简单的功放电路图

合集下载

LM1875制作功放电路图

LM1875制作功放电路图

LM1875采取TO-220封装结构,形如一只中功率管,体积玲珑,核心电路简单,且输出功率较大.该集成电路内部设有过载过热及感性负载反向电势平安工作呵护. 之杨若古兰创作LM1875次要参数:电压范围:16~60V 静态电流:50MmA 输出功率:25W 谐波失真:<0.02%,当f=1kHz,RL=8Ω,P0=20W时额定增益:26dB,当f=1kHz时工作电压:±25V转换速率:18V/μS电路道理:LM1875功放板由一个高低音分别控制的衰减式腔调控制电路和LM1875放大电路和电源供电电路三大部分构成,腔调部分采取的是高低音分别控制的衰减式腔调电路,其中的R02,R03,C02,C01,W02构成低音控制电路;C03,C04,W03构成高音控制电路;R04为隔离电阻,W01为音量控制器,调节放大器的音量大小,C05为隔直电容,防止后级的LM1875直流电位对前级腔调电路的影响.放大电路次要采取LM1875,由1875,R08,R09,C066等构成,电路的放大倍数由R08与R09的比值决定,C06用于波动LM1875的第4脚直流零电位的漂移,但是对音质有必定的影响,C07,R10的感化是防止放大器发生低频自激.本放大器的负载阻抗为4→16Ω.为了包管功放板的音质,电源变压器的输出功率不得低于80W,输出电压为2*25V,滤波电容采取2个2200UF/25V电解电容并联,正负电源共用4个2200UF/25V的电容,两个104的独石电容是高频滤波电容,有益于放大器的音质.拆卸与调试:工具筹办:20W电烙铁一把,万用电表一个,尖嘴钳一把,螺丝刀一把,焊锡丝和松喷鼻水若干.筹办焊接:焊接时先焊接跳线,再焊接电阻,再焊电容,再焊整流管,再焊电位器,最初焊LM1875,焊接LM1875前须先把LM1875用螺丝固定在散热片上,否则在最初装散热片时螺丝很难打进去.LM1875与散热片接触的部分必须涂少量的散热脂,以利散热.焊接时必须留意焊接质量,对于初学者,可先在废旧的电路板上多练习几次,然后再正式焊接.调试:本功放板调试特别简单,电路板焊好电子元件后,要细心检查电路板有没有焊错的地方,特别要留意有极性的电子零件,如电解电容,桥式整流堆,一旦焊反即有烧毁元器件之险,请特别留意.接上变压器,放大器的输出端先不接扬声器,而是接万用电表,最好是数显的,万用表置于DC*2V档.功放板上电留意观察万用电表的读数,在正常情况下,读数应在30mV之内,否则应立即断电检查电路板.若电表的读数在正常的范围内,则标明该功放板功能基本正常,最初接上音箱,输入音乐旌旗灯号,上电试机,扭转音量电位器,音量大小应当有变更,扭转高低音旋钮,音箱的腔调有变更.值得一试的实验:将C6短路,用万用表测LM1875输出端的直流电位,看是否是在30MV之内,然后接上音箱试两小时,用万用表测LM1875输出端LM1875是美国国家半导体公司(NS)推出的高保真集成电路.其优胜的功能和诱人的音色已被浩繁发烧友所接受,在九十年代曾风靡一时.LM1875采取TO-220封装结构,形如一只中功率管,体积玲珑,核心电路简单,且输出功率较大.该集成电路内部设有过载过热及感性负载反向电势平安工作呵护,是中高档音响的理想选择之一.LM1875次要参数: 电压范围:16~60V 静态电流:50MmA 输出功率:25W 谐波失真:〈0.02%,当f=1kHz,RL=8Ω,P0=20W时额定增益:26dB,当f=1kHz时工作电压:±25V转换速率:18V/μS电路道理: XDA02功放板由一个高低音分别控制的衰减式腔调控制电路和LM1875放大电路和电源供电电路三大部分构成,腔调部分采取的是高低音分别控制的衰减式腔调电路,其中的R02,R03,C02,C01,W02构成低音控制电路;C03,C04,W03构成高音控制电路;R04为隔离电阻,W01为音量控制器,调节放大器的音量大小,C05为隔直电容,防止后级的LM1875直流电位对前级腔调电路的影响.放大电路次要采取LM1875,由1875,R08,R09,C066等构成,电路的放大倍数由R08与R09的比值决定,C06用于波动LM1875的第4脚直流零电位的漂移,但是对音质有必定的影响,C07,R10的感化是防止放大器发生低频自激.本放大器的负载阻抗为4→16Ω.XDA02功放板的电源电路如下图所示,为了包管功放板的音质,电源变压器的输出功率不得低于80W,输出电压为2*25V,滤波电容采取2个4700UF/25V电解电容并联,正负电源共用4个4700UF/25V的电容,两个104的独石电容是高频滤波电容,有益于放大器的音质.拆卸与调试: 工具筹办:20W电烙铁一把,最好是可调温的,若须要的话可与站长联系;万用电表一个,尖嘴钳一把,螺丝刀一把,焊锡丝和松喷鼻水若干. 筹办焊接:焊接时先焊接跳线,再焊接电阻,再焊电容,再焊整流管,再焊电位器,最初焊LM1875,焊接LM1875前须先把LM1875用螺丝固定在散热片上,否则在最初装散热片时螺丝很难打进去.LM1875与散热片接触的部分必须涂少量的散热脂,以利散热.焊接时必须留意焊接质量,对于初学者,可先在废旧的电路板上多练习几次,然后再正式焊接. 调试:本功放板调试特别简单,电路板焊好电子元件后,要细心检查电路板有没有焊错的地方,特别要留意有极性的电子零件,如电解电容,桥式整流堆,一旦焊反即有烧毁元器件之险,请特别留意.接上变压器,放大器的输出端先不接扬声器,而是接万用电表,最好是数显的,万用表置于DC*2V档.功放板上电留意观察万用电表的读数,在正常情况下,读数应在30mV之内,否则应立即断电检查电路板.若电表的读数在正常的范围内,则标明该功放板功能基本正常,最初接上音箱,输入音乐旌旗灯号,上电试机,扭转音量电位器,音量大小应当有变更,扭转高低音旋钮,音箱的腔调有变更. 值得一试的实验:将C6短路,用万用表测LM1875输出端的直流电位,看是否是在30MV之内,然后接上音箱试两小时,用万用表测LM1875输出端的直流电位,看直流电位是否在30MV之内,如果是的话,则C6这个电容可以省掉,如许的话,此放大板就成一个纯直流功放了电路直流化并改为电流反馈后,频响拓宽,低音力度明显加强,高频解析力添加,中音质感加强,音质较尺度电路提高很多,使入久听不厌、用此功放与新德克6800纯甲类功放对比试听,推惠威天鹅 M1.2音箱,15平方米房间,约有10W摆布输出,音色极为接近新德克机,声音力空、解析力与之八两半斤.LMl875高音细腻一点,新德克6800人声厚度强——点,二者不同之小,出乎料想. 但LMl875直流化电流负反馈电路的缺乏也使人觉得若有所失:功率偏小,静态时有可闻的交流声,实测LMl875静态时输出端有几到十几mV的电压.直流化电流负反馈BTL电路见图2,取消尺度BTL电路中的C12、C22,使电路直流化;电阻R16与R26是取样电阻,电流反馈旌旗灯号经R15、 R16、R25、R26分别进入放大器A1、A2的反相输入端,R13、R14、R15、R16的阻值决定放大器增益的大小. 用图2电路实验,不管如何通断电源与输入旌旗灯号,输出端始终没有直流输出,而且没有静态输出乐音,开机时喇叭中只要轻微“叭”音,关机时扬声器中绝无乐音可闻.通过实验可知,此种输入电路工作十分波动,即使在开大音量或静态时将输入端子拔掉再插上,电路也不会自激.电容C11对音质影响很大,去掉此电容后,面前马上一亮,中高音变得清澈细腻,低音富有弹性和力度. 直流化电流负反馈BTL电路继承了直流化电流负反馈OCL电路音质的长处,失真进一步减小,输出功率增大到本来的3倍,达到了60瓦以上,克服了其开关机扬声器中有冲击声和静态时有交流声的缺点,是LM1875的理想优化电路.。

