用平方差公式因式分解 优秀教案
用平方差公式因式分解公开课教案
用平方差公式因式分解公开课教案一、教学目标:1. 让学生掌握平方差公式的概念和应用。
2. 培养学生运用平方差公式进行因式分解的能力。
3. 提高学生解决实际问题的能力。
二、教学内容:1. 平方差公式的定义和特点。
2. 平方差公式的记忆方法。
3. 运用平方差公式进行因式分解的方法和步骤。
三、教学重点:1. 平方差公式的记忆和应用。
2. 运用平方差公式进行因式分解的方法和技巧。
四、教学难点:1. 平方差公式的灵活运用。
2. 因式分解中的特殊情况的处理。
五、教学方法:1. 采用讲解、演示、练习、讨论等多种教学方法,引导学生主动参与、积极思考。
2. 通过例题和练习题,让学生巩固所学知识,提高解题能力。
3. 鼓励学生提问和发表自己的观点,培养学生的思维能力和创新能力。
一、平方差公式的定义和特点1. 引入平方差公式:a^2 b^2 = (a + b)(a b)2. 解释平方差公式的概念和特点3. 让学生熟记平方差公式二、平方差公式的记忆方法1. 平方差公式记忆口诀:平方差,加减号,乘积不变性质牢2. 讲解记忆方法,引导学生自主记忆3. 进行记忆测试,检查学生掌握情况三、运用平方差公式进行因式分解的方法和步骤1. 讲解因式分解的方法和步骤2. 示例题:因式分解ax^2 + bx + c3. 让学生独立完成练习题,巩固所学知识四、平方差公式的灵活运用1. 讲解平方差公式的灵活运用方法2. 示例题:解决实际问题中的应用3. 让学生尝试解决实际问题,提高应用能力五、因式分解中的特殊情况1. 讲解特殊情况:完全平方公式和平方差公式的结合2. 示例题:因式分解中含有完全平方项的题目3. 让学生练习特殊情况下的因式分解,巩固知识点六、练习题讲解和分析1. 讲解练习题,分析解题思路和方法2. 引导学生总结解题规律,提高解题能力3. 鼓励学生提问和发表自己的观点,培养思维能力七、课堂小结1. 总结本节课所学知识:平方差公式、因式分解的方法和步骤2. 强调平方差公式的记忆和应用重要性3. 布置课后作业,巩固所学知识八、课后作业布置1. 布置练习题:因式分解和应用平方差公式2. 提醒学生按时完成作业,加强练习3. 鼓励学生自主学习,提高解题能力九、作业讲解和反馈1. 讲解作业题目,分析学生解题情况2. 针对学生错误进行讲解和指导3. 给予学生鼓励和反馈,提高学习积极性十、课程总结和反思1. 总结本节课的教学目标和内容2. 反思教学过程中的优点和不足3. 提出改进措施,为下一节课做好准备六、教学活动设计:1. 导入新课:通过复习完全平方公式,引导学生发现平方差公式的规律。
利用平方差公式进行因式分解 优秀教案
直到不能再分解为止。
1、判断正误: ( 1 ) x2+y2= ( x+y ) (x–y) ()
对 1 利用 PAD 教室的 截屏功能进 行交流展示.
(2)x2–y2=(x+y)(x–y)
()
( 3 ) –x2+y2=–( x+y ) 环节四、
强化训 (x–y)
()
练,深化 知识
( 4 ) –x2–y2=–( x+y )
四、教学策略 (1)由于所学的是运用平方差公式分解因式,因此指导学生学会运用比较、类比学习方法记忆、理解知
识。 (2)指导学生采用练习法以达到巩固、熟练知识的目的。 (3)对于换元法要求较为灵活,应该知道学生运用观察、分析、类比的学习方法。
五、重点、难点 教学重点: 会用平方差公式进行因式分解. 教学难点:准确理解和掌握平方差公式的结构特征.
(3)
49(a b)2 16(a b)2 (4) 3ax4 3ay4
3、如图,在一块边长为 a 的
教师巡视过 程中及时发 现,然后利用 PAD 教室的 拍照上传功 能上传评析.
正方形纸片的四角,各剪去一
个边长为 b 的正方形.用 a
与 b 表示剩余部分的面积,并
求当 a=3.6 ,b=0.8 时的面积.
(1)公式左边:(是一个将要被
分解因式的多项式)
★被分解的多项式含有两项,
且这两项异号,并且能写成
( )2-( )2的形式。
(2) 公式右边:(是分解因式
的结果)
★分解的结果是两个底数的
环节二、 两个底数的差的形式。 交流合 作 探 试一试 写一写: 索新知
下列多项式能转化成( )2- ( )2的形式吗?如果能,
初二数学《平方差公式因式分解》教学设计(三案)
罗湖高级中学初中部“三案”课堂教学设计课题利用平方差公式法进行因式分解目标 1.经历通过整式乘法公式(a+b)(a-b)=a2-b2的逆向变形得出公式法因式分解的方法,发展逆向思维和推理能力。
2.会用平方差公式法因式分解。
重点平方差公式法的结构特征难点如何运用平方差公式进行因式分解教学设计环节(一)课前预习或诊断性测项)分钟)1)温故知新(1)(x+5)(x-5)=_________________:(2)((3x~y)=____________ ;它们的结果有什么共同特征? _______________尝试将它们的结果分别写成两个因式的乘积:孑_25二__________________________________;9x2 -y2=_______________________;困惑2)小组学习(课本99页内容)1.因式分解与整式乘法的关系是2.温=-----------------------3.判断下列各式中,能否用平方差公式因式分解+y20-y2()-x24-y2o-X2-y2o x-4y204把下列各式因式分解:(1)25-16.x2(2)?-4r(3)4x2-9v2(4)9a2--b24环节(二)小组讨论,展示分享,精讲点评(13分钟)例1.把下列各式因式分解,(1)2x3-8x(2)-4y2+x2 1;)16(/n+n)2-(/n-n)2(4)注意:公式中的a,b既可以是_________,也可以_______。
环节(三)课中习(13分钟)1.下列各式中,不能用平方差公式因式分解的是()A.—x2+尸B.—1—n2C.a2—16b2D.9m2-42.把下列各式分解因式:(1)-9+4X2⑵9a2p2 -b2q-;—3ay、、4./-16y2困惑(5)9(m+n)2-4(m~n)2(6)'一)‘环节(四)小结(3)小结1.公式法中;的特点;①_____________:®_____________:③o2.应用平方差公式因式分解步骤:①________________j②环节(五)形成性测试(5分钟)1.下列各式中,因式分解正确的是()A.l+25a2=(l+5a)(l—5a)B・m2-16m=m(m+4)(m-4)C.x29b2=(x+9b)(x9b)D.16x2=(4+x)(4x)2.因式分解:(1)a2-4=_________________(2)-9s2 +t2=_____________(3)0.25q2-12ip2__________________(4)4x3-36x=________________3.已知a+b=4,a-b=3则a?—b2=______________4.已知x+y=2,则x2-y2+4y的值为______________5.先化再求值:(2a+3b)2—(2a—3b)2,其中a=7]-.bb环节(六)课后习巩固拓展作业1.[2017春•穿城县期末]多项式x2(x—2)+(2—x)因式分解的结果是()A.(X—2) (x2+1)B.(x-2)(x2-1)C.(x-2) (x+1)(x-1)•教学反思D.(x—2) (1+x)(1—x)2.因式分解:(1)[2017•河池]x2-25=(2)[2017•湘潭]tn?-n2=.⑶[2017-大庆]X,一4x=・(4)[2017•扬州]3x2一27=.(5)[2016•贺州](x—2)+m(2—x)=3.把多项式25(m+n)2—16(m —n)2因式分解为4.若x?—9=(x—3)(x+a),则a=.5.把下列各式因式分解:(1)0.49p2-144;(2)(2x+y»—(x+2y».。
