可逆电池的电动势及其应用物理化学
物化实验报告 电池电动势的测定及其应用
实验结果
原始数据记录如下:
电极 Cu-Ag 电极 Ag-参比电极
室温 14.3℃ 温度 25.00℃ 25.00℃ 30.00℃ 35.00℃ 40.00℃
恒温水浴温度 25.00℃ 示数1 mV 示数2 mV 451.91 452.41 505.41 505.46 503.77 503.70 501.00 500.83 498.28 498.22
实验试剂
琼脂、KCl、KNO3(分析纯) ,0.1mol·dm-3 AgNO3 溶液,0.1000mAgNO3+0.1 HNO3 溶 液,0.1 mol·dm-3 CuSO4 溶液,0.1000mCuSO4 溶液,饱和 Hg2(NO3)2 溶液
实验步骤
1、银电极的制备:将铂丝电极放在浓 HNO3 中浸泡 15 分钟,取出用蒸馏水冲洗,如表面 仍不干净, 用细晶相砂纸打磨光亮, 再用蒸馏水冲洗干净插入盛 0.1 mol·dm-3AgNO3 溶液的 小烧杯中,按图 7-(1)接好线路,调节可变电阻,使电流在 3mA、直流稳压源电压控制在 6V 镀 20 分钟。取出后用 0.1 mol·dm-3 的 HNO3 溶液冲洗,用滤纸吸干,并迅速放入盛有 0.1000mAgNO3+0.1 mHNO3 溶液的半电池管中(如图 7-2)
图 7-3
对消法原理线路图
过回路的电流为某一定值。 在电位差计的滑线电阻上产生确定的电位降, 其数值由己知电动 计组成。稳压电源为工作电源,其输出电压必须大于待测电池的电动势。调节可变电阻使流 势的标准电池s 校准。另一回路 abGa 由待测电池x(或s)检流计 G 和电位差计组成,移 动 b 点,当回路中无电流时,电池的电势等于 a、b 二点的电位降。 - (1) 组装电池:将上述制备的银电极与实验室提供的 Ag-AgCl|Cl (1.000mKCl)参比 - 电极组成电池,Ag-AgCl|Cl (1.000m)║AgNO3(0.1000m)|Ag。根据理论计算确定电极电 位的高低与电极的正负,将其置于恒温槽中,将自制的 KNO3 盐桥横插在两半电池管的小口 上,注意两半电池管中溶液一定要与盐桥底端相接,将恒温槽置于 25℃,恒温 10-15 分钟 后测量。 (2) 电池电动势测量:用 UJ-24 型电位差计测量电池的电动势,该仪器最大测量范围 为 1.91110V。 a、将标准电池,工作电源,待测电池以及检流计分别与 UJ-24 型电位差计的各指示
第九章 可逆电池电动势及其应用讲解
物理化学电子教案
第三类电极
惰性金属|某种离子的不同氧化态溶液构成.
Pt(s) | Fe 3 (a1 ), Fe 2 (a2 ) Pt(s) | Sn4 (a1 ), Sn2 (a2 )
Fe 3 (a1 ) e Fe 2 (a2 )
Sn4 (a1 ) 2e Sn2 (a2 )
2PbSO 4(s) 2H2O(l)
第七章 电化学
物理化学电子教案
② 对电解池: 电解池中, 与外电源正极相连 的电极为阳极, 负极相连的电极为阴极.
电极反应: 如铅酸电池充电过程.
阳极: PbSO 4(s) 2H2O(l) PbO 2(s) SO42 (m) 4H (2m) 2e
第七章 电化学
Hale Waihona Puke 物理化学电子教案1.标准氢电极
如图, 把镀有铂黑的铂片插入 aH+ = 1的溶液中, 并用 1pθ下干燥 的氢气流不断拍击铂片, 就构成标 准氢电极.
电极符号: (Pt)H2( pθ ) | H (aH 1)
电极反应:
1 2
H
2
(
p
θ
)
H
(a H
1) e
电极规电定势,就指是定相温对度标下准: 氢Hθ电/H2极 而0.0得000到, 的其.它电极的
Zn(s)|ZnSO4(m1)|CuSO4(m2)| Cu(s)
其二, 若电池工作时(有电流通过), 必然电池 因内阻而使环境留下热量.
第七章 电化学
物理化学电子教案
5. 可逆电极
第一类电极
金属+该金属离子的溶液构成 (包括气体电极, 汞齐电极), 用 M|Mz+表示.