用8550和8050制作的晶体管小功放电路图

用8550和8050制作的晶体管小功放电路图

用8550和8050制作的晶体管小功放电路图
这里介绍一个设计小巧、线路简单但性能不错的三管音频放大器。

其电路见附图。

也许你在一些袖珍晶体管收音机可以看到一些与此类似的电路。

原理分析:
电路如图所示,输入极(9014)的基极工作电压等于两输出极三极管的中点电压,一般为电源电压的一半,这个电压的稳定由输出三极管的基极的两个二极管控制。

3.3欧姆电阻串联在输出三极管的发射极上,以稳定偏流。

以减小环境温度、不同器件(如二极管、输出三极管)参数区别对电路的影响。

当偏流增加时,输出三极管发射极与基极间电压会减小,以减小偏流。

此电路输入阻抗为500欧姆,在使用8欧姆扬声器时,电压增益为5。

电路在不失真输出50mW的功率时,扬声器上有约2V左右的电压摆动。

增加电源电压可提高输出功率,但此时应注意输出晶体管散热问题。

在9V电源电压时,电路耗电约30mA。

制作时要注意两个输出功率管放大倍数应接近。

其它器件参数可以参考图示选择。

此电路适合于制作成耳机放大器或其它小功率放大器用。

由于它是一个很典型的功放电路,所以非常适合初学者学习功放电路原理之余,动手实践制作时的参考电路。

功放电路

功放电路

STK465组成的2×30W双声道功放电路--------------------------------------------------------------------------------STK465组成的2×30W双声道功放电路图1是2×30W双声道音频功率放大器,其核心器件ICl采用高保真音响功放集成电路STK465,该电路内包含两个性能指标完全相同的功率放大器,分别用作左、右声道的功放,可保证两个声道放大器指标的一致性。

电路输入阻抗30k,输入灵敏度150mV,电压增益40dB,频率响应:10Hz~100kHz,谐波失真≤0.08%,电源电压范围±(25~35)V。

制作时应注意,正、负电源退耦滤波电容C5、C14的位置应尽量分别靠近sTK465的正、负电源输入端。

如电路有自激现象,则增大C5和C14的容量。

该功放输出功率适中,制作容易,可用作一般家庭的组合音响、卡拉OK设备或VCD机的声音播放。

由于该功放电压增益高达40dB,输入灵敏度高,可省去前置放大器,而直接与卡拉OK机、VCD机等信号源连接。

该功放也可用作家庭影院系统的环绕声功放。

图2×30W双声道功放电路本文来自: 原文网址:/sch/musicop/0080229.html首页> 电路图库> 音响功放25W X 2 LM1875功放电路图---------------------------------------------------------------------------------25W X 2 LM1875功放电路图电路如图1所示,芯片IC采用美国NS公司的LM1875,它具有音色柔美,失真低(0.015%),在小功率时颇有名机风范,广受好评。

