排列数、组合数公式与二项式定理的应用

合集下载

35:排列组合和二项式定理高三复习数学知识点总结(全)

35:排列组合和二项式定理高三复习数学知识点总结(全)

排列、组合与二项式定理1.两个计数原理(1)分类计数定理(加法原理):如果完成一件事,有n 类方式,在第1类方式中有1m 种不同的方法,在第2类方式中有2m 种不同的方法,......,在第n 类方式中有n m 种不同的方法,那么完成这件事共有n m m m N +++=...21种不同的方法.(2)分步计数定理(乘法原理):如果完成一件事,需要完成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,......,做第n 步有n m 种不同的方法,那么完成这件事共有n m m m N ⨯⨯⨯= 21种不同的方法.(3)两个计数原理的区别分类计数原理与分步计数原理的区别关键在于看事件能否完成,事件完成了就是分类,分类后要将种数相加;事件必须要连续若干步才能完成的则是分步,分步后要将种数相乘.2.排列(1)排列的定义:一般地,从n 个不同元素中取出)(n m m ≤个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.(2)排列数的定义:一般地,从n 个不同元素中取出)(n m m ≤个元素的所有排列的个数,叫做从n 个不同元素中取出m 个元素的排列数,用符号m n A 表示.(3)排列数公式:)1()2)(1()!(!+---=-=m n n n n m n n A m n .特别地:①(全排列).123)2)(1(!⋅⋅--== n n n n A n n ②.1!0=3.组合(1)组合的定义:一般地,从n 个不同元素中取出)(n m m ≤个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合.(2)组合数的定义:一般地,从n 个不同元素中取出)(n m m ≤个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数,用符号m n C 表示.(3)组合数公式:()()()()121!!!!m m n n m m n n n n m A n C A m m n m ---+===- .特别地:01n C =.(4)组合数的性质:①m n n m n C C -=;②11-++=m n m n m n C C C ;③11--=kn k n nC kC .4.解决排列与组合问题的常用方法通法:先特殊后一般(有限制条件问题),先组合后排列(分组问题),先分类后分步(综合问题).例:某校开设9门课程供学生选修,其中A 、B 、C 三门由于上课时问相同,至多选一门,学校规定,每位同学选修4门,共有多少种不同的选修方案?答:.75461336=+C C C (1)特殊元素、位置优先安排法:对问题中的特殊元素或位置优先考虑排列,然后排列其他一般元素或位置.例4-1:0、2、3、4、5这五个数字,组成没有重复数字的三位数,其中偶数共有几个?答:.3013131224=+C C C A (2)限制条件排除法:先求出不考虑限制条件的个数,然后减去不符合条件的个数.也适用于解决“至多”“至少”的排列组合问题.例4-2:从7名男同学和5名女同学中选出5人,若至少有2名女同学当选,问有多少种情况?答:.596)(471557512=+-C C C C(3)相邻问题“捆绑法”:将必须相邻的元素“捆绑”在一起,当作一个元素进行排列,待整个问题排好之后再考虑它们内部的排列数,它主要用于解决相邻问题.例4-3:5个男生3个女生排成一列,要求女生排一起,共有几种排法?答:6363A A =4320(4)不相邻问题“插空法”:先把无位置要求的元素进行排列,再把规定不相邻的元素插入已排列好的元素形成的“空档”中(注意两端).例4-4:5个男生3个女生排成一列,要求女生不相邻且不可排两头,共有几种排法?答:5354A A (5)元素相同“隔板法”:若把n 个不加区分的相同元素分成m 组,可通过n 个相同元素排成一排,在元素之间插入1-m 块隔板来完成分组,共11--+m m n C 种方法.例4-5:10张参观公园的门票分给5个班,每班至少1张,有几种选法?答:.49C (6)元素不多“列举法”:即把符合条件的一一列举出来.例4-6:将数字1、2、3、4填入标号为1、2、3、4的四个方格内,每个方格填一个,则每个方格的标号与所填的数字均不相同的填法种数有种。

排列组合、二项式定理与概率统计

排列组合、二项式定理与概率统计

排列组合、二项式定理与概率统计
概率统计与排列组合和二项式定理是数学中的重要知识。

它们主要用来解释和计算物理实验的概率,以及理解事件出现的概率统计规律。

排列组合是概率统计的基础,是指在一组数中,每个数字的位置不同的可能的组合数。

它的公式有:A(n,m)=n(n-1)...(n-m+1)。

这里的A表示从n个中取出m个的排列数。

二项式定理(亦称二项分布定理)是研究一个随机变量满足二项分布的定理。

它是推导概率统计解决一些问题的重要方法,它通过如下公式来计算事件发生的概率:
C(n,k)=An,m/k!,其中n表示试验次数,m表示成功的次数,k表示重复的次数。

概率统计用来研究不同事件出现的可能性和规律。

这些规律会告诉我们正发生的事件的可能性有多大,并帮助我们更好地解释现象。

概率统计的计算和分析是一个复杂的过程,需要全面的、简易的的方法。

排列组合、二项式定理等工具是进行概率统计分析的有力帮助,它们可以帮助我们了解不同事件出现的概率,并对现象加以解释和推断。

高中数学排列组合及概率的基本公式、概念及应用

高中数学排列组合及概率的基本公式、概念及应用

高中数学排列组合及概率的基本公式、概念及应用1 分类计数原理(加法原理):12n N m m m L.分步计数原理(乘法原理):12n N m m m L.2 排列数公式:m nA =)1()1(m n n n =!!)(m nn .(n ,m ∈N *,且mn ).规定1!0.3 组合数公式:mn C=m n m mA A =m m n n n 21)1()1(=!!!)(m n m n (n ∈N *,m N ,且m n ).组合数的两个性质:(1)mn C=m n nC;(2) m n C+1m nC=mn C1.规定10nC.4 二项式定理nn nrrn r nn nn nnnnbC ba C baC ba C a Cb a222110)(;二项展开式的通项公式rrn r nrb a C T 1)210(n r ,,,.2012()()nnn f x ax b a a xa xa x L 的展开式的系数关系:012(1)na a a a f L;012(1)(1)nna a a a f L;0(0)a f 。