部编人教版七年级下册数学3.3第1课时《利用平方差公式进行因式分解》教案
第1课时 利用平方差公式进行因式分解1.理解平方差公式,弄清平方差公式的形式和特点;(重点)2.掌握运用平方差公式分解因式的方法,能正确运用平方差公式把多项式分解因式.(难点)一、情境导入1.同学们,你能很快知道992-1是100的倍数吗?你是怎么想出来的?请与大家交流.2.你能将a 2-b 2分解因式吗?你是如何思考的?二、合作探究探究点一:用平方差公式因式分解 【类型一】 判定能否利用平方差公式分解因式下列多项式中能用平方差公式分解因式的是( )A .a 2+(-b )2B .5m 2-20mnC .-x 2-y 2D .-x 2+9解析:A 中a 2+(-b )2符号相同,不能用平方差公式分解因式,错误;B 中5m 2-20mn 两项都不是平方项,不能用平方差公式分解因式,错误;C 中-x 2-y 2符号相同,不能用平方差公式分解因式,错误;D 中-x 2+9=-x 2+32,两项符号相反,能用平方差公式分解因式,正确.故选D.方法总结:能够运用平方差公式分解因式的多项式必须是二项式,两项都能写成平方的形式,且符号相反.【类型二】 利用平方差公式分解因式分解因式:(1)a 4-116b 4;(2)x 3y 2-xy 4. 解析:(1)a 4-116b 4可以写成(a 2)2-(14b 2)2的形式,这样可以用平方差公式分解因式,而其中有一个因式a 2-14b 2仍可以继续用平方差公式分解因式;(2)x 3y 2-xy 4有公因式xy 2,应先提公因式再进一步分解因式.解:(1)原式=(a 2+14b 2)(a 2-14b 2)=(a 2+14b 2)(a -12b )(a +12b ); (2)原式=xy 2(x 2-y 2)=xy 2(x +y )(x -y ).方法总结:分解因式前应先分析多项式的特点,一般先提公因式,再套用公式.分解因式必须进行到每一个多项式都不能再分解因式为止. 【类型三】 利用因式分解整体代换求值 已知x 2-y 2=-1,x +y =12,求x -y 的值. 解析:已知第一个等式左边利用平方差公式化简,将x +y 的值代入计算即可求出x -y 的值.解:∵x 2-y 2=(x +y )(x -y )=-1,x +y =12,∴x -y =-2. 方法总结:有时给出的条件不是字母的具体值,就需要先进行化简,求出字母的值,但有时很难或者根本就求不出字母的值,根据题目特点,将一个代数式的值整体代入可使运算简便.探究点二:用平方差公式因式分解的应用【类型一】 利用因式分解解决整除问题248-1可以被60和70之间某两个自然数整除,求这两个数.解析:先利用平方差公式分解因式,再找出范围内的解即可.解:248-1=(224+1)(224-1)=(224+1)(212+1)(212-1)=(224+1)(212+1)(26+1)(26-1).∵26=64,∴26-1=63,26+1=65,∴这两个数是65和63.方法总结:解决整除的基本思路就是将代数式化为整式乘积的形式,然后分析被哪些数或式子整除.【类型二】 利用平方差公式进行简便运算利用因式分解计算:(1)1012-992;(2)5722×14-4282×14. 解析:(1)根据平方差公式进行计算即可;(2)先提取公因式,再根据平方差公式进行计算即可. 解:(1)1012-992=(101+99)(101-99)=400;(2)5722×14-4282×14=(5722-4282)×14=(572+428)(572-428)×14=1000×144×14=36000. 方法总结:一些比较复杂的计算,如果通过变形可转化为平方差公式的形式,则可以使运算简便.【类型三】 因式分解的实际应用如图,100个正方形由小到大套在一起,从外向里相间画上阴影,最里面一个小正方形没有画阴影,最外面一层画阴影,最外面的正方形的边长为100cm ,向里依次为99cm ,98cm ,…,1cm ,那么在这个图形中,所有画阴影部分的面积和是多少?解析:相邻两正方形面积的差表示一块阴影部分的面积,而正方形的面积是边长的平方,所以能用平方差公式进行因式分解.解:每一块阴影的面积可以表示成相邻正方形的面积的差,而正方形的面积是其边长的平方,这样就可以逆用平方差公式计算了.则S阴影=(1002-992)+(982-972)+…+42-32+22-12=100+99+98+97+…+2+1=5050(cm2).答:所有阴影部分的面积和是5050cm2.方法总结:首先应找出图形中哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.三、板书设计1.平方差公式:a2-b2=(a+b)(a-b);2.平方差公式的特点:能够运用平方差公式分解因式的多项式必须是二项式,两项都能写成平方的形式,且符号相反.运用平方差公式因式分解,首先应注意每个公式的特征.分析多项式的次数和项数,然后再确定公式.如果多项式是二项式,通常考虑应用平方差公式;如果多项式中有公因式可提,应先提取公因式,而且还要“提”得彻底,最后应注意两点:一是每个因式要化简;二是分解因式时,每个因式都要分解彻底。
因式分解教案5篇
因式分解教案5篇2023因式分解教案(篇1)一、教学目标【学问与技能】了解运用公式法分解因式的意义,会用平方差分解因式;知道提公因式法分解因式是首先考虑的方法,再考虑用平方差分解因式。
【过程与方法】通过对平方差特点的辨析,培育观看、分析力量,训练对平方差公式的应用力量。
【情感态度价值观】在逆用乘法公式的过程中,培育逆向思维力量,在分解因式时了解换元的思想方法。
二、教学重难点【教学重点】运用平方差公式分解因式。
【教学难点】敏捷运用公式法或已经学过的提公因式法分解因式;正确推断因式分解的彻底性。
三、教学过程(一)引入新课我们学习了因式分解的定义,还学习了提公因式法分解因式。
假如一个多项式的各项,不具备相同的因式,是否就不能分解因式了呢?当然不是,大家知道因式分解与多项式乘法是互逆关系,能否利用这种关系找到新的因式分解的方法呢?大家先观看下列式子:(1)(x+5)(x-5)=,(2)(3x+y)(3x-y)=,(3)(1+3a)(1-13a)=他们有什么共同的特点?你可以得出什么结论?(二)探究新知同学独立思索或者与同桌争论。
引导同学得出:①有两项组成,②两项的符号相反,③两项都可以写成数或式的平方的形式。
提问1:能否用语言以及数学公式将其特征表述出来? 2023因式分解教案(篇2)【教学目标】1、了解因式分解的概念和意义;2、熟悉因式分解与整式乘法的相互关系——相反变形,并会运用它们之间的相互关系寻求因式分解的方法。