输出管采用音色较为温暖柔和的东芝大功率对管2SA1943,2SC5200(VCM=180V,ICM=12A,PCM≥120W,fT=30MHz)。

功率放大器电路图全集

功率放大器电路图全集

功率放大器电路图全集一.驻极体麦克风前置放大器该电路适用于采用驻极体麦克风的许多应用场合,这里用了以个1.5V的电池.C1和R3用来增强高音和压制低音,也可以根据愿意把它们去掉驻极体麦克风前置放大器二.TDA7057/TDA7057AQ伴音功放电路图· [图文] 差分功放仿真电路· [图文] 飞利浦有源重低音音箱功放电路图(SW2000)· [组图] 采用LM386制作的微小音频放大器电路· [图文] 5000W超轻,高功率放大器电路,无开关电源· [图文] 5,000W ultra-light, high-power amplifier, without switching-mode power supply· [图文] 简单实用的三极功放电路· [图文] 2N3055三极管功率放大器电路 (2N3055 Power Amplifier)· [组图] 摩托罗拉高保真功率放大器电路 (Motorola Hi-Fi power amplifier)· [图文] 带低音炮的10W的音频放大器(10W Audio Amplifier withBass-boost)· [图文] OPA604构成的音频功率放大器电路· [组图] STK465组成的2x30W(立体声)放大器及电路 (Amplifier 2x30W with STK465)·实用的大功率可控硅触发电路原理图· [组图] 低通滤波器电路/低音炮 (Low pass filter-Subwoofer)· [组图] 低阻抗麦克风放大器电路 (Low impedance microphone amplifier) · [图文] 22W音频放大器电路 (22W audio amplifier)· [图文] 100W RMS的放大器电路 (100W rms amplifier)· [组图] 50W功放电路 (50Watt Amplifier)· [图文] 迷你音箱:2W放大器电路 (Mini-box 2W Amplifier)· [图文] Two way cross-over 3500Hz· [组图] 25W场效应管音频放大器(25W Mosfet audio amplifier)· [图文] KMW-306通道无线话筒的原理及电路· [组图] LM1875功放器· [组图] 用LM317制作的功放电路图· [图文] LM1875制作功放电路(含电源电路)· [图文] TA8220功放电路图· [图文] XPT4990音频放大器应用电路· [图文] 大电流输出稳压电源· [图文] LM317高精度放大器电路· [图文] 2030功放电路图· [图文] 什么是高功率放大器· [图文] ZM312型十二路载波机线路放大器的功率放大级部分电路· [图文] 单边功率放大器的基本电路· [图文] 最大功率达到280W的LM3886功放电路图· [图文] BA328录音磁头放大电路· [组图] tda2822m功放电路· [组图] 大功率OCL立体声功放的制作及电路(20~100W×2双通道)· [组图] 用TDA1514制作的简单功放及电路· [组图] TDA2030型立体声功率放大器· [图文] DU30麦克前置放大器电路· [组图] 宽频带视频放大输出电路图· [图文] CD唱机加装自动放音电路· [组图] 傻瓜式混合型功率放大器电路及原理· [图文] 用TDA2822制作的助听器电路· [图文] 影像信号放大电路· [图文] 声音信号放大电路· [图文] 运算放大器音频电路· [图文] 四灯电子管发射机电路· [图文] 带有音频放大器的矿石收音机· [图文] 音频滤波电路· [图文] TDA2030功放电路双电源接法· [图文] TDA2030功放电路单电源电路· [图文] 视频放大器· [图文] 视频前置放大器· [图文] 由电子线路控制的可变增益视频支路放大器· [图文] 视频支路差动放大器· [图文] 双输入视频有线电视放大器· [图文] 简易视频放大器· [图文] 4.5MHz伴音中频放大器· [图文] 通用输出放大器· [图文] 具有低音控制的立体声电唱机放大器· [图文] 立体声前置放大器· [图文] 小型立体声放大器· [图文] 具有音调控制的单片机立体声前置放大器· [图文] 带晶体滤波器的45MHz IF放大器· [图文] RF前置放大器· [图文] 宽带前置放大器· [图文] LC调谐放大器· [图文] 5W 7MHz的RF功率放大器· [图文] 5W 7MHz的RF功率放大器· [图文] 455KHZ IF放大器· [图文] 可转换的HF VHF有源天线· [图文] 455KHz的中频放大器· [图文] 144-2304MHz的UHF宽带放大器· [图文] UHF放大器· [图文] 455KHz简易中频放大器· [图文] 20W 1296KHz的放大器模块· [图文] 采用MAR-1MMIC接收机和扫描机功率放大器· [图文] 用于手提式步话机的2M FET功率放大器· [图文] 10W 10M的线性放大器· [图文] 电视伴音系统· [图文] 宽带功率放大器· [图文] 20W 450MHz放大器· [图文] 30MHZ放大器· [图文] 小型宽带放大器· [图文] 70MHz RF功率放大器· [图文] 广播波段RF放大器· [图文] 435MHz的低噪音GASFET前置放大器· [图文] 宽频带RF放大器· [图文] 采用MAR-x的VHF和UHF前置放大器· [图文] HF前置放大器· [图文] 可增益放大器· [图文] 示波器前置放大器· [图文] 短波接收机的噪声放大限制器· [图文] 场效应管运算放大器传声器混合电路· [图文] 放大器冷却的电路Ⅱ· [图文] 放大器冷却电路Ⅰ· [图文] 前置放大器的收发定序器· [图文] 三极管功率放大电路· [图文] LMC6062仪表放大器· [图文] 红外光电二极管选择性前置放大器· [图文] 电子二分频功率放大器电路· [图文] 2×100W高保真双声道功率放大器· [图文] 单片音响功放集成电路TDA7294构成的100W功率放大器· [图文] 用两块高保真音响集成电路LM1875构成的BTL功率放大器· [图文] 2×70W双声道高保真功率放大器· [图文] 采用STK4040X1构成的70W音频功率放大器· [图文] 采用LM3875T构成的60W高保真功率放大器· [图文] 50W高保真功率放大器电路· [图文] 高保真音响功放集成电路TDA1514构成的40W功率放大器· [图文] 2×30W双声道音频功率放大器· [图文] 单电源、低压、低功耗运算放大器电路· [图文] NE5532前级放大电路· [组图] lm1875+ne5532功放电路· [图文] F4558基本接线图· [图文] 4558前级放大电路· [图文] 用LM1875构成的集成功率放大器电路· [图文] 甲乙类互补功率放大电路· [图文] 功放三极管的三种工作状态工作状态· [图文] 乙类互补对称功放电路· [图文] 实用OTL功放电路· [图文] 单片集成功率放大电路· [图文] QRP测音发声器/电码操作振荡器· [组图] tda2006单电源功放电路· [图文] 3V峰到峰单电源缓冲器· [图文] MOS场效应缓冲放大器· [图文] VFO缓冲放大器· [图文] 大电流缓冲器· [图文] 缓冲器/放大器· [图文] 分立元件功率放大器原理图· [图文] TDA2030功放集成块和BD907/BD908制作的40w功放电路· [图文] TDA7294功率放大电路· [图文] TDA7057/TDA7057AQ伴音功放电路图· [图文] TDA2822电路图· [图文] TDA2616功率放大电路图· [图文] TDA2040应用电路图· [图文] TDA2009 OTL单/双声道功率放大电路图· [图文] TDA1521A功率放大器电路· [图文] TDA1521双通道功率放大电路· [图文] TDA1514功放电路图· [图文] TDA1013伴音功放电路· [图文] TBA820/TBA820M功率放大电路图· [图文] TA8223/TA8223K双通道功率放大电路· [图文] TA8218/TA8218H三通道功放电路图· [图文] TA8211/TA8211AH双通道功放电路· [图文] TA7270/TA7270P功率放大器电路· [图文] TA7250/TA7250P功率放大器电路· [图文] LA4287伴音功放电路图· [图文] TDA3803/TDA3803A伴音处理器电路图· [组图] 音频分配放大器· [图文] 音频放大器。