5 互斥事件A ,B 分别发生的概率的和:P(A +B)=P(A)+P(B).n 个互斥事件分别发生的概率的和:P(A 1+A 2+…+A n )=P(A 1)+P(A 2)+…+P(A n ).6 独立事件A ,B 同时发生的概率:P(A ·B)= P(A)·P(B).n 个独立事件同时发生的概率:P(A 1·A 2·…·A n )=P(A 1)·P(A 2)·…·P(A n ).7 n 次独立重复试验中某事件恰好发生k 次的概率:()(1).kk n kn nP k C P P 8 数学期望:1122n nEx P x P x P LL数学期望的性质(1)()()E a b aE b . (2)若~(,)B n p ,则E np .(3)若服从几何分布,且1()(,)k P k g k p qp ,则1E p .9方差:2221122n nDx Ep x Ep x Ep LL标准差:=D .方差的性质:(1)2D a ba D ;(2)若~(,)B n p ,则(1)D np p .(3)若服从几何分布,且1()(,)k P k g k p qp ,则2q Dp.方差与期望的关系:22DE E.10正态分布密度函数:22261,,26xf x ex ,式中的实数μ,(>0)是参数,分别表示个体的平均数与标准差.对于2(,)N ,取值小于x 的概率:xF x .12201x x P x xP x x x P 11)(x f 在0x 处的导数(或变化率):0000()()()limlimx x xxf x x f x yf x yx x .瞬时速度:00()()()limlimttss tt s t s t t t .瞬时加速度:()()()limlimttvv tt v t av t tt.12函数)(x f y 在点0x 处的导数的几何意义:函数)(x f y在点0x 处的导数是曲线)(x f y在))(,(00x f x P 处的切线的斜率)(0x f ,相应的切线方程是))((000x x x f y y.13 几种常见函数的导数:(1)0C (C 为常数).(2) 1()()nn x nx nQ .(3) x x cos )(sin .(4) x x sin )(cos . (5) xx 1)(ln ;1(log )log a a x e x .(6) xxe e )(; a a a xxln )(.14 导数的运算法则:(1)'''()uv uv .(2)'''()uv u vuv .(3)'''2()(0)uu v uvv vv.15 判别)(0x f 是极大(小)值的方法:当函数)(x f 在点0x 处连续时,(1)如果在0x 附近的左侧0)(x f ,右侧0)(x f ,则)(0x f 是极大值;(2)如果在0x 附近的左侧0)(x f ,右侧0)(x f ,则)(0x f 是极小值.16 复数的相等:,a bi c di ac bd .(,,,a b c dR )17 复数za bi 的模(或绝对值)||z =||a bi =22ab .18 复平面上的两点间的距离公式:22122121||()()d z z x x y y (111z x y i ,222z x y i ).19实系数一元二次方程的解实系数一元二次方程20axbxc,①若240b ac ,则21,242bbacx a ;②若240b ac ,则122bx x a;③若240bac,它在实数集R 内没有实数根;在复数集C 内有且仅有两个共轭复数根22(4)(40)2b bac ixbac a.20解排列组合问题的依据是:分类相加,分步相乘,有序排列,无序组合.21解排列组合问题的规律是:相邻问题捆绑法;不邻问题插空法;多排问题单排法;定位问题优先法;多元问题分类法;有序分配问题法;选取问题先排后排法;至多至少问题间接法,还记得什么时候用隔板法?22排列数公式是:组合数公式是:排列数与组合数的关系是:m nm nCm P !组合数性质:m nC =m n nCm nC+1m nC=m n C1nr r nC=n21121r n r n r r r r r rCC CCC二项式定理:nn nrrn r nn nn nnnnbC baC b aC b a C a C b a 222110)(二项展开式的通项公式:rrn r nrb aC T 1)210(n r,,,概率统计23有关某一事件概率的求法:把所求的事件转化为等可能事件的概率(常常采用排列组合的知识),转化为若干个互斥事件中有一个发生的概率,利用对立事件的概率,转化为相互独立事件同时发生的概率,看作某一事件在n 次实验中恰有k 次发生的概率,但要注意公式的使用条件。

排列、组合与二项式定理(理)

排列、组合与二项式定理(理)
二项式定理不仅具有理论价值,还有广泛的应用 价值,特别是在统计学、计算机科学和物理学等 领域。
二项式定理的未来发展方向
理论完善
随着数学的发展,二项式定理的理论体系将不断完善,新的证明方 法和技巧将不断涌现。
应用拓展
随着各学科的发展,二项式定理的应用领域将不断拓展,特别是在 大数据处理、人工智能和量子计算等领域。
排列数的计算
01
二项式定理也可以用来计算排列数,特别是当排列数的上标和
下标较大时,使用二项式定理可以简化计算过程。
排列数的性质
02
通过二项式定理,我们可以推导出排列数的性质,如排列数的
增减性等。
排列数的递推关系
03
利用二项式定理,我们可以得到排列数的递推关系,从而更方
便地计算排列数。
利用二项式定理解决实际问题
互异性
有序性
排列中的元素顺序是确定的,不能随 意调换。
排列中的元素没有重复出现的情况。
组合的定义与性质
组合的定义
从n个不同元素中取出m个元素 (0<m≤n),不考虑顺序,称为 从n个不同元素中取出m个元素的
一个组合。
互异性
组合中的元素没有重复出现的情况。
无序性
组合中的元素顺序不影响其组合结 果。
排列与组合的关系
利用组合数的性质,通过数学推导推导出二项式定理的展开式。
利用多项式乘法推导
将$(a+b)^n$展开成多项式,然后利用多项式乘法的性质推导出二 项式定理的展开式。
利用幂的性质推导
利用幂的性质,将$(a+b)^n$展开成幂的形式,然后通过数学推导 推导出二项式定理的展开式。
04 二项式定理的应用举例
利用二项式定理计算组合数

二项式定理与组合数的计算

二项式定理与组合数的计算

二项式定理与组合数的计算二项式定理是高中数学中的一个重要定理,它与组合数的计算密切相关。

在数学中,组合数是一种用于计算选择的方法,它在概率论、统计学和组合数学中都有广泛的应用。

本文将探讨二项式定理与组合数的计算方法,并且通过一些实例来加深理解。

一、二项式定理的基本概念二项式定理是指对于任意实数a和b以及非负整数n,有如下等式成立:(a + b)^n = C(n,0) * a^n * b^0 + C(n,1) * a^(n-1) * b^1 + C(n,2) * a^(n-2) * b^2 + ... + C(n,n-1) * a^1 * b^(n-1) + C(n,n) * a^0 * b^n其中C(n,k)表示从n个元素中选取k个元素的组合数,也可以表示为n个元素中取k个元素的方式数。

二、组合数的计算方法组合数的计算方法有多种,常见的有排列组合法、杨辉三角法和递推法。

1. 排列组合法排列组合法是一种直观的计算组合数的方法。

对于从n个元素中选取k个元素的组合数,可以通过以下公式计算:C(n,k) = n! / (k! * (n-k)!)其中n!表示n的阶乘,即n! = n * (n-1) * (n-2) * ... * 1。

2. 杨辉三角法杨辉三角是一种特殊的数列,它可以用来计算组合数。

杨辉三角的第n行第k 个数等于C(n,k),可以通过以下规律进行计算:- 第n行有n+1个数;- 第n行的第一个数和最后一个数都是1;- 第n行的第k个数等于第n-1行的第k-1个数和第k个数之和。

通过杨辉三角法,可以方便地计算组合数,尤其适用于大规模的组合数计算。

3. 递推法递推法是一种基于递推关系计算组合数的方法。

对于从n个元素中选取k个元素的组合数,可以通过以下递推关系计算:C(n,k) = C(n-1,k-1) + C(n-1,k)这个递推关系的含义是,从n个元素中选取k个元素的组合数等于从n-1个元素中选取k-1个元素的组合数加上从n-1个元素中选取k个元素的组合数。

二项式定理与组合数学

二项式定理与组合数学

二项式定理与组合数学在高中数学中,我们学习了很多数学定理和概念,其中二项式定理和组合数学是我们经常接触到的两个重要知识点。

本文将详细介绍二项式定理和组合数学,并探讨它们在数学领域中的应用。

一、二项式定理的表述二项式定理是一种展开表示二项式幂的公式,它通常用于展开(x + y)^n的形式。

根据二项式定理,我们可以得出以下等式:(x + y)^n = C(n,0) * x^n * y^0 + C(n,1) * x^(n-1) * y^1 + C(n,2) * x^(n-2) * y^2 + ... + C(n,n) * x^0 * y^n其中C(n,k)表示选择k个元素的组合数。