【教学重点、难点】重点是因式分解的概念,难点是理解因式分解与整式乘法的相互关系,并运用它们之间的相互关系寻求因式分解的方法。
【教学过程】㈠、情境导入看谁算得快:(抢答)(1)若a=101,b=99,则a2-b2=___________;(2)若a=99,b=-1,则a2-2ab+b2=____________;(3)若x=-3,则20x2+60x=____________。
㈡、探究新知1、请每题答得最快的同学谈思路,得出最佳解题方法。
2024北师大版数学八年级下册4.3.1《用平方差公式进行因式分解》教学设计
2024北师大版数学八年级下册4.3.1《用平方差公式进行因式分解》教学设计一. 教材分析《2024北师大版数学八年级下册4.3.1《用平方差公式进行因式分解》》这一节内容是在学生学习了平方差公式的基础上进行的一个实践活动。
平方差公式是初中数学中的一个重要公式,它不仅可以简化计算,还可以用来解决一些因式分解的问题。
本节课通过实例讲解,让学生掌握平方差公式的应用,提高他们的数学解题能力。
二. 学情分析学生在学习本节课之前,已经学习了平方差公式,对公式有一定的理解。
但是,如何将平方差公式应用到实际的因式分解中,可能还存在一定的困难。
因此,在教学过程中,需要引导学生将理论知识与实际问题相结合,提高他们的解题技巧。
三. 教学目标1.理解平方差公式的含义,掌握平方差公式的结构。
2.能够将实际的因式分解问题转化为平方差公式的形式,并进行解答。
3.培养学生的逻辑思维能力,提高他们的数学解题能力。
四. 教学重难点1.掌握平方差公式的结构。
2.如何将实际的因式分解问题转化为平方差公式的形式。
五. 教学方法采用讲解法、实践法、讨论法等教学方法,引导学生通过自主学习、合作交流,掌握平方差公式的应用。
六. 教学准备1.准备相关平方差公式的课件和教学素材。
2.准备一些实际的因式分解问题,用于课堂练习。
七. 教学过程1.导入(5分钟)通过一个实际的因式分解问题,引导学生回顾平方差公式。
例如:已知多项式x^2 - 4,请将其因式分解。
让学生尝试解答,然后给出解答过程和答案。
2.呈现(10分钟)讲解平方差公式的含义和结构,让学生理解平方差公式的推导过程。
通过示例,讲解如何将实际的因式分解问题转化为平方差公式的形式。
3.操练(10分钟)让学生分组合作,解决一些实际的因式分解问题。
教师巡回指导,解答学生的问题,并给予反馈。
4.巩固(10分钟)让学生自主选择一些练习题进行巩固练习,教师个别辅导,解答学生的问题。
5.拓展(10分钟)引导学生思考如何将平方差公式应用到更复杂的问题中,例如多项式的乘法、求解方程等。
用平方差公式因式分解 优秀教案
平方差公式法因式分解教学设计【教材依据】本节课是苏科版数学七年级下册第九章整式乘法与因式分解第五节公式法第二课时内容。
【教材分析】因式分解是初中数学的一个重要内容,是代数式恒等变形的重要手段之一。
它贯穿、渗透在各种代数式问题之中,为以后学习分式运算、解方程和方程组及代数式和三角函数式的恒等变形提供必要的基础。
本节课是在学习了整式的乘法、乘法公式和提公因式法因式分解之后,让学生利用逆向思维而得到平方差公式因式分解的方法,而运用平方差公式分解因式又是因式分解中的一个重要内容。
它对学习完全平方公式因式分解和后面即将要学习的分式化简和计算,对九年级学习一元二次方程的解法和二次函数,高中学习一元二次不等式和分式不等式等都有着重要的影响,所以学好本节课对后面的学习至关重要!【学情分析】学生已有学习的整式运算的基础知识,在前一节课中已经学习了提公因式法分解因式,初步体会到了因式分解与乘法运算的互逆关系,通过对乘法公式(a+b)(a-b)=a2-b2的逆向变形,容易得出a2-b2= (a+b)(a-b),但准确理解和掌握公式的结构特征,进行因式分解对学生来说还有很大的难度,学生的观察、归纳、类比、概括等能力,有条理的思考及语言表达能力还有待加强。
【指导思想】以新课标要求“培养学生的合作探究和归纳总结”的教育理念为指导,引导学生通过复习旧知逐步过渡到新知,进一步应用生活问题作为课堂学习的载体,培养学生学有用数学的理念,贯穿类比、换元的数学思想方法。
通过学生讲解习题的过程培养学生数学文字语言应用和准确应用数学符号表达问题的能力,从而达到素质教育要求发展学生综合素养的目标。
【教学目标】知识与技能:理解平方差公式的特点,掌握使用平方差公式进行因式分解的方法,并能熟练使用平方差公式进行因式分解;过程与方法:通过知识的迁移经历运用平方差公式分解因式的过程;培养探究知识、合作学习的能力,深化逆向思维的能力和数学的应用意识,渗透整体思想和转化思想。
(完整版)利用平方差公式进行因式分解教学设计
(完整版)利用平方差公式进行因式分解教学设计利用平方差公式进行因式分解教学目标:知识与技能:1.理解平方差公式的本质:结构的不变性,字母的可变性.2.会用平方差公式进行因式分解.3.使学生了解提公因式法是因式分解首先考虑的方法,再考虑用公式法分解.过程与方法:经历探索利用平方差公式进行因式分解的过程,发展学生的逆向思维,渗透数学的互逆、换元、整体的思想,感受数学知识的完整性.情感态度与价值观:在探究的过程中培养学生独立思考的习惯,在交流的过程中学会向别人清晰地表达自己的思维和想法,在解决问题的过程中让学生深刻感受到数学的价值.教学重点:掌握运用平方差公式分解因式的方法.教学难点:用平方差公式分解因式;培养学生多步骤分解因式的能力.教学过程一、新课导入导入一:【问题】填空.(1)(x+5)(x-5)=;(2)(3x+y)(3x-y)=;(3)(3m+2n)(3m-2n)=.它们的结果有什么共同特征?尝试将它们的结果分别写成两个因式的乘积:(1)x2-25=;(2)9x2-y2=;(3)9m2-4n2=.[设计意图]学生通过观察、对比,把整式乘法中的平方差公式进行逆向应用,发展学生的观察能力与逆向思维能力.导入二:在前两节课中我们学习了因式分解的定义,即把一个多项式分解成几个整式的积的形式,还学习了提公因式法分解因式,即如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来,从而将多项式化成几个因式乘积的形式.如果一个多项式的各项不都含有相同的因式,是否就不能分解因式了呢?当然不是,只要我们记住因式分解是整式乘法的逆过程,就能利用这种关系找到新的因式分解的方法,本节课我们就来学习另外一种因式分解的方法——公式法.[设计意图]复习之前学过的知识后,提出疑问,直接引入新课,开门见山,激发学生的学习兴趣.二、新知构建1、用平方差公式分解因式请看乘法公式:(a+b)(a-b)=a2-b2.(1)左边是整式乘法,右边是一个多项式,把这个等式反过来就是:a2-b2=(a+b)(a-b).(2)左边是一个多项式,右边是整式的乘积.大家判断一下,第二个式子从左边到右边是否为因式分解?符合因式分解的定义,因此是因式分解.等式(1)是整式乘法中的平方差公式,等式(2)可以看做是因式分解中的平方差公式.a2-b2是一个二项式,每项都可以化成整式的平方,整体来看是两个整式的平方差.如果一个二项式,它能够化成两个整式的平方差的形式,那么就可以用平方差公式分解因式,将多项式分解成两个整式的和与差的积.