x -1=-2(x ≠±1),化简得2x 2+y 2=2(x ≠±1). 即点M 的轨迹方程为2x 2+y 2=2(x ≠±1).(2)设C (x 1,y 1),D (x 2,y 2).当直线l ⊥x 轴时,直线l 的方程为x =12,易知此时线段CD 的中点不是N ,不符合题意. 当直线l 不与x 轴垂直时,设直线l 的方程为y -1=k ⎝ ⎛⎭⎪⎫x -12,将点C (x 1,y 1),D (x 2,y 2)的坐标代入2x 2+y 2=2(x ≠±1),得2x 21+y 21=2,① 2x 22+y 22=2,② ①-②整理得k =y 1-y 2x 1-x 2=-2(x 1+x 2)y 1+y 2=-2×2×122×1=-1 故直线l 的方程为y -1=-⎝ ⎛⎭⎪⎫x -12,即所求直线l 的方程为2x +2y -3=0. 15.解:(1)由题意知b =15,a +9=34,解得a =25,b =15.所以“挞圆”方程为x 2252+y 2152=1(x ≤0)和y 2152+x 292=1(x ≥0). (2)设P (x 0,t )为矩形在第一象限内的顶点,Q (x 1,t )为矩形在第二象限内的顶点则t 2152+x 2092=1,x 21252+t 2152=1,可得x 1=-259x 0.所以内接矩形的面积S =2t (x 0-x 1)=2t ×349x 0=15×34×2·x 09·t 15≤15×34⎝ ⎛⎭⎪⎫x 2092+t 2152=510 当且仅当x 09=t 15时,S 取最大值510. 所以网箱所占水面面积的最大值为510平方米。
高二数学上册练习题及答案
高二数学上册练习题及答案1. (a) 求解方程:3x - 2 = 7(b) 求解方程:2(x - 3) + 5 = 17解答:(a) 3x - 2 = 7将-2移到等式右边:3x = 7 + 23x = 9将系数3移到等式右边,同时将9除以3:x = 3(b) 2(x - 3) + 5 = 17将2乘以括号里的表达式:2x - 6 + 5 = 17合并同类项:2x - 1 = 17将-1移到等式右边:2x = 17 + 12x = 18将系数2移到等式右边,同时将18除以2: x = 92. 计算下列代数式的值:(给定变量a = 3, b = 5)(a) a^2 - b^2(b) a^3 + b^3解答:(a) a^2 - b^2替换变量的值:3^2 - 5^2计算指数运算:9 - 25提取结果:-16(b) a^3 + b^3替换变量的值:3^3 + 5^3计算指数运算:27 + 125提取结果:1523. 解下列不等式,并将解表示在数轴上:(a) 2x + 3 ≤ 9(b) 5 - x > 2x + 1解答:(a) 2x + 3 ≤ 9将3移到不等式右边:2x ≤ 9 - 3简化不等式:2x ≤ 6将系数2移到不等式右边,同时将6除以2:x ≤ 3将解表示在数轴上,标记点3及其左侧为解的区间。
(b) 5 - x > 2x + 1将5移到不等式右边:-x > 2x + 1 - 5简化不等式:-x > 2x - 4将系数-1移到不等式右边,将解取反,同时将4加到2x上: 3x < 4将解表示在数轴上,标记点4及其左侧为解的区间。
4. 求解下列线性不等式组,并将解表示在数轴上:(a) { x + 1 > 3{ 2x - 5 ≤ 9(b) { 3x - 2 ≤ 10{ 4 - x > 2x - 1解答:(a) { x + 1 > 3{ 2x - 5 ≤ 9对第一个不等式进行简化:x > 3 - 1x > 2对第二个不等式进行简化:2x ≤ 9 + 52x ≤ 14x ≤ 7综合两个不等式的解:x > 2 且x ≤ 7将解表示在数轴上,标记点2及其右侧和标记点7及其左侧为解的区间。
(完整版)高二数学试题及答案