可逆电池的电动势及其应用
正极(Ag+AgC1 极, 阴极) : AgCl (s) + e − → Ag (s) + Cl− 总反应为
1 1 Zn (s ) + AgC1(s ) → Zn 2 + C1− + Ag(s ) 2 2
( 8–1 )
(2) 若E外>E,且E外-E=δE,电池内的反应恰(s) + Cl− → AgCl (s) + e − 阳极(Ag+AgC1 极) : 总反应为
1 2+ 1 Zn + Ag ( s ) + C1− → Zn ( s ) + AgC1( s ) 2 2
( 8–2 )
1 1 Zn 2+ + e − → Zn ( s ) 2 2
由于以上两个总反应互为逆反应,且在充放电时电流均很小,所以为一可逆电池。 又如,丹尼尔电池 正极:Cu电极(电解液:CuSO4) 负极:Zn电极(电解液:ZnSO4) 作为原电池 E>E外(电池放电)
△GT, p<-nFE′。
研究可逆电池十分重要,因为从热力学来看,可逆电池所作的最大有用功是化学能转 变为电能的最高极限,这就为我们改善电池性能提供了一个理伦依据,另一方面在研究可 逆电池电动势的同时,也为解决热力学问题提供了电化学的手段和方法。 例如,某一电化学装置 电极:Zn (s) 和 Ag (s)+AgCl (s)
6
陕西师范大学物理化学精品课程
图 8.2 韦斯顿标准电池简图 电极反应为 负极(Cd极) :Cd(汞齐)→ Cd2++2e正极(Hg极) :Hg2SO4(s)+2e- → 2Hg(l)+SO42− 电池反应
07章_可逆电池的电动势及其应用
8 8 2Cd( 汞齐) SO 4 H 2O(l) CdSO 4 H 2O(s) 2e 3 3
阴极:
8 8 电池反应 : Cd( 汞齐) Hg 2SO 4 (s) H 2O(l) 2Hg(l) CdSO 4 H 2O(s) 3 3
上一内容 下一内容 回主目录
' r , max
当可逆电池的反应进度=1mol时
下一内容 回主目录
返回
2016/1/6
化学反应设计成电池做功和热机做功区别
根据热力学原理,恒温恒压下,1mol反应进度放热化学反应对外能 放出的热是Qm为反应的摩尔反应焓变 r Hm 。
这一热量通过热机对外做 功或发电
目前最高能量转化 率40 %
上一内容 下一内容 回主目录
返回
2016/1/6
可逆电池可逆电池的必备条件
实际上并不是所有的电池都是可逆的 当电池电动势E >E外 ,电池对外放电, 其反应为: 正极反应: 2H+ +2e → H2 负极反应: Zn -2e → Zn2+ 电池反应: Zn +2H+ → Zn2+ + H2 当E < E外 ,对电池充电,其反应为: 正极反应: Cu-2e → Cu2+ 负极反应: 2H+ +2e → H2 电池反应: Cu+2H+ → Cu2++ H2
由 rGm和rSm 两个量,就可以容易地求得:
E Δr H m ΔrGm TΔr Sm zFE zFT T p (7.6.5)
E
这个rHm 是在没有非体积功的情况下,恒温恒压反应热。 因为电动势容易精确测定,所以按上式求
Zn
Cu
HCl 不满足充、放 电反应互为可逆 反应,因此,这 个电池不是可逆 电池。 P-319
南京大学《物理化学》考试 第八章 可逆电池的电动势及其应用
第八章可逆电池的电动势及其应用物化试卷(一)1.下列电池中,哪个电池的电动势与 Cl-离子的活度无关?(A) Zn│ZnCl2(aq)│Cl2(g)│Pt(B) Zn│ZnCl2(aq)‖KCl(aq)│AgCl(s)│Ag(C) Ag│AgCl(s)│KCl(aq)│Cl2(g)│Pt(D) Hg│Hg2Cl2(s)│KCl(aq)‖AgNO3(aq)│Ag2.下列对原电池的描述哪个是不准确的:(A) 在阳极上发生氧化反应(B) 电池内部由离子输送电荷(C) 在电池外线路上电子从阴极流向阳极(D) 当电动势为正值时电池反应是自发的3.用补偿法(对消法)测定可逆电池的电动势时,主要为了:(A) 消除电极上的副反应(B) 减少标准电池的损耗(C) 在可逆情况下测定电池电动势(D) 简便易行4.用对消法测定由电极Ag(s)│AgNO3(aq) 与电极Ag,AgCl(s)│KCl(aq) 组成的电池的电动势,下列哪一项是不能采用的?(A) 标准电池(B) 电位计(C) 直流检流计(D) 饱和KCl盐桥5.若算得电池反应的电池电动势为负值时,表示此电池反应是:(A) 正向进行(B) 逆向进行(C) 不可能进行(D) 反应方向不确定6.电池电动势与温度的关系为:298 K 时,电池可逆放电,则:(A) Q > 0 (B) Q < 0(C) Q = 0 (D) 不能确定7.25℃时,φ(Fe3+,Fe2+) = 0.771 V,φ (Sn4+,Sn2+) = 0.150 V,反应的为:(A) -268.7 kJ/mol (B) -177.8 kJ/mol(C) -119.9 kJ/mol (D) 119.9 kJ/mol8.某燃料电池的反应为: H2(g)+ O2(g) ---> H2O(g) 在 400 K 时的Δr H m和Δr S m分别为 -251.6 kJ/mol和 -50 J/(K·mol),则该电池的电动势为:(A) 1.2 V (B) 2.4 V(C) 1.4 V (D) 2.8 V9.