2020年高考数学一轮教案:第3章-一元函数的导数及其应用第三章 第2节 第1课时
高考数学一轮总复习第三章一元函数的导数及其应用 2导数在研究函数中的应用第1课时函数的单调性课件
解: .令,得或 .当时,, 单调递增;当时,, 单调递减.综上,函数的单调递增区间为和,单调递减区间为 .
【点拨】确定函数单调区间的步骤如下.第一步,确定函数 的定义域.第二步,求.第三步,解不等式 ,解集在定义域内的部分为单调递增区间;解不等式 ,解集在定义域内的部分为单调递减区间.注意函数间断点.
A. B., C. D.,
解:函数的定义域为,.由,得 .依题意,得 解得 .故选B.
√
10.已知,,, ,则 ( )
A. B. C. D.
解:因为当时,,所以在 上单调递减.因为,即,所以 .故选C.
√
11.已知函数.若在上单调递增,则实数 的取值范围是( )
A. B. C. D.
变式1(1) 函数 的单调递减区间为____________.
,
解:因为,所以且 .所以 .令,解得或 .所以的单调递减区间为, .故填, .
(2)已知函数,,求函数 的单调区间.
解: .令,得或 .当或 时,;当时, .所以在,上单调递增,在,上单调递减, 在, 上单调递增.
考点二 含参函数的单调性
2.利用导数判断函数 单调性的步骤 第1步,确定函数的________; 第2步,求出导数 的______; 第3步,用的零点将的定义域划分为若干个区间,列表给出 在各个区间上的正负,由此得出函数 在定义域内的单调性. 3.函数值变化快慢与导数的关系 一般地,如果一个函数在某一范围内导数的绝对值较大,那么函数在这个范围内变化得______,这时函数的图象就比较“陡峭”(向上或向下);反之,函数在这个范围内变化得______,函数的图象就比较“平缓”.
6.已知函数,则 的大致图象为 ( )
2023年高考数学一轮复习 课件 第3章 一元函数的导数及其应用
【反思感悟】
导数的几何意义是切点处切线的斜率,应用时主要体现在以下几个方面 (1)已知切点 A(x0,f(x0))求斜率 k,即求该点处的导数值 k=f ′(x0). (2)若求过点 P(x0,y0)的切线方程,可设切点为(x1,y1),由yy10=-fy1x=1,f ′x1x0-x1 求 解即可. (3)处理与切线有关的参数问题,通常根据曲线、切线、切点的三个关系列出参数的方 程并解出参数:①切点处的导数是切线的斜率;②切点在切线上;③切点在曲线上. (4)函数图象在每一点处的切线斜率反映函数图象在相应点处的变化情况.
3.若
f(x)=exx,则
e2 f′(2)=______4________.
【解析】 f′(x)=xexx-2 ex=exxx-2 1, ∴f′(2)=e42.
1 4.若曲线 y=ax2-lnx 在点(1,a)处的切线平行于 x 轴,则 a=_______2_______.
【解析】 y′=2ax-1x,当 x=1 时,y′=2a-1,由题意可知 y′=0,∴a=12.
所以 a≠0(当 a=0 时曲线变为 y=2x+1 与已知直线平行).
由yy= =2axx- 2+1,a+2x+1, 消去 y,得 ax2+ax+2=0. 由 Δ=a2-8a=0,解得 a=8. 解法二:同解法一得切线方程为 y=2x-1. 设 y=2x-1 与曲线 y=ax2+(a+2)x+1 相切于点(x0,ax20+(a+2)x0+1). 因为 y′=2ax+(a+2),所以 y′|x=x0=2ax0+(a+2). 由2aax02x+0+aa++22x0=+21,=2x0-1,
高三大一轮总复习精准备考方案
数 学[新教材版]
高考命题专家倾情巨作
2020版高考数学一轮总复习 第三单元导数及其应用 教案全集 含解析
导数的概念及运算1.了解导数概念的实际背景.2.通过函数图象直观理解导数的几何意义,会求曲线的切线方程. 3.能根据导数的定义,求一些简单函数的导数.4.能利用基本初等函数的导数公式和导数的四则运算法则求简单函数的导数.知识梳理 1.导数的概念(1)平均变化率: 函数y =f (x )从x 0到x 0+Δx 的平均变化率ΔyΔx= f x0+Δx -f x 0Δx.(2)函数y =f (x )在x =x 0处的导数函数y =f (x )在x =x 0处的瞬时变化率 li m Δx →0 ΔyΔx 通常称为f (x )在x =x 0处的导数,并记作f ′(x 0),即 f ′(x 0)=li m Δx →0f x 0+Δx -f x 0Δx.(3)函数f (x )的导函数如果函数y =f (x )在开区间(a ,b )内每一点都是可导的,就说f (x )在开区间(a ,b )内可导,其导数也是开区间(a ,b )内的函数,称作f (x )的导函数,记作 y ′或f ′(x ) .2. 导数的几何意义函数y =f (x )在点x 0处的导数f ′(x 0)的几何意义是曲线y =f (x )在点(x 0,f (x 0))处的 切线的斜率 .曲线在点P (x 0,f (x 0))处的切线方程是 y -f (x 0)=f ′(x 0)(x -x 0) . 3.导数的运算(1)基本初等函数的导数公式 ①C ′= 0 (C 为常数); ②(x n)′= nxn -1(n ∈Q );③(sin x )′= cos x ; ④(cos x )′= -sin x ; ⑤(a x)′= a xln a (a >0且a ≠1);⑥(e x )′= e x; ⑦(log a x )′=1x ln a(a >0且a ≠1); ⑧(ln x )′= 1x.(2)导数的运算法则 ①和差的导数[f (x )±g (x )]′= f ′(x )±g ′(x ) . ②积的导数[f (x )·g (x )]′= f ′(x )g (x )+f (x )g ′(x ) . ③商的导数 [f xg x]′= fx g x -f x gxg 2x(g (x )≠0).热身练习1.若f (x )=2x 2图象上一点(1,2)及附近一点(1+Δx,2+Δy ),则Δy Δx 等于(C)A .3+2ΔxB .4+ΔxC .4+2ΔxD .3+ΔxΔy =f (x +Δx )-f (x )=2(1+Δx )2-2=2[2Δx +(Δx )2],所以Δy Δx =4+2Δx .2.设函数f (x )可导,则lim Δx →0 f+Δx -f2Δx等于(C)A .f ′(1) B.2f ′(1) C.12f ′(1) D.f ′(2)因为f (x )可导,所以lim Δx →0f+Δx -f2Δx =12lim Δx →0 f +Δx -fΔx =12f ′(1). 3.下列求导运算中正确的是(B) A .(x +1x )′=1+1x2 B .(lg x )′=1x ln 10C .(ln x )′=xD .(x 2cos x )′=-2x sin x(x +1x )′=1-1x 2,故A 错;(ln x )′=1x,故C 错;(x 2cos x )′=2x cos x -x 2sin x ,D 错.4.(2018·全国卷Ⅱ)曲线y =2ln x 在点(1,0)处的切线方程为 2x -y -2=0 .因为y ′=2x,y ′| x =1=2,所以切线方程为y -0=2(x -1),即y =2x -2.5.(1)(2016·天津卷)已知函数f (x )=(2x +1)e x,f ′(x )为f (x )的导函数,则f ′(0)的值为 3 .(2)y =xx +1,则y ′x =2= 19.(1)因为f ′(x )=2e x+(2x +1)e x=(2x +3)e x ,所以f ′(0)=3e 0=3. (2)因为y ′=(x x +1)′=x x +-x x +x +2=1x +2,所以y ′x =2=1+2=19.导数的概念利用导数的定义求函数f (x )=1x +2的导数.因为Δy =1x +Δx +2-1x +2=-Δx x +Δx +x +,所以Δy Δx=-1x +Δx +x +,所以f ′(x )=li m Δx →0 ΔyΔx =li m Δx →0[-1x +Δx +x +]=-1x +x +=-1x +2.利用定义求导数的基本步骤: ①求函数的增量:Δy =f (x +Δx )-f (x ); ②求平均变化率:Δy Δx=fx +Δx -f xΔx;③取极限得导数:f ′(x )=li m Δx →0f x +Δx -f xΔx.1.设函数f (x )在x 0处可导,则li m Δx →0 f x 0-Δx -f x 0Δx等于(B)A .f ′(x 0)B .-f ′(x 0)C .f (x 0)D .-f (x 0)li m Δx →0f x 0-Δx -f x 0Δx=-li mΔx →0f [x 0+-Δx-f x 0-Δx=-f ′(x 0).导数的运算求下列函数的导数:(1)y =x 2sin x; (2)y =1+sin x 1-cos x.(1)y ′=(x 2)′sin x +x 2(sin x )′ =2x sin x +x 2cos x . (2)y ′=+sin x-cos x -+sin x-cos x-cos x2=cos x-cos x -+sin xx-cos x2=cos x -sin x -1-cos x2.利用导数公式和运算法则求导数,是求导数的基本方法(称为公式法).用公式法求导数的关键是:认清函数式的结构特点,准确运用常用的导数公式.2.(1)(2018·天津卷)已知函数f (x )=e xln x ,f ′(x )为f (x )的导函数,则f ′(1)的值为 e .(2)设y =1+cos x sin x ,则y ′π2= -1 .(1)因为f (x )=e xln x ,所以f ′(x )=e xln x +ex x,所以f ′(1)=e.(2)因为y ′=+cos x x -+cos x xsin 2x=-sin 2x -+cos x os x sin 2x=-1-cos xsin 2x, 所以y ′π2=-1.求切线方程(1)(2017·全国卷Ⅰ)曲线y =x 2+1x在点(1,2)处的切线方程为____________________.(2)若曲线y =x ln x 存在斜率为2的切线,则该切线方程为________________.因为y′=2x-1x2,所以y′|x=1=1,即曲线在点(1,2)处的切线的斜率k=1,所以切线方程为y-2=x-1,即x-y+1=0.(2)因为y′=ln x+1,设切点为P(x0,y0),则y′x=x0=ln x0+1=2,所以x0=e,此时y0=x0ln x0=eln e=e,所以切点为(e,e).故所求切线方程为y-e=2(x-e),即2x-y-e=0.(1)x-y+1=0 (2)2x-y-e=0(1)求切线方程有如下三种类型:①已知切点(x0,y0),求切线方程;②已知切线的斜率k,求切线方程;③求过(x1,y1)的切线方程.其中①是基本类型,类型②和类型③都可转化为类型①进行处理.(2)三种类型的求解方法:类型①,利用y-f(x0)=f′(x0)(x-x0)直接求出切线方程.类型②,设出切点(x0,y0),再由k=f′(x0),再由(x0,y0)既在切线上,又在曲线上求解;类型③,先设出切点(x0,y0),利用k=f′(x0)及已知点(x1,y1)在切线上求解.3.(2018·广州市模拟)已知直线y=kx-2与曲线y=x ln x相切,则实数k的值为(D) A.ln 2 B.1C.1-ln 2 D.1+ln 2本题实质上是求曲线过点(0,-2)的切线问题,因为(0,-2)不是切点,可先设出切点,写出切线方程,再利用切线过(0,-2)得到所求切线方程.设切点为(x0,x0ln x0),因为y′=ln x+1,所以k=ln x0+1,所以切线方程为y-x0ln x0=(ln x0+1)(x-x0),因为切线过点(0,-2),所以-2-x0ln x0=-x0ln x0-x0,所以x0=2,所以k=ln 2+1.1.函数y=f(x)的导数实质上是“增量(改变量)之比的极限”,即f′(x)=li mΔx→0Δy Δx=li mΔx→0f x+Δx-f xΔx.2.关于函数的导数,要熟练掌握基本导数公式和求导的运算法则,一般要遵循先化简再求导的基本原则.3.导数f′(x0)的几何意义是曲线y=f(x)在点M(x0,f(x0))处切线的斜率,其切线方程为y-f(x0)=f′(x0)(x-x0).若设点(x0,y0)是切线l与曲线C的切点,则有如下结论:①f′(x0)是切线l的斜率;②点(x0,y0)在切线l上;③点(x0,y0)在曲线C上.导数在函数中的应用——单调性1.了解函数的单调性与其导数的关系.2.能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数不超过三次).知识梳理1.函数的单调性与导数的关系设函数y=f(x)在某个区间(a,b)内有导数.如果f′(x)>0,则f(x)在(a,b)上为增函数;如果f′(x)<0,则f(x)在(a,b)上为减函数.2.导数与函数单调性的关系设函数y=f(x)在某个区间(a,b)内可导,且f′(x)在(a,b)的任意子集内都不恒等于0.如果f (x )在区间(a ,b )内单调递增,则在(a ,b )内f ′(x ) ≥ 0恒成立; 如果f (x )在区间(a ,b )内单调递减,则在(a ,b )内f ′(x ) ≤ 0恒成立.热身练习1.“f ′(x )>0在(a ,b )上成立”是“f (x )在(a ,b )上单调递增”的(A) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件f ′(x )>0在(a ,b )上成立⇒f (x )在(a ,b )上单调递增;反之,不一定成立,如y =x 3在(-1,1)上单调递增,但在(-1,1)上f ′(x )=3x 2≥0.2.设f (x )=2x 2-x 3,则f (x )的单调递减区间是(D) A .(0,43) B .(43,+∞)C .(-∞,0)D .(-∞,0)和(43,+∞)f ′(x )=4x -3x 2<0⇒x <0或x >43.3.函数f (x )=(3-x 2)e x的单调递增区间是(D) A .(-∞,0) B .(0,+∞)C .(-∞,-3)和(1,+∞) D.(-3,1)因为f ′(x )=-2x e x+(3-x 2)e x =(-x 2-2x +3)e x ,令f ′(x )>0,得x 2+2x -3<0,解得-3<x <1.所以f (x )的单调递增区间为(-3,1).4.设定义在区间(a ,b )上的函数f (x ),其导函数f ′(x )的图象如右图所示,其中x 1,x 2,x 3,x 4是f ′(x )的零点且x 1<x 2<x 3<x 4.则(1)f (x )的增区间为 (a ,x 1),(x 2,x 4) ; (2)f (x )的减区间为 (x 1,x 2),(x 4,b ) .5.(2019·福建三明期中)函数f (x )=x 3-3bx +1在区间[1,2]上是减函数,则实数b 的取值范围为 [4,+∞) .因为f ′(x )=3x 2-3b ≤0,所以b ≥x 2,要使b ≥x 2在[1,2]上恒成立, 令g (x )=x 2,x ∈[1,2],当x ∈[1,2],1≤g (x )≤4,所以b ≥4.利用导数求函数的单调区间函数f (x )=x 2-2x -4ln x 的单调递增区间是____________.函数f (x )的定义域为(0,+∞). f ′(x )=2x -2-4x =2x 2-2x -4x,由f ′(x )>0,得x 2-x -2>0,解得x >2或x <-1(舍去). 所以f (x )的单调递增区间为(2,+∞).(2,+∞)求可导函数f (x )的单调区间的步骤: ①求函数f (x )的定义域; ②求导数f ′(x );③解不等式f ′(x )>0和f ′(x )<0;④确定函数y =f (x )的单调区间:使f ′(x )>0的x 的取值区间为增区间,使f ′(x )<0的x 的取值区间为减区间.1.(2017·全国卷Ⅱ节选)设函数f (x )=(1-x 2)e x.讨论f (x )的单调性.f ′(x )=(1-2x -x 2)e x.令f ′(x )=0得x =-1-2或x =-1+ 2. 当x ∈(-∞,-1-2)时,f ′(x )<0; 当x ∈(-1-2,-1+2)时,f ′(x )>0; 当x ∈(-1+2,+∞)时,f ′(x )<0.所以f (x )在(-∞,-1-2),(-1+2,+∞)上单调递减,在(-1-2,-1+2)上单调递增.已知函数的单调性求参数的范围(经典真题)若函数f (x )=kx -ln x 在区间(1,+∞)上单调递增,则k 的取值范围是A .(-∞,-2]B .(-∞,-1]C .[2,+∞) D.[1,+∞)依题意得f ′(x )=k -1x≥0在(1,+∞)上恒成立,即k ≥1x在(1,+∞)上恒成立.令g (x )=1x,因为x >1,所以0<g (x )<1,所以k ≥1,即k 的取值范围为[1,+∞).D函数f (x )在(a ,b )上单调递增,可转化为f ′(x )≥0在该区间恒成立,从而转化为函数的最值(或值域)问题.2.(2016·全国卷Ⅰ)若函数f (x )=x -13sin 2x +a sin x 在(-∞,+∞)单调递增,则a 的取值范围是(C)A .[-1,1]B .[-1,13]C .[-13,13]D .[-1,13](方法一)因为f (x )在(-∞,+∞) 单调递增,所以f ′(x )=1-23cos 2x +a cos x ≥0对x ∈(-∞,+∞)恒成立,即f ′(x )=-43cos 2x +a cos x +53≥0对x ∈(-∞,+∞)恒成立,令cos x =t ,-1≤t ≤1,则等价于:g (t )=-43t 2+at +53≥0对t ∈[-1,1]恒成立.等价于⎩⎪⎨⎪⎧g -,g ,即⎩⎪⎨⎪⎧-a +13≥0,a +13≥0,所以-13≤a ≤13.即a 的取值范围为[-13,13].(方法二:特殊值法)取a =-1,则f (x )=x -13sin 2x -sin x ,f ′(x )=1-23cos 2x -cos x ,因为f ′(0)=1-23-1=-23<0,不具备在(-∞,+∞)单调递增,排除A ,B ,D.故选C.利用导数求含参数的函数的单调区间已知f (x )=12x 2-a ln x (a ∈R ),求函数f (x )的单调区间.f (x )的定义域为(0,+∞),因为f ′(x )=x -a x =x 2-ax(x >0),当a ≤0时,f ′(x )≥0恒成立,所以函数f (x )的单调递增区间为(0,+∞). 当a >0时,令f ′(x )>0,得x >a . 令f ′(x )<0,得0<x <a .所以函数f (x )的单调递增区间为(a ,+∞),单调递减区间为(0,a ).综上所述,当a ≤0时,函数f (x )的单调递增区间为(0,+∞);当a >0时,函数f (x )的单调递增区间为(a ,+∞),单调递减区间为(0,a ).(1)当函数的解析式中含有参数时,如果参数对导函数的符号有影响或导数的零点是否在定义域内不确定时,要对参数进行分类讨论.(2)讨论时,首先要看f ′(x )的符号是否确定,再看f ′(x )的零点与定义域的关系. (3)画出导函数的示意图有助于确定单调性.3.(2017·全国卷Ⅲ节选)已知函数f (x )=ln x +ax 2+(2a +1)x .讨论f (x )的单调性.f (x )的定义域为(0,+∞),f ′(x )=1x+2ax +2a +1=x +ax +x.若a ≥0,则当x ∈(0,+∞)时,f ′(x )>0, 故f (x )在(0,+∞)上单调递增.若a <0,则当x ∈(0,-12a )时,f ′(x )>0;当x ∈(-12a,+∞)时,f ′(x )<0.故f (x )在(0,-12a )上单调递增,在(-12a,+∞)上单调递减.(1)求f(x)的定义域,并求导数f′(x);(2)解不等式f′(x)>0和f′(x)<0;(3)确定函数y=f(x)的单调区间:使f′(x)>0的x的取值区间为增区间,使f′(x)<0的x的取值区间为减区间.在求单调区间时,要注意如下两点:①要注意函数的定义域;②当求出函数的单调区间(如单调增区间)有多个时,不能把这些区间取并集.2.已知函数在区间上单调,求其中的参数时,要注意单调性与导数的关系的转化.即:(1)如果f(x)在区间[a,b]单调递增⇒f′(x)≥0在x∈[a,b]上恒成立;(2)如果f(x)在区间[a,b]单调递减⇒f′(x)≤0在x∈[a,b]上恒成立.3.处理含参数的单调性问题,实质是转化为含参数的不等式的解法问题,但要注意在函数的定义域内讨论.导数在函数中的应用——极值与最值1.掌握函数极值的定义及可导函数的极值点的必要条件和充分条件(导数在极值点两侧异号).2.会研究一些简单函数的极值.3.会利用导数求一些函数在给定区间上的最值.知识梳理1.函数的极值(1)函数极值的定义:设函数f(x)在点x0附近有定义,如果对x0附近的所有点,都有f(x)<f(x0) ,我们就说f(x0)是函数f(x)的一个极大值,记作y极大值=f(x0);如果对x0附近的所有点,都有f(x)>f(x0) ,我们就说f(x0)是函数f(x)的一个极小值,记作y极小值=f(x0).极大值与极小值统称为极值.①如果在x0附近的左侧f′(x)>0,右侧f′(x)<0,那么f(x0)是极大值;②如果在x0附近的左侧f′(x)<0,右侧f′(x)>0,那么f(x0)是极小值.2.函数的最值(1)(最值定理)一般地,如果在区间[a,b]上函数y=f(x)的图象是一条连续不断的曲线,那么它必有最大值和最小值.(2)一般地,求函数f(x)在[a,b]上的最大值与最小值的步骤如下:①求函数f(x)在(a,b)内的极值.②将f(x)的极值和端点的函数值比较,其中最大的一个为最大值;最小的一个为最小值.热身练习1.函数f(x)的定义域为开区间(a,b),导函数f′(x)在(a,b)内的图象如图所示,则函数f(x)在开区间(a,b)内有极小值点(A)A.1个 B.2个C.3个 D.4个因为f′(x)与x轴有4个交点,即f′(x)=0有4个解,但仅左边第二个交点x=x0满足x<x0时,f′(x)<0;x>x0时,f′(x)>0,其他交点均不符合该条件.2.函数f(x)在x=x0处导数存在.若p:f′(x0)=0;q:x=x0是f(x)的极值点,则(C) A.p是q的充分必要条件B.p是q的充分条件,但不是q的必要条件C.p是q的必要条件,但不是q的充分条件D.p既不是q的充分条件,也不是q的必要条件因为函数f(x)在x=x0处可导,所以若x=x0是f(x)的极值点,则f′(x0)=0,所以q⇒p,故p是q的必要条件;反之,以f (x )=x 3为例,f ′(0)=0,但x =0不是极值点.所以p q . 故p 不是q 的充分条件.3.(2016·四川卷)已知a 为函数f (x )=x 3-12x 的极小值点,则a =(D) A .-4 B .-2 C .4 D .2由题意得f ′(x )=3x 2-12,令f ′(x )=0得x =±2,所以当x <-2或x >2时,f ′(x )>0; 当-2<x <2时,f ′(x )<0,所以f (x )在(-∞,-2)上为增函数,在(-2,2)上为减函数,在(2,+∞)上为增函数. 所以f (x )在x =2处取得极小值,所以a =2.4.函数f (x )=x 3-3x +1在闭区间[-3,0]上的最大值、最小值分别是(C) A .1,-1 B .1,-17 C .3,-17 D .9,-19令f ′(x )=3x 2-3=0,得x =±1.f (1)=1-3+1=-1,f (-1)=-1+3+1=3, f (-3)=-17,f (0)=1.所以最大值为3,最小值为-17. 5.(2016·北京卷)函数f (x )=xx -1(x ≥2)的最大值为 2 .f ′(x )=x --x x -2=-1x -2,当x ≥2时,f ′(x )<0,所以f (x )在[2,+∞)上是减函数, 故f (x )max =f (2)=22-1=2.求函数的极值、最值求函数f (x )=13x 3-4x +4的极值.因为f ′(x )=x 2-4=(x -2)(x +2), 令f ′(x )=0,得x =±2.当x 变化时,f ′(x ),f (x )的变化情况如下表:所以当x =-2时,f (x )有极大值f (-2)=283;当x =2时,f (x )有极小值f (2)=-43.(1)求可导函数f (x )的极值的步骤: ①确定函数的定义域,求导数f ′(x ); ②求方程f ′(x )=0的根;③检查f ′(x )在方程根左、右值的符号;④作出结论:如果左正右负,那么f (x )在这个根处取得极大值;如果左负右正,那么f (x )在这个根处取得极小值.(2)求可导函数f (x )在[a ,b ]上最值的步骤: ①求f (x )在(a ,b )内的极值;②将f (x )各极值与f (a ),f (b )比较,得出f (x )在[a ,b ]上的最值.1.求函数f (x )=13x 3-4x +4在[-3,3]上的最大值与最小值.由例1可知,在[-3,3]上, 当x =-2时,f (x )有极大值f (-2)=283;当x =2时,f (x )有极小值f (2)=-43.又f (-3)=7,f (3)=1,所以f (x )在[-3,3]上的最大值为283,最小值为-43.含参数的函数的极值的讨论已知函数f (x )=x -a ln x (a ∈R ),求函数f (x )的极值.由f ′(x )=1-a x =x -ax(x >0)可知(1)当a ≤0时,f ′(x )>0,函数f (x )为(0,+∞)上的增函数,函数f (x )无极值; (2)当a >0时,由f ′(x )=0,解得x =a .当x ∈(0,a )时,f ′(x )<0;当x ∈(a ,+∞)时,f ′(x )>0,所以函数f (x )在x =a 处取得极小值,且极小值为f (a )=a -a ln a ,无极大值.综上,当a ≤0时,函数f (x )无极值;当a >0时,f (x )在x =a 处取得极小值a -a ln a ,无极大值.对于解析式中含有参数的函数求极值,有时需要分类讨论后解决问题.讨论的思路主要有:(1)参数是否影响f ′(x )的零点的存在; (2)参数是否影响f ′(x )不同零点的大小; (3)参数是否影响f ′(x )在零点左右的符号. 如果有影响,则要分类讨论.2.(2018·银川高三模拟节选)已知函数f (x )=ax -1-ln x (a ∈R ).讨论函数f (x )在定义域内的极值点的个数.f (x )的定义域为(0,+∞). f ′(x )=a -1x =ax -1x.当a ≤0时,f ′(x )≤0在(0,+∞)上恒成立,函数f (x )在(0,+∞)上单调递减,所以f (x )在(0,+∞)上没有极值点.当a >0时,由f ′(x )<0得0<x <1a ;由f ′(x )>0得x >1a.所以f (x )在(0,1a )上递减,在(1a,+∞)上递增,所以f (x )在x =1a处有极小值.所以当a ≤0时,f (x )在(0,+∞)上没有极值点, 当a >0时,f (x )在(0,+∞)上有一个极值点.含参数的函数的最值讨论已知函数f (x )=ln x -ax (a >0),求函数f (x )在[1,2]上的最大值.f ′(x )=1x -a =1-axx(x >0),令f ′(x )=0,得x =1a.(1)当1a≤1,即a ≥1时,函数f (x )在[1,2]上是减函数,所以f (x )max =f (1)=-a .(2)当1a ≥2时,即0<a ≤12时,函数f (x )在区间[1,2]上是增函数,所以f (x )max =f (2)=ln 2-2a .(3)当1<1a <2,即12<a <1时,函数f (x )在[1,1a ]上是增函数,在[1a ,2]上是减函数.所以f (x )max =f (1a)=-ln a -1.综上可知:当0<a ≤12时,f (x )max =ln 2-2a ;当12<a <1时,f (x )max =-ln a -1; 当a ≥1时,f (x )max =-a .