组合数的计算方法可以通过下面的公式得出:C(n,k) = n! / (k! * (n-k)!)二、组合数学的概念组合数学是一门研究选择、排列和组合的数学学科。

在组合数学中,我们关注的是从给定集合中选择或排列对象的方式和数量。

组合数学中的基本概念包括排列、组合和二项式系数等。

排列指的是从给定的n个元素中选择k个元素,并按照一定的顺序进行排列的方式。

排列数可以通过下面的公式进行计算:P(n,k) = n! / (n-k)!组合指的是从给定的n个元素中选择k个元素,但不考虑元素的顺序。

组合数可以通过下面的公式进行计算:C(n,k) = n! / (k! * (n-k)!)二项式系数即为二项式定理中的C(n,k),它表示选择k个元素的组合数。

三、二项式定理与组合数学的应用1. 组合数学在概率论中的应用概率论是研究随机事件发生的可能性的一门学科,而组合数学在计算概率时发挥着重要作用。

例如,在排列组合中,我们可以用组合数计算从一副扑克牌中抽取一手牌的可能性。

2. 二项式定理在代数中的应用二项式定理在代数中常用于展开多项式,研究多项式的性质。

通过二项式定理,我们可以快速计算(x + y)^n的展开式。

这在代数运算中非常有用,特别是在多项式乘法、多项式函数的求导和积分等操作中。

排列组合与二项式定理

排列组合与二项式定理

排列、组合与二项式定理16.1 加法原理和乘法原理1、加法原理问题:从甲地到乙地,可以乘火车,也可以乘汽车,一天中火车有3班,汽车有2班,那么一天中,乘坐这些交通工具从甲地到乙地共有多少种方法?加法原理:完成一件事有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,……,在第n 类办法中有n m 种不同的方法,那么完成这件事共有12n N m m m =+++ 种不同的方法。

2、乘法原理问题:从甲地到乙地有3条道路,从乙地到丙地有2条道路,问:某人从甲地经过乙地到丙地有多少种不同的走法?乘法原理:完成一件事需要n 个步骤,第1步有1m 种不同的方法,第2步有2m 种不同的方法,……,第n 步有n m 种不同的方法,那么完成这件事共有n m m m N ⨯⋅⋅⋅⨯⨯=21种不同的方法。

例1:书架上放有3本不同的数学书,5本不同的语文书,6本不同的英语书。

(1)若从这些书中任取一本,有多少种不同的取法?(2)若从这些书中取数学书、语文书、英语书各一本,有多少种不同的取法?(3)若从这些书中取不同科目的书两本,有多少种不同的取法?++=。

解:(1)35614⨯⨯=。

(2)35690⨯+⨯+⨯=。

(3)35365663例2:(1)由数字1,2,3,4,5可以组成多少个各位数字可以重复的三位整数?(2)由数字0,1,2,3,4,5可以组成多少个各位数字可以重复的三位整数?(3)由数字0,1,2,3,4,5组成的三位整数中,有且只有两位数字相同(如114、303、255等)的数有多少个?N=⨯⨯=。

解:(1)555125N=⨯⨯=。

(2)566180N=⨯+⨯+⨯=。

(3)55555575N=⨯⨯--⨯⨯=。

另解:566555475课堂练习1、4名同学报名参加篮球、射击、游泳三个活动小组,每人限报一项,则不同的报名情况共有多少种?2、4名运动员争夺3项冠军,则冠军获得者的可能情况有多少种?3、用红、黄、蓝的小旗各一面挂在旗杆上表示信号,每次可以挂1面、2面或3面,并且不同的顺序表示不同的信号,一共可表示多少种不同的信号?4、540(23540235=⨯⨯)的不同正约数共有多少个?5、在300和800之间,有多少个无重复数字的奇数?6、某小组有10人,每人至少会英语和日语中的一门,其中8人会英语,5人会日语,从中选出2人,一人去当英语翻译,另一人去当日语翻译,有多少种不同的选法?解:1、分4步:4381=2、分3步:3464=3、先分类,再分步33232115+⨯+⨯⨯=4、分3步:34224⨯⨯=5、先分类,再分步:348258176⨯⨯+⨯⨯=6、分两类:553437⨯+⨯=课后作业1、要从甲、乙、丙3幅不同的画中选出2幅,分别挂在左、右两边墙上的指定位置,问共有多少种不同的挂法?2、将四封信投入到三个邮筒中,有多少种不同的投递方式?3、在所有的两位数中,个位数字小于十位数字的共有多少个?4、用数字0、1、2、3可以组成多少个无重复数字的自然数?5、满足A∪B={1,2,3}的集合A、B共有多少组?6、如下图,共有多少个不同的三角形?7、4名同学各写一张贺年卡,先集中起来,然后每人从中拿一张别人送出的贺年卡,则不同的分配方式共有多少种?8、矩形的两条对角线把矩形分成4个部分,用4种不同颜色给这4个部分涂色,要求每个部分只涂一种颜色,且有公共边的相邻部分颜色不同,则共有多少种不同的涂法?解:1、6; 2、81; 3、45; 4、49; 5、9; 6、35; 7、27; 8、8416.2 排列1、排列的概念问题:(1)从甲、乙、丙3名同学中选取2名同学参加某一天的一项活动,其中一名同学参加上午的活动,一名同学参加下午的活动,有多少种不同的方法?(2)从,,,a b c d 这四个字母中,每次取出3个按顺序排成一列,共有多少种不同的排法?从n 个不同元素中,任取m (m n ≤)个不同元素,按照一定的顺序.....排成一列,叫做从n 个不同元素中取出m 个元素的一个排列....。

高中数学高考数学学习资料:专题6 第1讲 排列、组合、二项式定理

高中数学高考数学学习资料:专题6 第1讲 排列、组合、二项式定理

意图或列出表格,使问题形象化、直观化.
[联知识 1.排列数公式: Am n =n(n-1)„(n-m+1)= 2.组合数公式:
串点成面]
n! . n-m!
m nn-1„n-m+1 n! A n m Cn = m= = . Am m! m!n-m!
3.组合数的性质:
m n-m m-1 m ①Cn =Cn ;②Cm n +Cn =Cn+1.
[做考题
查漏补缺]
(2010· 四川高考)由1、2、3、4、5、6组成没有重复 数字且1、3都不与5相邻的六位偶数的个数是 A.72 C.108 B.96 D.144 ( )
[解析] 从 2,4,6 三个偶数中选一个数放在个位,有 C1 3种方法,将 其余两个偶数全排列,有 A2 2种排法,当 1,3 不相邻且不与 5 相邻
2 2 时有 A3 种方法, 当 1,3 相邻且不与 5 相邻时有 A A3种方法, 故满 3 2· 2 2 2 足题意的偶数个数有 C1 A2 (A3 A3)=108 个. 3· 3+A2·
[答案]
C
4.(2011· 临沂模拟)将5位志愿者分成3组,其中两组各2人, 另一组1人,分赴2011年深圳世界大学生运动会的三个 不同场馆服务,不同的分配方案有________种(用数字
解析:依题意,就所剩余的一本画册进行分类计数:第一类,剩 余的是一本画册,此时满足题意的赠送方法共有 4 种;第二类,
2 剩余的是一本集邮册, 此时满足题意的赠送方法共有 C4 =6(种). 因
此,满足题意的赠送方法共有 4+6=10(种).
答案:B
[悟方法
触类旁通]
1.在应用两个原理解决问题时,一般是先分类再分步.每一 步当中又可能用到分类计数原理. 2.对于较复杂的两个原理综合使用的问题,可恰当地列出示