某电池在等温、等压、可逆情况下放电,其热效应为Q R, 则:(A) Q R=0 (B) Q R=ΔH(C) Q R=TΔS (D) Q R=ΔU10.金属与溶液间电势差的大小和符号主要取决于:(A) 金属的表面性质(B) 溶液中金属离子的浓度(C) 金属与溶液的接触面积(D) 金属的本性和溶液中原有的金属离子浓度11.Li - Cl2电池结构如下:Li│LiCl((饱和液)有机溶剂)│Cl2(p)│Pt 已知[LiCl(s)] = -384 kJ/mol,则该电池的电动势值 E 为:(A) 1 V (B) 2 V (C) 3 V (D) 4 V12.有两个电池,电动势分别为E1和E2:H2(p)│KOH(0.1 mol/kg)│O2(p) E1H2(p)│H2SO4(0.0l mol/kg)│O2(p) E2比较其电动势大小:(A) E1< E2 (B) E1> E2(C) E1= E2 (D) 不能确定13.已知:(1) Cu│Cu2+(a2)‖Cu2+(a1)│Cu 电动势为 E1 (2) Pt│Cu2+(a2),Cu+(a')‖Cu2+(a1),Cu+(a')│Pt 电动势为 E2,则:(A) E1=E2 (B) E1= 2 E2(C) E1= E2 (D) E1≥ E214.在298 K将两个 Zn(s)极分别浸入 Zn2+ 离子活度为0.02和0.2的溶液中, 这样组成的浓差电池的电动势为:(A) 0.059 V (B) 0.0295 V(C) -0.059 V (D) (0.059lg0.004) V15.电池Pb(Hg)(a1)│Pb2+(aq)│Pb(Hg)(a2) 要使电动势E>0, 则两个汞齐活度关系为:(A) a1>a2 (B) a1=a2(C) a1<a2 (D)a1与a2可取任意值16.关于液体接界电势 Ej, 正确的说法是:(A) 只有电流通过时才有Ej存在(B) 只有无电流通过电池时才有 Ej(C) 只有种类不同的电解质溶液接界时才有Ej(D) 无论电池中有无电流通过, 只要有液体接界存在, Ej总是存在17.测定溶液的 pH 值的最常用的指示电极为玻璃电极, 它是:(A) 第一类电极(B) 第二类电极(C) 氧化还原电极(D) 氢离子选择性电极18.已知 298 K 时,φ (Ag+,Ag)=0.799 V, 下列电池的 E为0.627 V . Pt, H2│H2SO4(aq)│Ag2SO4(s)│Ag(s) 则 Ag2SO4的活度积为:(A) 3.8×(B) 1.2×(C) 2.98×(D) 1.52×19.通过电动势的测定,可以求难溶盐的活度积,今欲求 AgCl 的活度积,则应设计的电池为:(A) Ag│AgCl│HCl(aq)‖Cl2(p)│Pt(B) Pt│Cl2│HCl(aq)‖AgNO3(aq)│Ag(C) Ag│AgNO3(aq)‖HCl(aq)│AgCl│Ag(D) Ag│AgCl│HCl(aq)‖AgCl│Ag20.电池(1) Ag(s)│AgNO3(a1)‖AgNO3(a2)│Ag(s) 电动势为 E1 电池(2) Ag(s)│AgNO3(a1)┆AgNO3(a2)│Ag(s) 电动势为 E2,其液接电势为 EJ。
物理化学第九章可逆电池的电动势及其应用
rHm
=
Δ
r Gm
+TΔ
r Sm
=
− zEF
+
zFT
⎛ ⎝⎜
∂E ∂T
⎞ ⎟⎠ p
QR
= TΔ
r Sm
=
zFT
⎛ ⎜⎝
∂E ∂T
⎞ ⎟⎠ p
(1) 求298K时,下列电池的温度系数:
Pt H(2 pθ)H2SO(4 0.01mol ⋅ kg-1) O2(pθ ) Pt
已知该电池的电动势E = 1.228V , H2O(l )的标准摩尔
Δ
G(\ 1)=
rm
1 2
Δ
G(\ 2)
rm
E1\
=
E
\ 2
,
E 1
=
E2
ΔrG(m\ 1)=-RTlnK\a (1)
Δ
r
G(\ 2)=-RTlnK m
\ a
(
2)
K\a (1) = K\a (2)
三、由电动势E及其温度系数求反应的ΔrHm和ΔrSm
Δ
r Sm
=
zF
⎛ ⎜⎝
∂E ∂T
⎞ ⎟⎠ p
Δ
Hg(l )
电池反应:
(阳极, -) Cd(Hg) -2e- →Cd2++Hg(l)
(阴极, +) Hg2SO4(s)+2e-→2Hg(l)+SO42-
净反应:
Hg2SO4(s)+Cd(Hg)(a)+8/3H2O→CdSO4·8/3H2O(s)+3Hg(l)
或 Hg2SO4(s)+Cd(Hg)(a) →Cd2++ SO42- +3Hg(l)
物理化学——第9章-可逆电池
3
2
4
2
§ 9.2 电动势的测定
Cell
Cell
V 不可逆电池的端电压
电位 差计 可逆电池的电动势
§ 9.2 电动势的测定
对消法测定可逆 电池电动势 (P65)
§ 9.3 可逆电池的书写方法
规定: 负极|电解质溶液|正极 负极|负极溶液| |正极溶液|正极
1. “|” 表示相界面,有电势差存在。 2.“||”表示盐桥,使液接电势降到可以忽略不计。 3. 要注明温度,不注明就是298.15 K; 要注明物态;气体要注明压力;溶液要注明浓度。
p77
1/2H2 (p ) H (aH =1) e
规定:
θ
H / H2 g
=0
氢电极
用途
测其它电极的相对电势 方法:
标准氢电极 || 任意电极x ( =?)