如:x2-16=x2-42=(x+4)(x-4);9m2-4n2=(3m)2-(2n)2=(3m+2n)·(3m-2n).[设计意图]让学生通过自己的归纳找到因式分解中平方差公式的特征,并能利用相关结论进行实例练习.2、例题讲解[过渡语]同学们,前面我们学习了用平方差公式分解因式,下面我们通过几个例题来巩固所学的知识.(教材例1)把下列各式因式分解:(1)25-16x2;(2)9a2-b2.解:(1)25-16x2=52-(4x)2=(5+4x)(5-4x).(2)9a2-b2=(3a)2-=3a+b·3a-b.(教材例2)把下列各式因式分解:(1)9(m+n)2-(m-n)2;(2)2x3-8x.解:(1)9(m+n)2-(m-n)2=[3(m+n)]2-(m-n)2=[3(m+n)+(m-n)][3(m+n)-(m-n)]=(3m+3n+m-n)(3m+3n-m+n)=(4m+2n)(2m+4n)=4(2m+n)(m+2n).(2)2x3-8x=2x(x2-4)=2x(x+2)(x-2).说明:教材例1是把一个多项式的两项都化成两个单项式的平方,利用平方差公式分解因式;教材例2的(1)是把一个二项式化成两个多项式的平方差,然后用平方差公式分解因式,教材例2的(2)是先提取公因式,然后再用平方差公式分解因式,由此可知,当一个题中既要用提公因式法,又要用公式法分解因式时,首先要考虑提公因式法,再考虑公式法.[设计意图]教师讲解例题,明确思维方法,给出书写范例.三、课堂小结平方差公式:a2-b2=(a+b)(a-b).我们已学习过的因式分解的方法有提公因式法和平方差公式法.如果多项式各项含有公因式,那么第一步是提公因式,然后看是否符合平方差公式的结构特点,若符合则继续进行.分解因式以后,若所含的多项式还可以继续分解,则需要进一步分解因式,直到每个多项式都不能分解为止.四、检测反馈1.下列因式分解正确的是()A.x2+y2=(x+y)(x-y)B.x2-y2=(x+y)(x-y)C.x2+y2=(x+y)2D.x2-y2=(x-y)2解析:x2+y2不能在有理数范围内因式分解,x2-y2=(x+y)(x-y).故选B.2.分解因式:a3-4a=.解析:a3-4a=a(a2-4)=a(a+2)(a-2).故填a(a+2)(a-2).3.(2015·恩施中考)因式分解:9bx2y-by3=.解析:原式=by(9x2-y2)=by(3x+y)(3x-y).故填by(3x+y)(3x-y).4.已知x2-y2=69,x+y=3,则x-y=.解析:因为x2-y2=69,所以(x+y)(x-y)=69,因为x+y=3,所以3(x-y)=69,所以x-y=23.故填23.5.分解因式:(3a-2b)2-(2a+3b)2.解:(3a-2b)2-(2a+3b)2=[(3a-2b)+(2a+3b)][(3a-2b)-(2a+3b)]=(3a-2b+2a+3b)(3a-2b-2a-3b)=(5a+b)(a-5b).五、布置作业【必做题】教材第100页随堂练习的1,2题.【选做题】教材第100页习题4.4的1,2题.六、板书设计公式法(利用平方差公式进行因式分解)一、用平方差公式分解因式a2-b2=(a+b)(a-b)二、例题讲解。
因式分解教案9篇
因式分解教案9篇因式分解教案篇1教学目标:1、理解运用平方差公式分解因式的方法。
2、掌握提公因式法和平方差公式分解因式的综合运用。
3、进一步培养学生综合、分析数学问题的能力。
教学重点:运用平方差公式分解因式。
教学难点:高次指数的转化,提公因式法,平方差公式的灵活运用。
教学案例:我们数学组的观课议课主题:1、关注学生的合作交流2、如何使学困生能积极参与课堂交流。
在精心备课过程中,我设计了这样的自学提示:1、整式乘法中的平方差公式是___,如何用语言描述把上述公式反过来就得到_____,如何用语言描述2、下列多项式能用平方差公式分解因式吗若能,请写出分解过程,若不能,说出为什么①-2+y2 ②-2-y2 ③4-92④ (+y)2-(-y)2 ⑤ a4-b43、试总结运用平方差公式因式分解的条件是什么4、仿照例4的分析及旁白你能把3y-y因式分解吗5、试总结因式分解的步骤是什么师巡回指导,生自主探究后交流合作。
生交流热情很高,但把全部问题分析完已用了30分钟。
生展示自学成果。
生1: -2+y2能用平方差公式分解,可分解为(y+)(y-)生2: -2+y2=-(2-y2)=-(+y)(-y)师:这两种方法都可以,但第二种方法提出负号后,一定要注意括号里的各项要变号。
生3:4-92 也能用平方差公式分解,可分解为(2+9)(2-9)生4:不对,应分解为(2+3)(2-3),要运用平方差公式必须化为两个数或整式的平方差的形式。
生5: a4-b4可分解为(a2+b2)(a2-b2)生6:不对,a2-b2 还能继续分解为a+b)(a-b)师:大家争论的很好,运用平方差公式分解因式,必须化为两个数或两个整式的平方的差的形式,另因式分解必须分解到不能再分解为止。
反思:这节课我备课比较认真,自学提示的设计也动了一番脑筋,为让学生顺利得出运用平方差公式因式分解的条件,我设计了问题2,为让学生能更容易总结因式分解的步骤,我又设计了问题4,自认为,本节课一定会上的非常成功,学生的交流、合作,自学展示一定会很精彩,结果却出乎我的意料,本节课没有按计划完成教学任务,学生练习很少,作业有很大一部分同学不能独立完成,反思这节课主要有以下几个问题:(1) 我在备课时,过高估计了学生的能力,问题2中的③、④、⑤ 多数学生刚预习后不能熟练解答,导致在小组交流时,多数学生都在交流这几题该怎样分解,耽误了宝贵的时间,也分散了学生的注意力,导致难点、重点不突出,若能把问题2改为:下列多项式能用平方差公式因式分解吗为什么可能效果会更好。
用平方差公式因式分解公开课教案
用平方差公式因式分解公开课教案第一章:引言1.1 课程背景平方差公式是初高中数学中的重要知识点,广泛应用于因式分解、求解代数方程等领域。
本节课将通过生活中的实例,引导学生发现平方差公式的规律,并运用该公式进行因式分解。
1.2 教学目标(1)了解平方差公式的概念及应用;(2)掌握平方差公式的因式分解方法;(3)培养学生的观察、思考、归纳能力。
第二章:平方差公式的探究2.1 实例分析(1)展示实例:投掷骰子问题;(2)引导学生观察实例中的规律;(3)让学生尝试解释规律背后的数学原理。
2.2 平方差公式的发现(1)引导学生总结实例中的规律;(2)给出平方差公式的定义;(3)解释平方差公式的推导过程。
第三章:平方差公式的应用3.1 因式分解(1)展示因式分解问题;(2)引导学生运用平方差公式进行因式分解;(3)让学生总结因式分解的步骤及注意事项。
3.2 求解代数方程(1)展示代数方程问题;(2)引导学生运用平方差公式求解;(3)让学生总结求解代数方程的步骤及方法。
第四章:巩固练习4.1 填空题(1)填空题训练学生对平方差公式的掌握;(2)引导学生运用平方差公式进行填空。
4.2 解答题(1)解答题巩固学生对平方差公式的应用;(2)让学生独立运用平方差公式解决问题。
第五章:拓展与思考5.1 平方差公式的拓展(1)引导学生探索平方差公式的推广;(2)介绍平方差公式在其他领域的应用。