(1)求函数的最值时,要先求函数y =f (x )在(a ,b )内所有使f ′(x )=0的点,再计算函数y =f (x )在区间内使f ′(x )=0的点和区间端点的函数值,最后比较即可.(2)当函数f (x )中含有参数时,需要依据极值点存在的位置与所给区间的关系,对参数进行分类讨论.3.已知函数f (x )=ln x -ax (a >0),求函数f (x )在[1,2]上的最小值.f ′(x )=1x -a =1-axx(x >0),令f ′(x )=0,得x =1a.(1)当1a≤1,即a ≥1时,函数f (x )在[1,2]上是减函数,所以f (x )min =f (2)=ln 2-2a .(2)当1a ≥2时,即0<a ≤12时,函数f (x )在区间[1,2]上是增函数,所以f (x )min =f (1)=-a .(3)当1<1a <2,即12<a <1时,函数f (x )在[1,1a ]上是增函数,在[1a ,2]上是减函数.又f (2)-f (1)=ln 2-a ,所以当12<a <ln 2时,f (x )min =f (1)=-a ;当ln 2≤a <1时,f (x )min =f (2)=ln 2-2a . 综上可知:当0<a <ln 2时,函数f (x )min =-a ; 当a ≥ln 2时,函数f (x )min =ln 2-2a .1.求可导函数f(x)的极值的步骤:(1)确定f(x)的定义域,求导数f′(x);(2)求方程f′(x)=0的根;(3)检查f′(x)在方程根左、右值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值.2.求可导函数f(x)在[a,b]上的最大值和最小值可按如下步骤进行:(1)求f(x)在(a,b)内的极值;(2)将f(x)的各极值与f(a),f(b)比较,确定f(x)的最大值和最小值.3.求含参数的极值,首先求定义域;然后令f′(x)=0,解出根,根据根是否在所给区间或定义域内进行参数讨论,并根据左右两边导函数的正负号,从而判断f(x)在这个根处取极值的情况.4.含参数的最值,首先按照极值点是否在所给区间对参数进行讨论,然后比较区间内的极值和端点值的大小.导数的综合应用——导数与不等式1.能够构造函数利用导数证明一些简单的不等式和解某些不等式.2.会将恒成立问题及存在性问题转化为最值问题进行求解.知识梳理1.如果不等式f(x)≥g(x),x∈[a,b]恒成立,则转化为函数φ(x)=f(x)-g(x)在x ∈[a,b]内的最小值≥0.(填“最小值”“最大值”“极小值”或“极大值”) 2.若f′(x)>0,x∈[a,b],且x0∈(a,b)有f(x0)=0,则f(x)>0的x的取值范围为(x0,b) ,f(x)<0的x的取值范围为(a,x0) .3.若f(x)>m在x∈[a,b]上恒成立,则函数f(x)在x∈[a,b]的最小值>m.(填“最小值”“最大值”“极小值”或“极大值”)若f (x )<m 在x ∈[a ,b ]上恒成立,则函数f (x )在x ∈[a ,b ]的 最大值 <m .(填“最小值”“最大值”“极小值”或“极大值”)4.若f (x )>m 在x ∈[a ,b ]有解,则函数f (x )在x ∈[a ,b ]的 最大值 >m .(填“最小值”“最大值”“极小值”或“极大值”)热身练习1.对于∀x ∈[0,+∞),则e x与1+x 的大小关系为(A) A .e x≥1+x B .e x<1+xC .e x=1+x D .e x与1+x 大小关系不确定令f (x )=e x-(1+x ),因为f ′(x )=e x-1,所以对∀x ∈[0,+∞),f ′(x )≥0,故f (x )在[0,+∞)上递增,故f (x )≥f (0)=0, 即e x≥1+x .2.对于R 上可导的任意函数f (x ),若满足(x -1)f ′(x )>0,则必有(B) A .f (0)+f (2)<2f (1) B .f (0)+f (2)>2f (1) C .f (0)+f (2)=2f (1)D .f (0)+f (2)与2f (1)的大小不确定依题意,当x >1时,f ′(x )>0,f (x )在(1,+∞)上是增函数;当x <1时,f ′(x )<0,f (x )在(-∞,1)上是减函数, 故当x =1时,f (x )取最小值,所以f (0)>f (1),f (2)>f (1),所以f (0)+f (2)>2f (1).3.已知定义在R 上函数f (x )满足f (-x )=-f (x ),且x >0时,f ′(x )<0,则f (x )>0的解集为(A)A .(-∞,0)B .(0,+∞)C .(-∞,-1)D .(1,+∞)因为f (x )是定义在R 上的奇函数,所以f (0)=0,又x >0时,f ′(x )<0,所以f (x )在(-∞,+∞)上单调递减,所以f (x )>0的解集为(-∞,0).4.若函数h (x )=2x -k x +k3在[1,+∞)上是增函数,则实数k 的取值范围是 [-2,+∞).因为h′(x)=2+kx2,且h(x)在[1,+∞)上单调递增,所以h′(x)=2+kx2≥0,所以k≥-2x2,要使k≥-2x2在[1,+∞)上恒成立,则只要k≥(-2x2)max,所以k≥-2.5.设f(x)=-x2+a,g(x)=2x.(1)若∀x∈[0,1],f(x)≥g(x),则实数a的取值范围为[3,+∞);(2)若∃x∈[0,1],f(x)≥g(x),则实数a的取值范围为[0,+∞).(1)F(x)=f(x)-g(x)=-x2-2x+a(x∈[0,1]).则[F(x)]min=F(1)=-3+a.因为“若∀x∈[0,1],f(x)≥g(x)”等价于“[F(x)]min≥0,x∈[0,1]”,所以-3+a≥0,解得a≥3.所以实数a的取值范围为[3,+∞).(2)F(x)=f(x)-g(x)=-x2-2x+a(x∈[0,1]).则[F(x)]max=F(0)=a.因为“若∃x∈[0,1],f(x)≥g(x)”等价于“[F(x)]max≥0,x∈[0,1]”,所以a≥0.所以实数a的取值范围为[0,+∞).利用导数解不等式若f(x)的定义域为R,f′(x)>2恒成立,f(-1)=2,则f(x)>2x+4的解集为A.(-1,1) B.(-1,+∞)C.(-∞,-1) D.(-∞,+∞)令g(x)=f(x)-2x-4,因为g′(x)=f′(x)-2>0,所以g(x)在(-∞,+∞)上是增函数,又g(-1)=f(-1)-2×(-1)-4=0,所以f(x)>2x+4⇔g(x)>g(-x>-1.所以f(x)>2x+4的解集为(-1,+∞).B利用导数解不等式的基本方法:(1)构造函数,利用导数研究其单调性;(2)寻找一个特殊的函数值;(3)根据函数的性质(主要是单调性,结合图象)得到不等式的解集.1.(2018·遂宁模拟)已知f(x)为定义在(-∞,0)上的可导函数,2f(x)+xf′(x)>x2恒成立,则不等式(x+2018)2f(x+2018)-4f(-2)>0的解集为(B)A.(-2020,0) B.(-∞,-2020)C.(-2016,0) D.(-∞,-2016)构造函数F(x)=x2f(x),x<0,当x<0时,F′(x)=2xf(x)+x2f′(x)=x[2f(x)+xf′(x)],因为2f(x)+xf′(x)>x2≥0,所以F′(x)≤0,则F(x)在(-∞,0)上递减.又(x+2018)2f(x+2018)-4f(-2)>0可转化为(x+2018)2f(x+2018)>(-2)2f(-2),即F(x+2018)>F(-2),所以x+2018<-2,所以x<-2020.即原不等式的解集为(-∞,-2020).利用导数证明不等式已知函数f(x)=(1+x)e-2x.当x∈[0,1]时,求证:f(x)≤11+x.要证x∈[0,1]时,(1+x)e-2x≤11+x,只需证明e x≥x+1.记k(x)=e x-x-1,则k′(x)=e x-1,当x∈(0,1)时,k′(x)>0,因此,k(x)在[0,1]上是增函数,故k(x)≥k(0)=0,所以f(x)≤11+x,x∈[0,1].(1)证明f(x)>g(x)的步骤:①构造函数F(x)=f(x)-g(x);②研究F(x)的单调性或最值;③证明F (x )min >0.(2)注意:其中构造函数是将不等式问题转化为函数问题.为了利用导数研究函数的性质,常用分析法...将要证明的不等式进行适当变形或化简,然后构造相应的函数.2.(2018·全国卷Ⅰ节选)已知函数f (x )=a e x-ln x -1.证明:当a ≥1e时,f (x )≥0.当a ≥1e 时,f (x )≥exe -ln x -1.设g (x )=e x e -ln x -1,则g ′(x )=e xe -1x .当0<x <1时,g ′(x )<0;当x >1时,g ′(x )>0. 所以x =1是g (x )的最小值点. 故当x >0时,g (x )≥g (1)=0. 因此,当a ≥1e时,f (x )≥0.已知不等式恒成立求参数的范围已知两个函数f (x )=7x 2-28x -c ,g (x )=2x 3+4x 2-40x .若∀x ∈[-3,3],都有f (x )≤g (x )成立,求实数c 的取值范围.f (x )≤g (x ) ⇔7x 2-28x -c ≤2x 3+4x 2-40x ⇔c ≥-2x 3+3x 2+12x , 所以原命题等价于c ≥-2x 3+3x 2+12x 在x ∈[-3,3]上恒成立. 令h (x )=-2x 3+3x 2+12x ,x ∈[-3,3],则c ≥h (x )max . 因为h ′(x )=-6x 2+6x +12=-6(x -2)(x +1),当x 变化时,h ′(x )和h (x )在[-3,3]上的变化情况如下表:单调递减单调递增 单调递减 易得h (x )max =h (-3)=45,故c ≥45.(1)已知不等式恒成立,求参数a 的范围,例如f (x )>g (x )在x ∈D 上恒成立,其主要方法是:①构造函数法:将不等式变形为f (x )-g (x )>0,构造函数F (x )=f (x )-g (x ),转化为F (x )min >0.②分离参数法:将不等式变为a >h (x )或a <h (x )在x ∈D 内恒成立,从而转化为a >h (x )max或a <h (x )min .(2)注意:①恒成立问题常转化为最值问题,要突出转化思想的运用;②“f (x )max ≤g (x )min ”是“f (x )≤g (x )”的一个充分不必要条件,分析不等式恒成立时,要注意不等号两边的式子中是否是有关联的变量,再采取相应的策略.1. 已知两个函数f (x )=7x 2-28x -c ,g (x )=2x 3+4x 2-40x .若∀x 1∈[-3,3],x 2∈[-3,3]都有f (x 1)≤g (x 2)成立,求实数c 的取值范围.此题与例3不同,例3中不等式两边的式子中均有相同的变化的未知量x ,故可先移项,直接进行转化;而此题中不等式两边的式子中的x 1,x 2相互独立,则等价于f (x 1)max ≤g (x 2)min.由∀x 1∈[-3,3],x 2∈[-3,3], 都有f (x 1)≤g (x 2)成立,得f (x 1)max ≤g (x 2)min . 因为f (x )=7x 2-28x -c =7(x -2)2-28-c , 当x 1∈[-3,3]时,f (x 1)max =f (-3)=147-c ;g (x )=2x 3+4x 2-40x ,g ′(x )=6x 2+8x -40=2(3x +10)(x -2),当x 变化时,g ′(x )和g (x )在[-3,3]上的变化情况如下表:单调递减单调递增易得g (x )min =g (2)=-48, 故147-c ≤-48,即c ≥195.1.利用导数证明不等式f (x )>g (x )在区间D 上恒成立的基本方法是构造函数F (x )=f (x )-g(x),然后根据函数的单调性,或者函数的最值证明F(x)>0.其中要特别关注如下两点:(1)是直接构造F(x),还是适当变形化简后构造F(x),对解题的繁简有影响;(2)找到F(x)在什么地方可以等于零,往往是解决问题的一个突破口.2.利用导数解不等式的基本方法是构造函数,寻找一个函数的特殊值,通过研究函数的单调性,从而得出不等式的解集.3.处理已知不等式恒成立求参数范围的问题,要突出转化的思想,将其转化为函数的最值问题.已知f(x)>g(x)在x∈D上恒成立,求其中参数a的范围,其主要方法是:①构造函数法:将不等式变形为f(x)-g(x)>0,构造函数F(x)=f(x)-g(x),转化为F(x)min>0.②分离参数法:将不等式变为a>h(x)或a<h(x)在x∈D内恒成立,从而转化为a>h(x)max 或a<h(x)min.导数的综合应用——导数与方程1.能利用导数研究一般函数的单调性、极值与最值,获得对函数的整体认识.2.会利用导数研究一般函数的零点及其分布.知识梳理1.函数零点的有关知识(1)零点的概念:函数的零点是函数图象与x轴交点的横坐标.(2)几个常用结论:①f(x)有零点y=f(x)的图象与x轴有交点方程f(x)=0有实数解.②F(x)=f(x)-g(x)有零点y=f(x)与y=g(x)的图象有交点方程f(x)=g(x)有实数解.③零点存在定理:f (x )在[a ,b ]上连续,且f (a )·f (b )<0,则f (x )在(a ,b )内 至少有一 个零点.2.利用导数研究函数零点的方法(1)研究y =f (x )的图象,利用数形结合的思想求解. (2)研究方程有解的条件,利用函数与方程的思想求解.热身练习1.(2017·浙江卷)函数y =f (x )的导函数y =f ′(x )的图象如图所示,则函数y =f (x )的图象可能是(D)观察导函数f ′(x )的图象可知,f ′(x )的函数值从左到右依次为小于0,大于0,小于0,大于0,所以对应函数f (x )的增减性从左到右依次为减、增、减、增. 观察选项可知,排除A ,C.如图所示,f ′(x )有3个零点,从左到右依次设为x 1,x 2,x 3,且x 1,x 3是极小值点,x 2是极大值点,且x 2>0,故选项D 正确.2.函数f (x )=13x 3-4x +4的零点个数为(D)A .0B .1C .2D .3因为f ′(x )=x 2-4=(x -2)(x +2),令f ′(x )=0,得x =±2.当x 变化时,f ′(x ),f (x )的变化情况如下表:单调递增单调递减单调递增由此可得到f (x )的大致图象(如下图).由图可知f (x )有3个零点.3.若方程13x 3-4x +4+a =0有3个不同的解,则a 的取值范围为(B)A .(-43,283)B .(-283,43)C .[-43,283]D .[-283,43]13x 3-4x +4+a =0有3个不同的解⇔f (x )=13x 3-4x +4与g (x )=-a 有3个不同的交点.利用第2题图可知,-43<-a <283,即-283<a <43.4.若函数g (x )=13x 3-4x +4+a 的图象与x 轴恰有两个公共点,则a =(B)A.283或-43 B .-283或43C .-283或283D .-43或43g (x )=13x 3-4x +4+a 与x 轴恰有两个公共点⇔方程13x 3-4x +4+a =0有2个不同的解⇔f (x )=13x 3-4x +4与φ(x )=-a 有2个不同的交点.利用第2题图可知,-a =-43或-a =283,所以a =-283或a =43.5.已知函数f (x )=e x-2x +a 有零点,则实数a 的取值范围是(C) A .(-∞,ln 2) B .(ln 2,+∞) C .(-∞,2ln 2-2] D .[2ln 2-2,+∞)(方法一)因为f′(x)=e x-2,令e x-2=0得,e x=2,所以x=ln 2,当x∈(-∞,ln 2)时,f′(x)<0,f(x)单调递减;当x∈(ln 2,+∞)时,f′(x)>0,f(x)单调递增,所以当x=ln 2时,f(x)取最小值f(x)min=2-2ln 2+a.要f(x)有零点,所以a≤2ln 2-2.(方法二)函数f(x)=e x-2x+a有零点,即关于x的方程e x-2x+a=0有实根,即方程a=2x-e x有实根.令g(x)=2x-e x(x∈R),则g′(x)=2-e x.当x<ln 2时,g′(x)>0;当x>ln 2时,g′(x)<0.所以当x=ln 2时,g(x)max=g(ln 2)=2ln 2-2,所以函数g(x)的值域为(-∞,2ln 2-2].所以a的取值范围为(-∞,2ln 2-2].利用导数研究三次函数的零点及其分布已知函数f(x)=x3-12x+a,其中a≥16,则f(x)的零点的个数是A.0或1 B.1或2C.2 D.3(方法一:从函数角度出发,研究f(x)的图象与x轴的交点)因为f′(x)=3x2-12,令f′(x)=3x2-12=0,得x=±2,当x变化时,f′(x),f(x)的变化情况如下表:单调递增单调递减单调递增由此可得到f(x)的大致图象(如图),由a≥16得,a+16>0,a-16≥0,当a=16时,f(x)的图象与x轴有2个交点;当a>16时,f(x)的图象与x轴只有1个交点.所以f(x)的零点个数为1或2.(方法二:从方程角度出发,利用函数与方程的思想)f(x)=x3-12x+a的零点个数⇔方程x3-12x=-a的解的个数⇔g(x)=x3-12x与h(x)=-a的交点个数.画出g(x)=x3-12x与h(x)=-a的图象.由g′(x)=3x2-12=0,得x=±2,当x变化时,g′(x),g(x)的变化情况如下表:单调递增单调递减单调递增所以g(x)的图象如右图所示:因为a≥16,所以y=-a≤-16.由图可知直线y=-a与y=x3-12x的图象有1个或2个交点.B利用导数研究函数的零点的基本思路: (1)研究y =f (x )的图象,利用数形结合的思想求解; (2)研究f (x )=0有解,利用函数与方程的思想求解.1.(经典真题)已知函数f (x )=ax 3-3x 2+1,若f (x )存在唯一的零点x 0,且x 0>0,则a 的取值范围为(B)A .(2,+∞) B.(-∞,-2) C .(1,+∞) D.(-∞,-1)当a =0时,不符合题意.a ≠0时,f ′(x )=3ax 2-6x ,令f ′(x )=0,得x 1=0,x 2=2a.若a >0,由图象知f (x )有负数零点,不符合题意.若a <0,由图象结合f (0)=1>0知,此时必有f (2a )>0,即a ×8a 3-3×4a2+1>0,化简得a 2>4,又a <0,所以a <-2.利用导数研究超越方程的根及其分布已知函数f (x )=x -a e x(a ∈R ),x ∈R .已知函数y =f (x )有两个零点x 1,x 2,且x 1<x 2,求a 的取值范围.由f (x )=x -a e x,可得f ′(x )=1-a e x. 下面分两种情况讨论:(1)a ≤0时,f ′(x )>0在R 上恒成立,可得f (x )在R 上单调递增,不合题意. (2)a >0时,由f ′(x )=0,得x =-ln a . 当x 变化时,f ′(x ),f (x )的变化情况如下表:这时,f (x )的单调递增区间是(-∞,-ln a );单调递减区间是(-ln a ,+∞). 于是,“函数y =f (x )有两个零点”等价于如下条件同时成立: ①f (-ln a )>0;②存在s 1∈(-∞,-ln a ),满足f (s 1)<0; ③存在s 2∈(-ln a ,+∞),满足f (s 2)<0. 由f (-ln a )>0,即-ln a -1>0,解得0<a <e -1,而此时,取s 1=0,满足s 1∈(-∞,-ln a ),且f (s 1)=-a <0;而当x ∈(-ln a ,+∞)时,由于x →+∞时,e x 增长的速度远远大于x 的增长速度,所以一定存在s 2∈(-ln a ,+∞)满足f (s 2)<0.另法:取s 2=2a +ln 2a ,满足s 2∈(-ln a ,+∞),且f (s 2)=(2a -e 2a )+(ln 2a -e 2a)<0.所以a 的取值范围是(0,e -1).函数的零点是导数研究函数的性质的综合应用,要注意如下方面: (1)利用导数研究函数的单调性、极值、最值等性质; (2)数形结合思想方法的应用;(3)函数零点存在定理及根的分布知识的应用.2.(2018·广州模拟节选)已知函数f (x )=a ln x +x 2(a ≠0),若函数f (x )恰有一个零点,求实数a 的取值范围.函数f (x )的定义域为(0,+∞). 因为f (x )=a ln x +x 2,所以f ′(x )=a x +2x =2x 2+ax.①当a >0时,f ′(x )>0,所以f (x )在(0,+∞)上单调递增, 取x 0=e -1a ,则f (e -1a )=-1+(e -1a)2<0,(或:因为0<x 0<a 且x 0<1e 时,所以f (x 0) =a ln x 0 +x 20 < a ln x 0+a <a ln 1e +a =0.)因为f (1)=1,所以f (x 0)·f (1)<0,此时函数f (x )有一个零点.②当a <0时,令f ′(x )=0,解得x =-a2. 当0<x <-a 2时,f ′(x )<0,所以f (x )在(0,-a2)上单调递减, 当x >-a2时,f ′(x )>0,所以f (x )在(-a2,+∞)上单调递增. 要使函数f (x )有一个零点, 则f (-a2)=a ln -a 2-a2=0,即a =-2e. 综上所述,若函数f (x )恰有一个零点,则a =-2e 或a >0.利用导数研究两函数图象的交点问题已知函数f (x )=x +a x (a ∈R ),g (x )=ln x .若关于x 的方程g xx 2=f (x )-2e(e 为自然对数的底数)只有一个实数根,求a 的值.由g x x 2=f (x )-2e ,得ln x x 2=x +ax-2e , 化为ln x x=x 2-2e x +a .问题转化为函数h (x )=ln x x与m (x )=x 2-2e x +a 有一个交点时,求a 的值.由h (x )=ln x x ,得h ′(x )=1-ln x x2.令h ′(x )=0,得x =e. 当0<x <e 时,h ′(x )>0;当x >e 时,h ′(x )<0. 所以h (x )在(0,e)上递增,在(e ,+∞)上递减. 所以当x =e 时,函数h (x )取得最大值,其值为h (e)=1e .而函数m (x )=x 2-2e x +a =(x -e)2+a -e 2,当x =e 时,函数m (x )取得最小值,其值为m (e)=a -e 2.所以当a -e 2=1e ,即a =e 2+1e 时,方程g x x 2=f (x )-2e 只有一个实数根.(1)利用f (x )=g (x )的解⇔y =f (x )与y =g (x )的图象交点的横坐标,可将方程的解的问题转化为两函数图象的交点问题,从而可利用数形结合的思想方法进行求解.(2)在具体转化时,要注意对方程f (x )=g (x )尽量进行同解变形,变到两边的函数是熟悉的形式或较简单的形式,以便于对其图象特征进行研究.3.(经典真题)已知函数f (x )=x 3-3x 2+ax +2,曲线y =f (x )在点(0,2)处的切线与x 轴交点的横坐标为-2.(1)求a ;(2)证明:当k <1时,曲线y =f (x )与直线y =kx -2只有一个交点.(1)f ′(x )=3x 2-6x +a ,f ′(0)=a . 曲线y =f (x )在点(0,2)处的切线方程为y =ax +2, 由题意得-2a=-2,所以a =1.(2)证明:由(1)知,f (x )=x 3-3x 2+x +2. 设g (x )=f (x )-kx +2=x 3-3x 2+(1-k )x +4. 由题意知1-k >0,当x ≤0时,g ′(x )=3x 2-6x +1-k >0,g (x )单调递增,g (-1)=k -1<0,g (0)=4,所以g (x )=0在(-∞,0]有唯一实根. 当x >0时,令h (x )=x 3-3x 2+4, 则g (x )=h (x )+(1-k )x >h (x ),h ′(x )=3x 2-6x =3x (x -2),h (x )在(0,2)上单调递减,在(2,+∞)上单调递增,所以g (x )>h (x )≥h (2)=0.所以g (x )=0在(0,+∞)没有实根.综上,g (x )=0在R 上有唯一实根,即曲线y =f (x )与直线y =kx -2只有一个交点.1.利用导数研究函数的零点及其零点分布问题的基本步骤: (1)构造函数,并确定定义域; (2)求导,确定单调区间及极值; (3)作出函数的草图;(4)根据草图直观判断函数的零点的情况或得到零点所满足的条件. 2.处理函数y =f (x )与y =g (x )的图象的交点问题,常用方法有: (1)数形结合,即分别作出两函数的图象,考察交点情况;。
高考数学总复习(一轮)(人教A)教学课件第三章 一元函数的导数及其应用第2节 导数与函数的单调性
则 f( ),f(1),f(- )的大小关系为(
A.f(- )>f(1)>f( )
√
C.f( )>f(1)>f(- )
)
B.f(1)>f(- )>f( )
D.f(- )>f( )>f(1)
解析:(1)因为f(x)=xsin x,
所以f(-x)=(-x)·sin (-x)=xsin x=f(x),
√
B.(1,+∞)
C.(-∞,1)
D.(0,+∞)
)
解析:(2)由题设f′(x)=f′(2)ex-2-f(0)+x,
则f′(2)=f′(2)-f(0)+2,可得f(0)=2,
即f(0)=f′(2)e-2=2,则f′(2)=2e2,
x
所以f(x)=2e -2x+
x2,得f′(x)=2ex-2+x,
>0在(0,+∞)上恒成立,
在(0,+∞)上是增函数,故A正确;
对于B,函数f(x)=xex的导函数f′(x)=ex(x+1),当x∈(0,+∞)时,
f′(x)>0,所以函数f(x)=xex在(0,+∞)上为增函数,故B正确;
对于C,f′(x)=3x2-1,令f′(x)>0, 得
所以函数f(x)=x3-x在
x> 或 x<- ,
(-∞,- )和( ,+∞) 上单调递增,故C错误;
高考数学总复习(一轮)(人教A)教学课件第三章 一元函数的导数及其应用2 利用导数研究函数的零点
谢谢观看
结合函数的单调性可知,f(x)有唯一零点.
若a>0,因为函数在(0,
)上单调递减,在(
,+∞)上单调递增,
所以要使得函数有唯一零点,
只需f(x)min=f(
)=1-(a-1)ln
a+a-2=(a-1)(1-ln a)=0,
解得a=1或a=e.
综上,a的取值范围为(-∞,0]∪{1,e}.
所以函数f(x)在[-π,-
]上无零点;
当 x∈(- , ]时,f′(x)=ex+cos x>0,
所以函数f(x)在(-
Байду номын сангаас
,
]上单调递增,
而f(0)=0,所以函数f(x)在 (- , ] 上有1个零点.
综上所述,函数f(x)在[-π,
]上有1个零点.
(2)∀x≥0,f(x)+mx≥0恒成立,求实数m的取值范围.
综上所述,g(x)在(0,+∞)上只有1个零点.
利用函数性质研究函数的零点,主要是根据函数单调性、奇偶性、
最值或极值的符号确定函数零点的个数,此类问题在求解过程中可
以通过数形结合的方法确定函数存在零点的条件.
[针对训练] (2024·安徽模拟)已知函数f(x)=ex+sin x-1.
(1)判定函数f(x)在[-π,
增,所以g(x)≥g(0)=0,符合题意.若m<-2,则g′(0)<0,在x>0时,存在一
个区间(0,x′)使得g′(x)<0,与题意不符,故m<-2不合题意.综上可知,
人教版高中总复习一轮数学精品课件 第3章 一元函数的导数及其应用 3.1 导数的概念、意义及运算
3.1 导数的概念、意义及运算
内
容
索
引
01
第一环节
必备知识落实
02
第二环节
关键能力形成
第一环节
必备知识落实
【知识筛查】
对于函数y=f(x),设自变量x从x0变化到x0+Δx,相应地,函数值就从f(x0)变化
到f(x0+Δx),这时,x的变化量为Δx,y的变化量为Δy=f(x0+Δx)-f(x0).