p78
标准氢电极做负极 待测电极做正极
θ E电池 = +– - = +– H
/ H2 g
= +
2、可逆电极
第二类电极(the second-class electrode)
金属表面覆盖一层该金属的难溶盐,然 后再浸入含有该盐的相同阴离子溶液中组成 的电极。
甘汞电极(calomel electrode) 电极符号: Hg, Hg2Cl 2 (s) KCl (a)
电极反应: Hg2Cl2 2e 2Hg Cl
1和3可消除或忽略,E只与2和4有关
即: E只和2个电极电势有关 E电池 = 2 + 4
§ 9.6 电极电势和电池的电动势
(1) 标准氢电极
第九章 可逆电池的电动势及其应用
电池总反应: 1/2Zn2+(aq) + Ag(s)+Cl-(aq) 1/2Zn(s) + AgCl(s)
2013-7-26
Shenming
12
第九章 可逆电池的电动势
从以上分析可见 ,当Zn电极、Ag+AgCl电极和 ZnCl2溶液组成的电池在作为原电池和电解池时,其电 极上的反应或者说电池总反应正好相反,即电池反应 是可逆的。具备了可逆电池的必要条件,所以上述电 池是一个可逆电池,该电池由两电极加一种电解质组 成的故称为单液电池,但是假如上述电池在充放电时 通过的电流不是很小,则电池就成为不可逆电池了。 严格地讲凡是具有两个不同电解质溶液接界的电 池都是热力学不可逆电池,所以在设计热力学上的可 逆电池时,均应设计类似于上面讨论的单液电池,或 用一些串联的单液电池来解决一些电化学中的问题。
2013-7-26
Shenming
23
第九章 可逆电池的电动势
2013-7-26
Shenming
24
第九章 可逆电池的电动势
标准电池电动势与温度的关系 ET/V=1.018454.05×10-5(T/K293.15) 9.5×10-7(T/K293.15)2 +1×10-8(T/K293.15)3 我国在1975年提出的公式为:
25
第九章 可逆电池的电动势
§9.3 可逆电池的书写方法及电动势的取号
一、可逆电池的书写方法 规定: 1. 左边为负极,起氧化作用; 右边为正极,起还原作用。 2.“|”表示相界面,有电势差存在(有时也用逗号)。 3.“||”表示盐桥,使液接电势降到可以忽略不计。 4. 要注明温度,不注明时就是指 298.15 K;要注明物态, 气体要注明压力;溶液要注明浓度。 5. 气体电极和氧化还原电极要写出导电的惰性电极, 通常是铂电极。 6.在书写电极和电池反应时必须遵守物料平衡和电荷平衡。
09章_可逆电池的电动势及其应用
本章学习目的和要求
1. 理解电动势与rGm的关系,温度对电动势的影响及了 解rHm和rSm的计算。
2. 理解标准电极电势表的应用(氧化能力的估计、平衡常 数的计算等)。
3. 能熟练地写出给定电池的电极反应和电池反应并能计算 其电动势。
4. 能根据简单化学反应来设计电池。 5. 了解电动势产生的机理及电动势测定的一些应用。
碱性:
OH-|H2(g)|Pt
电极反应:2H2O+2e-H2(g)+2OH-
(2)氧电极
结构:将镀有铂黑的铂片浸入含有H+或OH-的溶液中, 并不断通O2(g)就构成了酸性或碱性氧电极
酸性:
H+|O2(g)|Pt
电极反应:O2(g)+4H++4e-2H2O(g)
碱性:
OH-|O2(g)|Pt
电极反应:O2(g)+2H2O+4e-4OH-
298.15K时
E 1.018 32 V
标准电池的电动势与温度的关系
E(T
)
/
V
1.018
45
4.05 105
T K
293.15
9.5107
T K
2
293.15
1108
T K
293.15
3
通常要把标准电池恒温、恒湿存放,使电动势稳定。
我国在1975年提出的公式为:
ET/V=E(293.15K)/V-{39.94(T/K-293.15) +0.929(T/K-293.15)2 - 0.009(T/K-293.15)3 +0.00006(T/K-293.15)4}×10-6
物理化学全程导学及习题全解175-206 第九章可逆电池的电动势及其应用
第九章 可逆电池的电动势及其应用1. 原电池是使化学能能为电能的装置,其主要组成是两个电极和电解液,在等温等压条件下,体系发生变化时,系统吉氏自由能的减少等于对外所做的最大膨胀功.此时转变过程以热力学可逆方式进行,电池为可逆电池.()f ,max r T,pG W =V若非膨胀功只有电功,则(),r T p G nEF =-V如果可逆电动势为E 的电池按电池反应进行进度ξ=1mol 时吉氏自由能的变化值可以写成: ()r T,p G zEF =-V2. 该式是联系热力学和电化学扩要桥梁.可逆电池必须满足的两个条件:1. 电极上的化学反应可向正、反两个方向进行。