第11讲 排列组合和二项式定理,概率(2021高考数学 新东方内部

第11讲 排列组合和二项式定理,概率(2021高考数学   新东方内部

第11讲排列组合和二项式定理,概率(2021高考数学新东方内部第11讲排列、组合和二项式定理,概率(2021高考数学---新东方内部第一一章排列组合与二项式定理1.排列数公式成年男子n(n?1)(n?2)?(n?m?1)?Nn(m?n);an?Nn(n?1)(n?2)?2.1.(n?m)!如①1!+2!+3!+…+n!(n?4,n?n*)的个位数字为;(答:3)②满足a8x?6a8x?2的x=(答:8)组合数公式曼恩?(n?1)???(n?m?1)n!0c?M(m?n);指定0!?1,中国?一amm?(m?1)???2?1m!?n?m?!mnmnm如已知cn?cm?1?an?6,求n,m的值.(答:m=n=2)(了解)排列数、组合数的性质①cnmcnn?M1②cnm?cnm?1?cnm??1;kk?1.③kcn?ncn?1.1.④crr?crr?1.crr?r?cnr1.⑤NN(n?1)!?Nn11??⑥.(n?1)!n!(n?1)!2.解排列组合问题的依据是:分类和添加(每种方法都可以独立完成这项任务,相互独立,每次都得到最终结果,只有一种方法可以完成这项任务),分步相乘(一步得出的结果都不是最后的结果,任何一步都不能独立地完成这件事,只有各个步骤都完成了,才能完成这件事,各步是关联的),有序的安排,无序的组合如①将5封信投入3个邮筒,不同的投法共有种;(答:35)②从4台甲型和5台乙型电视机中任意取出3台,其中至少要甲型与乙型电视机各一台,则不同的取法共有种;(答:70)③ 从收集中?1,2,3? 和1,4,5,6? 如果将每个元素作为点的坐标,则它位于直角坐标系中中能确定不同点的个数是_;(答:23)④72的正约数(包括1和72)共有个;(答:12)⑤?a的一边ab上有4个点,另一边ac上有5个点,连同?a的一个顶点总共有10个点。

将这些点作为顶点可以形成三个三角形;(答复:cb90)⑥ 使用六种不同的颜色来分隔右图中的四个区域a、B、C和D,并且允许使用相同的颜色一颜色涂不同区域,但相邻区域不能是同一种颜色,则共有d种不同涂法;(答:480)⑦ 同一个房间里的四个人每人写一张新年贺卡,然后每人拿一张别人寄来的新年贺卡。

组合与组合数公式

组合与组合数公式

组合与组合数公式组合是数学中的一种问题求解方法,也是一种计算其中一集合的子集数量的方法。

它是离散数学中的一个重要概念,并具有广泛的应用领域,包括概率论、组合数学、计算机科学等。

组合的数学公式有很多种,下面将介绍其中的一些重要的组合公式。

1.排列公式:排列是从给定的元素集合中选取若干个元素按照一定的顺序组成的方法,排列公式表示为P(n,k),表示从n个元素中选取k个元素进行排列的方法数。

其公式为:P(n,k)=n!/(n-k)!其中n!表示n的阶乘,即n!=n*(n-1)*(n-2)*...*12.组合公式:组合是从给定的元素集合中选取若干个元素不考虑顺序地组成的方法,组合公式表示为C(n,k),表示从n个元素中选取k个元素进行组合的方法数。

其公式为:C(n,k)=n!/(k!*(n-k)!)3.二项式定理与组合公式:二项式定理是数学中一个重要的公式,它描述了如何展开一个二项式的幂。

在二项式定理的展开式中,组合公式被广泛使用,其公式为:(x+y)^n=C(n,0)x^ny^0+C(n,1)x^(n-1)y^1+···+C(n,k)x^(n-k)y^k+···+C(n,n)x^0y^n其中C(n,k)表示从n个元素中选取k个元素进行组合的方法数。

4.集合的幂集:集合的幂集是指一个集合中所有子集的集合。

对于一个含有n个元素的集合,其幂集的元素数量为2^n。

这可以通过组合公式来进行推导。

假设集合中的元素均不相同,那么对于每一个元素,可以选择放入子集或不放入子集,因此有两种选择。

而对于含有n个元素的集合,总共有n个元素可以进行选择,因此总共有2^n种选择,即幂集的元素数量为2^n。

这些都是组合与组合数公式中的重要的基本公式。

利用这些公式,可以解决很多组合问题,包括如何计算排列或组合的方法数、如何展开一个二项式的幂等问题。

组合数也广泛应用于概率论中,用于求解一些事件发生的概率等问题。

组合数公式大全

组合数公式大全

组合数公式大全组合数是数学中的一个重要概念,用于表示从n个元素中选取r个元素的组合的数量。

在组合数的计算中,有多种公式和方法可供选择。

本文将介绍一些常用的组合数公式,帮助读者理解和计算组合数。

1. 乘法公式:组合数的一个基本性质是乘法公式。

当n和r为非负整数时,组合数C(n, r)可以通过以下公式计算:C(n, r) = n! / ((n-r)! * r!)其中,n!表示n的阶乘。

2. 递推公式:递推公式是一种常见的计算组合数的方法,通过逐步递推得到结果。

C(n, r) = C(n-1, r-1) + C(n-1, r)如果r为0或r等于n,则C(n, r)为1。

3. Pascal三角形:Pascal三角形是一种展示组合数的图形表示方法,利用递推公式来计算组合数。

Pascal三角形的第n行第r个数表示C(n, r)。

例如,Pascal三角形的第4行为:1 3 3 1,表示C(4,0)=1, C(4,1)=4, C(4,2)=6, C(4,3)=4, C(4,4)=1。

4. 二项式定理:二项式定理是组合数的一个重要公式,将一个二项式展开为一系列项的和。

(x + y)^n = C(n, 0) * x^n + C(n, 1) * x^(n-1) * y + ... + C(n, n-1) * x * y^(n-1) + C(n, n) * y^n5. 组合数的性质:- C(n, r) = C(n, n-r),即从n个元素中选择r个等于从n个元素中选择n-r个。

- C(n, r) = C(n-1, r-1) + C(n-1, r),符合递推公式的性质。

- 对于任意正整数n,有C(n, 0) + C(n, 1) + ... + C(n, n) = 2^n,表示从n个元素中选择0个到n个元素的所有组合数之和等于2的n次方。

6. Lucas定理:Lucas定理是组合数的一个重要定理,用于计算模p的组合数。

对于非负整数n和p,设n = nk * pk + ... + n1 * p + n0,其中0 <= ni < p,0 <= i <= k。

二项式定理与排列组合的应用知识点总结

二项式定理与排列组合的应用知识点总结

二项式定理与排列组合的应用知识点总结在数学中,二项式定理与排列组合是两个重要的概念。

二项式定理是代数中的一项基本定理,而排列组合是组合数学中的重要概念。

本文将对二项式定理和排列组合的应用进行知识点总结。

一、二项式定理二项式定理是数学中的一个重要定理,它是关于二项式与幂的展开公式。

二项式定理的公式表达如下:(a + b)^n = C(n, 0) * a^n * b^0 + C(n, 1) * a^(n-1) * b^1 + ... + C(n, n) * a^0 * b^n其中,C(n, k)表示组合数,即从n个元素中选择k个元素的组合数。

组合数的计算公式为:C(n, k) = n! / (k! * (n-k)!)二项式定理给出了二项式的展开公式,使我们可以快速求解幂指数较大的二项式。

其应用广泛,包括代数、概率统计等领域。

二、排列组合排列组合是组合数学中的一个分支,研究的是从给定的元素集合中选取出若干元素,按照一定规则进行排列或组合的方法。

排列和组合的计算公式如下:排列:P(n, k) = n! / (n-k)!组合:C(n, k) = n! / (k! * (n-k)!)其中,n表示元素的总个数,k表示选取的元素个数。