5.2 思考与讨论(1)引导学生思考:平方差公式在实际生活中的应用;(2)组织学生进行小组讨论,分享各自的观点。
教学评价:通过本节课的学习,学生能掌握平方差公式的概念及应用,并能运用该公式进行因式分解和求解代数方程。
学生还能了解平方差公式在其他领域的拓展应用,提高观察、思考、归纳能力。
第六章:综合练习6.1 应用题(1)展示应用题,引导学生运用平方差公式解决问题;(2)让学生独立解答应用题,培养实际应用能力。
6.2 综合性练习(1)设计综合性练习题,涵盖平方差公式的各个方面;(2)组织学生进行练习,巩固所学知识。
人教版八年级数学上册14.3.2.1《运用平方差公式因式分解》教学设计
人教版八年级数学上册14.3.2.1《运用平方差公式因式分解》教学设计一. 教材分析1.内容概述:本节课的主要内容是运用平方差公式进行因式分解。
平方差公式是八年级数学中的一个重要知识点,掌握平方差公式对于学生后续学习代数和几何知识具有重要意义。
2.地位与作用:平方差公式是因式分解的一种基本方法,它可以帮助学生简化代数表达式,提高解题效率。
通过学习平方差公式,学生能够巩固和拓展之前学过的知识,为高中阶段的学习打下基础。
二. 学情分析1.学生特点:八年级的学生已经具备了一定的代数基础,对因式分解有一定的了解。
但部分学生在运用平方差公式进行因式分解时,容易出错。
因此,在教学过程中,需要关注学生的学习需求,针对性地进行讲解和辅导。
2.学习需求:学生需要掌握平方差公式的推导过程、记忆方法以及应用技巧。
同时,学生需要通过大量的练习,提高运用平方差公式进行因式分解的能力。
三. 教学目标1.知识与技能:使学生掌握平方差公式的推导过程、记忆方法及应用;提高学生运用平方差公式进行因式分解的能力。
2.过程与方法:通过观察、分析、归纳、推理等方法,引导学生自主探究平方差公式的推导过程,培养学生的逻辑思维能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识,使学生感受到数学的趣味性和实用性。
四. 教学重难点平方差公式的推导过程及应用。
平方差公式的灵活运用,特别是遇到复杂表达式时的因式分解。
五. 教学方法1.情境教学法:通过生活实例引入平方差公式,激发学生的学习兴趣。
2.启发式教学法:引导学生自主探究平方差公式的推导过程,培养学生的逻辑思维能力。
3.合作学习法:学生进行小组讨论,共同解决难题,提高学生的团队合作意识。
4.反馈评价法:及时给予学生反馈,鼓励学生积极参与课堂活动,提高教学效果。
六. 教学准备1.教学课件:制作精美的教学课件,突出平方差公式的推导过程和应用实例。
2.练习题:准备一定数量的练习题,包括基础题、提高题和拓展题,以满足不同学生的学习需求。
用平方差公式因式分解公开课教案
用平方差公式因式分解公开课教案
一、教材分析一、教材分析
苏霍姆林斯基曾说过:“教师越是能够运用自如的掌握教材,那么,他的讲述就越是情感鲜明,学生听课,需要花在抠教科书上的时间就越少”。
可见,熟悉教材、分析教材、开发教材资源是制定教法、开展学法指导的主要依据,是教学设计、测试、评价的基础。
二、学情分析
《分解因式——运用平方差公式》是人教版义务教育课程标准实验教科书《数学》八年级(上)整式的乘法第四节的内容。
分解因式是整式乘法的逆运用,与整式乘法运算有着密切的联系。
分解因式的变形不仅体现了一种“化归”的思想,也为学习分式,利用因式分解解一元二次方程奠定基础,对整个教科书也起到了承上启下的作用。
探索分解因式的方法,实际上是对整式乘法的再认识,因此要借助学生已有的整式乘法运算的基础,给学生创设一个新的、具有启发性的情境,激励学生通过独立思考与讨论交流发现问题情境中的变形关系,并运用数学符号进行表示,然后再运用所学的知识去解决相关的问题。
同时在这一对比整式的乘法而探索分解因式方法的相关活动过程中,力图渗透类比思想,让学生体会、理解、认识分解因式的意义,感受其间的联系,学生不仅能够理解,归纳分解因式变形的特点,同时也可以充分感受到这种互逆变形的过程和数学知识的整体性。
三、教学目标:
(一)知识与技能:
1.使学生了解运用公式法分解因式的意义;
2.会用平方差公式进行因式分解;
3.使学生了解提公因式法是分解因式首先考虑的方法,再考虑用平方差公式分解因式.。
平方差公式因式分解 教案
平方差公式因式分解【教学目标】知识与技能:1、会用平方差公式因式分解。
2、能熟练应用提公因式法、套平方差公式因式分解。
过程与方法:通过复习平方差公式,逆向思维归纳出利用平方差公式因式分解的方法,初步掌握一提二套的方法、步骤。
情感、态度与价值观:体会平方差公式的特点及应用于整式的因式分解,从而进一步认识数学的严谨性与灵活性,感受观察、分析是获取知识的先导和解决问题的关键。
【教学重点】用平方差公式因式分解【教学难点】把多项式适当变形后套平方差公式因式分解【易错点】公式a2-b2中a ,b 易找错,如a2-4=(a+4)(a-4)中对应公式中的b 为2。
【教学过程】一:探究新知活动1:忆一忆1、下列各式中能用平方差公式计算的是 ( B )A 、(2a+b )(a-b)B 、(-2a+b)(-2a-b)C 、(2a+b)(-2a-b)D 、(2a+b) (a-2b)2、填空:25x2=(5x)2, 162m =(4m )20.09a2b4=(0.3ab2)2, 0.49(x+y)2=[0.7(x+y)]2活动2:想一想同学们,你能很快得出992-1是100的倍数吗?你是怎么想出来的?答案:利用平方差公式得992-1=100×98,是100的倍数,这就是我们今天所要学习的内容。
二:新知梳理知识点:用平方差公式因式分解公式(a+b )(a-b)= a2-b2 叫做平方差公式,把这个公式从右至左使用,可把某些多项式因式分解,即两个数的平方差等于这两个数的和与这两个数的差的积。
三:应用示例例1:把25x2-4y2因式分解分析:25x2=(5x)2,4y2=(2y)2,25x2-4y2=(5x)2-(2y)2,原式即可以用平方差公式进行因式分解。
解:25x2-4y2=(5x)2-(2y)2=(5x+2y )(5x-2y )例2:把(x+y )2-(x-y )2因式分解。
分析:将(x+y )看成a,(x-y )看成b ,原式即可用平方差公式进行因式分解。
4.3.利用平方差公式进行因式分解(教案)-
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与平方差公式相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,通过分解不同的二次多项式来演示平方差公式的应用。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了平方差公式的概念、重要性及应用。同时,我们也通过实践活动和小组讨论加深了对平方差公式的理解。我希望大家能够掌握这些知识点,并在解决数学问题时灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