(2)设曲线与经过点 A(2,-2)的切线相切于点 P(x0,03 -402 +5x0-4).
∵f'(x0)=302 -8x0+5,
∴切线方程为 y-(-2)=(302 -8x0+5)(x-2),
又切线过点 P(x0,03 -402 +5x0-4),
∴03 -402 +5x0-2=(302 -8x0+5)(x0-2),
它的导数与函数y=f(u),u=g(x)的导数间的关系为yx'= yu'·ux' .
1.奇函数的导数是偶函数,偶函数的导数是奇函数,周期函数的导数还是
周期函数.
1 ' 1
2.熟记以下结论:(1)
=- 2 ;
1
(2)(ln|x|)'=;
1 '
'()
(3) () =2(f(x)≠0);
[()]
于切线的斜率,从而求出切点的横坐标,将横坐标代入函数解析式求出切点
的纵坐标.
3.已知切线方程(斜率)求参数的值(取值范围)的关键是能利用函数的导数
等于切线斜率列出方程.
对点训练2
(1)设函数f(x)=x3+(a-1)x2+ax,若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的
2020年高考数学一轮教案:第三章 第2节 第1课时
第2节导数在研究函数中的应用考试要求 1.结合实例,借助几何直观了解函数的单调性与导数的关系;能利用导数研究函数的单调性;对于多项式函数,能求不超过三次的多项式函数的单调区间;2.借助函数的图象,了解函数在某点取得极值的必要条件和充分条件;3.能利用导数求某些函数的极大值、极小值以及给定闭区间上不超过三次的多项式函数的最大值、最小值;体会导数与单调性、极值、最大(小)值的关系.知识梳理1.函数的单调性与导数的关系函数y=f(x)在某个区间内可导,则:(1)若f′(x)>0,则f(x)在这个区间内单调递增;(2)若f′(x)<0,则f(x)在这个区间内单调递减;(3)若f′(x)=0,则f(x)在这个区间内是常数函数.2.函数的极值与导数f′(x0)=0条件x0附近的左侧f′(x)>0,右侧f′(x)<0x0附近的左侧f′(x)<0,右侧f′(x)>0 图象形如山峰形如山谷极值f(x0)为极大值f(x0)为极小值极值点x0为极大值点x0为极小值点3.函数的最值与导数(1)函数f(x)在[a,b]上有最值的条件如果在区间[a,b]上函数y=f(x)的图象是一条连续不断的曲线,那么它必有最大值和最小值.(2)求y=f(x)在[a,b]上的最大(小)值的步骤①求函数y=f(x)在(a,b)内的极值;②将函数y=f(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值.[微点提醒]1.函数f(x)在区间(a,b)上递增,则f′(x)≥0,“f′(x)>0在(a,b)上成立”是“f(x)在(a,b)上单调递增”的充分不必要条件.2.对于可导函数f(x),“f′(x0)=0”是“函数f(x)在x=x0处有极值”的必要不充分条件.3.求最值时,应注意极值点和所给区间的关系,关系不确定时,需要分类讨论,不可想当然认为极值就是最值.4.函数最值是“整体”概念,而函数极值是“局部”概念,极大值与极小值之间没有必然的大小关系.基础自测1.判断下列结论正误(在括号内打“√”或“×”)(1)若函数f(x)在(a,b)内单调递增,那么一定有f′(x)>0.()(2)如果函数f(x)在某个区间内恒有f′(x)=0,则f(x)在此区间内没有单调性.()(3)函数的极大值一定大于其极小值.()(4)对可导函数f(x),f′(x0)=0是x0为极值点的充要条件.()(5)函数的最大值不一定是极大值,函数的最小值也不一定是极小值.()解析(1)f(x)在(a,b)内单调递增,则有f′(x)≥0.(3)函数的极大值也可能小于极小值.(4)x0为f(x)的极值点的充要条件是f′(x0)=0,且x0两侧导函数异号.答案(1)×(2)√(3)×(4)×(5)√2.(选修2-2P32A4 改编)如图是f(x)的导函数f′(x)的图象,则f(x)的极小值点的个数为()A.1B.2C.3D.4解析由题意知在x=-1处f′(-1)=0,且其两侧导数符号为左负右正. 答案 A3.(选修2-2P32A5(4)改编)函数f(x)=2x-x ln x的极值是()A.1e B.2e C.e D.e2解析因为f′(x)=2-(ln x+1)=1-ln x,令f′(x)=0,所以x=e,当f′(x)>0时,解得0<x<e;当f′(x)<0时,解得x>e,所以x=e时,f(x)取到极大值,f(x)极大值=f(e)=e.答案 C4.(2019·青岛月考)函数f(x)=cos x-x在(0,π)上的单调性是()A.先增后减B.先减后增C.单调递增D.单调递减解析易知f′(x)=-sin x-1,x∈(0,π),则f′(x)<0,所以f(x)=cos x-x在(0,π)上递减.答案 D5.(2017·浙江卷)函数y=f(x)的导函数y=f′(x)的图象如图所示,则函数y=f(x)的图象可能是()解析设导函数y=f′(x)与x轴交点的横坐标从左往右依次为x1,x2,x3,由导函数y=f′(x)的图象易得当x∈(-∞,x1)∪(x2,x3)时,f′(x)<0;当x∈(x1,x2)∪(x3,+∞)时,f′(x)>0(其中x1<0<x2<x3),所以函数f(x)在(-∞,x1),(x2,x3)上单调递减,在(x1,x2),(x3,+∞)上单调递增,观察各选项,只有D选项符合.答案 D6.(2019·豫南九校考评)若函数f(x)=x(x-c)2在x=2处有极小值,则常数c的值为( ) A.4 B.2或6 C.2D.6解析 函数f (x )=x (x -c )2的导数为f ′(x )=3x 2-4cx +c 2,由题意知,在x =2处的导数值为12-8c +c 2=0,解得c =2或6,又函数f (x )=x (x -c )2在x =2处有极小值,故导数在x =2处左侧为负,右侧为正,而当e =6时,f (x )=x (x -6)2在x =2处有极大值,故c =2. 答案 C第1课时 导数与函数的单调性考点一 求函数的单调区间【例1】 已知函数f (x )=ax 3+x 2(a ∈R )在x =-43处取得极值. (1)确定a 的值;(2)若g (x )=f (x )e x ,求函数g (x )的单调减区间. 解 (1)对f (x )求导得f ′(x )=3ax 2+2x ,因为f (x )在x =-43处取得极值,所以f ′⎝ ⎛⎭⎪⎫-43=0,即3a ·⎝ ⎛⎭⎪⎫-432+2·⎝ ⎛⎭⎪⎫-43=16a 3-83=0,解得a =12. (2)由(1)得g (x )=⎝ ⎛⎭⎪⎫12x 3+x 2e x ,故g ′(x )=12x (x +1)(x +4)e x . 令g ′(x )<0,即x (x +1)(x +4)<0, 解得-1<x <0或x <-4,所以g (x )的单调减区间为(-1,0),(-∞,-4). 规律方法 1.求函数单调区间的步骤:(1)确定函数f (x )的定义域;(2)求f ′(x );(3)在定义域内解不等式f ′(x )>0,得单调递增区间;(4)在定义域内解不等式f ′(x )<0,得单调递减区间.2.若所求函数的单调区间不止一个时,用“,”与“和”连接. 【训练1】 (1)已知函数f (x )=x ln x ,则f (x )( ) A.在(0,+∞)上递增 B.在(0,+∞)上递减 C.在⎝ ⎛⎭⎪⎫0,1e 上递增D.在⎝ ⎛⎭⎪⎫0,1e 上递减(2)已知定义在区间(-π,π)上的函数f (x )=x sin x +cos x ,则f (x )的单调递增区间为________.解析 (1)因为函数f (x )=x ln x ,定义域为(0,+∞),所以f ′(x )=ln x +1(x >0),当f ′(x )>0时,解得x >1e ,即函数的单调递增区间为⎝ ⎛⎭⎪⎫1e ,+∞;当f ′(x )<0时,解得0<x <1e ,即函数的单调递减区间为⎝ ⎛⎭⎪⎫0,1e .(2)f ′(x )=sin x +x cos x -sin x =x cos x .令f ′(x )=x cos x >0,则其在区间(-π,π)上的解集为⎝ ⎛⎭⎪⎫-π,-π2和⎝ ⎛⎭⎪⎫0,π2,即f (x )的单调递增区间为⎝ ⎛⎭⎪⎫-π,-π2,⎝ ⎛⎭⎪⎫0,π2.答案 (1)D (2)⎝ ⎛⎭⎪⎫-π,-π2,⎝ ⎛⎭⎪⎫0,π2 考点二 讨论函数的单调性【例2】 (2017·全国Ⅰ卷改编)已知函数f (x )=e x (e x -a )-a 2x ,其中参数a ≤0. (1)讨论f (x )的单调性; (2)若f (x )≥0,求a 的取值范围.解 (1)函数f (x )的定义域为(-∞,+∞),且a ≤0. f ′(x )=2e 2x -a e x -a 2=(2e x +a )(e x -a ).①若a =0,则f (x )=e 2x ,在(-∞,+∞)上单调递增. ②若a <0,则由f ′(x )=0,得x =ln ⎝ ⎛⎭⎪⎫-a 2.当x ∈⎝ ⎛⎭⎪⎫-∞,ln ⎝ ⎛⎭⎪⎫-a 2时,f ′(x )<0;当x ∈⎝ ⎛⎭⎪⎫ln ⎝ ⎛⎭⎪⎫-a 2,+∞时,f ′(x )>0.故f (x )在⎝ ⎛⎭⎪⎫-∞,ln ⎝ ⎛⎭⎪⎫-a 2上单调递减,在区间⎝ ⎛⎭⎪⎫ln ⎝ ⎛⎭⎪⎫-a 2,+∞上单调递增.(2)①当a =0时,f (x )=e 2x ≥0恒成立.②若a <0,则由(1)得,当x =ln ⎝ ⎛⎭⎪⎫-a 2时,f (x )取得最小值,最小值为f ⎝ ⎛⎭⎪⎫ln ⎝ ⎛⎭⎪⎫-a 2=a 2⎣⎢⎡⎦⎥⎤34-ln ⎝⎛⎭⎪⎫-a 2, 故当且仅当a 2⎣⎢⎡⎦⎥⎤34-ln ⎝⎛⎭⎪⎫-a 2≥0, 即0>a ≥-2e 34时,f (x )≥0.综上,a 的取值范围是[-2e 34,0].规律方法 1.(1)研究含参数的函数的单调性,要依据参数对不等式解集的影响进行分类讨论.(2)划分函数的单调区间时,要在函数定义域内讨论,还要确定导数为0的点和函数的间断点.2.个别导数为0的点不影响所在区间的单调性,如f (x )=x 3,f ′(x )=3x 2≥0(f ′(x )=0在x =0时取到),f (x )在R 上是增函数.【训练2】 已知f (x )=x 22-a ln x ,a ∈R ,求f (x )的单调区间.解 因为f (x )=x 22-a ln x ,x ∈(0,+∞),所以f ′(x )=x -a x =x 2-ax .(1)当a ≤0时,f ′(x )>0,所以f (x )在(0,+∞)上为单调递增函数. (2)当a >0时,f ′(x )=(x +a )(x -a )x,则有①当x ∈(0,a )时,f ′(x )<0,所以f (x )的单调递减区间为(0,a ). ②当x ∈(a ,+∞)时,f ′(x )>0,所以f (x )的单调递增区间为(a ,+∞). 综上所述,当a ≤0时,f (x )的单调递增区间为(0,+∞),无单调递减区间. 当a >0时,函数f (x )的单调递减区间为(0,a ),单调递增区间为(a ,+∞). 考点三 函数单调性的简单应用 多维探究角度1 比较大小或解不等式【例3-1】 (1)已知函数y =f (x )对于任意的x ∈⎝ ⎛⎭⎪⎫0,π2满足f ′(x )cos x +f (x )sin x =1+ln x ,其中f ′(x )是函数f (x )的导函数,则下列不等式成立的是( ) A.2f ⎝ ⎛⎭⎪⎫π3<f ⎝ ⎛⎭⎪⎫π4B.2f ⎝ ⎛⎭⎪⎫π3>f ⎝ ⎛⎭⎪⎫π4C.2f ⎝ ⎛⎭⎪⎫π6>3f ⎝ ⎛⎭⎪⎫π4D.3f ⎝ ⎛⎭⎪⎫π3>f ⎝ ⎛⎭⎪⎫π6(2)已知函数f ′(x )是函数f (x )的导函数,f (1)=1e ,对任意实数都有f (x )-f ′(x )>0,设F (x )=f (x )e x ,则不等式F (x )<1e 2的解集为( ) A.(-∞,1) B.(1,+∞) C.(1,e)D.(e ,+∞)解析 (1)令g (x )=f (x )cos x ,则g ′(x )=f ′(x )cos x -f (x )(-sin x )cos 2x =1+ln x cos 2x .由⎩⎪⎨⎪⎧0<x <π2,g ′(x )>0,解得1e <x <π2;由⎩⎪⎨⎪⎧0<x <π2,g ′(x )<0,解得0<x <1e .所以函数g (x )在⎝ ⎛⎭⎪⎫0,1e 上单调递减,在⎝ ⎛⎭⎪⎫1e ,π2上单调递增,又π3>π4,所以g ⎝ ⎛⎭⎪⎫π3>g ⎝ ⎛⎭⎪⎫π4,所以f⎝ ⎛⎭⎪⎫π3cos π3>f ⎝ ⎛⎭⎪⎫π4cos π4, 即2f ⎝ ⎛⎭⎪⎫π3>f ⎝ ⎛⎭⎪⎫π4.(2)F ′(x )=f ′(x )e x -e x f (x )(e x )2=f ′(x )-f (x )e x ,又f (x )-f ′(x )>0,知F ′(x )<0, ∴F (x )在R 上单调递减. 由F (x )<1e 2=F (1),得x >1,所以不等式F (x )<1e 2的解集为(1,+∞). 答案 (1)B (2)B角度2 根据函数单调性求参数【例3-2】 (2019·日照质检)已知函数f (x )=ln x ,g (x )=12ax 2+2x . (1)若函数h (x )=f (x )-g (x )存在单调递减区间,求实数a 的取值范围; (2)若函数h (x )=f (x )-g (x )在[1,4]上单调递减,求实数a 的取值范围. 解 h (x )=ln x -12ax 2-2x ,x >0.∴h ′(x )=1x -ax -2.(1)若函数h (x )在(0,+∞)上存在单调减区间, 则当x >0时,1x -ax -2<0有解,即a >1x 2-2x 有解. 设G (x )=1x 2-2x ,所以只要a >G (x )min . 又G (x )=⎝ ⎛⎭⎪⎫1x -12-1,所以G (x )min =-1.所以a >-1.即实数a 的取值范围是(-1,+∞). (2)由h (x )在[1,4]上单调递减,∴当x ∈[1,4]时,h ′(x )=1x -ax -2≤0恒成立, 则a ≥1x 2-2x 恒成立,设G (x )=1x 2-2x , 所以a ≥G (x )max .又G (x )=⎝ ⎛⎭⎪⎫1x -12-1,x ∈[1,4],因为x ∈[1,4],所以1x ∈⎣⎢⎡⎦⎥⎤14,1,所以G (x )max =-716(此时x =4),所以a ≥-716.又当a =-716时,h ′(x )=1x +716x -2=(7x -4)(x -4)16x,∵x ∈[1,4],∴h ′(x )=(7x -4)(x -4)16x ≤0,当且仅当x =4时等号成立. ∴h (x )在[1,4]上为减函数.故实数a 的取值范围是⎣⎢⎡⎭⎪⎫-716,+∞.规律方法 1.利用导数比较大小,其关键在于利用题目条件构造辅助函数,把比较大小的问题转化为先利用导数研究函数的单调性,进而根据单调性比较大小. 2.根据函数单调性求参数的一般思路(1)利用集合间的包含关系处理:y =f (x )在(a ,b )上单调,则区间(a ,b )是相应单调区间的子集.(2)f (x )是单调递增的充要条件是对任意的x ∈(a ,b )都有f ′(x )≥0且在(a ,b )内的任一非空子区间上,f ′(x )不恒为零,应注意此时式子中的等号不能省略,否则漏解.(3)函数在某个区间存在单调区间可转化为不等式有解问题.【训练3】 (1)已知f (x )是定义在区间(0,+∞)内的函数,其导函数为f ′(x ),且不等式xf ′(x )<2f (x )恒成立,则( ) A.4f (1)<f (2) B.4f (1)>f (2) C.f (1)<4f (2)D.f (1)>4f ′(2)(2)(2019·淄博模拟)若函数f (x )=kx -ln x 在区间(2,+∞)上单调递增,则k 的取值范围是( )A.(-∞,-2]B.⎣⎢⎡⎭⎪⎫12,+∞ C.[2,+∞) D.⎝ ⎛⎦⎥⎤-∞,12 解析 (1)设函数g (x )=f (x )x 2(x >0),则g ′(x )=x 2f ′(x )-2xf (x )x 4=xf ′(x )-2f (x )x 3<0,所以函数g (x )在(0,+∞)内为减函数,所以g (1)>g (2),即f (1)12>f (2)22,所以4f (1)>f (2).(2)由于f ′(x )=k -1x ,f (x )=kx -ln x 在区间(2,+∞)上单调递增,等价于f ′(x )=k -1x ≥0在(2,+∞)上恒成立,由于k ≥1x ,而0<1x <12,所以k ≥12.即k 的取值范围是⎣⎢⎡⎭⎪⎫12,+∞. 答案 (1)B (2)B[思维升华]1.已知函数解析式求单调区间,实质上是求f ′(x )>0,f ′(x )<0的解区间,并注意函数f (x )的定义域.2.含参函数的单调性要注意分类讨论,通过确定导数的符号判断函数的单调性.3.已知函数单调性求参数可以利用给定的已知区间和函数单调区间的包含关系或转化为恒成立问题两种思路解决. [易错防范]1.求单调区间应遵循定义域优先的原则.2.注意两种表述“函数f (x )在(a ,b )上为减函数”与“函数f (x )的减区间为(a ,b )”的区别.3.在某区间内f ′(x )>0(f ′(x )<0)是函数f (x )在此区间上为增(减)函数的充分不必要条件.4.可导函数f(x)在(a,b)上是增(减)函数的充要条件是:对∀x∈(a,b),都有f′(x)≥0(f′(x)≤0),且f′(x)在(a,b)的任何子区间内都不恒为零.基础巩固题组(建议用时:40分钟)一、选择题1.函数y=f(x)的图象如图所示,则y=f′(x)的图象可能是()解析由函数f(x)的图象可知,f(x)在(-∞,0)上单调递增,f(x)在(0,+∞)上单调递减,所以在(-∞,0)上,f′(x)>0;在(0,+∞)上,f′(x)<0,选项D满足.答案 D2.函数f(x)=x·e x-e x+1的单调递增区间是()A.(-∞,e)B.(1,e)C.(e,+∞)D.(e-1,+∞)解析由f(x)=x·e x-e x+1,得f′(x)=(x+1-e)·e x,令f′(x)>0,解得x>e-1,所以函数f(x)的单调递增区间是(e-1,+∞).答案 D3.(2019·青岛二中调研)若函数f(x)=x3-12x在区间(k-1,k+1)上不是单调函数,则实数k的取值范围是()A.k≤-3或-1≤k≤1或k≥3B.不存在这样的实数kC.-2<k<2D.-3<k<-1或1<k<3解析由f(x)=x3-12x,得f′(x)=3x2-12,令f′(x)=0,解得x=-2或x=2,只要f′(x)=0的解有一个在区间(k-1,k+1)内,函数f(x)在区间(k-1,k+1)上就不单调,则k-1<-2<k+1或k-1<2<k+1,解得-3<k<-1或1<k<3.答案 D4.已知f(x)=ln xx,则()A.f(2)>f(e)>f(3)B.f(3)>f(e)>f(2)C.f(3)>f(2)>f(e)D.f(e)>f(3)>f(2)解析f(x)的定义域是(0,+∞),∵f′(x)=1-ln xx2,∴x∈(0,e),f′(x)>0,x∈(e,+∞),f′(x)<0,故x=e时,f(x)max=f(e),又f(2)=ln 22=ln 86,f(3)=ln 33=ln 96,则f(e)>f(3)>f(2).答案 D5.(2019·济宁一中模拟)函数f(x)的定义域为R,f(-1)=2,对任意x∈R,f′(x)>2,则f(x)>2x+4的解集为()A.(-1,1)B.(-1,+∞)C.(-∞,-1)D.(-∞,+∞)解析由f(x)>2x+4,得f(x)-2x-4>0,设F(x)=f(x)-2x-4,则F′(x)=f′(x)-2,因为f′(x)>2,所以F′(x)>0在R上恒成立,所以F(x)在R上单调递增.又F(-1)=f(-1)-2×(-1)-4=2+2-4=0,故不等式f(x)-2x-4>0等价于F(x)>F(-1),所以x>-1.答案 B二、填空题6.已知函数f(x)=(-x2+2x)e x(x∈R,e为自然对数的底数),则函数f(x)的单调递增区间为________.解析 因为f (x )=(-x 2+2x )e x ,所以f ′(x )=(-2x +2)e x +(-x 2+2x )e x =(-x 2+2)e x . 令f ′(x )>0,即(-x 2+2)e x >0,因为e x >0,所以-x 2+2>0,解得-2<x <2, 所以函数f (x )的单调递增区间为(-2,2). 答案 (-2,2)7.若函数f (x )=ax 3+3x 2-x 恰好有三个单调区间,则实数a 的取值范围是________. 解析 由题意知f ′(x )=3ax 2+6x -1,由函数f (x )恰好有三个单调区间,得f ′(x )有两个不相等的零点.需满足a ≠0,且Δ=36+12a >0,解得a >-3, 所以实数a 的取值范围是(-3,0)∪(0,+∞). 答案 (-3,0)∪(0,+∞)8.若函数f (x )=-13x 3+12x 2+2ax 在⎣⎢⎡⎭⎪⎫23,+∞上存在单调递增区间,则a 的取值范围是________.解析 对f (x )求导,得f ′(x )=-x 2+x +2a =-⎝ ⎛⎭⎪⎫x -122+14+2a .当x ∈⎣⎢⎡⎭⎪⎫23,+∞时,f ′(x )的最大值为f ′⎝ ⎛⎭⎪⎫23=29+2a .令29+2a >0,解得a >-19.所以a 的取值范围是⎝ ⎛⎭⎪⎫-19,+∞. 答案 ⎝ ⎛⎭⎪⎫-19,+∞三、解答题9.已知函数f (x )=x 4+a x -ln x -32,其中a ∈R ,且曲线y =f (x )在点(1,f (1))处的切线垂直于直线y =12x . (1)求a 的值;(2)求函数f (x )的单调区间.解 (1)对f (x )求导得f ′(x )=14-a x 2-1x ,由f (x )在点(1,f (1))处的切线垂直于直线y =12x 知f ′(1)=-34-a =-2,解得a =54. (2)由(1)知f (x )=x 4+54x -ln x -32(x >0).则f ′(x )=x 2-4x -54x 2. 令f ′(x )=0,且x >0, ∴x =5(x =-1舍去).当x ∈(0,5)时,f ′(x )<0;当x >5时,f ′(x )>0. 所以函数f (x )的增区间为(5,+∞),减区间为(0,5).10.(2019·成都七中检测)设函数f (x )=ax 2-a -ln x ,g (x )=1x -ee x ,其中a ∈R ,e =2.718…为自然对数的底数. (1)讨论f (x )的单调性; (2)证明:当x >1时,g (x )>0.(1)解 由题意得f ′(x )=2ax -1x =2ax 2-1x (x >0). 当a ≤0时,f ′(x )<0,f (x )在(0,+∞)内单调递减. 当a >0时,由f ′(x )=0有x =12a, 当x ∈⎝ ⎛⎭⎪⎫0,12a 时,f ′(x )<0,f (x )单调递减; 当x ∈⎝ ⎛⎭⎪⎫12a ,+∞时,f ′(x )>0,f (x )单调递增. (2)证明 令s (x )=e x -1-x ,则s ′(x )=e x -1-1. 当x >1时,s ′(x )>0,所以s (x )>s (1),即e x -1>x ,从而g (x )=1x -e e x =e (e x -1-x )x e x>0.能力提升题组 (建议用时:20分钟)11.(2017·山东卷)若函数e x f (x )(e =2.718 28…是自然对数的底数)在f (x )的定义域上单调递增,则称函数f (x )具有M 性质.下列函数中具有M 性质的是( ) A.f (x )=2-x B.f (x )=x 2 C.f (x )=3-xD.f (x )=cos x解析 设函数g (x )=e x ·f (x ),对于A ,g (x )=e x ·2-x =⎝ ⎛⎭⎪⎫e 2x,在定义域R 上为增函数,A 正确.对于B ,g (x )=e x ·x 2,则g ′(x )=x (x +2)e x ,由g ′(x )>0得x <-2或x >0,∴g (x )在定义域R 上不是增函数,B 不正确.对于C ,g (x )=e x ·3-x =⎝ ⎛⎭⎪⎫e 3x在定义域R 上是减函数,C 不正确.对于D ,g (x )=e x ·cos x ,则g ′(x )=2e x cos ⎝ ⎛⎭⎪⎫x +π4,g ′(x )>0在定义域R 上不恒成立,D 不正确. 答案 A12.(2019·上海静安区调研)已知函数f (x )=x sin x +cos x +x 2,则不等式f (ln x )+f ⎝ ⎛⎭⎪⎫ln 1x <2f (1)的解集为( ) A.(e ,+∞)B.(0,e)C.⎝ ⎛⎭⎪⎫0,1e ∪(1,e) D.⎝ ⎛⎭⎪⎫1e ,e 解析 f (x )=x sin x +cos x +x 2是偶函数,所以f ⎝ ⎛⎭⎪⎫ln 1x =f (-ln x )=f (ln x ).则原不等式可变形为f (ln x )<f (1)⇔f (|ln x |)<f (1). 又f ′(x )=x cos x +2x =x (2+cos x ), 由2+cos x >0,得x >0时,f ′(x )>0. 所以f (x )在(0,+∞)上单调递增. ∴|ln x |<1⇔-1<ln x <1⇔1e <x <e. 答案 D13.若函数f (x )=x -13sin 2x +a sin x 在(-∞,+∞)单调递增,则a 的取值范围是________.解析 f ′(x )=1-23cos 2x +a cos x =1-23(2cos 2x -1)+a cos x =-43cos 2 x +a cos x +53,f (x )在R 上单调递增,则f ′(x )≥0在R 上恒成立.令cos x =t ,t ∈[-1,1],则-43t 2+at +53≥0在[-1,1]上恒成立,即4t 2-3at -5≤0在t ∈[-1,1]上恒成立. 令g (t )=4t 2-3at -5,则⎩⎨⎧g (1)=4-3a -5≤0,g (-1)=4+3a -5≤0,解得-13≤a ≤13.答案 ⎣⎢⎡⎦⎥⎤-13,1314.已知函数f (x )=a ln x -ax -3(a ∈R ). (1)求函数f (x )的单调区间;(2)若函数y =f (x )的图象在点(2,f (2))处的切线的倾斜角为45°,对于任意的t ∈[1,2],函数g (x )=x 3+x 2·⎣⎢⎡⎦⎥⎤f ′(x )+m 2在区间(t ,3)上总不是单调函数,求m 的取值范围.解 (1)函数f (x )的定义域为(0,+∞), 且f ′(x )=a (1-x )x,当a >0时,f (x )的递增区间为(0,1), 递减区间为(1,+∞);当a <0时,f (x )的递增区间为(1,+∞),递减区间为(0,1); 当a =0时,f (x )为常函数.(2)由(1)及题意得f ′(2)=-a2=1,即a =-2, ∴f (x )=-2ln x +2x -3,f ′(x )=2x -2x .∴g (x )=x 3+⎝ ⎛⎭⎪⎫m 2+2x 2-2x ,∴g ′(x )=3x 2+(m +4)x -2.∵g (x )在区间(t ,3)上总不是单调函数, 即g ′(x )在区间(t ,3)上有变号零点. 由于g ′(0)=-2,∴⎩⎨⎧g ′(t )<0,g ′(3)>0.当g ′(t )<0时,即3t 2+(m +4)t -2<0对任意t ∈[1,2]恒成立, 由于g ′(0)<0,故只要g ′(1)<0且g ′(2)<0, 即m <-5且m <-9,即m <-9; 由g ′(3)>0,即m >-373. ∴-373<m <-9.即实数m 的取值范围是⎝ ⎛⎭⎪⎫-373,-9.新高考创新预测15.(多填题)已知函数f (x )=x 3+mx 2+nx -2的图象过点(-1,-6),函数g (x )=f ′(x )+6x 的图象关于y 轴对称.则m =________,f (x )的单调递减区间为________. 解析 由函数f (x )的图象过点(-1,-6),得m -n =-3.① 由f (x )=x 3+mx 2+nx -2,得f ′(x )=3x 2+2mx +n , 所以g (x )=f ′(x )+6x =3x 2+(2m +6)x +n . 因为g (x )的图象关于y 轴对称,所以-2m +62×3=0, 所以m =-3,代入①得n =0,所以f ′(x )=3x 2-6x =3x (x -2). 由f ′(x )<0,得0<x <2,所以f (x )的单调递减区间是(0,2). 答案 -3 (0,2)。
高考数学一轮总复习教学课件第三章 一元函数的导数及其应用第3节 导数与函数的极值、最值
(4)列表检验f′(x)在f′(x)=0的根x0左右两侧值的符号.