排列组合在实际问题中有着广泛的应用。

例如,在概率统计中,排列组合可用于计算事件发生的可能数;在密码学中,排列组合可用于计算密码的破解难度;在传统的魔方游戏中,排列组合可用于计算还原魔方的步骤等。

三、应用举例1. 掷硬币问题:将一枚硬币连续投掷3次,求出正反面出现的不同可能性。

解:根据排列组合的知识,将硬币的正反面看作两个元素,共有2个元素,从中选择3个元素排列,即为排列问题。

根据排列问题的计算公式,可得 P(2, 3) = 2! / (2-3)! = 2。

故,正反面出现的不同可能性为2种。

2. 发牌问题:从一副扑克牌中,随机抽出5张牌,在这5张牌中有几种同花色的可能性?解:根据排列组合的知识,将扑克牌的花色看作4个元素,从4个元素中选取1个元素,即为组合问题。

排列组合与二项式定理

排列组合与二项式定理


B. 24种 D. 36种
解析:因为恰有2人选修课程甲,共有C2 4 6 种结果,所以余下的两个人各有两种选法, 共有2 2 4种结果,根据分步计数原理知共 有6 4 24种结果.
2.(2011 重庆卷) 1 2x 的展开式中x 4的系数是
6
_________ .
r r 解析:展开式的通项为Tr 1 2r C6 x. 4 令r 4得展开式中x 4的系数是24 C6 240.
4 得常数1 1 C8 70; 4
当第一个括号中取2x 2时,则第二个括号必取
5
1 x2
5 项,由通项易知当r 5时,取得常数2 1 C8
112,所以展开式中常数项为 112 70 42.
【思维启迪】本题主要考查二项式定理的通项 公式及分类讨论的思想方法.解答两个因式 积的展开式问题主要有两种途径:
究;
6 近似计算:构造二项式,展开后根据精确度的要
求分析应取前几项,从哪项开始去掉后面的所有项.
拍卖预展 龙威
1.(2 011 全国大纲卷)4位同学每人从甲、乙、丙3 门课程中选修1门,则恰有2人选修课程甲的不同 选法共有 A. 12种 C. 30种
专题三
排列、组合、二项式 定理、概率与统计
1.计数原理 分类计数原理:完成一件事,有n类办法,在第1类办 法中有m1种不同的方法,在第2类办法中有m2种不同 的方法, ,在第n类办法中有mn种不同的方法,那么 完成这件事共有N m1 m2 mn种不同的方法. 分步计数原理:完成一件事,需要n个步骤,做 第1步有m1种不同的方法,做第2步有m2种不同的方法, ,做第n步有mn种不同的方法,那么完成这件事共有 N m1 m2 mn种不同的方法.

数学中的排列组合与二项式定理

数学中的排列组合与二项式定理

数学中的排列组合与二项式定理在数学中,排列组合和二项式定理是重要的概念和原理。

它们在解决问题、计算概率等方面起着重要的作用。

一、排列组合排列组合是数学中用来描述和计算对象排列和选择方式的概念。

排列是从一组对象中选取若干个进行有序排列,而组合是从一组对象中选取若干个进行无序组合。

1.1 排列排列是从一组对象中选取若干个进行有序排列的方式。

假设我们有n个不同的对象,要从中选取r个进行排列,则排列的方式数用P(n,r)表示。

计算排列的方式数的公式为:P(n,r) = n! / (n-r)!其中,n!表示n的阶乘,即n! = n * (n-1) * (n-2) * ... * 2 * 1。

排列的应用非常广泛,比如在数学竞赛中,求解一道题目需要按照一定的规则对给定的元素进行排列。

1.2 组合组合是从一组对象中选取若干个进行无序组合的方式。

与排列不同,组合不考虑对象的顺序。

假设我们有n个不同的对象,要从中选取r个进行组合,则组合的方式数用C(n,r)表示。

计算组合的方式数的公式为:C(n,r) = n! / (r! * (n-r)!)组合通常用于解决计算概率、统计样本等问题。

比如在概率问题中,我们需要计算从一组给定的元素中选取若干个元素的所有可能组合的概率。

二、二项式定理二项式定理是数学中一个非常重要的定理,它描述了如何展开一个二项式的幂。

一个二项式表示如下:(a + b)^n其中,a和b是实数或者变量,n是非负整数。

二项式定理给出了展开(a + b)^n所得的多项式的各项系数。

二项式定理的表达式如下:(a + b)^n = C(n,0) * a^n * b^0 + C(n,1) * a^(n-1) * b^1 + C(n,2) * a^(n-2) * b^2 + ... + C(n,n-1) * a^1 * b^(n-1) + C(n,n) * a^0 * b^n其中,C(n,r)表示从n个元素中选取r个元素的组合数量。

排列组合二项式

排列组合二项式
1 2 n (11)求值: C n + 2C n + 3C n + L + ( n + 1)C n ; 求值: 0 0 1 2 n C n + 2C n + 2 2 C n + L + 2 n C n ;
0 2 4 C n + C n + C n + L = 2 n−1
11、a + b ) n 展开式偶数项二项式系 数之和: ( 数之和:
1 3 5 C n + C n + C n + L = 2 n −1
12、二项式展开式系数问 题常用赋值法
Tr + 1 ≥ Tr + 2 13、二项式展开式系数最 大值: 大值: Tr + 1 ≥ Tr
10
(4)(1 + x ) + (1 + x ) 2 + (1 + x ) 3 + L + (1 + x ) 6 展开式中含 x 2 项 的系数 ___ 1 24 的展开式中, (5)在( x + 3 ) 的展开式中,常数项有 __ 项,整式项有 x __ 项,有理项有 __ 项 (6)( x 2 + x − 1)9 ( 2 x + 1) 4 的展开式中所有 x的奇次项系数之和 为 _______ (7 ( x + 1) 2 ( x − 1) 5 展开式中 x 4的系数是 ____ )
6、二项式展开式: 二项式展开式:
0 1 2 n ( a + b ) n = C n a n b 0 + C n a n −1b 1 + C n a n − 2b 2 + L + C n a 0 b n

专题六第1讲排列、组合、二项式定理

专题六第1讲排列、组合、二项式定理
菜 单
解 题 规 范 流 程
考 点 核 心 突 破
训 练 高 效 提 能
高考专题辅导与训练· 数学(理科)
第一部分 法
基 础 要 点 整 合
专题六
概率与统计、推理与证明、复数、算
解 题 规 范 流 程
[自主解答]
(1)若甲同学分配到 B 宿舍,且单独住一
室,则有 24-2 种方案;若甲同学分配到 B 宿舍,且不单 独住一室,则有 C2 A3 4· 3种方案;故甲同学分配到 B 宿舍共 有(24-2)+C2 A3 4· 3=50 种方案,同理,甲同学分配到 C 宿 舍也有 50 种方案,则甲同学不能分配到 A 宿舍的分配方
第一部分 法
基 础 要 点 整 合
专题六
概率与统计、推理与证明、复数、算
解 题 规 范 流 程
(4)二项式系数的性质:
n-r r r-1 r ①Cr = C , C + C = C n n n n n+1.
n +1 2 当 n 为偶数时,中间一项即第______项的二项式系 n n+1 n+3 2 C 2 , 2 数 n 最大;当 n 为奇数时,中间两项即第____________
基础要点整合
一、构建知识网络
考 点 核 心 突 破
训 练 高 效 提 能


高考专题辅导与训练· 数学(理科)
第一部分 法
基 础 要 点 整 合
专题六
概率与统计、推理与证明、复数、算
解 题 规 范 流 程
二、梳理基础知识
1.掌握排列数与组合数两个公式 (1)排列数公式: n! n(n-1)…(n-m+1) n-m! Am n =___________________=_________. (2)组合数公式:

排列、组合、二项式定理的精品教案3篇

排列、组合、二项式定理的精品教案3篇

排列、组合、二项式定理的精品教案排列、组合、二项式定理的精品教案精选3篇(一)教案主题:排列、组合、二项式定理教学目标:1. 了解和理解排列、组合的概念和特点;2. 学习排列、组合的计算公式;3. 通过实际问题应用排列、组合的知识;4. 理解和应用二项式定理。