电子管功放电路全集

电子管功放电路全集

电子管功放电路全集一.电子管差分放大电路,用的电子管有ECC83 pdf(12AX7)二.前级放大器电源电路图前级放大器电路如图1所示,左右声道完全相同。

它由两级电压放大加阴极输出器组成,V1为第一级电压放大。

现代数码音源CD、DVD的输出电压一般都在2V左右,信号从IN输入,经R1衰减,通过栅极防振电阻R 2加至V1栅极,V1将信号放大,然后从屏极取出放大后的信号电压经C1耦合到下一级。

W1为V1交流负载的一部分,又是V2的栅极回路,同时起着总音量的控制作用。

V2a为第二级电压放大,将放大后的信号电压直接送到V2b栅极,这就叫做直接耦合。

采用直接耦合的V2a 与V2b屏栅电位一致,在静态时足以使V2b管屏流截止而不工作,在动态时由于信号电压的加入,才能使V2b进人工作状态。

这种直接耦合,由于少用了一只耦合电容,不存在信号的电路损耗。

传输效率高,传真度好,减少了低频衰减,有利于改善幅频特性。

V1、V2a阴极电阻R4、R6都未并接旁路电容,有本级电流负反馈作用,能够提高音质、消除失真。

V2b为阴极输出器,把前级放大的音频信号电压从阴极引出,经C2传送给功率放大器。

阴极输出器具有非线性失真小,频率响应宽的特点,它没有放大作用,电压增益小于1,但它有一定的电流输出,有恒压输出特性,带负载能力很强,推动任何纯后级功率放大器从容不迫、轻松自如。

它的输入阻抗高,输出阻抗低,大约才几百欧姆,能和末级功放很好地匹配,即使用较长的信号线传输,也不会造成高频损失,抗干扰能力强,可以提高信噪比,提高音乐的纯度,音质较好。

一台靓声、工作稳定可靠的放大器,离不开优质的电源作保证,特别是前级放大器,对电源的品质要求相当高,不应有交流声和噪声,哪怕只有一丁点儿,经过功率放大后,都会产生可怕的声压级,会严重影响音质。

6922电子管前级放大器图2是前级放大器的电源电路图,高压部分采用晶体二极管作桥式整流,用扼流圈作n型滤波,电子管稳压供电。

单端A类电子管功放电路图

单端A类电子管功放电路图

6P3P单端A类电子管功放电路图作者:日期:2010-2-26 12:37:26 人气:397 标签:单端A类电子管功放电路图1.输入电压放大级??? SRPP电路(亦称并联调整式推挽电路)是一种深受推崇的电路,该电路具有失真小、噪声低、频响宽等特点,是目前电子管功放电路中常见的优秀线路之一。

??? 电路见图。

VT1、VT2直流通路串联。

VT1构成普通的三极管共阴放大器,VTr2构成阴极输出器,对VT1而言VT2是一个带电流负反馈的高阻负载。

音频信号由6N3(3)脚输入,经VT1共阴放大后从第④脚输出,进入VT2构成的阴极输出器,然后由VT2⑧脚输出。

进入后级电路。

vT2接成阴极输出器形式,其电压放大倍数接近于1,故输入级SRPP电路的电压放大倍数主要取决于VT1。

同时,VTl、VT2交流通路对输入级负载电阻R4(即功率输出级VT3的栅极电阻)而言等效为“并联”,相对使单管共阴放大电路内阻降低一半,带负载能力大为提高,易于和低阻负载匹配,音质因此有较大改善。

又因为VT1、VT2对R4负载来说是推挽工作,输出电流增大一倍,失真也有所降低。

C1是VTl的阴极交流旁路电容。

避免R3对交流信号起交流电流负反馈作用,提高输入级交流放大倍数,改善输入级对VT3的驱动能力。

??? R3上的压降2.6V,作为VT1的栅负偏压,此负压比现代数码音源输出信号振幅大1.5V,避开了6N3动态阳一栅特性曲线的非线性部分。

输入级电压放大倍数为:A=u·R4/(Ri/2+R4)=35·360k/(5.8k/2+360k)≈35倍。

其中u为6N3放大系数,值为35;Ri为6N3内阻,值为5.8k.2.功率输出级??? 功率管6P3P采用标准接法,信号由控制栅极(⑤脚)输入,帘栅极(④脚)与电源+B1直接相连。