(5)求出极值.
角度三
由函数极值(极值个数)求参数值(范围)
[例3] (1)已知函数f(x)=x3+ax2+bx+a2在x=1处有极小值10,则a+b
等于(
A.-7
√
C.-7或0
零,所以1.5是f(x)的极小值点,所以C正确;而x=-2和x=3,左右两侧
附近的导数值同号,所以-2和3不是函数的极值点,所以B,D错误.故
选AC.
3.(选择性必修第二册P94练习T1改编)已知函数f(x)=2sin x+
sin 2x,则f(x)的最小值是
.
解析:f′(x)=2cos x+2cos 2x=2cos x+2(2cos2x-1)=
当a>0时,令f′(x)=0,所以ex=a,x=ln a,
x
f′(x)
f(x)
(-∞,ln a)
↘
ln a
0
极小值
(ln a,+∞)
+
↗
f(x)在x=ln a处取得极小值f(ln a)=a-aln a-1,无极大值.
运用导数求函数f(x)极值的一般步骤
(1)确定函数f(x)的定义域.
(2)求导数f′(x).
(3)解:①由已知,可得f′(x)=x2+ax-2.
因为函数f(x)的图象在点(1,f(1))处的切线与直线2x+y-1=0平行,
所以f′(1)=a-1=-2,解得a=-1.经验证,a=-1符合题意.
②求函数f(x)的极值.
高考数学一轮总复习第三章一元函数的导数及其应用 1导数的概念意义及运算课件
解:(1)切线方程可化为 .当时,.又 ,于是解得 故 .
(2)证明:设 为曲线上任一点,由,知曲线在点处的切线方程为 ,即 .令,得 ,从而得切线与直线的交点坐标为, .令,得 ,
从而得切线与直线的交点坐标为 .所以点处的切线与直线, 所围成的三角形的面积为 .故曲线上任一点处的切线与直线, 所围成的三角形的面积为定值,且此定值为6.
变式1(1) 若函数,则 的值为__.
解:.令,得,所以 ,则.故填 .
(2)设函数,且,则 ( )
A.0 B. C.3 D.
解:因为 ,所以 ,所以,解得 .故选B.
√
(3)设函数在内可导,且,则 ___.
2
解:(方法一)令,则,所以,即 .所以,所以 .(方法二)等式两边同时求导,得.令,得 .故填2.
复合函数
常用结论
1.导数的两条性质 (1)奇函数的导数是偶函数,偶函数的导数是奇函数. (2)可导函数的导数为,若为增函数,则 的图象是下凹的;反之,若为减函数,则 的图象是上凸的.
2.几类重要的切线方程 (1)是曲线的切线,是曲线的切线, ,是曲线 的切线,如图1.
命题角度3 根据切线情况求参数
例4 (2022年新课标Ⅰ卷)若曲线有两条过坐标原点的切线,则 的取值范围是___________________.
解:因为,所以 .设切点为,则,切线斜率 .切线方程为 .因为切线过原点,所以 ,整理得 .
因为切线有两条,所以 .解得或 .另解:由切线斜率,与 联立,可得 .所以的取值范围是 .故填 .
变式3(1) 若函数与 的图象在一个公共点处的切线相同,则实数 ________.
2020版高考数学一轮复习第三章导数及其应用3.1导数的概念及运算课件文
-7知识梳理
考点自诊
1.判断下列结论是否正确,正确的画“√”,错误的画“×”. (1)f'(x0)是函数y=f(x)在x=x0附近的平均变化率.( × ) (2)求f'(x0)时,可先求f(x0)再求f'(x0). ( × ) (3)曲线的切线不一定与曲线只有一个公共点. ( √ ) (4)与曲线只有一个公共点的直线一定是曲线的切线. ( × ) (5)曲线y=f(x)在点P(x0,y0)处的切线与过点P(x0,y0)的切线相同. ( × )
1 1 (2)y=x ������ + + 3 ; ������ ������ ������ ������ (3)y=x-sin 2cos 2; ������ π ������ π (4)y=xsin 2 + 2 cos 2 + 2
2
.
-12考点1
考点2Leabharlann 解 (1)y'=(ex)'cos x+ex(cos x)'=excos x-exsin x.
-4知识梳理
考点自诊
3.基本初等函数的导数公式
原函数 f(x)=c(c 为常数) f(x)=xα(α∈Q,α≠0) f(x)=sin x f(x)=cos x f(x)=ax(a>0,且 a≠1) f(x)=ex f(x)=logax(a>0,且 a≠1) f(x)=ln x
导函数 f'(x)=0 f'(x)= f'(x)= f'(x)= f'(x)= f'(x)= f'(x)= f'(x)=
3.1
导数的概念及运算
-2知识梳理
考点自诊
1. 导数与导函数的概念 (1)平均变化率:对于一般的函数 y=f (x), 在自变量 x 从 x0 变到 x1 Δ������ 的过程中, 若设 Δx=x1 -x0 , Δy=f (x1 )-f(x0 ), 则函数的平均变化率是 =
高考数学一轮总复习第三章一元函数的导数及其应用专题突破7导数的综合应用课件
2
0恒成立.
考点二 利用导数研究恒(能)成立问题
例2 已知函数 = ln , = − 2 − − 4 ∈ .
(1)求函数 的极值;
1
3
(2)若对任意 ∈ 0, +∞ ,不等式 > 恒成立,求的取值范围.
解:(1) 的定义域为 0, +∞ ,′ = ln + 1.
(2)证明:由(1)得,
要证 > 2ln
即证2
= −ln = (e−ln + ) + ln = 1 + 2 + ln .
3
+ ,
2
即证1 + + ln > 2ln
2
min
3
+ ,
2
1
2
− − ln > 0恒成立.
1
设 = − − ln > 0 ,
第二问
在综合性和应用性的层次上考查了逻辑推
理、数学抽象及数学运算等学科素养,转化
与化归、函数与方程、数形结合等数学思想
方法,运算求解、推理论证等关键能力,以
及导数在研究函数性质中的应用及等差数列
等必备知识.
解:(1) 的定义域为,′ = e − .
若 ≤ 0,则′ > 0,此时 无最小值,故 > 0.
当 < −ln 时,′ < 0,则 在 −∞, −ln 上单调递减;当 > −ln 时,
′ > 0,则 在 −ln , +∞ 上单调递增.
综上,当 ≤ 0时, 在上单调递减;当 > 0时, 在 −∞, −ln 上单调递减,在
广东专用2023版高考数学一轮总复习第三章一元函数的导数及其应用综合突破一导数的综合问题第2课时导数
【点拨】 根据函数零点的情况求参数值或取值范围的基本方法:①利用零点存在 的判定定理构建不等式求解;②分离参数后转化为函数的值域(最值)问题求解;③转化 为两个熟悉的函数图象的位置关系问题,从而构建不等式求解.
(2021 重庆南开中学高三月考)已知函数 f(x)=ax2+x-lnx(a∈R).
第2课时 导数与函数零点
考点一 讨论零点个数
(2021 湖北高二期末)已知函数 f(x)=x-ex+a,讨论函数 f(x)零点的个数.
解:f′(x)=1-ex. 当 x<0 时,f′(x)>0;当 x>0 时,f′(x)<0, 所以函数 f(x)在(-∞,0)上单调递增,在(0,+∞)上单调递减,所以, 当 x=0 时,f(x)有最大值 f(0)=a-1. 当 a<1 时,f(0)=a-1<0,函数 f(x)无零点; 当 a=1 时,f(0)=a-1=0,函数 f(x)有 1 个零点; 当 a>1 时,f(0)=a-1>0,f(-a)=-e-a<0,
所以 f(1)=-e<0 是 f(x)的极小值,也是最小值,f(2)=a>0, 取 b<0 且 b<lna2,则 f(b)=(b-2)eb+a(b-1)2>a2(b-2)+a(b-1)2=a2b(2b-3)>0, 所以 f(x)在(b,1)和(1,2)上各有一个零点; ②a=0 时,f(x)=(x-2)ex,只有一个零点 x=2. 综上,a>0 时,f(x)有两个零点;a=0 时,f(x)有一个零点.
考点三 与零点有关的不等式问题
命题角度 1 比值代换 (2020 四川南充模拟)已知函数 f(x)=lnx+mx -s(s,m∈R).
2020年高考数学一轮复习考点与题型总结:第三章 导数及其应用含答案
第三章 导数及其应用第一节 导数的概念及运算、定积分1.导数的概念(1)函数y =f (x )在x =x 0处的导数:函数y =f (x )在x =x 0处的瞬时变化率li mΔx →0 ΔyΔx=li mΔx →0 f (x 0+Δx )-f (x 0)Δx ❶为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′x =x 0,即f ′(x 0)=li mΔx →0 ΔyΔx =li m Δx →0 f (x 0+Δx )-f (x 0)Δx.函数y =f (x )的导数f ′(x )反映了函数f (x )的瞬时变化趋势,其正负号反映了变化的方向,其大小|f ′(x )|反映了变化的快慢,|f ′(x )|越大,曲线在这点处的切线越“陡”.(2)导数的几何意义:函数f (x )在x =x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点P (x 0,y 0)❷处的切线的斜率(瞬时速度就是位移函数s (t )对时间t 的导数).相应地,切线方程为y -y 0=f ′(x 0)(x -x 0).❷曲线y =f (x )在点P (x 0,y 0)处的切线是指P 为切点,斜率为k =f ′(x 0)的切线,是唯一的一条切线. (3)函数f (x )的导函数:称函数f ′(x )=li mΔx →0 f (x +Δx )-f (x )Δx为f (x )的导函数.(4)f ′(x )是一个函数,f ′(x 0)是函数f ′(x )在x 0处的函数值(常数),[f ′(x 0)]′=0. 2.基本初等函数的导数公式原函数 导函数 f (x )=x n (n ∈Q *) f ′(x )=n ·x n -1 f (x )=sin x f ′(x )=cos x f (x )=cos x f ′(x )=-sin x f (x )=a x (a >0,且a ≠1)f ′(x )=a x ln a f (x )=e xf ′(x )=e x f (x )=log a x (a >0,且a ≠1)f ′(x )=1x ln af (x )=ln xf ′(x )=1x3.导数的运算法则(1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); (3)⎣⎡⎦⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0).4.复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.5.定积分的概念在∫b a f (x )d x 中,a ,b 分别叫做积分下限与积分上限,区间[a ,b ]叫做积分区间,f (x )叫做被积函数,x 叫做积分变量,f (x )d x 叫做被积式.6.定积分的性质(1)∫b a kf (x )d x =k ∫b a f (x )d x (k 为常数); (2)∫b a [f 1(x )±f 2(x )]d x =∫b a f 1(x )d x ±∫b a f 2(x )d x ; (3)∫b a f (x )d x =∫c a f (x )d x +∫b c f (x )d x (其中a <c <b ).求分段函数的定积分,可以先确定不同区间上的函数解析式,然后根据定积分的性质(3)进行计算. 7.微积分基本定理一般地,如果f (x )是区间[a ,b ]上的连续函数,并且F ′(x )=f (x ),那么∫b a f (x )d x =F (b )-F (a ),常把F (b )-F (a )记作F (x )|b a ,即∫b a f (x )d x =F (x )|ba =F (b )-F (a ).8.定积分的几何意义定积分∫b a f (x )d x 的几何意义是介于x 轴、曲线y =f (x )及直线x =a ,x =b 之间的曲边梯形的面积的代数和,其值可正可负,具体来说,如图,设阴影部分的面积为S .①S =∫b a f (x )d x ;②S =-∫b a f (x )d x ;③S =∫c a f (x )d x -∫bc f (x )d x ; ④S =∫b a f (x )d x -∫b a g (x )d x =∫b a [f (x )-g (x )]d x .(1)定积分的几何意义是曲边梯形的面积,但要注意:面积非负,而定积分的结果可正可负.(2)当曲边梯形位于x 轴上方时,定积分的值为正;当曲边梯形位于x 轴下方时,定积分的值为负;当位于x 轴上方的曲边梯形与位于x 轴下方的曲边梯形面积相等时,定积分的值为零.二、常用结论1.奇函数的导数是偶函数,偶函数的导数是奇函数,周期函数的导数还是周期函数. 2.熟记以下结论:(1)⎝⎛⎭⎫1x ′=-1x 2;(2)(ln|x |)′=1x ; (3)⎣⎡⎦⎤1f (x )′=-f ′(x )[f (x )]2(f (x )≠0); (4)[af (x )±bg (x )]′=af ′(x )±bg ′(x ). 3.常见被积函数的原函数(1)∫b a c d x =cx |b a ;(2)∫b a x n d x =x n +1n +1|ba(n ≠-1);(3)∫b a sin x d x =-cos x |b a ;(4)∫b a cos x d x =sin x |ba ;(5)∫b a 1x d x =ln|x ||b a ;(6)∫b a e x d x =e x |b a . 考点一 导数的运算1.f (x )=x (2 018+ln x ),若f ′(x 0)=2 019,则x 0等于( ) A .e 2 B .1 C .ln 2D .e解析:选B f ′(x )=2 018+ln x +x ×1x =2 019+ln x ,故由f ′(x 0)=2 019,得2 019+ln x 0=2 019,则lnx 0=0,解得x 0=1.2.(2019·宜昌联考)已知f ′(x )是函数f (x )的导数,f (x )=f ′(1)·2x +x 2,则f ′(2)=( ) A.12-8ln 21-2ln 2 B.21-2ln 2 C.41-2ln 2D .-2解析:选C 因为f ′(x )=f ′(1)·2x ln 2+2x ,所以f ′(1)=f ′(1)·2ln 2+2,解得f ′(1)=21-2ln 2,所以f ′(x )=21-2ln 2·2x ln 2+2x ,所以f ′(2)=21-2ln 2×22ln 2+2×2=41-2ln 2.3.若函数f (x )=ax 4+bx 2+c 满足f ′(1)=2,则f ′(-1)=________. 解析:f ′(x )=4ax 3+2bx , ∵f ′(x )为奇函数且f ′(1)=2, ∴f ′(-1)=-2. 答案:-24.求下列函数的导数. (1)y =x 2sin x ; (2)y =ln x +1x ;(3)y =cos x ex ;(4)y =x sin ⎝⎛⎭⎫2x +π2cos ⎝⎛⎭⎫2x +π2. 解:(1)y ′=(x 2)′sin x +x 2(sin x )′ =2x sin x +x 2cos x .(2)y ′=⎝⎛⎭⎫ln x +1x ′=(ln x )′+⎝⎛⎭⎫1x ′=1x -1x2. (3)y ′=⎝⎛⎭⎫cos x e x ′=(cos x )′e x -cos x (e x)′(e x )2=-sin x +cos x e x .(4)∵y =x sin ⎝⎛⎭⎫2x +π2cos ⎝⎛⎭⎫2x +π2=12x sin(4x +π) =-12x sin 4x ,∴y ′=-12sin 4x -12x ·4cos 4x=-12sin 4x -2x cos 4x .考点二 导数的几何意义及其应用考法(一) 求切线方程[例1] (2018·全国卷Ⅰ)设函数f (x )=x 3+(a -1)·x 2+ax ,若f (x )为奇函数,则曲线y =f (x )在点(0,0)处的切线方程为( )A .y =-2xB .y =-xC .y =2xD .y =x[解析] 法一:∵f (x )=x 3+(a -1)x 2+ax , ∴f ′(x )=3x 2+2(a -1)x +a .又f (x )为奇函数,∴f (-x )=-f (x )恒成立,即-x 3+(a -1)x 2-ax =-x 3-(a -1)x 2-ax 恒成立, ∴a =1,∴f ′(x )=3x 2+1,∴f ′(0)=1, ∴曲线y =f (x )在点(0,0)处的切线方程为y =x . 法二:∵f (x )=x 3+(a -1)x 2+ax 为奇函数, ∴f ′(x )=3x 2+2(a -1)x +a 为偶函数, ∴a =1,即f ′(x )=3x 2+1,∴f ′(0)=1, ∴曲线y =f (x )在点(0,0)处的切线方程为y =x . [答案] D考法(二) 求切点坐标[例2] 已知函数f (x )=x ln x 在点P (x 0,f (x 0))处的切线与直线x +y =0垂直,则切点P (x 0,f (x 0))的坐标为________.[解析] ∵f (x )=x ln x ,∴f ′(x )=ln x +1,由题意得f ′(x 0)·(-1)=-1,即f ′(x 0)=1,∴ln x 0+1=1,ln x 0=0,∴x 0=1,∴f (x 0)=0,即P (1,0).[答案] (1,0)考法(三) 由曲线的切线(斜率)求参数的值(范围)[例3] (1)(2018·商丘二模)设曲线f (x )=-e x -x (e 为自然对数的底数)上任意一点处的切线为l 1,总存在曲线g (x )=3ax +2cos x 上某点处的切线l 2,使得l 1⊥l 2,则实数a 的取值范围是( )A .[-1,2]B .(3,+∞)C.⎣⎡⎦⎤-23,13D.⎣⎡⎦⎤-13,23 (2)(2018·全国卷Ⅲ)曲线y =(ax +1)e x 在点(0,1)处的切线的斜率为-2,则a =________. [解析] (1)由f (x )=-e x -x ,得f ′(x )=-e x -1,∵e x +1>1,∴1e x +1∈(0,1).由g (x )=3ax +2cos x ,得g ′(x )=3a -2sin x ,又-2sin x ∈[-2,2],∴3a -2sin x ∈[-2+3a ,2+3a ].要使过曲线f (x )=-e x -x 上任意一点的切线l 1,总存在过曲线g (x )=3ax +2cos x上某点处的切线l 2,使得l 1⊥l 2,则⎩⎪⎨⎪⎧-2+3a ≤0,2+3a ≥1,解得-13≤a ≤23.(2)∵y ′=(ax +a +1)e x , ∴当x =0时,y ′=a +1, ∴a +1=-2,解得a =-3. [答案] (1)D (2)-3考法(四) 两曲线的公切线问题[例4] 已知曲线f (x )=x 3+ax +14在x =0处的切线与曲线g (x )=-ln x 相切,则a 的值为________.[解析] 由f (x )=x 3+ax +14,得f ′(x )=3x 2+a .∵f ′(0)=a ,f (0)=14,∴曲线y =f (x )在x =0处的切线方程为y -14=ax .设直线y -14=ax 与曲线g (x )=-ln x 相切于点(x 0,-ln x 0),g ′(x )=-1x,∴⎩⎪⎨⎪⎧-ln x 0-14=ax 0, ①a =-1x, ②将②代入①得ln x 0=34,∴x 0=e 34,∴a =-1e 34=-e -34.[答案] -e -34[题组训练]1.曲线y =x -1x +1在点(0,-1)处的切线与两坐标轴围成的封闭图形的面积为( )A.18B.14C.12D .1 解析:选B 因为y ′=2(x +1)2,所以y ′x =0=2,所以曲线在点(0,-1)处的切线方程为y +1=2x ,即y=2x -1,与两坐标轴的交点坐标分别为(0,-1),⎝⎛⎭⎫12,0,所以与两坐标轴围成的三角形的面积S =12×|-1|×12=14. 2.已知直线2x -y +1=0与曲线y =a e x +x 相切(其中e 为自然对数的底数),则实数a 的值为________. 解析:由题意知y ′=a e x +1=2,则a >0,x =-ln a ,代入曲线方程得y =1-ln a ,所以切线方程为y -(1-ln a )=2(x +ln a ),即y =2x +ln a +1=2x +1⇒a =1.答案:13.若一直线与曲线y =ln x 和曲线x 2=ay (a >0)相切于同一点P ,则a 的值为________. 解析:设切点P (x 0,y 0),则由y =ln x ,得y ′=1x,由x 2=ay ,得y ′=2ax ,则有⎩⎪⎨⎪⎧1x 0=2a x 0,y 0=ln x 0,x 20=ay 0,解得a =2e.答案:2e考点三 定积分的运算及应用[题组训练]1. ⎠⎛0π(sin x -cos x )d x =________.解析:⎠⎛0π (sin x -cos x )d x=⎠⎛πsin x d x -⎠⎛0πcos x d x =-cos x⎪⎪⎪π0-sin x ⎪⎪⎪π=2. 答案:2 2. ⎠⎛1e 1x d x +⎠⎛-224-x 2d x =________.解析:⎠⎛1e 1x d x =ln x ⎪⎪⎪e1=1-0=1,因为⎠⎛-224-x 2d x 表示的是圆x 2+y 2=4在x 轴及其上方的面积,故⎠⎛-224-x 2d x =12π×22=2π,故答案为2π+1.答案:2π+13.由曲线y =x ,y =2-x ,y =-13x 所围成图形的面积为____________.解析:法一:画出草图,如图所示.解方程组⎩⎨⎧y =x ,x +y =2,⎩⎪⎨⎪⎧ y =x ,y =-13x及⎩⎪⎨⎪⎧x +y =2,y =-13x ,得交点分别为(1,1),(0,0),(3,-1), 所以所求图形的面积S =⎠⎛01⎣⎡⎦⎤ x -⎝⎛⎭⎫-13x d x +⎠⎛13⎣⎡⎦⎤(2-x )-⎝⎛⎭⎫-13x d x =⎠⎛01⎝⎛⎭⎫ x +13x d x +⎠⎛13⎝⎛⎭⎫2-23x d x =⎝⎛⎭⎫23x 32+16x 2⎪⎪⎪10+⎝⎛⎭⎫2x -13x 2⎪⎪⎪31 =56+6-13×9-2+13=136. 法二:如图所求阴影的面积就是三角形OAB 的面积减去由y 轴,y =x ,y =2-x 围成的曲边三角形的面积,即S =12×2×3-⎠⎛01 (2-x -x )d x =3-⎝⎛⎭⎫2x -12x 2-23x 32⎪⎪⎪1=3-⎝⎛⎭⎫2-12-23=136. 答案:1364.一物体在力F (x ) =⎩⎪⎨⎪⎧5,0≤x ≤2,3x +4,x >2(单位:N)的作用下沿与力F 相同的方向,从x =0处运动到x =4(单位:m)处,则力F (x )做的功为________J.解析:由题意知,力F (x )所做的功为W =⎠⎛04F (x )d x =⎠⎛025d x +⎠⎛24(3x +4)d x =5×2+⎝⎛⎭⎫32x 2+4x ⎪⎪⎪42=10+⎣⎡⎦⎤32×42+4×4-⎝⎛⎭⎫32×22+4×2=36(J).答案:361.正确选用求定积分的4个常用方法 定理法 性质法 几何法 奇偶性法 2.定积分在物理中的2个应用(1)求物体做变速直线运动的路程,如果变速直线运动物体的速度为v =v (t ),那么从时刻t =a 到t =b 所经过的路程s =⎠⎛ab v (t )d t .(2)变力做功,一物体在变力F (x )的作用下,沿着与F (x )相同的方向从x =a 移动到x =b 时,力F (x )所做的功是W =⎠⎛ab F (x )d x .[课时跟踪检测]A 级1.曲线y =e x -ln x 在点(1,e)处的切线方程为( ) A .(1-e)x -y +1=0 B .(1-e)x -y -1=0 C .(e -1)x -y +1=0D .(e -1)x -y -1=0解析:选C 由于y ′=e -1x ,所以y ′|x =1=e -1,故曲线y =e x -ln x 在点(1,e)处的切线方程为y -e=(e -1)(x -1),即(e -1)x -y +1=0.2.曲线f (x )=x 3-x +3在点P 处的切线平行于直线y =2x -1,则P 点的坐标为( ) A .(1,3) B .(-1,3) C .(1,3)和(-1,3)D .(1,-3)解析:选C f ′(x )=3x 2-1,令f ′(x )=2,则3x 2-1=2,解得x =1或x =-1,∴P (1,3)或(-1,3),经检验,点(1,3),(-1,3)均不在直线y =2x -1上,故选C.3.已知函数f (x )的导函数为f ′(x ),且满足关系式f (x )=x 2+3xf ′(2)+ln x ,则f ′(2)的值等于( ) A .-2 B .2 C .-94 D.94解析:选C 因为f (x )=x 2+3xf ′(2)+ln x ,所以f ′(x )=2x +3f ′(2)+1x ,所以f ′(2)=2×2+3f ′(2)+12,解得f ′(2)=-94.4.(2019·四川名校联考)已知函数f (x )的图象如图所示,f ′(x )是f (x )的导函数,则下列数值排序正确的是( )A .0<f ′(2)<f ′(3)<f (3)-f (2)B .0<f ′(3)<f ′(2)<f (3)-f (2)C .0<f ′(3)<f (3)-f (2)<f ′(2)D .0<f (3)-f (2)<f ′(2)<f ′(3)解析:选C 设f ′(3),f (3)-f (2),f ′(2)分别表示直线n ,m ,l 的斜率,数形结合知0<f ′(3)<f (3)-f (2)<f ′(2),故选C.5.(2019·玉林模拟)由曲线y =x 2和曲线y =x 围成的一个叶形图如图所示,则图中阴影部分的面积为( )A.13B.310C.14D.15解析:选A 由⎩⎨⎧ y =x 2,y =x ,解得⎩⎪⎨⎪⎧ x =0,y =0或⎩⎪⎨⎪⎧x =1,y =1,所以阴影部分的面积为⎠⎛01 (x -x 2)d x =⎝⎛⎭⎫23x 32-13x 3⎪⎪⎪1=13.6.(2018·安庆模拟)设曲线y =e ax -ln(x +1)在x =0处的切线方程为2x -y +1=0,则a =( ) A .0 B .1 C .2D .3解析:选D ∵y =e ax -ln(x +1),∴y ′=a e ax -1x +1,∴当x =0时,y ′=a -1.∵曲线y =e ax -ln(x +1)在x =0处的切线方程为2x -y +1=0,∴a -1=2,即a =3.7.(2018·延边期中)设点P 是曲线y =x 3-3x +23上的任意一点,则曲线在点P 处切线的倾斜角α的取值范围为( )A.⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫5π6,π B.⎣⎡⎭⎫2π3,π C.⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫2π3,π D.⎝⎛⎦⎤π2,5π6解析:选C 因为y ′=3x 2-3≥-3,故切线的斜率k ≥-3,所以切线的倾斜角α的取值范围为⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫2π3,π.8.若曲线f (x )=x sin x +1在x =π2处的切线与直线ax +2y +1=0 相互垂直,则实数a =________.解析:因为f ′(x )=sin x +x cos x ,所以f ′⎝⎛⎭⎫π2=sin π2+π2cos π2=1.又直线ax +2y +1=0的斜率为-a2,所以1×⎝⎛⎭⎫-a2=-1,解得a =2.答案:29.(2019·重庆质检)若曲线y =ln(x +a )的一条切线为y =e x +b ,其中a ,b 为正实数,则a +eb +2的取值范围为________.解析:由y =ln(x +a ),得y ′=1x +a.设切点为(x 0,y 0),则有⎩⎪⎨⎪⎧1x 0+a =e ,ln (x 0+a )=e x 0+b ⇒b =a e -2.∵b >0,∴a >2e, ∴a +e b +2=a +1a ≥2,当且仅当a =1时等号成立.答案:[2,+∞)10.(2018·烟台期中)设函数F (x )=ln x +a x (0<x ≤3)的图象上任意一点P (x 0,y 0)处切线的斜率k ≤12恒成立,则实数a 的取值范围为________.解析:由F (x )=ln x +ax (0<x ≤3),得F ′(x )=x -a x 2(0<x ≤3 ),则有k =F ′(x 0)=x 0-a x 20≤12在(0,3]上恒成立,所以a ≥⎝⎛⎭⎫-12x 20+x 0max .当x 0=1时,-12x 20+x 0在(0,3]上取得最大值12,所以a ≥12. 答案:⎣⎡⎭⎫12,+∞B 级1.若f (x )=x 2+2⎠⎛01f (x )d x ,则⎠⎛01f (x )d x =( )A .-1B .-13C.13D .1解析:选B ∵f (x )=x 2+2⎠⎛01f (x )d x ,∴⎠⎛01f (x )d x =⎝ ⎛⎭⎪⎫13x 3+2x ⎠⎛01f (x )d x ⎪⎪⎪10=13+2⎠⎛01f (x )d x ,∴⎠⎛01f (x )d x =-13. 2.设f (x )=⎩⎨⎧1-x 2,x ∈[-1,1],x 2-1,x ∈(1,2],则⎠⎛-12f (x )d x 的值为( )A.π2+43 B.π2+3 C.π4+43D.π4+3 解析:选A ⎠⎛-12f (x )d x =⎠⎛-111-x 2d x +⎠⎛12 (x 2-1)d x =12π×12+⎝⎛⎭⎫13x 3-x ⎪⎪⎪21=π2+43. 3.等比数列{a n }中,a 1=2,a 8=4,函数f (x )=x (x -a 1)·(x -a 2)·…·(x -a 8),则f ′(0)=( ) A .26 B .29C .212D .215解析:选C 因为f ′(x )=x ′·[(x -a 1)(x -a 2)·…·(x -a 8)]+[(x -a 1)(x -a 2)·…·(x -a 8)]′·x =(x -a 1)(x -a 2)·…·(x -a 8)+[(x -a 1)(x -a 2)·…·(x -a 8)]′·x ,所以f ′(0)=(0-a 1)(0-a 2)·…·(0-a 8)+0=a 1a 2·…·a 8.因为数列{a n }为等比数列, 所以a 2a 7=a 3a 6=a 4a 5=a 1a 8=8, 所以f ′(0)=84=212.4.若存在过点(1,0)的直线与曲线y =x 3和y =ax 2+154x -9都相切,则a 等于( )A .-1或-2564B .-1或214C .-74或-2564D .-74或7解析:选A 因为y =x 3,所以y ′=3x 2,设过点(1,0)的直线与y =x 3相切于点(x 0,x 30), 则在该点处的切线斜率为k =3x 20,所以切线方程为y -x 30=3x 20(x -x 0),即y =3x 20x -2x 30.又点(1,0)在切线上,所以x 0=0或x 0=32.当x 0=0时,切线方程为y =0.由y =0与y =ax 2+154x -9相切可得a =-2564;当x 0=32时,切线方程为y =274x -274,由y =274x -274与y =ax 2+154x -9相切,可得a =-1.综上,a 的值为-1或-2564.5.已知f 1(x )=sin x +cos x ,f n +1(x )是f n (x )的导函数,即f 2(x )=f 1′(x ),f 3(x )=f 2′(x ),…,f n +1(x )=f n ′(x ),n ∈N *,则f 2 019(x )=( )A .-sin x -cos xB .sin x -cos xC .-sin x +cos xD .sin x +cos x解析:选A ∵f 1(x )=sin x +cos x ,∴f 2(x )=f 1′(x )=cos x -sin x ,f 3(x )=f 2′(x )=-sin x -cos x ,f 4(x )=f 3′(x )=-cos x +sin x ,f 5(x )=f 4′(x )=sin x +cos x ,…,∴f n (x )的解析式以4为周期重复出现,∵2 019=4×504+3,∴f 2 019(x )=f 3(x )=-sin x -cos x .6.曲线y =ln(2x -1)上的点到直线2x -y +8=0的最短距离是( ) A .2 5 B .2 C .2 3D. 3解析:选A 设M (x 0,ln(2x 0-1))为曲线上的任意一点,则曲线在点M 处的切线与直线2x -y +8=0平行时,点M 到直线的距离即为曲线y =ln(2x -1)上的点到直线2x -y +8=0的最短距离.∵y ′=22x -1,∴22x 0-1=2,解得x 0=1,∴M (1,0).记点M 到直线2x -y +8=0的距离为d ,则d =|2+8|4+1=2 5.7.如图,y =f (x )是可导函数,直线l :y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),则曲线g (x )在x =3处的切线方程为________.解析:由题图可知曲线y =f (x )在x =3处的切线斜率等于-13,即f ′(3)=-13.又g (x )=xf (x ),所以g ′(x )=f (x )+xf ′(x ),g ′(3)=f (3)+3f ′(3),由题图可知f (3)=1,所以g (3)=3f (3)=3,g ′(3)=1+3×⎝⎛⎭⎫-13=0,则曲线g (x )在x =3处的切线方程为y -3=0.答案:y -3=08.设函数f (x )=ax -bx ,曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y -12=0.(1)求f (x )的解析式;(2)曲线y =f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形的面积是否为定值,若是,求此定值;若不是,说明理由.解:(1)方程7x -4y -12=0可化为y =74x -3,当x =2时,y =12.又f ′(x )=a +bx 2,所以⎩⎨⎧2a -b 2=12,a +b 4=74,解得⎩⎪⎨⎪⎧a =1,b =3.故f (x )=x -3x.(2)是定值,理由如下:设P (x 0,y 0)为曲线y =f (x )上任一点,由f ′(x )=1+3x 2知曲线在点P (x 0,y 0)处的切线方程为y -y 0=⎝⎛⎭⎫1+3x 20(x -x 0), 即y -⎝⎛⎭⎫x 0-3x 0=⎝⎛⎭⎫1+3x 20(x -x 0). 令x =0,得y =-6x 0,得切线与直线x =0的交点坐标为⎝⎛⎭⎫0,-6x 0. 令y =x ,得y =x =2x 0,得切线与直线y =x 的交点坐标为(2x 0,2x 0).所以曲线y =f (x )在点P (x 0,y 0)处的切线与直线x =0,y =x 所围成的三角形的面积S =12⎪⎪⎪⎪-6x 0·|2x 0|=6. 故曲线y =f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形的面积为定值,且此定值为6. 9.已知函数f (x )=ln x -a (x +1)x -1,曲线y =f (x )在点⎝⎛⎭⎫12,f ⎝⎛⎭⎫12处的切线平行于直线y =10x +1. (1)求函数f (x )的单调区间;(2)设直线l 为函数g (x )=ln x 图象上任意一点A (x 0,y 0)处的切线,问:在区间(1,+∞)上是否存在x 0,使得直线l 与曲线h (x )=e x 也相切?若存在,满足条件的 x 0有几个?解:(1)∵函数f (x )=ln x -a (x +1)x -1(x >0且x ≠1),∴f ′(x )=1x +2a(x -1)2,∵曲线y =f (x )在点⎝⎛⎭⎫12,f ⎝⎛⎭⎫12处的切线平行于直线y =10x +1,∴f ′⎝⎛⎭⎫12=2+8a =10,∴a =1,∴f ′(x )=x 2+1x (x -1)2. ∵x >0且x ≠1,∴f ′(x )>0,∴函数f (x )的单调递增区间为(0,1)和(1,+∞),无单调递减区间. (2)在区间(1,+∞)上存在唯一一个满足条件的x 0. ∵g (x )=ln x ,∴g ′(x )=1x,∴切线l 的方程为y -ln x 0=1x 0(x -x 0),即y =1x 0x +ln x 0-1.①设直线l 与曲线h (x )=e x 相切于点(x 1,e x 1), ∵h ′(x )=e x ,∴e x 1=1x 0,∴x 1=-ln x 0,∴直线l 的方程也可以写成y -1x 0=1x 0(x +ln x 0),即y =1x 0x +ln x 0x 0+1x 0.②由①②得ln x 0-1=ln x 0x 0+1x 0,∴ln x 0= x 0+1x 0-1.下证在区间(1,+∞)上存在唯一一个满足条件的x 0. 由(1)可知,f (x )=ln x -x +1x -1在区间(1,+∞)上单调递增,又∵f (e)=-2e -1<0,f (e 2)=e 2-3e 2-1>0,∴结合零点存在性定理,知方程f (x )=0在区间(e ,e 2)上有唯一的实数根,这个根就是所求的唯一满足条件的x 0.第二节 导数的简单应用一、基础知识1.函数的单调性与导数的关系在(a ,b )内可导函数f (x ),f ′(x )在(a ,b )任意子区间内都不恒等于0.f ′(x )≥0⇔f (x )在(a ,b )上为增函数.f ′(x )≤0⇔f (x )在❶(a,b)上为减函数.2.函数的极值(1)函数的极小值:函数y=f(x)在点x=a的函数值f(a)比它在点x=a附近其他点的函数值都小,f′(a)=0;而且在点x=a❷,f(a)叫做函数y=f(x)的极小值.附近的左侧f′(x)<0,右侧f′(x)>0,则点a叫做函数y=f(x)的极小值点❸(2)函数的极大值:函数y=f(x)在点x=b的函数值f(b)比它在点x=b附近的其他点的函数值都大,f′(b)=0;而且在点x=b附近的左侧f′(x)>0,右侧f′(x)<0,则点b叫做函数y=f(x)的极大值点,f(b)叫做函数y=f(x)的极大值.极小值点、极大值点统称为极值点,极大值和极小值统称为极值.3.函数的最值(1)在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值.(2)若函数f(x)在[a,b]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a,b]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值.(3)开区间上的单调连续函数无最值.,(1)f′(x)>0(<0)是f(x)在区间(a,b)内单调递增(减)的充分不必要条件.(2)f′(x)≥0(≤0)是f(x)在区间(a,b)内单调递增(减)的必要不充分条件.(3)由f(x)在区间(a,b)内单调递增(减)可得f′(x)≥0(≤0)在该区间内恒成立,而不是f′(x)>0(<0)恒成立,“=”不能少,必要时还需对“=”进行检验.f′(x 0)=0是x0为f(x)的极值点的必要不充分条件.例如,f(x)=x3,f′(0)=0,但x=0不是极值点.(1)极值点不是点,若函数f(x)在x1处取得极大值,则x1为极大值点,极大值为f(x1);在x2处取得极小值,则x2为极小值点,极小值为f(x2).极大值与极小值之间无确定的大小关系.(2)极值一定在区间内部取得,有极值的函数一定不是单调函数.二、常用结论(1)若所求函数的单调区间不止一个,这些区间之间不能用并集“∪”及“或”连接,只能用“,”“和”字隔开.(2)若函数f(x)在开区间(a,b)内只有一个极值点,则相应的极值一定是函数的最值.(3)极值只能在定义域内取得(不包括端点),最值却可以在端点处取得,有极值的不一定有最值,有最值的也未必有极值;极值有可能成为最值,非常数可导函数最值只要不在端点处取,则必定在极值处取.第一课时导数与函数的单调性考点一求函数的单调区间1.已知函数f(x)=x ln x,则f(x)()A.在(0,+∞)上单调递增B .在(0,+∞)上单调递减C .在⎝⎛⎭⎫0,1e 上单调递增 D .在⎝⎛⎭⎫0,1e 上单调递减 解析:选D 因为函数f (x )=x ln x 的定义域为(0,+∞), 所以f ′(x )=ln x +1(x >0), 当f ′(x )>0时,解得x >1e,即函数f (x )的单调递增区间为⎝⎛⎭⎫1e ,+∞; 当f ′(x )<0时,解得0<x <1e,即函数f (x )的单调递减区间为⎝⎛⎭⎫0,1e ,故选D. 2.若幂函数f (x )的图象过点⎝⎛⎭⎫22,12,则函数g (x )=e x f (x )的单调递减区间为________. 解析:设幂函数f (x )=x a ,因为图象过点⎝⎛⎭⎫22,12,所以12=⎝⎛⎭⎫22a ,a =2,所以f (x )=x 2,故g (x )=e x x 2, 则g ′(x )=e x x 2+2e x x =e x (x 2+2x ), 令g ′(x )<0,得-2<x <0, 故函数g (x )的单调递减区间为(-2,0). 答案:(-2,0)3.(2018·开封调研)已知定义在区间(-π,π)上的函数f (x )=x sin x +cos x ,则f (x )的单调递增区间是___________________________________________________________.解析:f ′(x )=sin x +x cos x -sin x =x cos x . 令f ′(x )=x cos x >0(x ∈(-π,π)), 解得-π<x <-π2或0<x <π2,即函数f (x )的单调递增区间是⎝⎛⎭⎫-π,-π2和⎝⎛⎭⎫0,π2. 答案:⎝⎛⎭⎫-π,-π2和⎝⎛⎭⎫0,π2 考点二 判断含参函数的单调性(2018·全国卷Ⅰ节选)已知函数f (x )=1x -x +a ln x ,讨论f (x )的单调性.[解] f (x )的定义域为(0,+∞),f ′(x )=-1x 2-1+ax =-x 2-ax +1x 2.①当a ≤2时,则f ′(x )≤0, 当且仅当a =2,x =1时,f ′(x )=0, 所以f (x )在(0,+∞)上单调递减. ②当a >2时,令f ′(x )=0, 得x =a -a 2-42或x =a +a 2-42.当x ∈⎝ ⎛⎭⎪⎫0,a -a 2-42∪⎝ ⎛⎭⎪⎫a +a 2-42,+∞时,f ′(x )<0;当x ∈⎝ ⎛⎭⎪⎫a -a 2-42,a +a 2-42时,f ′(x )>0. 所以f (x )在⎝ ⎛⎭⎪⎫0,a -a 2-42,⎝ ⎛⎭⎪⎫a +a 2-42,+∞上单调递减,在⎝ ⎛⎭⎪⎫a -a 2-42,a +a 2-42上单调递增. 综合①②可知,当a ≤2时,f (x )在(0,+∞)上单调递减;当a >2时,f (x )在⎝ ⎛⎭⎪⎫0,a -a 2-42,⎝ ⎛⎭⎪⎫a +a 2-42,+∞上单调递减,在⎝ ⎛⎭⎪⎫a -a 2-42,a +a 2-42上单调递增.[题组训练]已知函数g (x )=ln x +ax 2+bx ,其中g (x )的函数图象在点(1,g (1))处的切线平行于x 轴. (1)确定a 与b 的关系;(2)若a ≥0,试讨论函数g (x )的单调性. 解:(1)g ′(x )=1x+2ax +b (x >0).由函数g (x )的图象在点(1,g (1))处的切线平行于x 轴, 得g ′(1)=1+2a +b =0,所以b =-2a -1. (2)由(1)得g ′(x )=2ax 2-(2a +1)x +1x =(2ax -1)(x -1)x .因为函数g (x )的定义域为(0,+∞), 所以当a =0时,g ′(x )=-x -1x. 由g ′(x )>0,得0<x <1,由g ′(x )<0,得x >1, 即函数g (x )在(0,1)上单调递增,在(1,+∞)上单调递减. 当a >0时,令g ′(x )=0,得x =1或x =12a ,若12a <1,即a >12,由g ′(x )>0,得x >1或0<x <12a ,由g ′(x )<0,得12a<x <1,即函数g (x )在⎝⎛⎭⎫0,12a ,(1,+∞)上单调递增,在⎝⎛⎭⎫12a ,1上单调递减; 若12a >1,即0<a <12,由g ′(x )>0,得x >12a或0<x <1, 由g ′(x )<0,得1<x <12a,即函数g (x )在(0,1),⎝⎛⎭⎫12a ,+∞上单调递增,在⎝⎛⎭⎫1,12a 上单调递减; 若12a =1,即a =12,在(0,+∞)上恒有g ′(x )≥0, 即函数g (x )在(0,+∞)上单调递增.综上可得,当a =0时,函数g (x )在(0,1)上单调递增,在(1,+∞)上单调递减; 当0<a <12时,函数g (x )在(0,1),⎝⎛⎭⎫12a ,+∞上单调递增,在⎝⎛⎭⎫1,12a 上单调递减; 当a =12时,函数g (x )在(0,+∞)上单调递增;当a >12时,函数g (x )在⎝⎛⎭⎫0,12a ,(1,+∞)上单调递增, 在⎝⎛⎭⎫12a ,1上单调递减.考点三 根据函数的单调性求参数[典例精析](1)若函数f (x )=x -13sin 2x +a sin x 在(-∞,+∞)单调递增,则a 的取值范围是________.(2)若函数h (x )=ln x -12ax 2-2x (a ≠0)在[1,4]上单调递减,则a 的取值范围为________.[解析] (1)函数f (x )=x -13sin 2x +a sin x 在(-∞,+∞)单调递增,等价于f ′(x )=1-23cos 2x +a cos x =-43cos 2x +a cos x +53≥0在(-∞,+∞)恒成立.设cos x =t ,则g (t )=-43t 2+at +53≥0在[-1,1]恒成立,所以⎩⎨⎧g (1)=-43+a +53≥0,g (-1)=-43-a +53≥0,解得-13≤a ≤13.(2)因为h (x )在[1,4]上单调递减,所以当x ∈[1,4]时,h ′(x )=1x -ax -2≤0恒成立,即a ≥1x 2-2x 恒成立.由(1)知G (x )=1x 2-2x,所以a ≥G (x )max ,而G (x )=⎝⎛⎭⎫1x -12-1, 因为x ∈[1,4],所以1x ∈⎣⎡⎦⎤14,1, 所以G (x )max =-716(此时x =4), 所以a ≥-716,又因为a ≠0,所以a 的取值范围是⎣⎡⎭⎫-716,0∪(0,+∞). 答案:(1)⎣⎡⎦⎤-13,13 (2)⎣⎡⎭⎫-716,0∪(0,+∞)[变式发散]1.(变条件)若本例(2)条件变为“函数h (x )在[1,4]上单调递增”,则a 的取值范围为________. 解析:因为h (x )在[1,4]上单调递增,所以当x ∈[1,4]时,h ′(x )≥0恒成立,即a ≤1x 2-2x 恒成立,又因为当 x ∈[1,4]时,⎝⎛⎭⎫1x 2-2x min =-1(此时x =1), 所以a ≤-1,即a 的取值范围是(-∞,-1]. 答案:(-∞,-1]2.(变条件)若本例(2)条件变为“函数h (x )在[1,4]上存在单调递减区间”,则a 的取值范围为________. 解析:因为h (x )在[1,4]上存在单调递减区间, 所以h ′(x )<0在[1,4]上有解, 所以当x ∈[1,4]时,a >1x 2-2x有解,而当x ∈[1,4]时,⎝⎛⎭⎫1x 2-2x min =-1(此时x =1), 所以a >-1,又因为a ≠0,所以a 的取值范围是(-1,0)∪(0,+∞). 答案:(-1,0)∪(0,+∞)3.(变条件)若本例(2)条件变为“函数h (x )在[1,4]上不单调”,则a 的取值范围为________. 解析:因为h (x )在[1,4]上不单调,所以h ′(x )=0在(1,4)上有解,即a =1x 2-2x =⎝⎛⎭⎫1x -12-1在(1,4)上有解, 令m (x )=1x 2-2x ,x ∈(1,4),则-1<m (x )<-716.所以实数a 的取值范围是⎝⎛⎭⎫-1,-716. 答案:⎝⎛⎭⎫-1,-716[题组训练]1.(2019·渭南质检)已知函数f (x )=ax 3+bx 2的图象经过点M (1,4),曲线在点M 处的切线恰好与直线x +9y =0垂直.若函数f (x )在区间[m ,m +1]上单调递增,则m 的取值范围是________.解析:∵f (x )=ax 3+bx 2的图象经过点M (1,4), ∴a +b =4,①f ′(x )=3ax 2+2bx ,则f ′(1)=3a +2b .由题意可得f ′(1)·⎝⎛⎭⎫-19=-1,即3a +2b =9.② 联立①②两式解得a =1,b =3, ∴f (x )=x 3+3x 2,f ′(x )=3x 2+6x . 令f ′(x )=3x 2+6x ≥0,得x ≥0或x ≤-2. ∵函数f (x )在区间[m ,m +1]上单调递增, ∴[m ,m +1]⊆(-∞,-2]∪[0,+∞), ∴m ≥0或m +1≤-2,即m ≥0或m ≤-3. 答案:(-∞,-3]∪[0,+∞)2.已知函数f (x )=3xa -2x 2+ln x (a >0),若函数f (x )在[1,2]上为单调函数,则a 的取值范围是________.解析:f ′(x )=3a -4x +1x ,若函数f (x )在[1,2]上为单调函数,即f ′(x )=3a -4x +1x ≥0或f ′(x )=3a -4x +1x ≤0在[1,2]上恒成立,即3a ≥4x -1x 或3a ≤4x -1x 在[1,2]上恒成立. 令h (x )=4x -1x,则h (x )在[1,2]上单调递增, 所以3a ≥h (2)或3a ≤h (1),即3a ≥152或3a ≤3,又a >0, 所以0<a ≤25或a ≥1.答案:⎝⎛⎦⎤0,25∪[1,+∞) [课时跟踪检测]A 级1.下列函数中,在(0,+∞)上为增函数的是( )A .f (x )=sin 2xB .f (x )=x e xC .f (x )=x 3-xD .f (x )=-x +ln x解析:选B 对于A ,f (x )=sin 2x 的单调递增区间是⎣⎡⎦⎤k π-π4,k π+π4(k ∈Z);对于B ,f ′(x )=e x (x +1),当x ∈(0,+∞)时,f ′(x )>0,∴函数f (x )=x e x 在(0,+∞)上为增函数;对于C ,f ′(x )=3x 2-1,令f ′(x )>0,得x >33或x <-33,∴函数f (x )=x 3-x 在⎝⎛⎭⎫-∞,-33和⎝⎛⎭⎫33,+∞上单调递增;对于D ,f ′(x )=-1+1x =-x -1x ,令f ′(x )>0,得0<x <1,∴函数f (x )=-x +ln x 在区间(0,1)上单调递增.综上所述,应选B.2.已知函数f (x )=x 2+2cos x ,若f ′(x )是f (x )的导函数,则函数f ′(x )的大致图象是( )解析:选A 设g (x )=f ′(x )=2x -2sin x ,则g ′(x )2-2cos x ≥0,所以函数f ′(x )在R 上单调递增,结合选项知选A.3.若函数f (x )=(x 2-cx +5)e x 在区间⎣⎡⎦⎤12,4上单调递增,则实数c 的取值范围是( ) A .(-∞,2] B .(-∞,4] C .(-∞,8]D .[-2,4]解析:选B f ′(x )=[x 2+(2-c )x -c +5]e x ,∵函数f (x )在区间⎣⎡⎦⎤12,4上单调递增,∴x 2+(2-c )x -c +5≥0对任意x ∈⎣⎡⎦⎤12,4恒成立,即(x +1)c ≤x 2+2x +5对任意x ∈⎣⎡⎦⎤12,4恒成立,∴c ≤x 2+2x +5x +1对任意x ∈⎣⎡⎦⎤12,4恒成立,∵x ∈⎣⎡⎦⎤12,4,∴x 2+2x +5x +1=x +1+4x +1≥4,当且仅当x =1时等号成立,∴c ≤4. 4.(2019·咸宁联考)设函数f (x )=12x 2-9ln x 在区间[a -1,a +1]上单调递减,则实数a 的取值范围是( )A .(1,2]B .(4,+∞)C .(-∞,2)D .(0,3]解析:选A ∵f (x )=12x 2-9ln x ,∴f ′(x )=x -9x (x >0),由x -9x ≤0,得0<x ≤3,∴f (x )在(0,3]上是减函数,则[a -1,a +1]⊆(0,3],∴a -1>0且a +1≤3,解得1<a ≤2.5.(2019·南昌联考)已知函数f (x +1)是偶函数,当x ∈(1,+∞)时,函数f (x )=sin x -x ,设a =f ⎝⎛⎭⎫-12,b =f (3),c =f (0),则a ,b ,c 的大小关系为( )A .b <a <cB .c <a <bC .b <c <aD .a <b <c解析:选A ∵函数f (x +1)是偶函数,∴函数f (x )的图象关于直线x =1对称,∴a =f ⎝⎛⎭⎫-12=f ⎝⎛⎭⎫52,b =f (3),c =f (0)=f (2).