教学准备:1. PowerPoint演示文稿;2. 排列、组合的计算示例;3. 计算器。

教学流程:一、导入(5分钟)1. 引出学生对于排列、组合的了解,以及他们对于二项式定理的了解。

2. 引出排列、组合涉及到的实际问题,如抽奖、排座位等。

二、讲解排列(15分钟)1. 讲解排列的概念:从n个元素中选取r个元素进行排列,一共有多少种不同的排列方式。

2. 讲解排列的计算公式:P(n, r) = n!/(n-r)!。

3. 讲解排列的特点:次序有关,一个元素不能重复选取。

三、讲解组合(15分钟)1. 讲解组合的概念:从n个元素中选取r个元素进行组合,一共有多少种不同的组合方式。

2. 讲解组合的计算公式:C(n, r) = n!/[(n-r)!r!]。

3. 讲解组合的特点:次序无关,一个元素不允许重复选取。

四、讲解二项式定理(15分钟)1. 讲解二项式定理的概念:将一个二项式表达式展开后的结果。

2. 讲解二项式定理的公式:(a+b)^n = C(n, 0) a^n b^0 + C(n, 1) a^n-1 b^1 + ... + C(n, n-1) a^1 b^n-1 + C(n, n) a^0 b^n。

3. 讲解二项式定理的应用:展开二项式表达式,求特定项的值。

五、练习与应用(20分钟)1. 给出一些排列、组合的计算问题,让学生自主计算并回答。

2. 提供一些实际问题,让学生应用排列、组合的知识进行解决。

六、总结与延伸(5分钟)1. 对排列、组合和二项式定理进行简要总结。

2. 探讨一些延伸问题,如多项式展开、二项式系数等。

教学反思:1. 教学内容安排合理,从概念到计算公式,再到实际应用,能够让学生逐步理解和掌握知识。

高中数学中的排列组合和二项式定理

高中数学中的排列组合和二项式定理

排列组合和二项式定理是高中数学中的重要内容,它们在解决实际问题中有着广泛的应用。

本文将从这三个概念的定义、性质、应用等方面进行阐述。

排列组合和二项式定理都是与排列组合相关的重要数学概念。

排列组合主要用于计算有限集合中元素的排列组合数,而二项式定理则是一个数学公式,描述了两个二进制数的组合方式。

排列组合和二项式定理在数学中有着广泛的应用。

首先,在组合数学中,排列组合被用来计算组合的系数。

例如,在计算从n个不同元素中选取k个元素的组合数时,可以使用排列组合的方法来计算。

此外,排列组合还可以用于解决一些概率问题,例如,在抽奖活动中,可以通过计算不同号码的组合数来计算中奖的概率。

其次,二项式定理在统计学和概率论中有着广泛的应用。

例如,在计算平均数、方差和标准差等统计量时,可以使用二项式定理来计算。

此外,二项式定理还可以用于解决一些概率问题,例如,在计算抛硬币的正反面出现的概率时,可以使用二项式定理来计算。

排列组合和二项式定理的应用非常广泛,下面举几个例子来说明:1. 计算组合数:假设要从n个不同元素中选取k个元素,不考虑顺序,那么可以使用排列组合的方法来计算组合数。