这种接法的特点是:放大效率高。

能达到特性表中功放管所规定的输出功率。

R6为输出级阴极电阻,将输出级栅负压确定在-20V。

MOSFET功放电路

MOSFET功放电路

目录场效应管功率放大电路 (1)场效应管80W音频功率放大电路 (1)一款性能极佳的JFET-MOSFET耳机功放电路图 (2)100W的MOSFET功率放大器 (2)场效应管(MOSFET)组成的25W音频功率放大器电路图 (4)一种单电源供电的MOSFET功放电路 (6)100W的V-MOSFET功率放大器电路 (6)100W场效应管功率放大电路 (8)全对称MOSFET OCL功率放大器电路图 (9)场效应管功率放大电路如图所示电路是采用功率MOSFET管构成的功率放大器电路。

电路中差动第二级采用2SJ77***率MOSFET,电流镜像电路采用2SK214。

其工作电流为6mA,但电源电压较高(为±50V),晶体管会发热,因此要接人小型散热器。

场效应管80W音频功率放大电路图100W的MOSFET功率放大器电路图关于电路电容C8是阻止直流电压,如果从输入源的输入直流去耦电容。

如果畅通,将改变这个直流电压偏置值S后续阶段。

电阻R20限制输入电流到Q1 C7 -绕过任何输入的高频噪声。

晶体管Q1和Q2的形式输入差分对和Q9和Q10来源1毫安左右建成的恒流源电路。

预设R1用于调整放大器的输出电压。

电阻R3和R2设置放大器的增益。

第二差的阶段是由晶体管,第三季度和Q6,而晶体管Q4和Q5形式电流镜,这使得第二个差分对漏一个相同的电流。

这样做是为了提高线性度和增益。

Q7和Q8在AB 类模式运行的功率放大级的基础上。

预设R8可用于调整放大器的静态电流。

电容C3和电阻R19组成的网络,提高了高频率稳定度和防止振荡的机会。

F1和F2是安全的保险丝。

电路设置设置在中点R1开机前,然后慢慢调整为了得到一个最低电压(比50mV)输出。

下一步是成立的静态电流,并保持在最低电阻预设的R8和万用表连接跨标记点电路图X和Y的调整R8使万用表读取16.5mV对应50mA的静态电流。

注意事项质量好的印刷电路板组装的电路。

TDA2030A BT大功率功放低音炮电路图

TDA2030A BT大功率功放低音炮电路图

TDA2030A BT大功率功放低音炮电路图此功放是以集成电路TDA2030为中心组成的功率放大器,具有失真小、外围元件少、装配简单、功率大、保真度高等特点,很适合无线电爱好者和音响发烧友自制!套件采用4个TDA2030A组成双通道的BTL电路。

套件所用的电阻为金属膜电阻,小电解电容使用22UF,两个大滤波电容为4700UF/25V(实测耐压可达40v左右)小体积电解电容,其它电容采用金属化CBB无极性电容。

电路板设计精良,噪音小,美观大方,一推出就得到广大网友的喜爱。

既然是DIY 产品,就存在升级的地方,比如说将TDA2030A代换成1875表现可能会更出众。

之所以本站没有选用1875的原因是它的成本太高啦!“不惜成本,只求效果”的烧友可以将本板继续DIY一套音响成百上千是很正常的事!TDA2030A是目前性价比最高的功放集成块之一,内部有完善的过载及过热保护,是入门级功放制作的绝佳选择。

TDA2030A的工作电压范围较广,从±6~±22V都可以正常工作。

今天就让我们用TDA2030A来做一款BTL功放。

BTL电路的特点就是在相同的供电电压下,可以得到较普通功放两倍以上的输出功率(这一点音响爱好者都是知道的)。

下图为TDA2030A BTL功放的电路图,在±16V供电的时候可输出34W的功率,想获得更大的输出功率可提高供电电压,但最高不可超过±22V。

TDA2030A BTL电路套件实物图及原理图和电源电路:其中的一个通道,立体声只需做两个同样的电路就可以了。

制作过程:只要跟着一步一步将所需元件装上去,保管一装就OK,无需任何的调试。

先安装电阻和跳线,电阻全部为金属膜电阻。

接着是四个22U/25V和两个10U/50V的电容,电容为电解电容。

还有四个0.1U 以及两个1U的汤姆逊金属化CBB无极性电容。

虽然这些电容较普通电容贵上不少,但高品质的电容换来的是稳定的性能以及较高的信噪比,声音更加圆润顺耳,到主角TDA2030A上场了,一共用了四个TDA2030A,每两个组成一个通道的BTL电路。

基于晶体管的90W音频功率放大器电路图

基于晶体管的90W音频功率放大器电路图

基于晶体管的90W音频功率放大器电路图
该(晶体管)(功率放大器)电路仅使用准互补(放大器)配置中的四个晶体管,即可以低成本向4 欧姆负载提供90W 的功率。

如图所示的晶体管功放电路,除了(电源)变压器和扬声器外,电路中没有昂贵的元件。

如图所示,除了电源变压器和扬声器外,该电路中没有昂贵的元件。

输入级由这两个(电流)(驱动器)直接升起一对晶体管的输出级组成。

晶体管级端(2N3055) 安装在散热器上,以保持这些设备的使用寿命。

在末级输出端由一个电源(80Vcc)支持,在扬声器之前放置一个(电容器)来阻止直流电流,并跳过(音频)(信号)。

90 W 音频功率放大器的(供电)电路必须足以提供每通道音频1.5A 的电流。

因此,四个音频通道需要操作立体声音响3A和6A所需的功率。

90 W 音频功率放大器零件清单:
(电阻):2.2K (2)、47 欧姆(3)、470 欧姆、100 欧姆、15 欧姆、0.33 欧姆(4)
(电容):1uF、4700uF
(二极管):1N4001 (2)
晶体管:2N3904 , 2N3906, 2N3055(4)。