又∵当x ∈(1,+∞)时,函数f (x )=sin x -x ,∴当x ∈(1,+∞)时,f ′(x )=cos x -1≤0,即f (x )=sin x -x 在(1,+∞)上为减函数,∴b <a <c .6.已知函数y =f (x )(x ∈R)的图象如图所示,则不等式xf ′(x )≥0的解集为________________.解析:由f (x )图象特征可得,在⎝⎛⎦⎤-∞,12和[2,+∞)上f ′(x )≥0, 在 ⎝⎛⎭⎫12,2上f ′(x )<0,所以xf ′(x )≥0⇔⎩⎪⎨⎪⎧ x ≥0,f ′(x )≥0或⎩⎪⎨⎪⎧x ≤0,f ′(x )≤0⇔0≤x ≤12或x ≥2,所以xf ′(x )≥0的解集为⎣⎡⎦⎤0,12∪[2,+∞). 答案:⎣⎡⎦⎤0,12∪[2,+∞) 7.(2019·岳阳模拟)若函数f (x )=x 2-e x -ax 在R 上存在单调递增区间,则实数a 的取值范围是________. 解析:∵函数f (x )=x 2-e x -ax 在R 上存在单调递增区间, ∴f ′(x )=2x -e x -a >0,即a <2x -e x 有解. 设g (x )=2x -e x ,则g ′(x )=2-e x , 令g ′(x )=0,得x =ln 2,则当x <ln 2时,g ′(x )>0,g (x )单调递增, 当x >ln 2时,g ′(x )<0,g (x )单调递减,∴当x =ln 2时,g (x )取得最大值,且g (x )max =g (ln 2)=2ln 2-2,∴a <2ln 2-2. 答案:(-∞,2ln 2-2)8.设f (x )=a (x -5)2+6ln x ,其中a ∈R ,曲线y =f (x )在点(1,f (1))处的切线与y 轴相交于点(0,6). (1)确定a 的值;(2)求函数f (x )的单调区间. 解:(1)因为f (x )=a (x -5)2+6ln x , 所以f ′(x )=2a (x -5)+6x.令x =1,得f (1)=16a ,f ′(1)=6-8a ,所以曲线y =f (x )在点(1,f (1))处的切线方程为y -16a =(6-8a )(x -1), 由点(0,6)在切线上,可得6-16a =8a -6,解得a =12.(2)由(1)知,f (x )=12(x -5)2+6ln x (x >0),f ′(x )=x -5+6x =(x -2)(x -3)x .令f ′(x )=0,解得x =2或x =3. 当0<x <2或x >3时,f ′(x )>0;当2<x <3时,f ′(x )<0,故函数f (x )的单调递增区间是(0,2),(3,+∞),单调递减区间是(2,3).9.已知e 是自然对数的底数,实数a 是常数,函数f (x )=e x -ax -1的定义域为(0,+∞).(1)设a =e ,求函数f (x )的图象在点(1,f (1))处的切线方程; (2)判断函数f (x )的单调性. 解:(1)∵a =e ,∴f (x )=e x -e x -1, ∴f ′(x )=e x -e ,f (1)=-1,f ′(1)=0.∴当a =e 时,函数f (x )的图象在点(1,f (1))处的切线方程为y =-1. (2)∵f (x )=e x -ax -1,∴f ′(x )=e x -a . 易知f ′(x )=e x -a 在(0,+∞)上单调递增.∴当a ≤1时,f ′(x )>0,故f (x )在(0,+∞)上单调递增; 当a >1时,由f ′(x )=e x -a =0,得x =ln a ,∴当0<x <ln a 时,f ′(x )<0,当x >ln a 时,f ′(x )>0, ∴f (x )在(0,ln a )上单调递减,在(ln a ,+∞)上单调递增. 综上,当a ≤1时,f (x )在(0,+∞)上单调递增;当a >1时,f (x )在(0,ln a )上单调递减,在(ln a ,+∞)上单调递增.B 级1.(2019·南昌模拟)已知函数f (x )=x sin x ,x 1,x 2∈⎝⎛⎭⎫-π2,π2,且f (x 1)<f (x 2),那么( ) A .x 1-x 2>0B .x 1+x 2>0C .x 21-x 22>0D .x 21-x 22<0解析:选D 由f (x )=x sin x ,得f ′(x )=sin x +x cos x =cos x (tan x +x ),当x ∈⎝⎛⎭⎫0,π2时,f ′(x )>0,即f (x )在⎝⎛⎭⎫0,π2上为增函数,又∵f (-x )=-x sin(-x )=x sin x =f (x ),∴f (x )为偶函数,∴当f (x 1)<f (x 2)时,有f (|x 1|)<f (|x 2|),∴|x 1|<|x 2|,x 21-x 22<0,故选D.2.函数f (x )=12x 2-ln x 的单调递减区间为________.解析:由题意知,函数f (x )的定义域为(0,+∞),由f (x )=x -1x <0,得0<x <1,所以函数f (x )的单调递减区间为(0,1).答案:(0,1)3.(2019·郴州模拟)已知函数f (x )=-12x 2+4x -3ln x 在区间[t ,t +1]上不单调,则实数t 的取值范围是________.解析:由题意知f ′(x )=-x +4-3x =-(x -1)(x -3)x ,由f ′(x )=0得函数f (x )的两个极值点为1和3,则只要这两个极值点有一个在区间(t ,t +1)内,函数f (x )在区间[t ,t +1]上就不单调,∴1∈(t ,t +1)或3∈(t ,t +1)⇔⎩⎪⎨⎪⎧ t <1,t +1>1或⎩⎪⎨⎪⎧t <3,t +1>3⇔0<t <1或2<t <3.答案:(0,1)∪(2,3)4.已知函数y =xf ′(x )的图象如图所示(其中f ′(x )是函数f (x )的导函数),下面四个图象中,y =f (x )的图象大致是( )解析:选C 当0<x <1时,xf ′(x )<0,∴f ′(x )<0,故y =f (x )在(0,1)上为减函数;当x >1时,xf ′(x )>0,∴f ′(x )>0,故y =f (x )在(1,+∞)上为增函数,因此排除A 、B 、D ,故选C.5.已知函数f (x )=x 3-2x +e x -1e x ,其中e 是自然对数的底数.若f (a -1)+f (2a 2)≤0,则实数a 的取值范围是________.解析:由f (x )=x 3-2x +e x -1e x ,得f (-x )=-x 3+2x +1e x -e x =-f (x ),所以f (x )是R 上的奇函数.又f ′(x )=3x 2-2+e x +1e x ≥3x 2-2+2e x ·1ex =3x 2≥0,当且仅当x =0时取等号, 所以f (x )在其定义域内单调递增. 因为f (a -1)+f (2a 2)≤0, 所以f (a -1)≤-f (2a 2)=f (-2a 2), 所以a -1≤-2a 2,解得-1≤a ≤12,故实数a 的取值范围是⎣⎡⎦⎤-1,12. 答案:⎣⎡⎦⎤-1,12 6.已知f (x )=ax -1x ,g (x )=ln x ,x >0,a ∈R 是常数.(1)求函数y =g (x )的图象在点P (1,g (1))处的切线方程;(2)设F (x )=f (x )-g (x ),讨论函数F (x )的单调性. 解:(1)因为g (x )=ln x (x >0), 所以g (1)=0,g ′(x )=1x,g ′(1)=1,故函数g (x )的图象在P (1,g (1))处的切线方程是y =x -1. (2)因为F (x )=f (x )-g (x )=ax -1x -ln x (x >0),所以F ′(x )=a +1x 2-1x=a +⎝⎛⎭⎫1x -122-14. ①当a ≥14时,F ′(x )≥0,F (x )在(0,+∞)上单调递增;②当a =0时,F ′(x )=1-xx 2,F (x )在(0,1)上单调递增,在(1,+∞)上单调递减;③当0<a <14时,由F ′(x )=0,得x 1=1-1-4a 2a >0,x 2=1+1-4a2a>0,且x 2>x 1, 故F (x )在⎝ ⎛⎭⎪⎫0,1-1-4a 2a ,⎝ ⎛⎭⎪⎫1+1-4a 2a ,+∞上单调递增,在⎝ ⎛⎭⎪⎫1-1-4a 2a ,1+1-4a 2a 上单调递减;④当a <0时,由F ′(x )=0,得 x 1=1-1-4a 2a >0,x 2=1+1-4a 2a<0, F (x )在⎝ ⎛⎭⎪⎫0,1-1-4a 2a 上单调递增,在⎝ ⎛⎭⎪⎫1-1-4a 2a ,+∞上单调递减.7.已知函数f (x )=ax -ln x ,g (x )=e ax +2x ,其中a ∈R. (1)当a =2时,求函数f (x )的极值;(2)若存在区间D ⊆(0,+∞),使得f (x )与g (x )在区间D 上具有相同的单调性,求实数a 的取值范围. 解:(1)当a =2时,f (x )=2x -ln x ,定义域为(0,+∞),则f ′(x )=2-1x,故当x ∈⎝⎛⎭⎫0,12时,f ′(x )<0,f (x )单调递减;当x ∈⎝⎛⎭⎫12,+∞ 时,f ′(x )>0,f (x )单调递增. 所以f (x )在x =12处取得极小值,且f ⎝⎛⎭⎫12=1+ln 2,无极大值. (2)由题意知,f ′(x )=a -1x,g ′(x )=a e ax +2,①当a >0时,g ′(x )>0,即g (x )在R 上单调递增,而f (x )在⎝⎛⎭⎫1a ,+∞上单调递增,故必存在区间D ⊆(0,+∞),使得f (x )与g (x )在区间D 上单调递增;②当a =0时,f ′(x )=-1x <0,故f (x )在(0,+∞)上单调递减,而g (x )在(0,+∞)上单调递增,故不存在满足条件的区间D ;③当a <0时,f ′(x )=a -1x <0,即f (x )在(0,+∞)上单调递减,而g (x )在⎝⎛⎭⎫-∞,1a ln ⎝⎛⎭⎫-2a 上单调递减,在⎝⎛⎭⎫1a ln ⎝⎛⎭⎫-2a ,+∞上单调递增,若存在区间D ⊆(0,+∞),使得f (x )与g (x )在区间D 上有相同的单调性,则有1a ln ⎝⎛⎭⎫-2a >0,解得a <-2. 综上可知,实数a 的取值范围为(-∞,-2)∪(0,+∞).第二课时 导数与函数的极值、最值 考点一 利用导数研究函数的极值考法(一) 已知函数的解析式求函数的极值点个数或极值[例1] 已知函数f (x )=x -1+ae x (a ∈R ,e 为自然对数的底数),求函数f (x )的极值.[解] 由f (x )=x -1+a e x ,得f ′(x )=1-aex .①当a ≤0时,f ′(x )>0,f (x )为(-∞,+∞)上的增函数,所以函数f (x )无极值. ②当a >0时,令f ′(x )=0, 得e x =a ,即x =ln a ,当x ∈(-∞,ln a )时,f ′(x )<0; 当x ∈(ln a ,+∞)时,f ′(x )>0,所以函数f (x )在(-∞,ln a )上单调递减,在(ln a ,+∞)上单调递增,故函数f (x )在x =ln a 处取得极小值且极小值为f (ln a )=ln a ,无极大值.综上,当a ≤0时,函数f (x )无极值;当a >0时,函数f (x )在x =ln a 处取得极小值ln a ,无极大值.[例2] 设函数f (x )=ln(x +1)+a (x 2-x ),其中a ∈R.讨论函数f (x )极值点的个数,并说明理由. [解] f ′(x )=1x +1+a (2x -1)=2ax 2+ax -a +1x +1(x >-1).令g (x )=2ax 2+ax -a +1,x ∈(-1,+∞).①当a =0时,g (x )=1,f ′(x )>0,函数f (x )在(-1,+∞)上单调递增,无极值点. ②当 a >0时,Δ=a 2-8a (1-a )=a (9a -8). 当0<a ≤89时,Δ≤0,g (x )≥0,f ′(x )≥0,函数f (x )在(-1,+∞)上单调递增,无极值点. 当a >89时,Δ>0,设方程2ax 2+ax -a +1=0的两根为x 1,x 2(x 1<x 2), 因为x 1+x 2=-12,所以x 1<-14,x 2>-14.由g (-1)=1>0,可得-1<x 1<-14.所以当x ∈(-1,x 1)时,g (x )>0,f ′(x )>0,函数f (x )单调递增; 当x ∈(x 1,x 2)时,g (x )<0,f ′(x )<0,函数f (x )单调递减; 当x ∈(x 2,+∞)时,g (x )>0,f ′(x )>0, 函数f (x )单调递增.。
2020版高考数学一轮复习第三章导数及其应用第2讲导数与函数的单调性教案理(含解析)新人教A版
第2讲 导数与函数的单调性基础知识整合函数的导数与单调性的关系 函数y =f (x )在某个区间内可导:(1)若f ′(x )>0,则f (x )在这个区间内□01单调递增; (2)若f ′(x )<0,则f (x )在这个区间内□02单调递减; (3)若f ′(x )=0,则f (x )在这个区间内是□03常数函数.1.在某区间内f ′(x )>0(f ′(x )<0)是函数f (x )在此区间上为增(减)函数的充分不必要条件.2.可导函数f (x )在(a ,b )上是增(减)函数的充要条件是对∀x ∈(a ,b ),都有f ′(x )≥0(f ′(x )≤0)且f ′(x )在(a ,b )上的任何子区间内都不恒为零.1.(2019·许昌模拟)函数f (x )=ln xx的单调递减区间是( )A .(e ,+∞)B .(1,+∞)C .(0,e)D .(0,1)答案 A解析 f ′(x )=1-ln x x2,由x >0及f ′(x )<0解得x >e.故选A. 2.函数f (x )=x 3-ax 为R 上增函数的一个充分不必要条件是( ) A .a ≤0 B .a <0 C .a ≥0 D .a >0答案 B解析 函数f (x )=x 3-ax 为R 上增函数的充分必要条件是f ′(x )=3x 2-a ≥0在R 上恒成立,所以a ≤(3x 2)min .因为(3x 2)min =0,所以a ≤0.而(-∞,0)⊆(-∞,0].故选B.3.当x >0时,f (x )=x +4x的单调减区间是( )A .(2,+∞)B .(0,2)C .(2,+∞)D .(0,2)答案 B解析 f ′(x )=1-4x2,令f ′(x )<0,∴⎩⎪⎨⎪⎧1-4x2<0,x >0,∴0<x <2.∴f (x )的减区间为(0,2).4.(2019·芜湖模拟)函数f (x )=e x-e x ,x ∈R 的单调递增区间是( ) A .(0,+∞) B .(-∞,0) C .(-∞,1) D .(1,+∞)答案 D解析 由题意知,f ′(x )=e x-e ,令f ′(x )>0,解得x >1.故选D. 5.已知定义在R 上的奇函数f (x )的导函数为f ′(x ),当x >0时,f ′(x )<f xx,且f (-1)=0,则使得f (x )>0成立的x 的取值范围是( )A .(-1,0)∪(1,+∞)B .(-∞,-1)∪(0,1)C .(0,1)∪(1,+∞)D .(-∞,-1)∪(-1,0)答案 B6.(2019·九江模拟)已知函数f (x )=12x 2+2ax -ln x ,若f (x )在区间⎣⎢⎡⎦⎥⎤13,2上是增函数,则实数a 的取值范围为________.答案 ⎣⎢⎡⎭⎪⎫43,+∞解析 由题意知f ′(x )=x +2a -1x ≥0在⎣⎢⎡⎦⎥⎤13,2上恒成立,即2a ≥-x +1x 在⎣⎢⎡⎦⎥⎤13,2上恒成立,因为g (x )=-x +1x 在⎣⎢⎡⎦⎥⎤13,2上单调递减,所以g (x )≤g ⎝ ⎛⎭⎪⎫13=83,所以2a ≥83,即a ≥43.故填⎣⎢⎡⎭⎪⎫43,+∞.核心考向突破考向一 利用导数求函数的单调区间例1 (1)(2019·邯郸模拟)已知函数f (x )=x 2-5x +2ln x ,则函数f (x )的单调递增区间是( )A.⎝ ⎛⎭⎪⎫0,12和(1,+∞) B .(0,1)和(2,+∞)C.⎝ ⎛⎭⎪⎫0,12和(2,+∞) D .(1,2)答案 C解析 函数f (x )=x 2-5x +2ln x 的定义域是(0,+∞),令f ′(x )=2x -5+2x=2x 2-5x +2x=x -x -x>0,解得0<x <12或x >2,故函数f (x )的单调递增区间是⎝ ⎛⎭⎪⎫0,12和(2,+∞).(2)设函数f (x )=x (e x-1)-12x 2,则f (x )的单调递增区间是________,单调递减区间是________.答案 (-∞,-1),(0,+∞) [-1,0] 解析 ∵f (x )=x (e x-1)-12x 2,∴f ′(x )=e x-1+x e x-x =(e x-1)(x +1). 当x ∈(-∞,-1)时,f ′(x )>0. 当x ∈[-1,0]时,f ′(x )≤0. 当x ∈(0,+∞)时,f ′(x )>0.故f (x )在(-∞,-1),(0,+∞)上单调递增,在[-1,0]上单调递减. 触类旁通 当方程fx =0可解时,确定函数的定义域,解方程f x =0,求出实数根,把函数f x 的间断点即f x 的无定义点的横坐标和实根按从小到大的顺序排列起来,把定义域分成若干个小区间,确定fx 在各个区间内的符号,从而确定单调区间.即时训练 1.(2019·陕西模拟)函数f (x )=axx 2+1(a >0)的单调递增区间是( )A .(-∞,-1)B .(-1,1)C .(1,+∞)D .(-∞,-1)∪(1,+∞)答案 B解析 函数f (x )的定义域为R ,f ′(x )=a-x 2x 2+2=a -x +xx 2+2.由于a >0,要使f ′(x )>0,只需(1-x )·(1+x )>0,解得x ∈(-1,1).故选B.2.函数f (x )=x +2cos x (x ∈(0,π))的单调递减区间为________.答案 ⎝ ⎛⎭⎪⎫π6,5π6解析 f ′(x )=1-2sin x ,令f ′(x )<0得sin x >12,故π6<x <5π6.考向二 利用导数讨论函数的单调区间例2 (1)(2018·青岛模拟)已知函数f (x )=ln x -ax (a ∈R ),讨论函数f (x )的单调性.解 f (x )的定义域为(0,+∞),f ′(x )=1x-a (x >0),①当a ≤0时,f ′(x )=1x-a >0,即函数f (x )在(0,+∞)上单调递增.②当a >0时,令f ′(x )=1x -a =0,可得x =1a,当0<x <1a 时,f ′(x )=1-axx>0;当x >1a 时,f ′(x )=1-ax x<0,故函数f (x )在⎝⎛⎭⎪⎫0,1a 上单调递增,在⎝ ⎛⎭⎪⎫1a ,+∞上单调递减.由①②知,当a ≤0时,f (x )在(0,+∞)上单调递增;当a >0时,f (x )在⎝⎛⎭⎪⎫0,1a 上单调递增,在⎝ ⎛⎭⎪⎫1a ,+∞上单调递减.(2)已知函数f (x )=13x 3+x 2+ax +1(a ∈R ),求函数f (x )的单调区间.解 f ′(x )=x 2+2x +a ,方程x 2+2x +a =0的判别式Δ=4-4a =4(1-a ), 若a ≥1,则Δ≤0,f ′(x )=x 2+2x +a ≥0,∴f (x )在R 上单调递增.若a <1,则Δ>0,方程x 2+2x +a =0有两个不同的实数根,x 1=-1-1-a ,x 2=-1+1-a ,当x <x 1或x >x 2时,f ′(x )>0;当x 1<x <x 2时,f ′(x )<0,∴f (x )的单调递增区间为(-∞,-1-1-a )和(-1+1-a ,+∞), 单调递减区间为(-1-1-a ,-1+1-a ). 触类旁通研究含参数的函数的单调性,要依据参数对不等式解集的影响进行分类讨论.遇二次三项式因式常考虑二次项系数、对应方程的判别式以及根的大小关系,以此来确定分界点,分情况讨论.划分函数的单调区间时,要在函数定义域内讨论,还要确定导数为0的点和函数的间断点.个别导数为0的点不影响所在区间的单调性,如f x=x 3,fx =3x2f x =0在x =0时取到,f x 在R 上是增函数.即时训练 3.已知函数f (x )=e x(ax 2-2x +2)(a >0),试讨论f (x )的单调性. 解 由题意得f ′(x )=e x[ax 2+(2a -2)x ](a >0),令f ′(x )=0,解得x 1=0,x 2=2-2aa.(1)当0<a <1时,f (x )的单调递增区间为(-∞,0)和⎝⎛⎭⎪⎫2-2a a ,+∞,单调递减区间为⎝⎛⎭⎪⎫0,2-2a a ;(2)当a =1时,f (x )在(-∞,+∞)内单调递增;(3)当a >1时,f (x )的单调递增区间为⎝ ⎛⎭⎪⎫-∞,2-2a a 和(0,+∞),单调递减区间为⎝ ⎛⎭⎪⎫2-2a a ,0. 4.已知函数f (x )=(a -1)ln x +ax 2+1,a ∈R ,试讨论f (x )的单调性. 解 f (x )的定义域为(0,+∞),f ′(x )=a -1x +2ax =2ax 2+a -1x.(1)当a ≥1时,f ′(x )>0,故f (x )在(0,+∞)上单调递增. (2)当a ≤0时,f ′(x )<0,故f (x )在(0,+∞)上单调递减. (3)当0<a <1时,令f ′(x )=0, 解得x =1-a2a, 则当x ∈⎝⎛⎭⎪⎫0,1-a 2a 时,f ′(x )<0; 当x ∈⎝⎛⎭⎪⎫1-a 2a ,+∞时,f ′(x )>0, 故f (x )在⎝⎛⎭⎪⎫0,1-a 2a 上单调递减, 在⎝⎛⎭⎪⎫1-a 2a ,+∞上单调递增. 考向三 利用导数解决函数单调性的应用问题角度1 比较大小或解不等式例3 (1)已知函数f (x )=-xex +ln 2,则( )A .f ⎝ ⎛⎭⎪⎫1e =f ⎝ ⎛⎭⎪⎫12B .f ⎝ ⎛⎭⎪⎫1e <f ⎝ ⎛⎭⎪⎫12C .f ⎝ ⎛⎭⎪⎫1e >f ⎝ ⎛⎭⎪⎫12 D .f ⎝ ⎛⎭⎪⎫1e ,f ⎝ ⎛⎭⎪⎫12的大小关系无法确定 答案 C解析 f ′(x )=-e x--xxe x ·ex=x -1ex,当x <1时,f ′(x )<0,函数f (x )单调递减.∵1e <12<1,∴f ⎝ ⎛⎭⎪⎫1e >f ⎝ ⎛⎭⎪⎫12.故选C. (2)已知定义域为R 的函数f (x )满足f (4)=-3,且对任意的x ∈R 总有f ′(x )<3,则不等式f (x )<3x -15的解集为________.答案 (4,+∞)解析 令g (x )=f (x )-3x +15,则g ′(x )=f ′(x )-3<0,所以g (x )在R 上是减函数.又g (4)=f (4)-3×4+15=0,所以f (x )<3x -15的解集为(4,+∞).触类旁通利用导数比较大小或解不等式的常用技巧利用题目条件,构造辅助函数,把比较大小或求解不等式的问题转化为先利用导数研究函数的单调性问题,再由单调性比较大小或解不等式.即时训练 5.(2019·青岛二中月考)已知定义域为R 的函数f (x )的导数为f ′(x ),且满足f ′(x )<2x ,f (2)=3,则不等式f (x )>x 2-1的解集是( )A .(-∞,-1)B .(-1,+∞)C .(2,+∞)D .(-∞,2)答案 D解析 令g (x )=f (x )-x 2,则g ′(x )=f ′(x )-2x <0,即函数g (x )在R 上单调递减.又不等式f (x )>x 2-1可化为f (x )-x 2>-1,而g (2)=f (2)-22=3-4=-1,所以不等式可化为g (x )>g (2),故不等式的解集为(-∞,2).故选D.6.(2019·河北石家庄模拟)已知f (x )=ln x x,则( )A .f (2)>f (e)>f (3)B .f (3)>f (e)>f (2)C .f (e)>f (2)>f (3)D .f (e)>f (3)>f (2)答案 D解析 f ′(x )=1-ln x x2,当x ∈(0,e)时,f ′(x )>0;当x ∈(e ,+∞)时,f ′(x )<0,x =e 时,f (x )max =f (e).f (2)=ln 22=ln 86,f (3)=ln 33=ln 96, f (e)>f (3)>f (2).故选D.角度2 根据函数的单调性求参数例4 (1)设函数f (x )=12x 2-9ln x 在区间[a -1,a +1]上单调递减,则实数a 的取值范围是( )A .(1,2]B .(4,+∞)C .(-∞,2)D .(0,3]答案 A解析 因为f (x )=12x 2-9ln x ,所以f ′(x )=x -9x (x >0),当x -9x ≤0时,有0<x ≤3,即在(0,3]上函数f (x )是减函数,则[a -1,a +1]⊆(0,3],所以a -1>0且a +1≤3,解得1<a ≤2.故选A.(2)(2019·西宁模拟)若函数f (x )=-13x 3+12x 2+2ax 在⎣⎢⎡⎭⎪⎫23,+∞上存在单调递增区间,则a 的取值范围是________.答案 ⎝ ⎛⎭⎪⎫-19,+∞解析 对f (x )求导,得f ′(x )=-x 2+x +2a =-⎝ ⎛⎭⎪⎫x -122+14+2a .当x ∈⎣⎢⎡⎭⎪⎫23,+∞时,f ′(x )的最大值为f ′⎝ ⎛⎭⎪⎫23=29+2a .令29+2a >0,解得a >-19.所以a 的取值范围是⎝ ⎛⎭⎪⎫-19,+∞. 触类旁通(1)f (x )在区间D 上单调递增(减),只要f ′(x )≥0(≤0)在D 上恒成立即可,如果能够分离参数,则尽可能分离参数后转化为参数值与函数最值之间的关系.二次函数在区间D 上大于零恒成立,讨论的标准是二次函数图象的对称轴与区间D 的相对位置,一般分对称轴在区间左侧、内部、右侧进行讨论.即时训练 7.若函数f (x )=x 2+ax +1x 在⎝ ⎛⎭⎪⎫12,+∞上是增函数,则a 的取值范围是________.答案 [3,+∞)解析 由条件知f ′(x )=2x +a -1x 2≥0在⎝ ⎛⎭⎪⎫12,+∞上恒成立,即a ≥1x 2-2x 在⎝ ⎛⎭⎪⎫12,+∞上恒成立.∵函数y =1x 2-2x 在⎝ ⎛⎭⎪⎫12,+∞上为减函数,∴y max<1⎝ ⎛⎭⎪⎫122-2×12=3,∴a ≥3.8.已知函数f (x )=-12x 2+4x -3ln x 在[t ,t +1]上不单调,则t 的取值范围是________.答案 (0,1)∪(2,3)解析 由题意知f ′(x )=-x +4-3x =-x 2+4x -3x=-x -x -x,由f ′(x )=0得函数f (x )的两个极值点为1,3,则只要这两个极值点有一个在区间(t ,t +1)内,函数f (x )在区间[t ,t +1]上就不单调,由t <1<t +1或t <3<t +1,得0<t <1或2<t <3.