具体地,可以计算出所有可能的排列数,然后除以从n个元素中选取k个元素的排列数。

例如,从5个不同元素中选取3个元素的组合数为C(5,3) = 10。

2. 计算概率:假设要进行一次抽奖活动,其中有10个不同的号码,每个号码出现的概率为1/10。

那么可以计算出所有可能的组合数,即10个不同的号码的排列数。

然后,根据二项式定理来计算中奖的概率。

具体地,可以计算出中奖的概率等于中奖号码出现的次数与总次数的比值。

例如,如果中奖号码为5号,那么中奖的概率等于5/10 = 0.5。

3. 计算统计量:假设要进行一次考试,共有10道题目,每道题目有3个选项。

那么可以计算出所有可能的组合数,即30种不同的答案组合方式。

然后,根据二项式定理来计算平均分数、方差和标准差等统计量。

学新教材高中数学排列组合与二项式定理排列与组合排列数的应用教案新人教B版选择性必修第二册

学新教材高中数学排列组合与二项式定理排列与组合排列数的应用教案新人教B版选择性必修第二册

第2课时排列数的应用学习目标核心素养1.进一步理解排列的概念,掌握一些排列问题的常用解题方法.(重点)2.能应用排列知识解决简单的实际问题.(难点)1.通过排列知识解决实际问题,提升逻辑推理的素养.2.借助排列数公式计算,提升数学运算的素养.无限制条件的排列问题(2)有5种不同的书,要买3本送给3名同学,每人各1本,共有多少种不同的送法?[思路点拨] (1)从5本不同的书中选出3本分别送给3名同学,各人得到的书不同,属于求排列数问题;(2)给每人的书均可以从5种不同的书中任选1本,各人得到哪本书相互之间没有联系,要用分步乘法计数原理进行计算.[解] (1)从5本不同的书中选出3本分别送给3名同学,对应于从5个不同元素中任取3个元素的一个排列,因此不同送法的种数是A错误!=5×4×3=60,所以共有60种不同的送法.(2)由于有5种不同的书,送给每个同学的每本书都有5种不同的选购方法,因此送给3名同学,每人各1本书的不同方法种数是5×5×5=125,所以共有125种不同的送法.1.没有限制的排列问题,即对所排列的元素或所排列的位置没有特别的限制,这一类问题相对简单,分清元素和位置即可.2.对于不属于排列的计数问题,注意利用计数原理求解.错误!1.(1)将3张电影票分给10人中的3人,每人1张,则共有________种不同的分法.(2)从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,不同的选法共有________种.(1)720 (2)60 [(1)问题相当于从10张电影票中选出3张排列起来,这是一个排列问题.故不同分法的种数为A错误!=10×9×8=720.(2)从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,应有A错误!=5×4×3=60种选法.]排队问题【例2】3名男生、4名女生按照不同的要求排队,求不同的排队方法的种数.(1)全体站成一排,男、女各站在一起;(2)全体站成一排,男生必须站在一起;(3)全体站成一排,男生不能站在一起;(4)全体站成一排,男、女各不相邻.!种排法;[解] (1)男生必须站在一起是男生的全排列,有A错误!种排法;女生必须站在一起是女生的全排列,有A错误!种排法.全体男生、女生各视为一个元素,有A错误!·A错误!·A错误!=288种排队方法.由分步乘法计数原理知,共有A错误!种方法,把所有男生视为一个元素,与4名女生组成5个(2)三个男生全排列有A错误!种排法.故有A错误!·A错误!=720种排队方法.元素全排列,有A错误!种排法;男生在4个女生隔成的五个空中安排,共有A (3)先安排女生,共有A错误错误!种排法,故共有A错误!·A错误!=1440种排法.(4)排好男生后让女生插空,共有A错误!·A错误!=144种排法.“相邻”与“不相邻”问题的解决方法处理元素“相邻”“不相邻”问题应遵循“先整体,后局部”的原则.元素相邻问题,一般用“捆绑法”,先把相邻的若干个元素“捆绑”为一个大元素与其余元素全排列,然后再松绑,将这若干个元素内部全排列.元素不相邻问题,一般用“插空法”,先将不相邻元素以外的“普通”元素全排列,然后在“普通”元素之间及两端插入不相邻元素.错误!2.5人站成一排,甲、乙两人之间恰有1人的不同站法的种数为()A.18 B.24C.36 D.48C[5人站成一排,甲、乙两人之间恰有1人的不同站法有3A错误!×A错误!=36(种).]角度二元素“在”与“不在”问题【例3】六人按下列要求站一横排,分别有多少种不同的站法?(1)甲不站两端;(2)甲、乙站在两端;(3)甲不站左端,乙不站右端.[解] (1)法一:要使甲不站在两端,可先让甲在中间4个位置上任选1个,有A错误!种站法,然后其余5人在另外5个位置上作全排列有A错误!种站法,根据分步乘法计数原理,共有站法A错误!·A 错误!=480种.法二:由于甲不站两端,这两个位置只能从其余5个人中选2个人站,有A错误!种站法,然后其余4人有A错误!种站法,根据分步乘法计数原理,共有站法A错误!·A错误!=480种.法三:若对甲没有限制条件共有A错误!种站法,甲在两端共有2A错误!种站法,从总数中减去这两种情况的排列数,即得所求的站法数,共有A错误!—2A错误!=480种.(2)首先考虑特殊元素,甲、乙先站两端,有A错误!种,再让其他4人在中间位置作全排列,有A错误!种,根据分步乘法计数原理,共有A错误!·A错误!=48种站法.(3)法一:甲在左端的站法有A错误!种,乙在右端的站法有A错误!种,且甲在左端而乙在右端的站法有A错误!种,共有A错误!—2A错误!+A错误!=504种站法.法二:以元素甲分类可分为两类:a.甲站右端有A错误!种,b.甲在中间4个位置之一,而乙不在右端有A错误!·A错误!·A错误!种,故共有A错误!+A错误!·A错误!·A错误!=504种站法.“在”与“不在”问题的解决方法错误!3.4名运动员参加4×100接力赛,根据平时队员训练的成绩,甲不能跑第一棒,乙不能跑第四棒,则不同的出场顺序有()A.12种B.14种C.16种D.24种B[用排除法,若不考虑限制条件,4名队员全排列共有A错误!=24种排法,减去甲跑第一棒有A错误!=6种排法,乙跑第四棒有A错误!=6种排法,再加上甲在第一棒且乙在第四棒有A错误!=2种排法,共有A错误!—2A错误!+A错误!=14种不同的出场顺序.]角度三定序问题【例4】将A,B,C,D,E这5个字母排成一列,要求A,B,C在排列中的顺序为“A,B,C”或“C,B,A”(可以不相邻).则有多少种不同的排列方法?[解] 5个不同元素中部分元素A,B,C的排列顺序已定,这种问题有以下两种常用的解法.法一:(整体法)5个元素无约束条件的全排列有A错误!种,由于字母A,B,C的排列顺序为“A,B,C”或“C,B,A”,因此,在上述的全排列中恰好符合“A,B,C”或“C,B,A”排列方式的排列有错误!×2=40(种).法二:(插空法)若字母A,B,C的排列顺序为“A,B,C”,将字母D,E插入,这时形成的4个空中,分两类:第一类,若字母D,E相邻,则有A错误!·A错误!种排法;第二类,若字母D,E不相邻,则有A错误!种排法.所以有A错误!·A错误!+A错误!=20(种)不同的排列方法.同理,若字母A,B,C的排列顺序为“C,B,A”,也有20种不同的排列方法.因此,满足条件的排列有20+20=40(种).在有些排列问题中,某些元素有前后顺序是确定的(不一定相邻),解决这类问题的基本方法有两种:1.整体法:即若有m+n个元素排成一列,其中m个元素之间的先后顺序确定不变,先将这m+n个元素排成一列,有A错误!种不同的排法;然后任取一个排列,固定其他n个元素的位置不动,把这m个元素交换顺序,有A错误!种排法,其中只有一个排列是我们需要的,因此共有错误!种满足条件的不同排法.2.插空法:即m个元素之间的先后顺序确定不变,因此先排这m个元素,只有一种排法,然后把剩下的n个元素分类或分步插入由以上m个元素形成的空隙中.错误!4.用1,2,3,4,5,6,7组成没有重复数字的七位数,若1,3,5,7的顺序一定,则有________个七位数符合条件.210 [若1,3,5,7的顺序不定,有A错误!=24(种)排法,故1,3,5,7的顺序一定的排法数只占总排法数的错误!.故有错误!A错误!=210(个)七位数符合条件.]数字排列问题1.偶数的个位数字有何特征?从1,2,3,4,5中任取两个不同数字能组成多少个不同的偶数?[提示] 偶数的个位数字一定能被2整除.先从2,4中任取一个数字排在个位,共2种不同的排法,再从剩余数字中任取一个数字排在十位,共4种排法,故从1,2,3,4,5中任取两个数字,能组成2×4=8(个)不同的偶数.2.在一个三位数中,身居百位的数字x能是0吗?如果在0~9这十个数字中任取不同的三个数字组成一个三位数,如何排才能使百位数字不为0?[提示] 在一个三位数中,百位数字不能为0,在具体排数时,从元素0的角度出发,可先将0排在十位或个位的一个位置,其余数字可排百位、个位(或十位)位置;从“位置”角度出发可先从1~9这9个数字中任取一个数字排百位,然后再从剩余9个数字中任取两个数字排十位与个位位置.【例5】(教材P12例6改编)用0,1,2,3,4,5这六个数字可以组成多少个无重复数字的(1)六位奇数?(2)个位数字不是5的六位数?[思路点拨] 这是一道有限制条件的排列问题,每一问均应优先考虑限制条件,遵循特殊元素或特殊位置优先安排的原则.另外,还可以用间接法求解.[解] (1)法一:从特殊位置入手(直接法)分三步完成,第一步先填个位,有A错误!种填法,第二步再填十万位,有A错误!种填法,第三步填其他位,有A错误!种填法,故共有A错误!A错误!A错误!=288(个)六位奇数.法二:从特殊元素入手(直接法)0不在两端有A错误!种排法,从1,3,5中任选一个排在个位有A错误!种排法,其他各位上用剩下的元素做全排列有A错误!种排法,故共有A错误!A错误!A错误!=288(个)六位奇数.法三:排除法6个数字的全排列有A错误!个,0,2,4在个位上的六位数为3A错误!个,1,3,5在个位上,0在十万位上的六位数有3A错误!个,故满足条件的六位奇数共有A错误!—3A错误!—3A错误!=288(个).(2)法一:排除法0在十万位的六位数或5在个位的六位数都有A错误!个,0在十万位且5在个位的六位数有A错误!个.故符合题意的六位数共有A错误!—2A错误!+A错误!=504(个).法二:直接法十万位数字的排法因个位上排0与不排0而有所不同,因此需分两类:第一类:当个位排0时,符合条件的六位数有A错误!个.第二类:当个位不排0时,符合条件的六位数有A错误!A错误!A错误!个.故共有符合题意的六位数A错误!+A错误!A错误!A错误!=504(个).(变结论)用0,1,2,3,4,5这六个数取不同的数字组数.(1)能组成多少个无重复数字且为5的倍数的五位数?(2)能组成多少个无重复数字且比1325大的四位数?(3)若所有的六位数按从小到大的顺序组成一个数列{a n},则240 135是第几项?[解] (1)符合要求的五位数可分为两类:第一类,个位上的数字是0的五位数,有A错误!个;第二类,个位上的数字是5的五位数,有A错误!·A错误!个.故满足条件的五位数的个数共有A错误!+A错误!·A错误!=216(个).(2)符合要求的比1325大的四位数可分为三类:第一类,形如2□□□,3□□□,4□□□,5□□□,共A错误!·A错误!个;第二类,形如14□□,15□□,共有A错误!·A错误!个;第三类,形如134□,135□,共有A错误!·A错误!个.由分类加法计数原理知,无重复数字且比1325大的四位数共有:A错误!·A错误!+A错误!·A 错误!+A错误!·A错误!=270(个).(3)由于是六位数,首位数字不能为0,首位数字为1有A错误!个数,首位数字为2,万位上为0,1,3中的一个有3A错误!个数,∴240 135的项数是A错误!+3A错误!+1=193,即240 135是数列的第193项.解数字排列问题常见的解题方法1.“两优先排法”:特殊元素优先排列,特殊位置优先填充.如“0”不排“首位”.2.“分类讨论法”:按照某一标准将排列分成几类,然后按照分类加法计数原理进行,要注意以下两点:一是分类标准必须恰当;二是分类过程要做到不重不漏.3.“排除法”:全排列数减去不符合条件的排列数.4.“位置分析法”:按位置逐步讨论,把要求数字的每个数位排好.1.解排列应用题的基本思想错误!错误!错误!错误!错误!错误!错误!2.求解排列问题的主要方法直接法把符合条件的排列数直接列式计算优先法优先安排特殊元素或特殊位置捆绑法把相邻元素看作一个整体与其他元素一起排列,同时注意捆绑元素的内部排列插空法对不相邻问题,先考虑不受限制的元素的排列,再将不相邻的元素插在前面元素排列的空档中定序问题除法处理对于定序问题,可先不考虑顺序限制,排列后,再除以定序元素的全排列间接法正难则反,等价转化的方法1.6名学生排成两排,每排3人,则不同的排法种数为()A.36 B.120C.720 D.240C[由于6人排两排,没有什么特殊要求的元素,故排法种数为A错误!=720.]2.某段铁路所有车站共发行132种普通车票,那么这段铁路共有的车站数是()A.8 B.12C.16 D.24B[设车站数为n,则A错误!=132,n(n—1)=132,∴n=12.]3.用1,2,3,4,5,6,7这7个数字排列组成一个七位数,要求在其偶数位上必须是偶数,奇数位上必须是奇数,则这样的七位数有________个.144[先排奇数位有A错误!种,再排偶数位有A错误!种,故共有A错误!A错误!=144个.]4.A,B,C,D,E五人并排站成一排,如果A,B必须相邻且B在A的右边,那么不同的排法种数有________种.24[把A,B视为一人,且B固定在A的右边,则本题相当于4人的全排列,共A错误!=24种.]5.某次文艺晚会上共演出8个节目,其中2个唱歌、3个舞蹈、3个曲艺节目,求分别满足下列条件的节目编排方法有多少种?(1)一个唱歌节目开头,另一个放在最后压台;(2)2个唱歌节目互不相邻;(3)2个唱歌节目相邻且3个舞蹈节目不相邻.!种排法,再排其他节目有A错误!种排法,所以[解] (1)先排唱歌节目有A错误!·A错误!=1440(种)排法.共有A错误!种排法,再从其中7个空(包括两端)(2)先排3个舞蹈节目和3个曲艺节目有A错误!种插入方法,所以共有A错误!·A错误!=30 2中选2个排唱歌节目,有A错误40(种)排法.!种排法,再将(3)把2个相邻的唱歌节目看作一个元素,与3个曲艺节目排列共A错误!种插入方法,最后将2个唱歌节目互换位置,有A错误!3个舞蹈节目插入,共有A错误!·A错误!·A错误!=2880(种)排法.种排法,故所求排法共有A错误。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