不过,我也注意到,对于一些学生来说,将理论知识应用到具体问题中仍然是一个挑战。在实践活动和小组讨论中,我观察到有的小组在解决问题时还是显得有些犹豫不决。这让我意识到,我需要在未来的教学中,更多地设计一些循序渐进的练习,帮助学生巩固知识,提高他们解决实际问题的能力。
此外,我也在思考如何让总结回顾环节更加高效。今天的教学结束时,虽然我邀请学生提问,但响应并不热烈。我考虑在下次课中,尝试让学生自己来总结今天的学习内容,或许这样可以提高他们的参与度和思考的积极性。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《利用平方差公式进行因式分解》这一章节。在开始之前,我想先问大家一个问题:“你们在解数学题时是否遇到过需要将一个二次多项式分解成两个一次多项式的乘积的情况?”(如x² - 4)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索平方差公式的奥秘。
用平方差公式因式分解公开课教案
用平方差公式因式分解公开课教案一、教学目标1. 让学生掌握平方差公式的概念和运用。
2. 培养学生运用平方差公式进行因式分解的能力。
3. 提高学生解决问题的能力和对数学的兴趣。
二、教学内容1. 平方差公式的介绍和记忆。
2. 平方差公式的运用和因式分解。
3. 例题讲解和练习。
三、教学方法1. 采用讲解法,引导学生理解和记忆平方差公式。
2. 采用示例法,展示平方差公式的运用和因式分解的过程。
3. 采用练习法,让学生通过练习巩固所学知识。
四、教学步骤1. 导入新课,介绍平方差公式的概念。
2. 讲解平方差公式的推导过程,让学生理解并记忆公式。
3. 通过示例,展示平方差公式的运用和因式分解的过程。
4. 布置练习题,让学生独立完成,并进行讲解和点评。
五、教学评价1. 课后收集学生的练习册,进行批改和评价。
2. 在课堂上,对学生的练习进行点评和指导。
3. 关注学生在课堂上的参与度和对平方差公式的掌握程度。
六、教学资源1. 教学PPT,展示平方差公式的推导过程和示例。
2. 练习题,供学生进行练习和巩固。
七、教学时间1课时八、教学拓展1. 引导学生思考:平方差公式在实际生活中的应用。
2. 布置课后作业,让学生进一步巩固平方差公式的运用和因式分解的能力。
九、教学反思2. 根据学生的反馈,调整教学方法和策略,以便更好地引导学生理解和运用平方差公式。
十、教学预案1. 针对学生的不同程度,准备不同难度的练习题,以满足不同学生的需求。
2. 在课堂上,关注学生的疑问,及时进行解答和指导。
六、教学活动1. 课堂互动:邀请学生上台演示平方差公式的运用和因式分解的过程,鼓励其他学生提问和参与讨论。
2. 小组活动:学生分组进行练习,互相讲解和讨论解题方法,促进合作学习。
七、学习任务1. 学生通过课堂讲解和练习,掌握平方差公式的运用和因式分解的方法。
2. 学生能够独立解决相关问题,并能够解释解题过程。
八、学习评估1. 课堂练习:学生当场完成练习题,教师及时进行点评和指导。
1432因式分解—平方差公式教案
1432因式分解—平方差公式教案这是一个关于1432因式分解--平方差公式的教案,通过教学可以帮助学生理解和掌握平方差公式的概念和应用。
一、教学目标:1.理解平方差公式的含义和作用;2.掌握平方差公式的求解方法;3.能够应用平方差公式解决相关问题。
二、教学准备:1.教材:数学课本;2.工具:黑板、彩色粉笔、计算器。
三、教学过程:1.导入(5分钟)通过提问引发学生思考,如“你们知道什么是平方差公式吗?”“平方差公式有什么作用?”等。
2.介绍平方差公式(15分钟)(1)通过黑板上的公式,向学生介绍平方差公式的概念和形式:a²-b²=(a+b)(a-b)。
3.解决例题(30分钟)(1)举例,给学生练习求解不同类型的平方差公式,要求学生逐步求解,过程要求详细。
例如:求解84²-18²。
一步步展示:84²-18²=(84+18)(84-18)=102×66=6732(2)引导学生思考如何应用平方差公式解决其他类型的问题,让学生自己推导正确的解法并进行求解。
4.合作探究(25分钟)(1)通过组织学生合作,让学生根据教材上的练习题,自主解答一些平方差公式的问题。
(2)教师巡视指导,解答学生遇到的问题。
5.展示和总结(10分钟)(1)选取一些学生完成的例题进行展示,让其他学生评价。
(2)总结学习内容,强调平方差公式的应用和求解方法。
(3)作业布置:完成课后习题。
四、教学反思:通过本节课的教学,学生了解了平方差公式的概念、作用和求解方法。
通过解决例题,巩固了学生对平方差公式的理解和应用能力。
合作探究环节加深了学生的思考和解决问题的能力。
在教学的过程中,教师应多引导学生发现问题的规律、解决问题的思路,提高学生的思维能力和解决问题的能力。
《因式分解》优秀教案一等奖
《因式分解》优秀教案一等奖1、《因式分解》优秀教案一等奖教学目标:1、掌握用平方差公式分解因式的方法;掌握提公因式法,平方差公式法分解因式综合应用;能利用平方差公式法解决实际问题。
2、经历探究分解因式方法的过程,体会整式乘法与分解因式之间的联系。
3、通过对公式的探究,深刻理解公式的应用,并会熟练应用公式解决问题。
4、通过探究平方差公式特点,学生根据公式自己取值设计问题,并根据公式自己解决问题的过程,让学生获得成功的体验,培养合作交流意识。
教学重点:应用平方差公式分解因式.教学难点:灵活应用公式和提公因式法分解因式,并理解因式分解的要求.教学过程:一、复习准备导入新课1、什么是因式分解?判断下列变形过程,哪个是因式分解?2、我们已经学过的因式分解的方法有什么?将下列多项式分解因式。
x2+2xa2b-ab3、根据乘法公式进行计算:(1)(x+3)(x-3)= (2)(2y+1)(2y-1)= (3)(a+b)(a-b)=二、合作探究学习新知(一) 猜一猜:你能将下面的多项式分解因式吗?(1)= (2)= (3)=(二)想一想,议一议: 观察下面的公式:=(a+b)(a—b)(这个公式左边的多项式有什么特征:_____________________________________公式右边是__________________________________________________________ 这个公式你能用语言来描述吗?_______________________________________(三)练一练:1、下列多项式能否用平方差公式来分解因式?为什么?① ② ③ ④2、你能把下列的数或式写成幂的形式吗?(1)( ) (2)( ) (3)( ) (4)= ( ) (5) 36a4=( )2 (6) 0.49b2=( )2 (7) 81n6=( )2 (8) 100p4q2=( )2(四)做一做:例3 分解因式:(1) 4x2- 9 (2) (x+p)2- (x+q)2(五)试一试:例4 下面的式子你能用什么方法来分解因式呢?请你试一试。
40运用平方差公式因式分解教案