故填(0,1)∪(2,3).1.(2019·天津模拟)设f (x ),g (x )在[a ,b ]上可导,且f ′(x )>g ′(x ),则当a <x <b 时,有( )A .f (x )>g (x )B .f (x )<g (x )C .f (x )+g (a )>g (x )+f (a )D .f (x )+g (b )>g (x )+f (b ) 答案 C解析 ∵f ′(x )>g ′(x ),∴[f (x )-g (x )]′>0. ∴f (x )-g (x )在[a ,b ]上是增函数. ∴f (a )-g (a )<f (x )-g (x ). 即f (x )+g (a )>g (x )+f (a ).2.f (x )为定义在R 上的可导函数,且f ′(x )>f (x ),对任意正实数a ,则下列式子成立的是( )A .f (a )<e af (0) B .f (a )>e af (0) C .f (a )<feaD .f (a )>fea答案 B 解析 令g (x )=f xex,则g ′(x )=f x x-f xxx2=f x -f xex>0.∴g (x )在R 上为增函数,又∵a >0,∴g (a )>g (0),即f aea>fe.故f (a )>e af (0).答题启示(1)若知xf ′(x )+f (x )的符号,则构造函数g (x )=xf (x );一般地,若知xf ′(x )+nf (x )的符号,则构造函数g (x )=x nf (x ).(2)若知xf ′(x )-f (x )的符号,则构造函数g (x )=f xx;一般地,若知xf ′(x )-nf (x )的符号,则构造函数g (x )=f xx n.(3)若知f ′(x )+f (x )的符号,则构造函数f (x )=e xf (x );一般地,若知f ′(x )+nf (x )的符号,则构造函数g (x )=e nx·f (x ).(4)若知f ′(x )-f (x )的符号,则构造函数f (x )=f xex;一般地,若知f ′(x )-nf (x )的符号,则构造函数g (x )=f xenx.对点训练1.f (x )是定义在(0,+∞)上的非负可导函数,且满足xf ′(x )-f (x )≤0,对任意正数a ,b ,若a <b ,则必有( )A .af (b )≤bf (a )B .bf (a )≤af (b )C .af (a )≤bf (b )D .bf (b )≤af (a )答案 A解析 设函数F (x )=f x x (x >0),则F ′(x )=⎣⎢⎡⎦⎥⎤f x x ′=xfx -f xx 2.因为x >0,xf ′(x )-f (x )≤0,所以F ′(x )≤0,故函数F (x )在(0,+∞)上为减函数. 又0<a <b ,所以F (a )≥F (b ),即f a a ≥f bb,则bf (a )≥af (b ). 2.(2018·南昌调研)已知函数f (x )是定义在R 上的偶函数,设函数f (x )的导函数为f ′(x ),若对任意的x >0都有2f (x )+xf ′(x )>0成立,则( )A .4f (-2)<9f (3)B .4f (-2)>9f (3)C .2f (3)>3f (-2)D .3f (-3)<2f (-2)答案 A解析 根据题意,令g (x )=x 2f (x ),其导数g ′(x )=2xf (x )+x 2f ′(x ),又对任意的x >0都有2f (x )+xf ′(x )>0成立,则当x >0时,有g ′(x )=x [2f (x )+xf ′(x )]>0恒成立,即函数g (x )在(0,+∞)上为增函数,又由函数f (x )是定义在R 上的偶函数,则f (-x )=f (x ),则有g (-x )=(-x )2f (-x )=x 2f (x )=g (x ),即函数g (x )也为偶函数,则有g (-2)=g (2),且g (2)<g (3),则有g (-2)<g (3),即有4f (-2)<9f (3).故选A.。
高考数学一轮总复习第3章导数及其应用第2节导数的应用第5课时利用导数研究函数的零点问题教师用书
第5课时 利用导数研究函数的零点问题考点1 讨论函数的零点个数——综合性(2021·海口模拟)已知函数f(x)=.(1)判断f(x)的单调性,并比较2 0202 021与2 0212 020的大小;(2)若函数g(x)=(x-2)2+x(2f(x)-1),其中≤a≤,判断g(x)的零点的个数,并说明理由.参考数据:ln 2≈0.693.解:(1)函数f(x)=,定义域是(0,+∞),故f′(x)=.令f′(x)>0,解得0<x<e;令f′(x)<0,解得x>e,故f(x)在(0,e)上单调递增,在(e,+∞)上单调递减,则f(2 020)>f(2 021),即>,故2 021ln 2 020>2 020ln 2 021,故ln 2 0202 021>ln 2 0212 020,故2 0202 021>2 0212 020.(2)因为g(x)=(x2-4x+4)+2ln x-x,所以g′(x)=ax+-2a-1=.令g′(x)=0,解得x=2或x=,①当a=时,则g′(x)=≥0,g(x)在(0,+∞)上单调递增,且g(2)=2ln 2-2<0,g(6)=2ln 6-2>0,故g(2)g(6)<0,故存在x0∈(2,6),使得g(x0)=0,故g(x)在(0,+∞)上只有1个零点;②当<a<时,则<2,则g(x)在上单调递增,在上单调递减,在(2,+∞)上单调递增,故g(x)在(0,+∞)上有极小值g(2),g(2)=2ln 2-2<0,有极大值g=2a--2ln a-2,且g(2)=2ln 2-2<0,g(6)=8a+2ln 6-6>2ln 6-2>0,故g(2)g(6)<0,故存在x1∈(2,6),使得g(x1)=0,故g(x)在(2,+∞)上只有1个零点,另一方面令h(a)=g=2a--2ln a-2,h′(a)=2+-=2>0,所以h(a)在上单调递增,所以h(a)<h=e--2-2ln <0,则g<0,故g(x)在上没有零点.综上:当≤a≤时,g(x)只有1个零点.已知函数f(x)=x-(e为自然常数).(1)若f(x)在(0,+∞)上单调递增,求实数a的取值范围;(2)设a∈R,讨论函数g(x)=x-ln x-f(x)的零点个数.解:(1)f(x)=x-,则f′(x)=.因为f(x)在(0,+∞)上单调递增,所以f′(x)≥0在(0,+∞)上恒成立.记φ(x)=e x+ax-a,则φ(x)≥0在(0,+∞)上恒成立,φ′(x)=e x+a.当a≥-1时,φ′(x)=e x+a>1+a≥0,即φ(x)在(0,+∞)上单调递增,所以φ(x)>φ(0)=1-a≥0,所以-1≤a≤1;当a<-1时,令φ′(x)=e x+a=0,解得x=ln(-a).当0<x<ln(-a)时,φ′(x)<0,φ(x)在(0,ln(-a))上单调递减;当x>ln(-a)时,φ′(x)>0,φ(x)在(ln(-a),+∞)上单调递增,所以φ(x)≥φ(ln(-a))=-2a+a ln(-a)≥0,解得-e2≤a<-1.综上可得,实数a的取值范围是[-e2,1].(2)g(x)=x-ln x-f(x)=-ln x(x>0),令g(x)=0,得a=(x>0).令h(x)=,则h′(x)=,当x∈(0,1]时,ln x≤0,x-1≤0,所以h′(x)≥0,h(x)单调递增;当x∈(1,+∞)时,h′(x)>0,h(x)单调递增.所以h(x)在(0,+∞)单调递增,又h(x)=∈R,a∈R,所以y=a与h(x)=的图象只有一个交点,所以a∈R,g(x)只有唯一一个零点.考点2 由函数的零点个数求参数的范围——综合性(2022·湖南模拟)已知函数f(x)=x3+3a(x+1)(a∈R).(1)讨论f(x)的单调性;(2)若函数g(x)=f(x)-x ln x-3a在上有两个不同的零点,求a的取值范围.解:(1)f′(x)=3x2+3a.①当a≥0时,f′(x)≥0,f(x)在R上单调递增;②当a<0时,令f′(x)>0,解得x<-或x>,令f′(x)<0,解得-<x<,所以f(x)在(-∞,-),(,+∞)上单调递增,在(-,)上单调递减.综上,当a≥0时,f(x)在R上单调递增;当a<0时,f(x)在(-∞,-),(,+∞)上单调递增,在(-,)上单调递减.(2)g(x)=x3+3ax-x ln x,依题意,x3+3ax-x ln x=0在上有两个不同的解,即3a=ln x-x2在上有两个不同的解.设h(x)=ln x-x2,x∈,则h′(x)=-2x=.当x∈时,h′(x)≥0,h(x)单调递增;当x∈时,h′(x)<0,h(x)单调递减,所以h(x)max=h=-ln 2-,且h=-ln 2-,h(2)=ln 2-4,h>h(2),所以-ln 2-≤3a<-ln 2-,所以-ln 2-≤a<-ln 2-,即实数a的取值范围为.已知函数f(x)=x2+ax+1-,a∈R.(1)若f(x)在(0,1)上单调递减,求a的取值范围;(2)设函数g(x)=f(x)-x-a-1,若g(x)在(1,+∞)上无零点,求整数a的最小值.解:(1)由题知f′(x)=2x+a+≤0在(0,1)上恒成立,即a≤-2x恒成立.令h(x)=-2x,则h′(x)=-2=-2>0,所以h(x)在(0,1)上单调递增,所以a≤h(x)min=h(0)=1.故a的取值范围是(-∞,1].(2)由已知x>1,假设g(x)=0⇔-a=x+,记φ(x)=x+,则φ′(x)=1+.令φ′(x)>0,解得x>1+,所以φ(x)在(1,1+)上单调递减,在(1+,+∞)上单调递增,φ(1+)=1++=1+=1+∈(2,3),由题知-a=φ(x)在(1,+∞)内无解,故-a<φ(1+)<3,所以a>-φ(1+),所以整数a的最小值为-2.考点3 函数极值点的偏移问题——综合性(2021·新高考全国Ⅰ卷)已知函数f(x)=x(1-ln x).(1)讨论f(x)的单调性;(2)设a,b为两个不相等的正数,且b ln a-a ln b=a-b,证明:2<+<e.(1)解:函数f(x)的定义域为(0,+∞),又f′(x)=1-ln x-1=-ln x,当x∈(0,1)时,f′(x)>0,当x∈(1,+∞)时,f′(x)<0,故f(x)的单调递增区间为(0,1),单调递减区间为(1,+∞).(2)证明:因为b ln a-a ln b=a-b,故b(ln a+1)=a(ln b+1),即=,故f =f .设=x1,=x2,由(1)可知不妨设0<x1<1,x2>1.因为x∈(0,1)时,f(x)=x(1-ln x)>0,x∈(e,+∞)时,f(x)=x(1-ln x)<0,故1<x2<e.先证:x1+x2>2,若x2≥2,x1+x2>2必成立.若x2<2,要证x1+x2>2,即证x1>2-x2,而0<2-x2<1,故即证f(x1)>f(2-x2),即证f(x2)>f(2-x2),其中1<x2<2.设g(x)=f(x)-f(2-x),1<x<2,则g′(x)=f′(x)+f′(2-x)=-ln x-ln(2-x)=-ln[x(2-x)].因为1<x<2,故0<x(2-x)<1,故-ln x(2-x)>0,所以g′(x)>0,故g(x)在(1,2)上单调递增,所以g(x)>g(1)=0,故f(x)>f(2-x),即f(x2)>f(2-x2)成立,所以x1+x2>2成立,综上,x1+x2>2成立.设x2=tx1,则t>1,结合=,=x1,=x2,可得x1(1-ln x1)=x2(1-ln x2),即1-ln x1=t(1-ln t-ln x1),故ln x1=,要证x1+x2<e,即证(t+1)x1<e,即证ln (t+1)+ln x1<1,即证ln (t+1)+<1,即证(t-1)ln (t+1)-t ln t<0.令S(t)=(t-1)ln (t+1)-t ln t,t>1,则S′(t)=ln (t+1)+-1-ln t=ln -.先证明一个不等式:ln(x+1)≤x.设u(x)=ln(x+1)-x,则u′(x)=-1=,当-1<x<0时,u′(x)>0;当x>0时,u′(x)<0,故u(x)在(-1,0)上为增函数,在(0,+∞)上为减函数,故u(x)ma x=u(0)=0,故ln(x+1)≤x成立.由上述不等式可得当t>1时,ln ≤<,故S′(t)<0恒成立,故S(t)在(1,+∞)上为减函数,故S(t)<S(1)=0,故(t-1)ln (t+1)-t ln t<0成立,即x1+x2<e成立.综上所述,2<+<e.对称化构造是解决极值点偏移问题的方法,该方法可分为以下三步:已知函数f(x)=ln x-ax有两个零点x1,x2(x1<x2).(1)求实数a的取值范围;(2)求证:x1·x2>e2.(1)解:f′(x)=-a=(x>0),①若a≤0,则f′(x)>0,不符合题意.②若a>0,令f′(x)=0,解得x=.当x∈时,f′(x)>0;当x∈时,f′(x)<0.由题意知f(x)有两个零点的必要条件为f(x)=ln x-ax的极大值f=ln -1>0,解得0<a<.显然e∈,f(e)=1-a e<0,∈,f=2ln-.设t=>e,g(t)=2ln t-t,g′(t)=-1<0,所以g(t)在(e,+∞)上单调递减,g(t)<g(e)=2-e<0,即f <0.所以实数a的取值范围为.(2)证明:因为f(1)=-a<0,所以1<x1<<x2.构造函数H(x)=f-f=ln -ln -2ax,0<x<.H′(x)=+-2a=>0,所以H(x)在上单调递增,故H(x)>H(0)=0,即f >f.由1<x1<<x2,知-x1>,故f(x2)=f(x1)=f <f=f.因为f(x)在上单调递减,所以x2>-x1,即x1+x2>.故ln (x1x2)=ln x1+ln x2=a(x1+x2)>2,即x1·x2>e2.拓展考点 隐零点求解问题已知函数f(x)=ax2-ax-x ln x,且f(x)≥0.(1)求a;(2)证明:f(x)存在唯一的极大值点x0,且e-2<f(x0)<2-2.(1)解:f(x)的定义域为(0,+∞),设g(x)=ax-a-ln x,则f(x)=xg(x),f(x)≥0等价于g(x)≥0.因为g(1)=0,g(x)≥0,故g′(1)=0,而g′(x)=a-,g′(1)=a-1=0,得a=1.若a=1,则g′(x)=1-.当0<x<1时,g′(x)<0,g(x)单调递减;当x>1时,g′(x)>0,g(x)单调递增,所以x=1是g(x)的极小值点,故g(x)≥g(1)=0.综上,a=1.(2)证明:由(1)知f(x)=x2-x-x ln x,f′(x)=2x-2-ln x(x>0).设h(x)=2x-2-ln x,h′(x)=2-.当x∈时,h′(x)<0;当x∈时,h′(x)>0,所以h(x)在上单调递减,在上单调递增.又h(e-2)>0,h<0,h(1)=0,所以h(x)在上有唯一零点x0,在上有唯一零点1,且当x∈(0,x0)时,h(x)>0;当x∈(x0,1)时,h(x)<0;当x∈(1,+∞)时,h(x)>0.因为f′(x)=h(x),所以x=x0是f(x)的唯一极大值点.由f′(x0)=0得ln x0=2(x0-1),故f(x0)=x0(1-x0).由x0∈得f(x0)<.因为x=x0是f(x)在(0,1)上的最大值点,由e-1∈(0,1),f′(e-1)≠0得f(x0)>f(e-1)=e-2,所以e-2<f(x0)<2-2.设函数f(x)=e x-ax-2.(1)求f(x)的单调区间;(2)若a=1,k为整数,且当x>0时,(x-k)·f′(x)+x+1>0,求k的最大值.解:(1)当a≤0时,f(x)的单调递增区间是(-∞,+∞),无单调递减区间;当a>0时,函数f(x)的单调递减区间是(-∞,ln a),单调递增区间是(ln a,+∞).(解答过程略)(2)由题设可得(x-k)(e x-1)+x+1>0,即k<x+(x>0)恒成立.令g(x)=+x(x>0),得g′(x)=+1=(x>0).由(1)的结论可知,函数h(x)=e x-x-2(x>0)是增函数.又因为h(1)<0,h(2)>0,所以函数h(x)的唯一零点α∈(1,2)(该零点就是h(x)的隐零点),且eα=α+2.当x∈(0,α)时,g′(x)<0;当x∈(α,+∞)时,g′(x)>0,所以g(x)min=g(α)=+α.又eα=α+2且α∈(1,2),则g(x)min=g(α)=1+α∈(2,3),所以k的最大值为2.1.按导函数零点能否精确求解可以把零点分为两类:1.已知函数f(x)=e x-a-eln(e x+a),若关于x的不等式f(x)≥0恒成立,求实数a的取值范围.解:由函数f(x)=e x-a-eln(e x+a),求得定义域为,对函数求导可得:f′(x)=e x-,则存在一个x0,使得f′(x0)=0,且-<x<x0时,f′(x)<0,x>x0时,f′(x)>0,则f(x)≥f(x0)=e x0-a-eln(e x0+a)=-a-e·ln e=e x0+-2e-a=e x0+a+-2e-2a.因为e x0+a+≥2e,所以f(x0)≥2e-2e-2a=-2a≥0,则a≤0,所以实数a的取值范围为(-∞,0].2.已知函数f(x)=.(1)求函数f(x)的零点及单调区间;(2)求证:曲线y=存在斜率为6的切线,且切点的纵坐标y0<-1.(1)解:函数f(x)的零点为e.函数f(x)的单调递增区间为(e,+∞),单调递减区间为(0,e).(解答过程略)(2)证明:要证曲线y=存在斜率为6的切线,即证y′==6有解,等价于1-ln x-6x2=0在x>0时有解.构造辅助函数g(x)=1-ln x-6x2(x>0),g′(x)=--12x<0,函数g(x)在(0,+∞)上单调递减,且g(1)=-5<0,g=1+ln 2->0,所以∃x0∈,使得g(x0)=1-ln x0-6x=0.即证明曲线y=存在斜率为6的切线.设切点坐标为,则y===-6x0,x0∈.令h(x)=-6x,x∈,由h(x)在区间上单调递减,则h(x)<h=-1,.所以y0<-1求证:x1x2>e2(e为自然对数的底数).[四字程序]思路参考:转化为证明ln x1+ln x2>2,根据x1,x2是方程f′(x)=0的根建立等量关系.令t=,将ln x1+ln x2变形为关于t的函数,将ln x1+ln x2>2转化为关于t的不等式进行证明.证明:欲证x1x2>e2,需证ln x1+ln x2>2.若f(x)有两个极值点x1,x2,则函数f′(x)有两个零点.又f′(x)=ln x-mx(x>0),所以x1,x2是方程f′(x)=0的两个不等实根.于是,有解得m=.另一方面,由得ln x2-ln x1=m(x2-x1),从而得=,于是,ln x1+ln x2==.又0<x1<x2,设t=,则t>1.因此,ln x1+ln x2=,t>1.要证ln x1+ln x2>2,即证>2,t>1.即当t>1时,有ln t>.设函数h(t)=ln t-,t>1,则h′(t)=-=≥0,所以,h(t)为(1,+∞)上的增函数.又h(1)=0,因此,h(t)>h(1)=0.于是,当t>1时,有ln t>.所以ln x1+ln x2>2成立,即x1x2>e2.思路参考:将证明x1x2>e2转化为证明x1>.依据x1,x2是方程f′(x)=0的两个不等实根,构造函数g(x)=,结合函数g(x)的单调性,只需证明g(x2)=g(x1)<g.证明:由x1,x2是方程f′(x)=0的两个不等实根,且f′(x)=ln x-mx(x>0),所以mx1=ln x1,mx2=ln x2.令g(x)=,g(x1)=g(x2),由于g′(x)=,因此,g(x)在(0,e)上单调递增,在(e,+∞)上单调递减.又x1<x2,所以0<x1<e<x2.令h(x)=g(x)-g(x∈(0,e)),h′(x)=>0,故h(x)在(0,e)上单调递增,故h(x)<h(e)=0,即g(x)<g.令x=x1,则g(x2)=g(x1)<g.因为x2,∈(e,+∞),g(x)在(e,+∞)上单调递减,所以x2>,即x1x2>e2.思路参考:设t1=ln x1∈(0,1),t2=ln x2∈(1,+∞),推出=e t1-t2.将证明x1x2>e2转化为证明t1+t2>2,引入变量k=t1-t2<0构建函数进行证明.证明:设t1=ln x1∈(0,1),t2=ln x2∈(1,+∞).由得⇒=e t1-t2.设k=t1-t2<0,则t1=,t2=.欲证x1x2>e2,需证ln x1+ln x2>2.即只需证明t1+t2>2,即>2⇔k(1+e k)<2(e k-1)⇔k(1+e k)-2(e k-1)<0.设g(k)=k(1+e k)-2(e k-1)(k<0),则g′(k)=k e k-e k+1.令m(k)=k e k-e k+1,则m′(k)=k e k<0,故g′(k)在(-∞,0)上单调递减,故g′(k)>g′(0)=0,故g(k)在(-∞,0)上单调递增,因此g(k)<g(0)=0,命题得证.思路参考:设t1=ln x1∈(0,1),t2=ln x2∈(1,+∞),推出=e t1-t2.将证明x1x2>e2转化为证明t1+t2>2,引入变量=k∈(0,1)构建函数进行证明.证明:设t1=ln x1∈(0,1),t2=ln x2∈(1,+∞).由得⇒=e t1-t2.设=k∈(0,1),则t1=,t2=.欲证x1x2>e2,需证ln x1+ln x2>2,即只需证明t1+t2>2,即>2⇔ln k<⇔ln k-<0.设g(k)=ln k-(k∈(0,1)),g′(k)=>0,故g(k)在(0,1)上单调递增,因此g(k)<g(1)=0,命题得证.1.本题考查应用导数研究极值点偏移问题,基本解题方法是把双变量的等式或不等式转化为一元变量问题求解,途径都是构造一元函数.2.基于课程标准,解答本题一般需要具有良好的转化与化归能力、运算求解能力、逻辑思维能力.本题的解答体现了逻辑推理、数学运算的核心素养.3.基于高考数学评价体系,本题涉及函数与方程、不等式、导数的计算与应用等知识,渗透着函数与方程、转化与化归、分类讨论等思想方法,有一定的综合性,属于能力题,在提升学生思维的灵活性、创造性等数学素养中起到了积极的作用.已知函数f(x)=x ln x-2ax2+x,a∈R.(1)若f(x)在(0,+∞)内单调递减,求实数a的取值范围;(2)若函数f(x)有两个极值点分别为x1,x2,证明:x1+x2>.(1)解:f′(x)=ln x+2-4ax.因为f(x)在(0,+∞)内单调递减,所以f′(x)=ln x+2-4ax≤0在(0,+∞)内恒成立,即4a≥+在(0,+∞)内恒成立.令g(x)=+,则g′(x)=.所以,当0<x<时,g′(x)>0,即g(x)在内单调递增;当x>时,g′(x)<0,即g(x)在内单调递减.所以g(x)的最大值为g=e,所以实数a的取值范围是.(2)证明:若函数f(x)有两个极值点分别为x1,x2,则f′(x)=ln x+2-4ax=0在(0,+∞)内有两个不等根x1,x2.由(1),知0<a<.由两式相减,得ln x1-ln x2=4a(x1-x2).不妨设0<x1<x2,则<1,所以要证明x1+x2>,只需证明<,即证明>ln x1-ln x2,亦即证明>ln.令函数h(x)=-ln x,0<x<1,所以h′(x)=<0,即函数h(x)在(0,1)内单调递减.所以当x∈(0,1)时,有h(x)>h(1)=0,所以>ln x,即不等式>ln成立.综上,x1+x2>,命题得证.。
高考数学大一轮复习第三章导数及其应用2第2讲导数与函数的单调性课件文新人教A版
利用导数求函数单调区间的方法 (1)当导函数不等式可解时,解不等式 f′(x)>0 或 f′(x)<0 求出 单调区间. (2)当方程 f′(x)=0 可解时,解出方程的实根,按实根把函数的 定义域划分区间,确定各区间 f′(x)的符号,从而确定单调区间. (3)当导函数的方程、不等式都不可解时,根据 f′(x)结构特征, 利用图象与性质确定 f′(x)的符号,从而确定单调区间. [提醒] 所求函数的单调区间不止一个时,这些区间之间不能 用“∪”及“或”连接,只能用“,”及“和”隔开.
1.函数 f(x)的定义域为 R,f(-1)=2,对任意 x∈R,f′(x)>
2,则 f(x)>2x+4 的解集为( )
A.(-1,1)
B.(-1,+∞)
C.(-∞,-1)
D.(-∞,+∞)
解析:选 B.由 f(x)>2x+4,得 f(x)-2x-4>0,设 F(x)=f(x)
-2x-4,则 F′(x)=f′(x)-2,因为 f′(x)>2,所以 F′(x)>0 在
判断正误(正确的打“√”,错误的打“×”) (1)若函数 f(x)在(a,b)内单调递增,那么一定有 f′(x)>0.( ) (2)如果函数 f(x)在某个区间内恒有 f′(x)=0,则 f(x)在此区间内 没有单调性.( )
答案:(1)× (2)√
函数 f(x)=cos x-x 在(0,π)上的单调性是( )
2.由函数的单调性与导数的关系可得的结论 (1)函数 f(x)在(a,b)内可导,且 f′(x)在(a,b)任意子区间内都不 恒等于 0,当 x∈(a,b)时: f′(x)≥0⇔函数 f(x)在(a,b)上单调递增; f′(x)≤0⇔函数 f(x)在(a,b)上单调递减. (2)f′(x)>0(<0)在(a,b)上成立是 f(x)在(a,b)上单调递增(减)的 充分条件. [提醒] 利用导数研究函数的单调性,要在定义域内讨论导数 的符号.
高考数学一轮复习第3章一元函数的导数及其应用2利用导数研究函数的单调性课件新人教版
π
π
-π,, 0,
____________.
2
2
由题意可知 f'(x)=sin x+xcos x-sin x=xcos x.
令 f'(x)=xcos x>0,解得其在区间(-π,π)内的解集为
即 f(x)的单调递增区间为
π
-π,- 2
,
π
0, 2
.
π
-π,2
∪
π
0,
2
,
解题心得利用导数讨论函数单调性或求单调区间的方法
等,都需要考虑函数的单调性,所以也是高考必考知识.应用时,要注意函数
的定义域优先,准确求导变形,转化为导函数在某区间上的符号问题.常用
到分类讨论和数形结合的思想,对数学运算核心素养有一定的要求.
内
容
索
引
01
第一环节
必备知识落实
02
第二环节
关键能力形成
03
第三环节
学科素养提升
第一环节
必备知识落实
【知识筛查】
(2)若函数f(x)在区间[1,2]上为单调函数,求a的取值范围.
解 (1)若a=1,则f(x)=3x-2x2+ln x的定义域为(0,+∞),
1
-42 +3+1
故 f'(x)= -4x+3=
=
-(4+1)(-1)
(x>0).