高二数学期中测试卷(时间: 120分钟满分: 150分)一、选择题(本大题共 12小题,每小题 5分,共 60分.在每小题给出的四个选项中,只有一项是符合题目要求的 )1.设 a<b<0,则下列不等式一定成立的是 ( )A .a2<ab<b2B. b2<ab<a2C. a2<b2<ab D. ab<b2<a2答案 B2.关于数列 3,9,⋯, 2187,⋯,以下结论正确的是 ( ) A.此数列不是等差数列,也不是等比数列B.此数列可能是等差数列,也可能是等比数列C.此数列可能是等差数列,但不是等比数列D.此数列不是等差数列,但可能是等比数列解析记 a1= 3,a2=9,⋯, a n=2187,⋯若该数列为等差数列,则公差 d= 9- 3=6, a n=3+(n-1)×6=2187,∴ n=365.∴{a n}可为等差数列.9若{a n} 为等比数列,则公比 q=93=3.a n= 3·3n 1=2187=37,∴ n=7.∴{a n}也可能为等比数列.答案 B3.在△ ABC 中,若 sin2A+sin2B=2sin2C,则角 C 为()A .钝角B .直角C .锐角D . 60°解析 由 sin 2A +sin 2B = 2sin 2C ,得 a 2+b 2=2c 2. 即 a 2+b 2-c 2=c 2>0, cosC>0. 答案 C4.设{a n } 是公比为正数的等比数列,若 a 1=1,a 5=16,则数列 {a n } 的前 7 项和为 ( )A .63 D .128解析 a 5=a 1q 4=q 4=16,∴ q =2. 1- 27∴S 7=11--22=128-1=127.答案 C5.一张报纸,其厚度为 a ,面积为 b ,现将此报纸对折 7 次,这时报纸的厚度和面积分别为 ()A .8a ,b 8B .64a ,6b 4bbC.128a,128D.256a,256答案 C6.不等式 y ≤ 3x +b 所表示的区域恰好使点 (3,4)不在此区域内, 而点(4,4)在此区域内,则 b 的范围是 ( )A .-8≤b ≤-5B .b ≤-8或 b>-5C .-8≤b<-5D .b ≤-8或 b ≥-5B .64C .127解析∵4>3×3+b,且 4≤3×4+ b,∴- 8≤b<- 5.答案 C2m +n≤4,m ≥0,程 x 2-(3m +2n)x + 6mn =0 的两根之和的最大值和最小值分别是 ()A .7,-4 D .6,-6解析 两根之和 z =3m + 2n ,画出可行域,当 m =1,n =2 时,z max =7;当 m =0, n =- 2 时, z min =- 4.答案 A8.已知 a ,b , c 成等比数列, a ,x ,b 成等差数列, b ,y ,c 成 等差数列,则 xa+cy的值等于 ( )11A.4B.2C . 2D . 1解析 用特殊值法,令 a =b = c. 答案 C9.制作一个面积为 1m 2,形状为直角三角形的铁架框,有下列四 种长度的铁管供选择,较经济的 (够用、又耗材最少 )是()A .4.6mB . 4.8mC . 5mD . 5.2m解析 设三角形两直角边长为 am ,bm ,则 ab = 2,周长 C =a +b + a 2+ b 2≥2 ab + 2ab =2 2+2≈4.828(m).7.已知实数 m , n 满足不等式组m -n ≤2,m +n ≤3, 则关于 x 的方 B .8,-8 C .4,- 72m+n≤4,答案 C10.设{ a n}是正数等差数列,{ b n}是正数等比数列,且 a1=b1,a2n。
高二数学数列练习题及答案
高二数学数列练习题及答案一、选择题1. 已知数列的通项公式为an = 2n + 1,其中n为正整数,则该数列的首项是:a) 1b) 2c) 3d) 42. 数列{an}的前4项依次是3,6,9,12,其通项公式为:a) an = 3nb) an = 3n + 1c) an = 3n - 1d) an = 2n + 13. 数列{an}的公差为2,首项为3,若a4 = 9,则数列的通项公式为:a) an = n + 2b) an = 2n + 1c) an = 3nd) an = 2n + 3二、填空题1. 数列{an}的首项为5,公差为3,若a7 = 23,则数列的通项公式为______。
2. 如果数列{an}满足an + 1 = an + 3,且a2 = 7,那么数列的首项为______。