功率放大器原理及电路图PPT课件

功率放大器原理及电路图PPT课件

uA=(EC-UCES1) 。
ωt
VT2 ub2
ic2
RL uL
ui负半周时VT2管饱和导通,VT1管截止。VT2管的直流电源由电容C上充 的电尽荷管供每给管,饱u和A=导U通CE时S2的≈0电流很大,但相应的管压降很小,这样,每管的管 耗就很小,放大器的效率也就很高
uA近似为矩形波电压,幅值为(EC-2UCES)。若L、C和RL串联谐振回路调谐 在输入信号的角频率ω上,且回路的Q值足够高,则通过回路的电流ic1或ic2是角频 率为ω的余弦波,RL上可得相对输入信号不失真的输出功率。
0.5fβ fβ 0.2fT fT
第15页/共56页
1 高频功率放大器的动态特性
1、 放大区动态特性方程 当放大器工作在谐振状态时,其外部电路电压方程为:
若设: ub Ubm cost
ic
由上两式消除cos t 可得:
uBE
U BB
Ubm
EC uce U cm
又利用晶体管的内部特性关系式(折线方程):
Icmax
ic
ic1
ic2 ic3
Ico
ωt
θc
θc
其中各系数分别为:
1
I co 2
icd (t )
I cmax
sinc c cosc ) 1 cosc
I cmax 0
c
1
I cm1 2
c c
ic
costd(t )
1
I cmax (
c
sin c cos c 1 cos c
(4)不能用线性模型电路分析,一般采用图解法分析和折线法
第1页/共56页
功率放大器按工作状态分类:
A(甲)类:导通角为 180o

步步高功放AB203电路图

步步高功放AB203电路图

R35 100K
3 1 2
A3A 4558
8
4
G L
R7 R19 4.7K 100K
R5 L5 R6 L6
21 8
R7 RCOM2
19 20
R118 100K
8
4
1 2 3 4
32c5.sch
R G
4.7K
R14 100K
C112 R133 10U/16V 100
数 量 更改单号 签 名 日 期



R75 20K
R74 20K
R145 1K
C103 10U/16V
C106 10U/16V
20
19 18
17
16
15 14 13 12
LPF
VREF V+
HPF CR1
CR2
BPF
+12V
R65 220/0.5W
SCK SDO LT_446
C34 104 R48 100K
3 1 2
C117 10U/16V A6A 4558
8
5
C98 47U/16V
DGND AGND SWOUT SROUT SLOUT COUT
4
B_R
C22 4U7/16V
13 14
AVSS CL1
8
RT LT
5 共 张 版次 1.0
R105 220/0.5W
R110 100R R109 100R
R111 100R
R112 100R
LT_460 SCK SDO
+12V
R136 R135 R127 100K 100K 100K
D_S D_C DB_R DB_L

LM1875T--2.1声道有源音箱功放电路图

LM1875T--2.1声道有源音箱功放电路图

LM1875T--2.1声道有源音箱功放电路图2.1声道有源音箱功放电路左手665收藏时间:2016年1月29日9:391875小功放板的喇叭输出端,每个声道串接一个330欧的电阻才可以安全的接耳机使用。

LM1875主要参数:电压范围:16~60V静态电流:50MmA输出功率:25W谐波失真:〈0.02%,当f=1kHz,RL=8Ω,P0=20W时额定增益:26dB,当f=1kHz时工作电压:±25V转换速率:18V/μSJRC5532是DIP8脚双运放,内部为JFET(结型场效应管结构)。

JRC5532用NE5532可以直接代换。

什么设备用AD828ar运放:建议自己买性能好的前级放大芯片,下面是对一些常用音频前置放大芯片的介绍和评价。

AD设计制造的高性能运放AD828AR,性能指标比著名的发烧运放AD827JN更好。

音质全频中性,中频解析度好,低频有极佳的跳感,高频晶莹剔透,延伸无穷无尽,性能无可挑剔。

AD828AR适合使用在数码设备,如声卡运放、DVD输出运放等。

AD828AR的低压性能很好,摩各种声卡上效果都很出色,比如在创新Audigy2 ZS声卡上应用就非常成功,使这块中档声卡有比试高级声卡的实力! 近段时间身边几个朋友玩了音响又开始迷上了磨机换运放,CD机、功放,连电脑上声卡也弄个827、275什么的。

所以周末,特意去拿了堆运放回来测试,简单谈谈感受吧。

NE5532:确实有点胆味,解析力一般,高频比较燥,低频比较糊且肥。

价廉物美足已弥补一切! op275: 和5532比,胆性还重一点,解析力、低频、音场更好一点,可以买贴片的来打磨声卡用(特别是创新的),可以改善硬冷的数码声。

EL2244:音色中性,音场比较宽,高频还可以,中频音乐味差,有人说解析力很高,其实是因为低频量感少,中频薄,高频显得突出而已。

要用好比较难。

LT1057:两端延伸不错,速度、动态和解析力也挺好,就是属冷色调,放出的音乐好象有种不食人间烟火的味道,让你可以静静的听,却燃不起对音乐的那份激情。

双声道功放电路图_自制音箱电路设计

双声道功放电路图_自制音箱电路设计

TDA1521制作15W双声道功放电路图-------------------------------------------------常用伴音电路-TDA1521该电路摘自长虹C2191,为OTL双声道接法。

TDA1521引脚功能及参考电压:1脚:11V——反向输入1(L声道信号输入)2脚:11V——正向输入13脚:11V——参考1(OCL接法时为0V,OTL接法时为1/2Vcc)4脚:11V——输出1(L声道信号输出)5脚:0V——负电源输入(OTL接法时接地)6脚:11V——输出2(R声道信号输出)7脚:22V——正电源输入8脚:11V——正向输入29脚:11V——反向输入2(R声道信号输入)TDA1521是荷兰飞利浦公司设计的低失真度及高稳度的芯片。