运用平方差公式因式分解一、教学目标(一)知识与技能:会应用平方差公式进行因式分解,发展学生推理能力.(二)过程与方法:经历探索利用平方差公式进行因式分解的过程,发展学生的逆向思维,感受数学知识的完整性.(三)情感态度与价值观:培养学生良好的互动交流的习惯,体会数学在实际问题中的应用价值.二、教学重点、难点重点:利用平方差公式分解因式.难点:领会因式分解的解题步骤和分解因式的彻底性.三、教学过程知识回顾平方差公式(α+b)(a-b)=a2-b2两个数的和与这两个数的差的积,等于这两个数的平方差.填一填:(1)(x+5)(χ-5)=(2)(3x+y)(3x-y)=(3)(l+3a)(l-3a)=比一比,看谁算得快(1)982-22=(2)己知α+从4,a~b=2f则a2-l>2=你能说说算得快的原因吗?把整式乘法的平方差公式U+W(a-b)=a2-b2的等号两边互换位置,就得到运用平方差公式因式分解a2-b2=(a^b)(a~b)t两个数的平方差,等于这两个数的和与这两个数的差的积.辨一辨下列多项式能否用平方差公式来分解因式?为什么?⑴X2+/ ( ) (2)x2-y2( ) ;⑶-JC2+y2( ) (4)-χ2-y2( )例3分解因式:(1)4X2-9(2)(x+p)2-(X+q)2分析:在(1)中,4x2=(2x)2,9=32,4X2-9=(2X)2-32;在(2)中,把Cr+p)和(x+q)各看成一个整体,设x+片小,x+q=n,则原式化为序-〃2.解:⑴4Λ2-9=(2X)2-32=(2X+3)(2X-3)(2)(x+p)2-(χ+q)2=[(χ+p)+(χ+q)][(χ+p)-(x+q)]=(2x+p+g)(pp)例4分解因式:(1)√-/ (2)a3b-ab分析:对于(1),f-y4可以写成(f)2γy2)2的形式,这样就可以用平方差公式进行因式分解了;对于(2),苏6必有公因式应先提出公因式,再进一步分解.解:⑴产卢(x2+y2)Cr2-y2)=(f+y2)(x+y)(x~y)(2)a3b-ab=ab(a2-l)=ab(a+∖)(α-1)分解因式,必须进行到每一个多项式因式都不能再分解为止.练习2.分解因式:(1)cτ~—b2(2)9a2~4h2(3)x2∖'~4y(4)一/+1625解:(1)cr~—h2=(Λ+-h)(a--b)25 5 5(2)9a2~4b2=(3a+2b)(3a~2b)(3)√r4y=y(√-4)=j(x+2)(x-2)(4)-Λ4+16=16-a4=(4+α2)(4-<J2)=(4+α2)(2+«)(2-a)课堂小结1.本节课你有哪些收获?2.还有没解决的问题吗?四、教学反思运用平方差公式因式分解,首先应注意每个公式的特征.分析多项式的次数和项数,然后再确定公式.如果多项式是二项式,通常考虑应用平方差公式;如果多项式中有公因式可提,应先提取公因式,而且还要“提”得彻底.最后应注意两点:一是每个因式要化简,二是分解因式时,每个因式都要分解彻底.。
七年级数学下册《用平方差公式因式分解》教案、教学设计
基础题:旨在巩固平方差公式的理解和应用,培养学生的基本运算能力。
拓展题:旨在提高学生解决问题的能力,鼓励学生在掌握平方差公式的基础上,进行更深入的思考和探索。
2.实践应用题:结合生活实际,设计一道运用平方差公式解决的实际问题,并完成解答。例如:“一个正方形的边长是a+b,另一个正方形的边长是a-b,求这两个正方形面积之差。”
1.创设情境,激发兴趣
-通过引入生活实例,让学生感受数学知识在实际问题中的应用,激发学生的学习兴趣。
-设计有趣的问题,引导学生主动探究平方差公式的推导过程。
2.分层教学,循序渐进
-根据学生的认知水平和学习能力,设计不同难度的教学活动,使每个学生都能在课堂上得到锻炼和提高。
-逐步引导学生从简单的平方差公式应用过渡到复杂的因式分解问题,帮助学生建立信心。
-引导学生树立正确的价值观,认识到数学知识在生活中的重要作用。
四、教学内容与过程
(一)导入新课,500字
1.复习导入:首先,带领学生复习上节课所学的因式分解知识,通过提问方式引导学生回顾因式分解的概念和基本方法。然后,提出一个具有挑战性的问题:“我们已经学会了简单的因式分解,那么对于稍微复杂一些的多项式,如何进行因式分解呢?今天我们将学习一个新的方法——平方差公式。”
(五)总结归纳,500字
1.让学生回顾本节课所学的内容,总结平方差公式的推导过程、结构特点和应用方法。
2.强调因式分解在实际问题中的应用价值,引导学生认识到平方差公式在数学学习中的重要性。
3.鼓励学生在课后继续练习,巩固所学知识,提高因式分解的能力。
八年级数学下册平方差公式法因式分解教案设计
八年级数学下册平方差公式法因式分解教案设计一、教学目标:1. 让学生掌握平方差公式的结构特征和运用方法。
2. 培养学生运用平方差公式进行因式分解的能力。
3. 提高学生解决实际问题的能力,培养学生的逻辑思维和运算能力。
二、教学内容:1. 平方差公式的介绍和记忆。
2. 平方差公式在因式分解中的应用。
3. 平方差公式解决实际问题。
三、教学重点与难点:1. 教学重点:平方差公式的记忆和运用,以及因式分解的方法。
2. 教学难点:平方差公式的灵活运用,解决实际问题。
四、教学方法:1. 采用讲解法,引导学生理解平方差公式的内涵。
2. 采用案例分析法,让学生通过具体例子掌握平方差公式的运用。
3. 采用练习法,巩固学生对平方差公式的记忆和运用。
五、教学过程:1. 导入新课:通过复习平方根的概念,引出平方差公式。
2. 讲解平方差公式:讲解平方差公式的推导过程,让学生理解并记忆公式。
3. 案例分析:给出具体例子,让学生运用平方差公式进行因式分解。
4. 练习巩固:设计练习题,让学生独立完成,巩固对平方差公式的运用。
5. 总结拓展:总结本节课所学内容,引导学生思考如何运用平方差公式解决实际问题。
6. 布置作业:设计课后作业,让学生进一步巩固平方差公式的运用。
六、教学评价:1. 课后作业:检查学生对平方差公式的掌握程度,以及能否运用公式进行因式分解。
2. 课堂练习:观察学生在课堂练习中的表现,了解他们对平方差公式的理解和运用情况。
3. 学生反馈:听取学生的反馈意见,了解他们在学习过程中的困惑和问题。
七、教学反思:1. 对教学方法的反思:思考本节课所采用的教学方法是否有效,是否需要调整。
2. 对教学内容的反思:分析平方差公式的讲解是否清晰,学生是否能够理解和记忆。
3. 对教学进度的反思:考虑是否需要调整教学进度,以满足学生的学习需求。
八、教学拓展:1. 平方差公式的应用:引导学生思考平方差公式在解决实际问题中的应用。
2. 因式分解的其他方法:介绍其他因式分解的方法,如提取公因式法、交叉相乘法等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平方差公式法因式分解教学设计
【教材依据】本节课是苏科版数学七年级下册第九章整式乘法与因式分解第五节公式法第二课时内容。
【教材分析】因式分解是初中数学的一个重要内容,是代数式恒等变形的重要手段之一。
它贯穿、渗透在各种代数式问题之中,为以后学习分式运算、解方程和方程组及代数式和三角函数式的恒等变形提供必要的基础。
本节课是在学习了整式的乘法、乘法公式和提公因式法因式分解之后,让学生利用逆向思维而得到平方差公式因式分解的方法,而运用平方差公式分解因式又是因式分解中的一个重要内容。
它对学习完全平方公式因式分解和后面即将要学习的分式化简和计算,对九年级学习一元二次方程的解法和二次函数,高中学习一元二次不等式和分式不等式等都有着重要的影响,所以学好本节课对后面的学习至关重要!