可逆电池工作时,电池是在接近平衡养状态下工作的。
可逆电极有以下三种类型:第一类电极:由金属浸在含有该金属离子的溶液构成。
第二类电极:由金属表面覆盖一该金属难溶盐薄层,然后浸入含有该难溶盐负离子的溶液构成。
第三类电极:由惰性金属插入含有某种离子的不同氧化态的溶液中构成电极。
电池的电动势不能直接用伏特计测量。
一般使用对消法。
需要一个电动势已知并且稳定的辅助电池,即标准电池。
常用的标准电池是韦斯顿标准电池。
电极中还包括标准氢电极。
人为规定其电极电势为0电池的书面表示采用的规则是,负极写在在方,进行氧化反应,正极写在右方,进行还原反应用单垂线表示不同物相的界面,用双垂线表示盐桥。
不觉 应注意气体应注明压力,电解质溶液应注明活度。
在书面电极和电池反应时应遵守物量和电荷量守衡。
电动势产生机理:(1)电极与电解质溶液界面间形成的电势差。
(2)接触电势。
(3)液体接界电势。
液接电势可以通过盐桥来减小。
3.可逆电池的热力学及电动势测定的应用。
Nerst 方程 g hGHc dC DIn a a RT E E zF a a =- In RTE K zF=r m T p E S zF ∂⎛⎫= ⎪∂⎝⎭V ,m T r pE H zEF zFT ∂⎛⎫=-+ ⎪∂⎝⎭Vr m R pE Q T S zFT T ∂⎛⎫=⋅= ⎪∂⎝⎭V还原电极电势:Ina RT zF a ϕϕ=--还原态氧化态应用:求电解质溶液的平均活度因子; 求难溶盐的溶度积; pH 值的测定:()s r x s pH pH In10E EF RT -==典型例题讲解例1 以M 代表某金属,MCl 2是其氧化物,是强电解质,设下列电池:()12M|MCl 1mol kg |AgCl|Ag -⋅在0~60℃间的电动势E 与温度之间的关系为: 57 =1.200V+4.0010V+9.0010V E --⨯⨯,25℃时,()()2M |M 0.9636,Ag |Ag |Cl 0.2223V E E ++-==-==(1)写出电极反应及电池反应。
8-第九章 可逆电池的电动势及其应用(2010级)1
对消法测电动势
在外电路上加一反向 电势差,其数值与E相 同,这就相当于外电阻 无穷大了。如图:
Ew
−
R
+
H
A
− +
C
G
B
U AH = Es,c = IRAH
Es.c
E x = U AC = IRAC = Es,c × RAC RAH
D
K
− + Ex
材料科学与化学工程学院大学化学教学部 何明中
材料科学与化学工程学院大学化学教学部 何明中
可逆电池
可逆电池是在平衡态或无限接近于平衡态的情况 下工作。因此,在等温、等压条件下,当系统发生 变化时,系统Gibbs自由能的减少等于对外所做的 最大非膨胀功,用公式表示为: ∆ r G T , p , R = W f, m ax 如果非膨胀功只有电功,则上式又可写为 ∆ r G T , p , R = − nF E 式中 n 为电池输出电荷的物质的量,单位为mol, E 为可逆电池的电动势,单位为V。
材料科学与化学工程学院大学化学教学部 何明中
§9.2 电动势的测定
不能用伏特计测定原电池的电动势。因为: (1) 用伏特计测定时,就会有电流,即电池内反 应进行,电解质溶液的浓度发生变化,电动势也就 不断改变。这时,电池亦不是可逆电池了。 (2) 电池有内阻,有电流流过时,两电极间是电 势差不是电动势。 所以,测量可逆电池的电动势必须在几乎没有电 流通过的情况下进行。
−
−
Zn(s ) + 2 AgCl(s ) → Zn 2 + + 2 Cl − + 2 Ag(s )
− − → 阳极: 2Ag(s) + 2Cl 2AgCl(s) + 2e
可逆电池的电动势及其应用new
(—)H2(pH2) + 2OH-(m) - 2e- → 2H2O(l) (+) H2O(l) + 1/2O2 (pO2 ) + 2e- → 2OH- (m) Cell: H2(pH2) + 1/2O2 (pO2 ) → H2O(l)
E = φ + - φ- = φ 右 - φ左
(2) 对于一电池体现式,按规则(1)计算出E,若E >0, 则表白该体现式真实代表一种电池;若E <0, 则表
白该体现式并不真实地代表一种电池,要正确体现电 池,需将体现式中左右两极互换位置。
为何?