其中的参数为:TDA1521在电压为±16V、阻抗为8Ω时,输出功率为2×15W,此时的失真仅为0.5%。

输入阻抗20KΩ, 输入灵敏度600mV,信噪比达到85dB。

其电路设有等待、静噪状态,具有过热保护,低失调电压高纹波抑制,而且热阻极低,具有极佳的高频解析力和低频力度。

其音色通透纯正,低音力度丰满厚实,高音清亮明快,很有电子管的韵味。

1、本功放板经过精心设计、布局。

板材选用1.6mm的优质玻璃纤维板,焊盘喷锡制造(尺寸:7.5cm*7cm)。

2、本功放板输出不失真功率为:15W*2。

散热片尺寸为76MM*43MM*22MM.3、整流为3A,200V的HER303快恢复二极管,电源滤波和退偶电容选用日本黑金刚105°长寿命电容,高频滤波为松下CBB无极电容。

耦合为橘红色的飞利浦补品电容,贝茹尔电路为德国西门子千层饼无极电容和优质金属五环电阻。

芯片为原装的飞利浦TDA1521(非台湾产)。

4、优质的元件和合理的设计保证了本功放板的音质十分出色。

(本功放板实物和图片完全相同)。

整流快恢复二极管是原装库存的,管脚有少许氧化,焊接前请用刀片清理好管脚的氧化层再焊接,防止虚焊!5、电源建议选用交流双12V输出,功率不小于30W的变压器。

功放电路图

功放电路图

TDA2616伴音功放电路典型应用电路图TDA2616引脚功能及参考电压:1脚:10V——信号输入12脚:5V——静噪(低电平静噪)3脚:10V——1/2基准电压4脚:10V——信号输出15脚:0V——地6脚:10V——信号输出27脚:20V——电源8脚:10V——负向输入端9脚:10V——信号输入2TDA2009伴音功放电路典型应用电路图TDA20091脚:1.2V——左声道输入2脚:0.8V——左声道反馈3脚:12V——静噪4脚:0.8V——右声道反馈5脚:1.2V——右声道输入6脚:0V——地7脚:0V——空8脚:12.4V——右声道输出9脚:24V——电源10脚:12.4V——左声道输出11脚:--TDA1521伴音功放电路典型应用电路图该电路摘自长虹C2191,为OTL双声道接法。

TDA1521引脚功能及参考电压:1脚:11V——反向输入1(L声道信号输入)2脚:11V——正向输入13脚:11V——参考1(OCL接法时为0V,OTL接法时为1/2Vcc)4脚:11V——输出1(L声道信号输出)5脚:0V——负电源输入(OTL接法时接地)6脚:11V——输出2(R声道信号输出)7脚:22V——正电源输入8脚:11V——正向输入29脚:11V——反向输入2(R声道信号输入)TDA1013B伴音功放电路典型应用电路图TDA1013引脚功能及参考电压:1脚:0V——地2脚:7.7V——伴音输出3脚:16V——电源4脚:13.5V——电源5脚:0.3V——功放输入6脚:6.7V——前置输出7脚:2.8V——音量控制8脚:1.9V——音频输入9脚:0V——地TA8218AH伴音功放电路典型应用电路图TA8218AH引脚功能及参考电压:1脚:1.9V——反向输入端2脚:2.1V——R路音频信号输入端3脚:0V——地4脚:1.9V——反向输入端5脚:2.1V——重低音音频信号输入端6脚:2.1V——L路音频信号输入7脚:1.9V——反向输入端8脚:8.9V——滤波9脚:26V——电源10脚:13V——L路音频信号输出11脚:4.7V——静音12脚:4.5V——空13脚:0V——地14脚:13V——重低音信号输出15脚:5.0V——空16脚:4.6V——静音17脚:13V——R路音频信号输出TA8211AH伴音功放电路典型应用电路图该电路摘自长虹C2588形彩电1脚:2.1V——左声道负反馈外接电容2脚:2.2V——左声道信号输入3脚:0V——地4脚:2.2V——右声道信号输入5脚:2.1V——右声道负反馈外接电容6脚:8.2V——电源滤波7脚:12V——右声道信号输出8脚:2.2V——空9脚:24V——电源10脚:0V——地(功放)11脚:2.2V——空12脚:12V——左声道信号输出LA4287伴音功放电路典型应用电路图TV伴音信号从N601的(1)脚输入,AV伴音信号从N601的(3)脚输入,CPU(40)脚输出的TV/AV的切换信号经R601送到V601的基极,由V601倒相后控制N601的(4)脚,经内部选择后从N601的(9)脚输出音频信号,推动喇叭发声。