【学情分析】
学生已有学习的整式运算的基础知识,在前一节课中已经学习了提公因式法分解因式,初步体会到了因式分解与乘法运算的互逆关系,通过对乘法公式(a+b)(a-b)=a2-b2的逆向变形,容易得出a2-b2= (a+b)(a-b),但准确理解和掌握公式的结构特征,进行因式分解对学生来说还有很大的难度,学生的观察、归纳、类比、概括等能力,有条理的思考及语言表达能力还有待加强。
【指导思想】
以新课标要求“培养学生的合作探究和归纳总结”的教育理念为指导,引导学生通过复习旧知逐步过渡到新知,进一步应用生活问题作为课堂学习的载体,培养学生学有用数学的理念,贯穿类比、换元的数学思想方法。
通过学生讲解习题的过程培养学生数学文字语言应用和准确应用数学符号表达问题的能力,从而达到素质教育要求发展学生综合素养的目标。
【教学目标】
知识与技能:理解平方差公式的特点,掌握使用平方差公式进行因式分解的方法,并能熟练使用平方差公式进行因式分解;
过程与方法:通过知识的迁移经历运用平方差公式分解因式的过程;培养探究知识、合作学习的能力,深化逆向思维的能力和数学的应用意识,渗透整体思想和转化思想。
情感态度与价值观:在应用平方差公式分解因式的过程中让学生体验换元思想与整体思想,同时增强学生的观察能力和归纳总结的能力。
在自主合作学习的过程中体验成功的喜悦,感悟数学美,体会数学知识的合理性和严谨性,养成积极思考,独立思考的好习惯。
现代化教学手段的运用:使用多媒体激发学生的学习兴趣,增大课堂容量,使用检测试卷落实当堂效果。
【教学重点】
掌握可用平方差公式分解因式的特点,并能使用平方差公式分解因式。
解决办法:通过大量实例的观察,分析,再通过对特殊例题的观察,讨论与交流总结相应的特征,感受它们的区别。
【教学难点】
使学生能把多项式转换成符合平方差公式的形式进行因式分解。
突破措施:通过观察及交流增强认识,突破难点,让学生自己对特征反复描述、总结,体会图形研究的方法与视角。
【教学过程】
利用ppt课件展示复习内容了解学生对因式分解概念及提公因式法的掌握情况,进一步复习应用平方差公式进行整式乘法运算。
1 、情境创设与旧知回顾
A、同学们,你能不使用计算器快速算出352-152的值吗?你是怎么想出来的?
B、平方差公式与因式分解定义:
C、填空(口答):
(1)a2-16=a2-( )2
=(a+ )(a- )
(2)64-b2=( )2-b2
=( +b)( -b)
(3)25x2-49y2=( )2-( )2
=( + )( - )
2、探究活动:
下列多项式能否用平方差公式分解因式?说说你的理由。
(1)(2x)2–y2 (2) (2x)2 +y2
(3) -4x2-y2 (4) 4x2–(-y)2
3、新课讲解:
我们可以发现,刚才因式分解的过程中我们是逆用平方差公式的方法,像这样逆用乘法公式将一个多项式分解因式的过程叫做公式法分解因式。
今天我们主要学习使用平方差公式进行因式分解。
平方差公式反过来可得:a2-b2=(a+b)(a-b)
这个公式叫做因式分解中的平方差公式。
学生思考:1、当一个多项式具有什么特点时可用平方差公式因式分解?
(小组讨论,教师深入小组,倾听学生的交流后,引导学生从项数、次数、符号等方面观察归纳出多项式的特点:多项式为两项;两项符号相反;两项都可以写成平方的形式。
)【设计意图】让学生充分经历观察、类比、归纳、概括的过程,探究出将乘法公式逆用就能解决问题,再来归纳出分解因式的平方差公式.
2、文字叙述:两个数的平方差,等于这两个数的和与这两个数的差的积。
【设计意图】锻炼学生的文字概括及语言表达能力.加强对公式本质的理解.
【设计意图】使学生学会把一个代数式写成()2形式的平方数,为平方差公式因式分解的应用变形做铺垫。
【设计意图】通过探究活动,进一步使学生理解平方差公式因式分解时多项式的特点。
并学会熟练
例1:把下列各式分解因式:
1.36-25x2
2.-9b2+16(-a)2
在使用平方差公式分解因式时,要注意:先把要计算的式子与平方差公式对照,明确哪个相当于 a ,哪个相当于 b. 掌握应用平方差公式进行分解因式的规范书写格式,从而达到培养学生符号运用能力,使学生养成勤于观察和规范书写的习惯,体现本节课的重点。
练一练:把下列各式分解因式:
1.x2-25 3.-16y2+(-x)2 4.x2y2-z2
【设计意图】进一步加深对公式本质的认识,体会整体的数学思想并用换元的方法将问题转化为公式的基本形式加以解决.
例2:把下列各式分解因式:
1.9-(a-b)2
引导学生经历探究、猜想和验证,直至解决问题的过程.归纳出因式分解的步骤“一判二变三套四查”的方法,再一次加深对多种方法(提公因式法、平方差公式)分解因式的综合运用,以及分解要彻底地思想.
练一练:把下列各式分解因式:
变式1: 9(a+b)2-4(a-b)2
变式2: 81-a4
变式3: 9(a+b)2-(a-3b)2
例3:实际应用
求圆环绿地的面积S
(结果保留π)
【设计意图】使学生体验发现问题,解决问题的猜想和验证,直至解决问题的过程.从中体验成功地感受,再一次加深对多种方法(提公因式法、平方差公式)分解因式的综合运用以及分解因式应进行到每一个多项式因式不能再分解为止的原则。
【小结】
1、本节课我们主要学习了运用平方差公式进行因式分解,利用平方差公式时主要先判断能否使用平方差公式进行因式分解,判断的依据:
1) 是一个二项式(或可看成一个二项式)
2)每项可写成平方的形式
3)两项的符号相反
2、在综合运用多种方法分解因式时,多项式中有公因式的先提取公因式,再用平方差公式分解因式。
3、分解因式,应进行到每一个多项式因式不能再分解为止。
【布置作业】
1、课本P84练一练.:1,2,3
【课后反思】
本节课上下来我整体感觉完成了我课前设定的目标,学生能够很快地掌握利用平方差公式来进行因式分解,而且对一般形式的能使用平方差公式的多项式能够进行因式分解。
学生在课堂上和老师的互动也比较好,自我感觉这节课上得比较成功。
通过课后学科组教师点评使我首先清楚认识到我的教学特点:语言流畅、教态亲切、语速合适、设计合理、设计中小步骤。
当然,本节课也存在一些问题,其中比较突出的就是在例题的安排上对题目的把握不是很好。
把所有类型的利用平方差进行因式分解的题型在同一道例题中出现,对于刚接触这种方法的学生来说要求过高,也违背了我小步骤教学的教学特点。