二. 电池体现式与化学反应式“互译”
1. 由电池体现式写出电极和电池反应
2. 由电池反应设计成电池
抓住三个环节(三点原则):
(1)拟定电解质溶液 (2)拟定电极 (3)复核反应
2. 由电池反应设计成电池
例1. H2(pH2) + 1/2O2 (pO2 ) → H2O(l) 例2. Ag(s) + 1/2Hg2Cl2 (s) → AgCl(s) +Hg(l) 例3. Fe2+(a(Fe2+)) +Ag+ (a(Ag+)) → Fe3+(a(Fe3+)) +Ag (s) 例4. AgCl (s) → Ag+ (a(Ag+)) + Cl- (a(Cl- ))
例1. H2(pH2) + 1/2O2 (pO2 ) → H2O(l)
(—) Pt(s)|H2(pH2) | H+ ( a (H+))
第九章-可逆电池的电动势及其应用
( r G)T , p , R Wf,max nEF
对任一化学反应:aA+bB = yY+zZ,等温、等压下 对一微小过程:Q=zF ξ 电池对外做功,为负: dG= δ W’ =-(zF dξ)E 摩尔吉布斯函数变为反应吉布斯函数随反应进度的变化率
( r Gm )T , p , R
§9.3
可逆电池的书写方法及电动势的取号
Zn
Cu
1. 左边为负极,起氧化作用,是阳极;
右边为正极,起还原作用,是阴极。
2. “|” 表示相界面,有电势差存在。 “┊” 表示半透膜。
ZnSO4 (aq)
素瓷烧杯
CuSO4 (aq)
3. “‖”或“┊┊”表示盐桥,使液
接电势降到忽略不计 4. 要注明温度,不注明就是298.15 K; 要注明物态;气体要注明压力和依附的 惰性金属;溶液要注明浓度或活度。 5. 电池的电动势等于右边正极的还原 电极电势减去左边负极的还原电极电势
8 8 电池总反应:Cd(汞齐) Hg2SO 4 (s) H 2O(l) 2Hg(l)+CdSO 4 H 2O(s) 3 3
Cd(Hg)(a) 中含镉
w(Cd) = 0.05~0.14
25℃时, Es = 1.01832 V
20 ℃时, Es = 1.01845 V
标准电池不允许晃动、侧放,并避免剧烈震动或倒置,否则会引起不可 逆的变化,甚至损坏。标准电池不能作为输出电功率的原电池,在使用 时通过标准电池的电流一般不能超过 1 微安,过大的电流将使电动势 产生不可恢复的改变。 用途:配合电位计测定原电池电动势
双液电池:用盐桥分开
1. 可逆电池
可逆电池: 充 电 放 电 体系复原 环境复原
物化-电动势的测定及应用
宁波工程学院物理化学实验报告专业班级姓名序号实验日期同组姓名指导老师实验名称电动势的测定及应用一、实验目的1、通过实验加深对可逆电池、可逆电极、盐桥等概念的理解。
2、掌握对消法测定电池电动势的原理及电位差计的使用方法。
3、通过电池Ag | AgNO3(b1) || KCl(b2) | Ag-AgCl |Ag的电动势求AgCl的溶度积Ksp。
4、了解标准电池的使用和不同盐桥的使用条件。
二、实验原理1、可逆电池的电动势:电池的书写习惯是左方为负极,右方为正极。
如果电池反应是自发的,则电池电动势为正。
符号“|”表示两相界面,“||”表示盐桥。
在电池中,电极都具有一定的电极电势。
当电池处于平衡态时,两个电极的电极电势之差就等于该可逆电极电势。
规定电池的电动势等于正负电极的电极电势之差,即:E = ψ+-ψ-可逆电池必须具备的条件为:1、电极上的化学反应可向正反两个方向进行,即反应可逆;2、电池在工作(充放电)时,所通过的电流必须无限小,此时电池可在接近平衡状态下工作,即能量可逆;3、电池中所进行的其它过程可逆。
如溶液间无扩散、无液体接界电势;因此在制备可逆电池、测定可逆电池的电动势时应符合上述条件,在精确度不高的测量时,常用正负离子迁移数比较接近的盐类构成“盐桥”来减小液体接界电势。
要达到工作电流零的条件,必须使电池在接近热力学平衡条件下工作。
测量可逆电池的电动势不能直接用伏特计来测量。
所以要准确测定电池的电动势,只有在电流无限小的情况下进行,所采用的对消法就是根据这个要求设计的。
2、对消法测定原电池电动势原理在待测电池上并联一个大小相等,方向相反的外加电势差,这样待测电池中没有电流通过,外加电动势的大小即等于待测电池的电动势。
装置如下:Ew -工作电源,E N -标准电池,Ex -待测电池;R-调节电阻,Rx-待测电池电动势补偿电阻,R N -标准电池电动势补偿电阻;K -转换电键,G -检流计。
3、电极:1、标准氢电极:电极电势的绝对值无法测定,手册上所列的电极电势均为相对电极电势,即以标准氢电极作为标准(标准氢电极是氢气压力为101325Pa,溶液中H+为1,其电极电动势规定为零)。
第九章可逆电池电动势及其应用