当x∈(0,1)时,f'(x)>0,即函数f(x)=3x-2x2+ln x单调递增;
1
2
7
7
即 g(x)在区间[1,4]上单调递增,g(x)max=g(4)= − =- ,即 a≥- .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2节导数在研究函数中的应用考试要求 1.结合实例,借助几何直观了解函数的单调性与导数的关系;能利用导数研究函数的单调性;对于多项式函数,能求不超过三次的多项式函数的单调区间;2.借助函数的图象,了解函数在某点取得极值的必要条件和充分条件;3.能利用导数求某些函数的极大值、极小值以及给定闭区间上不超过三次的多项式函数的最大值、最小值;体会导数与单调性、极值、最大(小)值的关系.知识梳理1.函数的单调性与导数的关系函数y=f(x)在某个区间内可导,则:(1)若f′(x)>0,则f(x)在这个区间内单调递增;(2)若f′(x)<0,则f(x)在这个区间内单调递减;(3)若f′(x)=0,则f(x)在这个区间内是常数函数.2.函数的极值与导数3.函数的最值与导数(1)函数f(x)在[a,b]上有最值的条件如果在区间[a,b]上函数y=f(x)的图象是一条连续不断的曲线,那么它必有最大值和最小值.(2)求y=f(x)在[a,b]上的最大(小)值的步骤①求函数y=f(x)在(a,b)内的极值;②将函数y=f(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值.[微点提醒]1.函数f(x)在区间(a,b)上递增,则f′(x)≥0,“f′(x)>0在(a,b)上成立”是“f(x)在(a,b)上单调递增”的充分不必要条件.2.对于可导函数f(x),“f′(x0)=0”是“函数f(x)在x=x0处有极值”的必要不充分条件.3.求最值时,应注意极值点和所给区间的关系,关系不确定时,需要分类讨论,不可想当然认为极值就是最值.4.函数最值是“整体”概念,而函数极值是“局部”概念,极大值与极小值之间没有必然的大小关系.基础自测1.判断下列结论正误(在括号内打“√”或“×”)(1)若函数f(x)在(a,b)内单调递增,那么一定有f′(x)>0.()(2)如果函数f(x)在某个区间内恒有f′(x)=0,则f(x)在此区间内没有单调性.()(3)函数的极大值一定大于其极小值.()(4)对可导函数f(x),f′(x0)=0是x0为极值点的充要条件.()(5)函数的最大值不一定是极大值,函数的最小值也不一定是极小值.()解析(1)f(x)在(a,b)内单调递增,则有f′(x)≥0.(3)函数的极大值也可能小于极小值.(4)x0为f(x)的极值点的充要条件是f′(x0)=0,且x0两侧导函数异号.答案(1)×(2)√(3)×(4)×(5)√2.(选修2-2P32A4 改编)如图是f(x)的导函数f′(x)的图象,则f(x)的极小值点的个数为()A.1B.2C.3D.4解析由题意知在x=-1处f′(-1)=0,且其两侧导数符号为左负右正. 答案 A3.(选修2-2P32A5(4)改编)函数f(x)=2x-x ln x的极值是()A.1e B.2e C.e D.e2解析因为f′(x)=2-(ln x+1)=1-ln x,令f′(x)=0,所以x=e,当f′(x)>0时,解得0<x<e;当f′(x)<0时,解得x>e,所以x=e时,f(x)取到极大值,f(x)极大值=f(e)=e.答案 C4.(2019·青岛月考)函数f(x)=cos x-x在(0,π)上的单调性是()A.先增后减B.先减后增C.单调递增D.单调递减解析易知f′(x)=-sin x-1,x∈(0,π),则f′(x)<0,所以f(x)=cos x-x在(0,π)上递减.答案 D5.(2017·浙江卷)函数y=f(x)的导函数y=f′(x)的图象如图所示,则函数y=f(x)的图象可能是()解析设导函数y=f′(x)与x轴交点的横坐标从左往右依次为x1,x2,x3,由导函数y=f′(x)的图象易得当x∈(-∞,x1)∪(x2,x3)时,f′(x)<0;当x∈(x1,x2)∪(x3,+∞)时,f′(x)>0(其中x1<0<x2<x3),所以函数f(x)在(-∞,x1),(x2,x3)上单调递减,在(x1,x2),(x3,+∞)上单调递增,观察各选项,只有D选项符合.答案 D6.(2019·豫南九校考评)若函数f(x)=x(x-c)2在x=2处有极小值,则常数c的值为( ) A.4 B.2或6 C.2D.6解析 函数f (x )=x (x -c )2的导数为f ′(x )=3x 2-4cx +c 2,由题意知,在x =2处的导数值为12-8c +c 2=0,解得c =2或6,又函数f (x )=x (x -c )2在x =2处有极小值,故导数在x =2处左侧为负,右侧为正,而当e =6时,f (x )=x (x -6)2在x =2处有极大值,故c =2. 答案 C第1课时 导数与函数的单调性考点一 求函数的单调区间【例1】 已知函数f (x )=ax 3+x 2(a ∈R )在x =-43处取得极值. (1)确定a 的值;(2)若g (x )=f (x )e x ,求函数g (x )的单调减区间. 解 (1)对f (x )求导得f ′(x )=3ax 2+2x ,因为f (x )在x =-43处取得极值,所以f ′⎝ ⎛⎭⎪⎫-43=0,即3a ·⎝ ⎛⎭⎪⎫-432+2·⎝ ⎛⎭⎪⎫-43=16a 3-83=0,解得a =12. (2)由(1)得g (x )=⎝ ⎛⎭⎪⎫12x 3+x 2e x ,故g ′(x )=12x (x +1)(x +4)e x . 令g ′(x )<0,即x (x +1)(x +4)<0, 解得-1<x <0或x <-4,所以g (x )的单调减区间为(-1,0),(-∞,-4). 规律方法 1.求函数单调区间的步骤:(1)确定函数f (x )的定义域;(2)求f ′(x );(3)在定义域内解不等式f ′(x )>0,得单调递增区间;(4)在定义域内解不等式f ′(x )<0,得单调递减区间.2.若所求函数的单调区间不止一个时,用“,”与“和”连接. 【训练1】 (1)已知函数f (x )=x ln x ,则f (x )( ) A.在(0,+∞)上递增 B.在(0,+∞)上递减 C.在⎝ ⎛⎭⎪⎫0,1e 上递增D.在⎝ ⎛⎭⎪⎫0,1e 上递减(2)已知定义在区间(-π,π)上的函数f (x )=x sin x +cos x ,则f (x )的单调递增区间为________.解析 (1)因为函数f (x )=x ln x ,定义域为(0,+∞),所以f ′(x )=ln x +1(x >0),当f ′(x )>0时,解得x >1e ,即函数的单调递增区间为⎝ ⎛⎭⎪⎫1e ,+∞;当f ′(x )<0时,解得0<x <1e ,即函数的单调递减区间为⎝ ⎛⎭⎪⎫0,1e .(2)f ′(x )=sin x +x cos x -sin x =x cos x .令f ′(x )=x cos x >0,则其在区间(-π,π)上的解集为⎝ ⎛⎭⎪⎫-π,-π2和⎝ ⎛⎭⎪⎫0,π2,即f (x )的单调递增区间为⎝ ⎛⎭⎪⎫-π,-π2,⎝ ⎛⎭⎪⎫0,π2.答案 (1)D (2)⎝ ⎛⎭⎪⎫-π,-π2,⎝ ⎛⎭⎪⎫0,π2 考点二 讨论函数的单调性【例2】 (2017·全国Ⅰ卷改编)已知函数f (x )=e x (e x -a )-a 2x ,其中参数a ≤0. (1)讨论f (x )的单调性; (2)若f (x )≥0,求a 的取值范围.解 (1)函数f (x )的定义域为(-∞,+∞),且a ≤0. f ′(x )=2e 2x -a e x -a 2=(2e x +a )(e x -a ).①若a =0,则f (x )=e 2x ,在(-∞,+∞)上单调递增. ②若a <0,则由f ′(x )=0,得x =ln ⎝ ⎛⎭⎪⎫-a 2.当x ∈⎝ ⎛⎭⎪⎫-∞,ln ⎝ ⎛⎭⎪⎫-a 2时,f ′(x )<0;当x ∈⎝ ⎛⎭⎪⎫ln ⎝ ⎛⎭⎪⎫-a 2,+∞时,f ′(x )>0.故f (x )在⎝ ⎛⎭⎪⎫-∞,ln ⎝ ⎛⎭⎪⎫-a 2上单调递减,在区间⎝ ⎛⎭⎪⎫ln ⎝ ⎛⎭⎪⎫-a 2,+∞上单调递增.(2)①当a =0时,f (x )=e 2x ≥0恒成立.②若a <0,则由(1)得,当x =ln ⎝ ⎛⎭⎪⎫-a 2时,f (x )取得最小值,最小值为f ⎝ ⎛⎭⎪⎫ln ⎝ ⎛⎭⎪⎫-a 2=a 2⎣⎢⎡⎦⎥⎤34-ln ⎝⎛⎭⎪⎫-a 2, 故当且仅当a 2⎣⎢⎡⎦⎥⎤34-ln ⎝⎛⎭⎪⎫-a 2≥0, 即0>a ≥-2e 34时,f (x )≥0.综上,a 的取值范围是[-2e 34,0].规律方法 1.(1)研究含参数的函数的单调性,要依据参数对不等式解集的影响进行分类讨论.(2)划分函数的单调区间时,要在函数定义域内讨论,还要确定导数为0的点和函数的间断点.2.个别导数为0的点不影响所在区间的单调性,如f (x )=x 3,f ′(x )=3x 2≥0(f ′(x )=0在x =0时取到),f (x )在R 上是增函数.【训练2】 已知f (x )=x 22-a ln x ,a ∈R ,求f (x )的单调区间.解 因为f (x )=x 22-a ln x ,x ∈(0,+∞),所以f ′(x )=x -a x =x 2-ax .(1)当a ≤0时,f ′(x )>0,所以f (x )在(0,+∞)上为单调递增函数. (2)当a >0时,f ′(x )=(x +a )(x -a )x,则有①当x ∈(0,a )时,f ′(x )<0,所以f (x )的单调递减区间为(0,a ). ②当x ∈(a ,+∞)时,f ′(x )>0,所以f (x )的单调递增区间为(a ,+∞). 综上所述,当a ≤0时,f (x )的单调递增区间为(0,+∞),无单调递减区间. 当a >0时,函数f (x )的单调递减区间为(0,a ),单调递增区间为(a ,+∞). 考点三 函数单调性的简单应用 多维探究角度1 比较大小或解不等式【例3-1】 (1)已知函数y =f (x )对于任意的x ∈⎝ ⎛⎭⎪⎫0,π2满足f ′(x )cos x +f (x )sin x =1+ln x ,其中f ′(x )是函数f (x )的导函数,则下列不等式成立的是( ) A.2f ⎝ ⎛⎭⎪⎫π3<f ⎝ ⎛⎭⎪⎫π4B.2f ⎝ ⎛⎭⎪⎫π3>f ⎝ ⎛⎭⎪⎫π4C.2f ⎝ ⎛⎭⎪⎫π6>3f ⎝ ⎛⎭⎪⎫π4D.3f ⎝ ⎛⎭⎪⎫π3>f ⎝ ⎛⎭⎪⎫π6(2)已知函数f ′(x )是函数f (x )的导函数,f (1)=1e ,对任意实数都有f (x )-f ′(x )>0,设F (x )=f (x )e x ,则不等式F (x )<1e 2的解集为( ) A.(-∞,1) B.(1,+∞) C.(1,e)D.(e ,+∞)解析 (1)令g (x )=f (x )cos x ,则g ′(x )=f ′(x )cos x -f (x )(-sin x )cos 2x =1+ln x cos 2x .由⎩⎪⎨⎪⎧0<x <π2,g ′(x )>0,解得1e <x <π2;由⎩⎪⎨⎪⎧0<x <π2,g ′(x )<0,解得0<x <1e .所以函数g (x )在⎝ ⎛⎭⎪⎫0,1e 上单调递减,在⎝ ⎛⎭⎪⎫1e ,π2上单调递增, 又π3>π4,所以g ⎝ ⎛⎭⎪⎫π3>g ⎝ ⎛⎭⎪⎫π4,所以f ⎝ ⎛⎭⎪⎫π3cos π3>f ⎝ ⎛⎭⎪⎫π4cos π4, 即2f ⎝ ⎛⎭⎪⎫π3>f ⎝ ⎛⎭⎪⎫π4.(2)F ′(x )=f ′(x )e x -e x f (x )(e x )2=f ′(x )-f (x )e x ,又f (x )-f ′(x )>0,知F ′(x )<0, ∴F (x )在R 上单调递减. 由F (x )<1e 2=F (1),得x >1,所以不等式F (x )<1e 2的解集为(1,+∞). 答案 (1)B (2)B角度2 根据函数单调性求参数【例3-2】 (2019·日照质检)已知函数f (x )=ln x ,g (x )=12ax 2+2x . (1)若函数h (x )=f (x )-g (x )存在单调递减区间,求实数a 的取值范围; (2)若函数h (x )=f (x )-g (x )在[1,4]上单调递减,求实数a 的取值范围. 解 h (x )=ln x -12ax 2-2x ,x >0.∴h ′(x )=1x -ax -2.(1)若函数h (x )在(0,+∞)上存在单调减区间, 则当x >0时,1x -ax -2<0有解,即a >1x 2-2x 有解. 设G (x )=1x 2-2x ,所以只要a >G (x )min . 又G (x )=⎝ ⎛⎭⎪⎫1x -12-1,所以G (x )min =-1.所以a >-1.即实数a 的取值范围是(-1,+∞). (2)由h (x )在[1,4]上单调递减,∴当x ∈[1,4]时,h ′(x )=1x -ax -2≤0恒成立, 则a ≥1x 2-2x 恒成立,设G (x )=1x 2-2x , 所以a ≥G (x )max .又G (x )=⎝ ⎛⎭⎪⎫1x -12-1,x ∈[1,4],因为x ∈[1,4],所以1x ∈⎣⎢⎡⎦⎥⎤14,1,所以G (x )max =-716(此时x =4),所以a ≥-716.又当a =-716时,h ′(x )=1x +716x -2=(7x -4)(x -4)16x,∵x ∈[1,4],∴h ′(x )=(7x -4)(x -4)16x ≤0,当且仅当x =4时等号成立. ∴h (x )在[1,4]上为减函数.故实数a 的取值范围是⎣⎢⎡⎭⎪⎫-716,+∞.规律方法 1.利用导数比较大小,其关键在于利用题目条件构造辅助函数,把比较大小的问题转化为先利用导数研究函数的单调性,进而根据单调性比较大小. 2.根据函数单调性求参数的一般思路(1)利用集合间的包含关系处理:y =f (x )在(a ,b )上单调,则区间(a ,b )是相应单调区间的子集.(2)f (x )是单调递增的充要条件是对任意的x ∈(a ,b )都有f ′(x )≥0且在(a ,b )内的任一非空子区间上,f ′(x )不恒为零,应注意此时式子中的等号不能省略,否则漏解.(3)函数在某个区间存在单调区间可转化为不等式有解问题.【训练3】 (1)已知f (x )是定义在区间(0,+∞)内的函数,其导函数为f ′(x ),且不等式xf ′(x )<2f (x )恒成立,则( ) A.4f (1)<f (2) B.4f (1)>f (2) C.f (1)<4f (2)D.f (1)>4f ′(2)(2)(2019·淄博模拟)若函数f (x )=kx -ln x 在区间(2,+∞)上单调递增,则k 的取值范围是( )A.(-∞,-2]B.⎣⎢⎡⎭⎪⎫12,+∞ C.[2,+∞) D.⎝ ⎛⎦⎥⎤-∞,12 解析 (1)设函数g (x )=f (x )x 2(x >0),则g ′(x )=x 2f ′(x )-2xf (x )x 4=xf ′(x )-2f (x )x 3<0,所以函数g (x )在(0,+∞)内为减函数,所以g (1)>g (2),即f (1)12>f (2)22,所以4f (1)>f (2).(2)由于f ′(x )=k -1x ,f (x )=kx -ln x 在区间(2,+∞)上单调递增,等价于f ′(x )=k -1x ≥0在(2,+∞)上恒成立,由于k ≥1x ,而0<1x <12,所以k ≥12.即k 的取值范围是⎣⎢⎡⎭⎪⎫12,+∞. 答案 (1)B (2)B[思维升华]1.已知函数解析式求单调区间,实质上是求f ′(x )>0,f ′(x )<0的解区间,并注意函数f (x )的定义域.2.含参函数的单调性要注意分类讨论,通过确定导数的符号判断函数的单调性.3.已知函数单调性求参数可以利用给定的已知区间和函数单调区间的包含关系或转化为恒成立问题两种思路解决. [易错防范]1.求单调区间应遵循定义域优先的原则.2.注意两种表述“函数f (x )在(a ,b )上为减函数”与“函数f (x )的减区间为(a ,b )”的区别.3.在某区间内f ′(x )>0(f ′(x )<0)是函数f (x )在此区间上为增(减)函数的充分不必要条件.4.可导函数f(x)在(a,b)上是增(减)函数的充要条件是:对∀x∈(a,b),都有f′(x)≥0(f′(x)≤0),且f′(x)在(a,b)的任何子区间内都不恒为零.基础巩固题组(建议用时:40分钟)一、选择题1.函数y=f(x)的图象如图所示,则y=f′(x)的图象可能是()解析由函数f(x)的图象可知,f(x)在(-∞,0)上单调递增,f(x)在(0,+∞)上单调递减,所以在(-∞,0)上,f′(x)>0;在(0,+∞)上,f′(x)<0,选项D满足.答案 D2.函数f(x)=x·e x-e x+1的单调递增区间是()A.(-∞,e)B.(1,e)C.(e,+∞)D.(e-1,+∞)解析由f(x)=x·e x-e x+1,得f′(x)=(x+1-e)·e x,令f′(x)>0,解得x>e-1,所以函数f(x)的单调递增区间是(e-1,+∞).答案 D3.(2019·青岛二中调研)若函数f(x)=x3-12x在区间(k-1,k+1)上不是单调函数,则实数k的取值范围是()A.k≤-3或-1≤k≤1或k≥3B.不存在这样的实数kC.-2<k<2D.-3<k<-1或1<k<3解析由f(x)=x3-12x,得f′(x)=3x2-12,令f′(x)=0,解得x=-2或x=2,只要f′(x)=0的解有一个在区间(k-1,k+1)内,函数f(x)在区间(k-1,k+1)上就不单调,则k-1<-2<k+1或k-1<2<k+1,解得-3<k<-1或1<k<3.答案 D4.已知f(x)=ln xx,则()A.f(2)>f(e)>f(3)B.f(3)>f(e)>f(2)C.f(3)>f(2)>f(e)D.f(e)>f(3)>f(2)解析f(x)的定义域是(0,+∞),∵f′(x)=1-ln xx2,∴x∈(0,e),f′(x)>0,x∈(e,+∞),f′(x)<0,故x=e时,f(x)max=f(e),又f(2)=ln 22=ln 86,f(3)=ln 33=ln 96,则f(e)>f(3)>f(2).答案 D5.(2019·济宁一中模拟)函数f(x)的定义域为R,f(-1)=2,对任意x∈R,f′(x)>2,则f(x)>2x+4的解集为()A.(-1,1)B.(-1,+∞)C.(-∞,-1)D.(-∞,+∞)解析由f(x)>2x+4,得f(x)-2x-4>0,设F(x)=f(x)-2x-4,则F′(x)=f′(x)-2,因为f′(x)>2,所以F′(x)>0在R上恒成立,所以F(x)在R上单调递增.又F(-1)=f(-1)-2×(-1)-4=2+2-4=0,故不等式f(x)-2x-4>0等价于F(x)>F(-1),所以x>-1.答案 B二、填空题6.已知函数f(x)=(-x2+2x)e x(x∈R,e为自然对数的底数),则函数f(x)的单调递增区间为________.解析 因为f (x )=(-x 2+2x )e x ,所以f ′(x )=(-2x +2)e x +(-x 2+2x )e x =(-x 2+2)e x . 令f ′(x )>0,即(-x 2+2)e x >0,因为e x >0,所以-x 2+2>0,解得-2<x <2, 所以函数f (x )的单调递增区间为(-2,2). 答案 (-2,2)7.若函数f (x )=ax 3+3x 2-x 恰好有三个单调区间,则实数a 的取值范围是________.解析 由题意知f ′(x )=3ax 2+6x -1,由函数f (x )恰好有三个单调区间,得f ′(x )有两个不相等的零点.需满足a ≠0,且Δ=36+12a >0,解得a >-3, 所以实数a 的取值范围是(-3,0)∪(0,+∞). 答案 (-3,0)∪(0,+∞)8.若函数f (x )=-13x 3+12x 2+2ax 在⎣⎢⎡⎭⎪⎫23,+∞上存在单调递增区间,则a 的取值范围是________.解析 对f (x )求导,得f ′(x )=-x 2+x +2a =-⎝ ⎛⎭⎪⎫x -122+14+2a .当x ∈⎣⎢⎡⎭⎪⎫23,+∞时,f ′(x )的最大值为f ′⎝ ⎛⎭⎪⎫23=29+2a .令29+2a >0,解得a >-19.所以a 的取值范围是⎝ ⎛⎭⎪⎫-19,+∞. 答案 ⎝ ⎛⎭⎪⎫-19,+∞三、解答题9.已知函数f (x )=x 4+a x -ln x -32,其中a ∈R ,且曲线y =f (x )在点(1,f (1))处的切线垂直于直线y =12x . (1)求a 的值;(2)求函数f (x )的单调区间.解 (1)对f (x )求导得f ′(x )=14-a x 2-1x ,由f (x )在点(1,f (1))处的切线垂直于直线y =12x 知f ′(1)=-34-a =-2,解得a =54. (2)由(1)知f (x )=x 4+54x -ln x -32(x >0). 则f ′(x )=x 2-4x -54x 2. 令f ′(x )=0,且x >0, ∴x =5(x =-1舍去).当x ∈(0,5)时,f ′(x )<0;当x >5时,f ′(x )>0. 所以函数f (x )的增区间为(5,+∞),减区间为(0,5).10.(2019·成都七中检测)设函数f (x )=ax 2-a -ln x ,g (x )=1x -ee x ,其中a ∈R ,e =2.718…为自然对数的底数. (1)讨论f (x )的单调性; (2)证明:当x >1时,g (x )>0.(1)解 由题意得f ′(x )=2ax -1x =2ax 2-1x (x >0).当a ≤0时,f ′(x )<0,f (x )在(0,+∞)内单调递减. 当a >0时,由f ′(x )=0有x =12a, 当x ∈⎝⎛⎭⎪⎫0,12a 时,f ′(x )<0,f (x )单调递减; 当x ∈⎝ ⎛⎭⎪⎫12a ,+∞时,f ′(x )>0,f (x )单调递增. (2)证明 令s (x )=e x -1-x ,则s ′(x )=e x -1-1. 当x >1时,s ′(x )>0,所以s (x )>s (1),即e x -1>x ,从而g (x )=1x -e e x =e (e x -1-x )x e x>0.能力提升题组 (建议用时:20分钟)11.(2017·山东卷)若函数e x f (x )(e =2.718 28…是自然对数的底数)在f (x )的定义域上单调递增,则称函数f (x )具有M 性质.下列函数中具有M 性质的是( ) A.f (x )=2-x B.f (x )=x 2 C.f (x )=3-xD.f (x )=cos x解析 设函数g (x )=e x ·f (x ),对于A ,g (x )=e x ·2-x =⎝ ⎛⎭⎪⎫e 2x,在定义域R 上为增函数,A 正确.对于B ,g (x )=e x ·x 2,则g ′(x )=x (x +2)e x ,由g ′(x )>0得x <-2或x >0,∴g (x )在定义域R 上不是增函数,B 不正确.对于C ,g (x )=e x ·3-x =⎝ ⎛⎭⎪⎫e 3x在定义域R上是减函数,C 不正确.对于D ,g (x )=e x·cos x ,则g ′(x )=2e xcos ⎝ ⎛⎭⎪⎫x +π4,g ′(x )>0在定义域R 上不恒成立,D 不正确. 答案 A12.(2019·上海静安区调研)已知函数f (x )=x sin x +cos x +x 2,则不等式f (ln x )+f ⎝ ⎛⎭⎪⎫ln 1x <2f (1)的解集为( ) A.(e ,+∞)B.(0,e)C.⎝ ⎛⎭⎪⎫0,1e ∪(1,e) D.⎝ ⎛⎭⎪⎫1e ,e 解析 f (x )=x sin x +cos x +x 2是偶函数,所以f ⎝ ⎛⎭⎪⎫ln 1x =f (-ln x )=f (ln x ).则原不等式可变形为f (ln x )<f (1)⇔f (|ln x |)<f (1). 又f ′(x )=x cos x +2x =x (2+cos x ), 由2+cos x >0,得x >0时,f ′(x )>0. 所以f (x )在(0,+∞)上单调递增. ∴|ln x |<1⇔-1<ln x <1⇔1e <x <e. 答案 D13.若函数f (x )=x -13sin 2x +a sin x 在(-∞,+∞)单调递增,则a 的取值范围是________.解析 f ′(x )=1-23cos 2x +a cos x =1-23(2cos 2x -1)+a cos x =-43cos 2 x +a cos x +53,f (x )在R 上单调递增,则f ′(x )≥0在R 上恒成立.令cos x =t ,t ∈[-1,1],则-43t 2+at +53≥0在[-1,1]上恒成立,即4t 2-3at -5≤0在t ∈[-1,1]上恒成立. 令g (t )=4t 2-3at -5,则⎩⎨⎧g (1)=4-3a -5≤0,g (-1)=4+3a -5≤0,解得-13≤a ≤13.答案 ⎣⎢⎡⎦⎥⎤-13,1314.已知函数f (x )=a ln x -ax -3(a ∈R ). (1)求函数f (x )的单调区间;(2)若函数y =f (x )的图象在点(2,f (2))处的切线的倾斜角为45°,对于任意的t ∈[1,2],函数g (x )=x 3+x 2·⎣⎢⎡⎦⎥⎤f ′(x )+m 2在区间(t ,3)上总不是单调函数,求m 的取值范围.解 (1)函数f (x )的定义域为(0,+∞), 且f ′(x )=a (1-x )x,当a >0时,f (x )的递增区间为(0,1), 递减区间为(1,+∞);当a <0时,f (x )的递增区间为(1,+∞),递减区间为(0,1); 当a =0时,f (x )为常函数.(2)由(1)及题意得f ′(2)=-a2=1,即a =-2, ∴f (x )=-2ln x +2x -3,f ′(x )=2x -2x .∴g (x )=x 3+⎝ ⎛⎭⎪⎫m 2+2x 2-2x ,∴g ′(x )=3x 2+(m +4)x -2.∵g (x )在区间(t ,3)上总不是单调函数, 即g ′(x )在区间(t ,3)上有变号零点. 由于g ′(0)=-2,∴⎩⎨⎧g ′(t )<0,g ′(3)>0.当g ′(t )<0时,即3t 2+(m +4)t -2<0对任意t ∈[1,2]恒成立, 由于g ′(0)<0,故只要g ′(1)<0且g ′(2)<0, 即m <-5且m <-9,即m <-9; 由g ′(3)>0,即m >-373. ∴-373<m <-9.即实数m 的取值范围是⎝ ⎛⎭⎪⎫-373,-9.新高考创新预测15.(多填题)已知函数f (x )=x 3+mx 2+nx -2的图象过点(-1,-6),函数g (x )=f ′(x )+6x 的图象关于y 轴对称.则m =________,f (x )的单调递减区间为________. 解析 由函数f (x )的图象过点(-1,-6),得m -n =-3.① 由f (x )=x 3+mx 2+nx -2,得f ′(x )=3x 2+2mx +n , 所以g (x )=f ′(x )+6x =3x 2+(2m +6)x +n . 因为g (x )的图象关于y 轴对称,所以-2m +62×3=0, 所以m =-3,代入①得n =0,所以f ′(x )=3x 2-6x =3x (x -2). 由f ′(x )<0,得0<x <2,所以f (x )的单调递减区间是(0,2). 答案 -3 (0,2)。