功放电路图

功放电路图

功放维修图解目前流行的功率放大器除采用集成电路功放外几乎都是用分立元件构成的OCL电路。

基本电路由差动输入级、电压放大级、电流放大级(推动级)、功率输出级和保护电路组成。

附图A是结构框、图B是实用电路例图,有结构简单的基本电路形式,也有增加了辅助电路和补偿电路的复杂电路形式。

本文把常见的OCL电路分解成几块,从电路的简单原理,常见的电路构成,检查时电路的识别,维修的基本方法逐个进行介绍。

认识了局部电路拼出整个电路图时功放的维修就相对容易多了。

C是电压分布图。

电压测量是功放检修中基本方法,电压分布是以输入端到输出端为0V中轴线,越向上红色越深表示正电压越高,越向下蓝色越深表示负电压越低。

图B这种全对称电路电压也正负对称,是检修测量的主要依据。

一、差动输入级图1是最基本的差动(差分)输入级电路,它由两个完全对称的单管放大器组合而成,两个管的基极分别是正负输入端。

一个输入端作为信号输入用,另一个输入端为反向输入末端负反馈用。

因其能有效地抑制输出端的零点漂移而成为OCL电路的输入门户。

输入级有单差动和双差动之别,单差动电路简洁,双差动对称性好。

从前级送来的信号通过一个电容和电阻所连接的三极管就是差动输入级,相邻的同型号管子就是差动的另一半。

输入端接的是一个管的基极则是单差动,如接着两个管的基极,就是双差动。

为克服电源波动对电路的影响,图2在差动放大器的发射极增加了恒流源。

有的在集电极增加了镜流源如图3,保证了差动两管静态电流的一致性。

图4是既有恒流源又有镜流源的高挡机采用的差动输入电路。

图5、6、7 是常见的三种恒流源电路,尤其是图6这种利用二极管箝位方式用的最多,两个二极管将三极管基极稳定在1.4V左右,在电源电压波动时,差动级的静态电流保持不变,提高了放大器的稳定性。

图8、9镜流源中两个三极管基极相连,发射极电阻相同,流过两管的电流一样,像照镜子一样确保差动两个管的静态电流一致性。

这两部分电路的识别方法是差动管两发射极电阻归到一点后所连接的三极管就是恒流源,它最明显的特点就是基极上接有二极管或稳压管。

专业功放电路图

专业功放电路图

专业功放电路图贝拉利BEILARLY PM-700专业功放根据贝拉利PM-700功放的实物绘制的一个声道的主功放电路图。

Q1、Q2两只2SC2383构成差分输入级,R8、ZD1、C3组成差分放大器的恒流源。

Q1的基极增加了R3、R4、RP1、D1、D2辅助电路,一是对输入端进行直流钳位,通过调整RP1可对输出中点进行调整;二是对输入的交流信号进行限幅,使输入信号峰峰值被限制在±0.7V以内,防止输入信号过强。

电压放大级Q3、Q4组成第二级差分放大器,Q5、Q6构成集电极负载。

恒压偏置管Q7、Q8两管并联使用,Q8由引线连接安装在散热片上,起到温度补偿作用。

该机每个声道的最大输出功率接近1000W,为保证足够的推动电流,电路设置了两级电流放大。

第一级Q9、Q10使用一对中功率管,两只中功率管b、c极间设有吸收电容C11、Cl2,进行高频相位补偿防止高频自激。

第二级Q11、Q12则使用一对大功率管。

Q11、Q12发射极之间R25、D3将后边七对功率管偏置钳位在很低的水平,上下对管b-e结偏置电压只有±0.3V左右。

实际测量功率管的b-e结电压只有±0.1V,Q11、Q12的b-e结电压只有±0.5V。

这就是该机的电路设计独特之处,末端的低偏置使整机的静态功耗降到最低点。

不追求理论上的高保真,力求使用中不失真的大功率输出和强负荷的经久耐用。

这样的电路设计更适合商业性宣传演出。

一般功放保护电路中只在末级一对功率菅发射极各设置一只取样电阻,可以说是抽选取样。

而该机在每个功率管发射极都设有取样电阻{即R54~R67),任何一只功率管出现过流异常都会使Q27导通,经D8、R70使保护电路启控断开继电器。

上下取样信号分别加在Q27的基极和发射极。

NPN 管一侧有过流现象时发射极电阻压降增加,升高后正电压经过取样电阻加到Q27基极使其导通。

PNP管一侧有过流发生时,将会有负电压加到Q27发射极,也等于抬高其基极电压而导通。

6P3P单端A类电子管功放电路图

6P3P单端A类电子管功放电路图

6P3P单端A类电子管功放电路图作者:日期:2010-2-26 12:37:26 人气:397 标签:单端A类电子管功放电路图1.输入电压放大级SRPP电路(亦称并联调整式推挽电路)是一种深受推崇的电路,该电路具有失真小、噪声低、频响宽等特点,是目前电子管功放电路中常见的优秀线路之一。

电路见图。

VT1、VT2直流通路串联。

VT1构成普通的三极管共阴放大器,VTr2构成阴极输出器,对VT1而言VT2是一个带电流负反馈的高阻负载。

音频信号由6N3(3)脚输入,经VT1共阴放大后从第④脚输出,进入VT2构成的阴极输出器,然后由VT2⑧脚输出。

进入后级电路。

vT2接成阴极输出器形式,其电压放大倍数接近于1,故输入级SRPP电路的电压放大倍数主要取决于VT1。

同时,VTl、VT2交流通路对输入级负载电阻R4(即功率输出级VT3的栅极电阻)而言等效为“并联”,相对使单管共阴放大电路内阻降低一半,带负载能力大为提高,易于和低阻负载匹配,音质因此有较大改善。

又因为VT1、VT2对R4负载来说是推挽工作,输出电流增大一倍,失真也有所降低。

C1是VTl的阴极交流旁路电容。

避免R3对交流信号起交流电流负反馈作用,提高输入级交流放大倍数,改善输入级对VT3的驱动能力。

R3上的压降2.6V,作为VT1的栅负偏压,此负压比现代数码音源输出信号振幅大1.5V,避开了6N3动态阳一栅特性曲线的非线性部分。

输入级电压放大倍数为:A=u·R4/(Ri/2+R4)=35·360k/(5.8k/2+360k)≈35倍。

其中u为6N3放大系数,值为35;Ri为6N3内阻,值为5.8k.2.功率输出级功率管6P3P采用标准接法,信号由控制栅极(⑤脚)输入,帘栅极(④脚)与电源+B1直接相连。

这种接法的特点是:放大效率高。

能达到特性表中功放管所规定的输出功率。

R6为输出级阴极电阻,将输出级栅负压确定在-20V。

6P3P屏极电压为290V,栅负压为-20V,屏流为50mA,作A类放大,输出功率约为5 5W,基本满足一般家居环境放音的要求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档