物理化学教案新疆大学化学化工学院物理化学教研室刘月娥第九章可逆电池电动势及其应用9.1 可逆电池和可逆电极一、可逆电池必须满足两个必要条件:(1)该化学反应可逆,即当E > E外时,电池放电;当E < E外时,电池充电(2)能量的转移可逆(I → 0)Cu – Zn电池E > E外时放电,为原电池(-) Zn – 2e- → Zn2+ (+) Cu2+ + 2e-→ Cu电池反应:Zn + Cu2+ = Zn2+ + CuE < E外时充电,为电解池(-) Zn2+ + 2e-→ Zn (+) Cu – 2e- → Cu2+电池反应:Zn2+ + Cu = Zn + Cu2+说明:充放电时,电极反应和电池反应互为可逆反应,并且当I → 0时能量的转变也是可逆的。
Zn-Cu H2SO4溶液电池E > E外时放电,为原电池(-) Zn – 2e-→ Zn2+ (+) 2H+ + 2e-→ H2(p)电池反应:Zn + 2H+ = Zn2+ + H2(p)E < E外时充电,为电解池(-) 2H+ + 2e-→ H2(p) (+) Cu – 2e-→ Cu2+电池反应:Cu + 2H+ = H2(p) + Cu2+说明:不互为可逆反应注意:(1)并不是所有反应可逆的电池都是可逆电池(如E外>>E)(2)丹尼尔电池实际上并不是可逆电池(因为存在离子的扩散),可插入盐桥处理;严格地说,凡是具有两个不同电解质溶液接界的电池都是热力学不可逆的。
二、可逆电极和电极反应可逆电极的种类12.3掌握:(1)可逆电极 写出电极反应(2)电极反应 设计出可逆电极,并判断属于第几类电极9.2 电动势的测定不能直接用伏特计测量原因:(1)伏特计显示需通过电流,致使化学反应发生,则不为可逆电池。
(2)电池本身有内阻,测出的只是两极间的电势差。
波根多夫对消法(补偿法) AC AH E E sx = AC AH E E s x ⋅= 标准电池韦斯顿标准电池特点:稳定、温度系数小、重现性好、高度可逆 负极:镉汞齐(含镉5-14%)Cg(Hg)(12.5%) – 2e - → Cd 2+(a +) + Hg(l) 正极:Hg(l)与Hg 2SO 4(s)的糊状体Hg 2SO 4(s) + 2e - → 2Hg(l) + -24SO (a -)电池反应:Cd(Hg)(12.5%)+Hg 2SO 4(s)+8/3H 2O = CdSO 4⋅8/3H 2O(s)+2Hg(l) 注意:(1)正负极不要接反 (2)切勿倒置(-)Cd(Hg)(12.5%)| CdSO 4⋅8/3H 2O(s) | CdSO 4(a) | CdSO 4⋅8/3H 2O(s) | Hg 2SO 4(s)+ Hg(l) (+)9.3 电池的书写方法及电动势的取号一、可逆电池的书写方法 1. 负极-左边(氧化作用),正极-右边(还原作用)2. ―|‖表示不同物相的界面,有接界电势(电极-溶液,溶液-溶液)存在;―||‖表示盐桥,液接电势可忽略E j →03. 物质-化学式,标明温度(不标明指298.15K )、压力(不标明指p θ)、物态及活度(a, s 、l 、g(依附的不活泼金属))切记:各化学式及符号的排列顺序要真实反映电池中各种物质的原来接触顺序。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.5
9.7、电动势测定的应用: 电解质平均活度系数的计算、微
溶盐的活度积、溶液 PH 值的测定、电势滴定、电势-pH 图的
2
绘制及应用
重点 难点
重点:1.可逆电池的条件;2.电极反应、电池反应与电池表示式 的互译 3.电极电势、电池电动势的数值、符号的规定,标准电极电势、 标准电池电动势的意义;4.能斯特方程;5.电动势测定的应用 难点:1.电池电动势和电极电势的符号;2.双电层理论
7、了解电动势产生的原因及电动势测定的一些应用。
3
§9.1 可逆电池和可逆电极
一、可逆电池和不可逆电池
热力学指出,体系经过某一变化后,当沿着相反方向回到原来到状态,环境也同时恢复到原态,则原
过程是热力学和不可逆电池两种。如
电池:是与一个外电源并联。
能量变化可逆
Zn(s)|ZnSO4||HCl|AgCl(s) | Ag(s)
作原电池 (−) Zn(s) ⎯⎯→ Zn2+ + 2e−
(+) 2AgCl(s) + 2e− ⎯⎯→ 2Ag(s) + 2Cl−
净反应
Zn(s) + 2AgCl(s) ⎯⎯→ 2Ag(s) + 2Cl− + Zn2+
作电解池 阴极: Zn2+ + 2e− ⎯⎯→ Zn(s)
阳极 2Ag(s) + 2Cl− ⎯⎯→ 2AgCl(s) + 2e−
净反应: 2Ag(s) + ZnCl2 ⎯⎯→ Zn(s) + 2AgCl(s)
4