3. 数列{an}满足公差为-2,首项为6,若a5 = -4,则数列的通项公式为______。
三、解答题1. 求等差数列{an}的前n项和公式。
解析:设数列{an}的首项为a1,公差为d。
根据等差数列的性质,第n项an可以表示为an = a1 + (n - 1)d。
前n项和Sn可以表示为Sn = (a1 + an) * n / 2。
因此,等差数列的前n项和公式为Sn = (a1 + a1 + (n - 1)d) * n / 2。
2. 已知数列{an}的通项公式为an = 2^n,则数列的公差为多少?解析:设数列{an}的首项为a1,通项公比为r。
根据等比数列的性质,第n项an可以表示为an = a1 * r^(n - 1)。
因此,已知通项公式为an = 2^n,可得到a1 * r^(n - 1) = 2^n。
考虑到a1 = 2^0 = 1,将其代入上式,得到r^(n - 1) = 2^(n - 1)。
可得到r = 2,因此数列的公差为2。
四、答案选择题:1. c) 32. a) an = 3n3. b) an = 2n + 1填空题:1. an = 172. a1 = 43. an = 12 - 2n解答题:1. 等差数列的前n项和公式为Sn = (a1 + an) * n / 2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二数学试卷练习题及答案
高二数学试卷练习题
一、选择题(本大题共有12个小题,每小题5分,共60分,在每小题给出的四选项中只有一项是符合题目要求的。
)
1.抛物线的准线方程为( )
A B C D
2.下列方程中表示相同曲线的是( )
A ,
B ,
C ,
D ,
3.已知椭圆的焦点为和,点在椭圆上,则椭圆的标准方程为( )
A B C D
4.已知双曲线的离心率为,则的渐近线方程为( )
A B C D
5.与圆及圆都外切的圆的圆心在( )
A 一个椭圆上
B 双曲线的一支上
C 一条抛物线
D 一个圆上
6.点在双曲线上,且的焦距为4,则它的离心率为
A 2
B 4
C D
7.已知是抛物线的焦点,是该抛物线上的两点,且,则线段的中点到抛物线准线的
距离为( )
A 1
B 2
C 3
D 4
8.过点且与抛物线只有一个公共点的直线有( )
A 1条
B 2条
C 3条
D 无数条
9.设是双曲线的两个焦点,点在双曲线上,且,则点到轴的距离为( )
A B 3 C D
10.以下四个关于圆锥曲线的命题中正确的个数为( )
①曲线与曲线有相同的焦点;
②方程的两根可分别作为椭圆和双曲线的离心率;
③过椭圆的右焦点作动直线与椭圆交于两点,是椭圆的左焦点,则的周长不为定值。
④过抛物线的焦点作直线与抛物线交于A、B两点,则使它们的横坐标之和等于5的直线有且只有两条。
A 1个
B 2个
C 3个
D 4个
11.若点和点分别为椭圆的中心和左焦点,点为椭圆上的任意一点,则的最大值为( )
A 18
B 24
C 28
D 32
12.抛物线的焦点为,准线为,,是抛物线上的'两个动点,且满足,过线段的中点
作直线的垂线,垂足为,则的最大值,是( )
A B C D
二、填空题(本大题共有4个小题,每小题5分,共20分)
13.已知点在抛物线的准线上,抛物线的焦点为_____,则直线的斜率为。
14.过双曲线左焦点的直线交双曲线的左支于两点,为其右焦点_____,则的值为
_____
15.直三棱柱中,分别是的中点,_____,则与所成角的余弦值为_____。
16.设点是曲线上任意一点,其坐标均满足_____,则的取值范围为_____。
三、解答题
17.(10分)在极坐标系中,求圆的圆心到直线的距离。
18.(12分)如图(1),在中,点分别是的中点,将沿折起到的位置,使如图(2)所示,M为的中点,
求与面所成角的正弦值。
19.(12分)经过椭圆的左焦点作直线,与椭圆交于两点,且,求直线的方程。
20.(12分)如图,在长方体中,,点E在棱上移动。
(1)证明:;
(2)等于何值时,二面角的余弦值为。
21.(12分)已知椭圆的离心率为,椭圆C的长轴长为4.
(1)求椭圆C的方程;
(2)已知直线与椭圆C交于A,B两点,是否存在实数k使得以线段AB 为直径的圆
恰好经过坐标原点O?若存在,求出k的值;若不存在,请说明理由.
22.(12分)已知抛物线C的顶点为坐标原点,焦点为,
(1)求抛物线的方程;
(2)过点作直线交抛物线于两点,若直线分别与直线交于两点,求的取值范围。
高二数学试卷练习题及参考答案
1 2 3 4 5 6 7 8 9 10 11 12
C D B D B A B C C B C B
13 14 15 16
16
三、解答题:
17.(10分)解:圆的方程为,圆心为;直线为,距离
18.(12分)与面所成角的正弦值为
19.(12分)解:当直线斜率不存在时,不符合题意;当直线斜率存在时,设直线,与椭圆方程联立得,由弦长公式得,直线方程为或。
20、(12分)(2)当时,二面角的余弦值为。
21、(1)设椭圆的焦半距为c,则由题设,得,
解得,所以,
故所求椭圆C的方程为.
(2)存在实数k使得以线段AB为直径的圆恰好经过坐标原点O.
理由如下:
设点,,
将直线的方程代入,
并整理,得.(x)
则,.
因为以线段AB为直径的圆恰好经过坐标原点O,
所以,即.
又
于是,解得,
经检验知:此时(x)式的Δ0,符合题意.
所以当时,以线段AB为直径的圆恰好经过坐标原点O.
高二数学公式总结
高中数学常用公式乘法与因式分
a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)
高中数学常用公式三角不等式
|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b=-b≤a≤b
|a-b|≥|a|-|b|-|a|≤a≤|a|
一元二次方程的解-b+√(b2-4ac)/2a -b-√(b2-4ac)/2a
根与系数的关系X1+X2=-b/a X1_X2=c/a注:韦达定理
高中数学常用公式判别式
b2-4ac=0注:方程有两个相等的实根
b2-4ac0注:方程有两个不等的实根
b2-4ac0注:方程没有实根,有共轭复数根
高中数学常用公式三角函数公式
两角和公式
sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA) 倍角公式
tan2A=2tanA/(1-tan2A)ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
半角公式
sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))
和差化积
2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2) tanA+tanB=sin(A+B)/cosAcosBtanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB-ctgA+ctgBsin(A+B)/sinAsinB
高中数学常用公式某些数列前n项和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1)
12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4
1_2+2_3+3_4+4_5+5_6+6_7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圆半径
余弦定理b2=a2+c2-2accosB注:角B是边a和边c的夹角
高二数学怎么学才能提高成绩
1、提高高中数学成绩最重要的一点就是课前预习
相信各科老师下课之前都会要求学生提前预习下节课的内容。
而高中数学作为逻辑性较强的一门课程,课前预习更是提高成绩必须做到的。
上课之前把要上的内容都预习一下,看一下课本要求,把重点和难理解的都标记出来,等着老师上课讲。
这样一来,上课目前明确,由于心中有疑问,等着老师解答,上课的时候自然而然的就集中注意力跟着老师的思路走了。
2、提高数学成绩还要做到上课认真听讲
很多高中生数学成绩不好的原因就是上课不注意听,导致下课不会做题,时间长了上数学课精神就很难集中了,数学成绩也就越来越差。
所以高中生如果想提高数学成绩,上课一定要全神贯注的听讲,老师讲到课本上没有的内容、或者经典例题的详细解题过程都动笔记一下,免得上课没听明白,想复习的时候又找不到。