可见,该电池在充放电时的化学反应恰好相反,即电池反应重物质变化是可逆的,同时内外电压只相 差无限小的值,说明电池反应是在十分接近于平衡态下进行的,因此当电池恢复原状时,在环境中也不会 留下任何痕迹,这样的电池就符合热力学可逆的条件,故称为可逆电池。
面表示方法,
2、了解对消法测电动势的基本原理和标准电池的作用
3、学会所给电池、电极写出有关的化学反应方程,以及根据所
给化学反应设计原电池。
4、掌握热力学与电化学之间的联系,了解电动势产生的原因。
5、熟悉电极电势的一套惯用符号和掌握标准电极电势表的应用。
6、掌握能斯特方程及其应用.熟悉电动势测定的主要应用
7、理解浓差电池产生的机理及盐桥的作用。
教学内容提要
时间分配
9.1、可逆电池和可逆电极
9.2、电动势的测定: 对消法测电动势、标准电池
1
9.3、可逆电池的书写方法及电动势的取号
1.5
9.4、可逆电池的热力学:能斯特方程、可逆电池热力学
2
9.5、电动势产生的机理
2
9.6、电极电势和电池的电动势
1
标准氢电极与参比电极 可逆电池电动势的计算
讨论 思考 作业
讨论题目:1、可逆电池的条件是什么?为什么要提出可逆电池 来讨论? 2、电池反应与电池表示式之间的互相转化? 3、可逆电池的设 计方法? 思考题目:为什么不能用伏特计直接测量电池的电动势? 练习作业:习题:1(2、4、6、8)、2(2、4、6、8、10)、5、 6、8(1、3、5)、9、11、13、14、16、21、(2、4、6)、25、 26、28、29、32、34、37、38
重要公式: (Δ r G)T , p,R = Wf,max = −nEF
如何把化学反应转变成电能? 1、该化学反应是氧化还原反应,或包含有氧化还原的过程; 2、有适当的装置,使化学反应分别通过在电极上的反应来完成; 3、有两个电极和与电极建立电化学平衡的相应电解质; 4、有其他附属设备,组成一个完整的电路。
当电池中的反应为不可逆过程(热力学不可逆)时 (Δ r Gm )T , p < −zEF 电化学与热力学的联系
虽然实际工作的电池并不可能是可逆的,但是只有可逆时 E 与△G 有直接相等的关系,因此,研究可 逆电池和可逆电极是很重要的,为了从理论上弄清楚它的重要性,必须了解可逆电池,可逆电极、电动势 及产生的原理、理论计算方法和他们在实际中的应用。
当外加电势 V 比电池的电动势 E 小δV 时,电池放电,反应为:
A
在 Zn 极上: Zn − 2e → Zn2+ 在 AgCl-Ag 极上: 2 AgCl(s) + 2e → 2Ag(s) + 2Cl−
Zn
Ag
AgCl
总反应: 2 AgCl(s) + Zn → 2 Ag(s) + 2Cl− + Zn2+
当外加电势 V 比电池的电动势 E 大δV 时,电池充电,反应为:
在 Zn 极上: Zn2+ + 2e → Zn
ZnCl2
在 AgCl-Ag 极上: 2 Ag(s) + 2Cl− − 2e → 2 AgCl(s)
总反应: 2 Ag(s) + 2Cl− + Zn2+ → 2AgCl(s) + Zn
化学反应可逆
本章基本要求
1、明确掌电动势与△rGm的关系,掌握电极电势、电池的书面表示的一套符号;
2、熟悉标准电极电势表的应用; 3、掌握写出所给电池的电极反应和电池反应,能根据所给化学反应设计原电池; 4、熟悉热力学与电化学之间的联系; 5、熟练掌握能斯特方程及其应用以及电动势的计算;
6、明确温度对电动势的影响,了解△rHm和△rSm的计算;
(Δ r G)T , p,R ≤ Wf,max
< 表示自发过程 = 表示自发性可逆 > 表示不可能发生的过程
如果该非体积功只有电功的情况下,有: (Δ r G)T , p ≤ Wf,max = −nEF
当反应进度为 1 摩尔时: (Δ r Gm )T , p ≤ − zEF
z= n ξ
可见:当电池中的反应为可逆过程(热力学可逆)时 (Δ r Gm )T , p = −zEF
物理化学讲稿
第九章 可逆电池的电动势及其应用
(12 学时)
物理化学教研室
1
第九章 可逆电池的电动势及其应用(教学方案)
章节名称 第九章 可逆电池的电动势及其应用
备注
授课方式
教 学 目 的 及 要 求
理论课(√);实验课( ()
);实习
教学时数
12
1、掌握形成可逆电池的必要条件、可逆电极的类型和电池的书
教学手段
课堂讲授
参考 文献
1.王绪。物理化学学习指导。陕西人民教育出版社,1992 2.物理化学——概念辨析解题方法。中国科学技术大学出版 社.2002
2
第九章 可逆电池的电动势及其应用
引言:
在这一章中的电池指的是原电池,使电解质和电极自发的反应向外放电,如果是在等温,等压时,该 体系的吉布斯自由能的减少等于体系对外作的最大非体积功:即