排列数、组合数及二项式定理整理慈济中学全椒1、排列数公式m n A =)1()1(+--m n n n Λ=!!)(m n n -.(n ,m ∈N*,且m n ≤).2、排列恒等式(1)1(1)mm nn A n m A-=-+;(2)1mmn n n A A n m -=-;(3)11m m n n A nA --=; (4)11n n n n n n nA A A ++=-;(5)11m m m n n nA A mA -+=+.(6) 1!22!33!!(1)!1n n n +⋅+⋅++⋅=+-L .3、组合数公式m n C =m n m m A A =m m n n n ⨯⨯⨯+--ΛΛ21)1()1(=!!!)(m n m n -⋅(n ∈N*,m N ∈,且m n ≤).4、组合数的两个性质 (1)m n C =mn nC - ; (2) m n C +1-m n C =m n C 1+.5、排列数与组合数的关系m mn nA m C =⋅! .6、二项式定理:011()()n n n r n r r n n n n n n a b C a C a b C a b C b n N --*+=+++++∈L L【注】:1.基本概念:①二项式展开式:右边的多项式叫做()na b +的二项展开式。

②二项式系数:展开式中各项的系数rn C (0,1,2,,)r n =⋅⋅⋅. ③项数:共(1)r +项,是关于a 与b 的齐次多项式 ④通项:展开式中的第1r +项rn rr n C a b -叫做二项式展开式的通项。

用1r n r rr n T C a b -+=表示。

2.注意关键点:①项数:展开式中总共有(1)n +项。

②顺序:注意正确选择a ,b ,其顺序不能更改。

()na b +与()nb a +是不同的。

③指数:a 的指数从n 逐项减到0,是降幂排列。

b 的指数从0逐项减到n ,是升幂排列。

各项的次数和等于n .④系数:注意正确区分二项式系数与项的系数,二项式系数依次是012,,,,,,.rnn n n n n C C C C C ⋅⋅⋅⋅⋅⋅项的系数是a 与b 的系数(包括二项式系数)。

3.常用的结论:令1,,a b x == 0122(1)()n r r n n n n n n n x C C x C x C x C x n N *+=++++++∈L L 令1,,a b x ==- 0122(1)(1)()n r r n n n n n n n n x C C x C x C x C x n N *-=-+-+++-∈L L4.性质:①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即0n n n C C =,···1k k n n C C -=②二项式系数和:令1a b ==,则二项式系数的和为0122r nn n n n n n C C C C C ++++++=L L ,变形式1221r n nn n n n C C C C +++++=-L L 。

③奇数项的二项式系数和=偶数项的二项式系数和:在二项式定理中,令1,1a b ==-,则0123(1)(11)0n n nn n n n n C C C C C -+-++-=-=L ,从而得到:0242132111222r r nn n n n n n n n C C C C C C C +-++⋅⋅⋅++⋅⋅⋅=++++⋅⋅⋅=⨯=L ④奇数项的系数和与偶数项的系数和:0011222012012001122202121001230123()()1, (1)1,(1)n n n n n nn n n n n n n n n n n n n n n n n n n n n n a x C a x C a x C a x C a x a a x a x a x x a C a x C ax C a x C a x a x a x a x a x a a a a a a x a a a a a a ----+=++++=+++++=++++=++++=++++=+---------=--+-++=-----L L L L L L 令则①令则024135(1)(1),()2(1)(1),()2n n n n nn a a a a a a a a a a a a ----++-++++=+---+++=L L ②①②得奇数项的系数和①②得偶数项的系数和⑤二项式系数的最大项:如果二项式的幂指数n 是偶数时,则中间一项的二项式系数2n nC 取得最大值。

如果二项式的幂指数n 是奇数时,则中间两项的二项式系数12n nC -,12n nC+同时取得最大值。

⑥系数的最大项:求()na bx +展开式中最大的项,一般采用待定系数法。

设展开式中各项系数分别为121,,,n A A A +⋅⋅⋅,设第1r +项系数最大,应有112r rr r A A A A +++≥⎧⎨≥⎩,从而解出r 来。

7、组合数公式的应用:公式1m mc +m m c 1++m m c 2++……+m k m c +=11+++m k m c 此公式可由下面方法推得 从1++n m 个不同元素中取出m 个不同元素的组合数为11+++m k mc 先将其分为1++n m 个元素中不含其中一个元素1a 的和含元素1a 的两类而这两类的组合数分别为1++m kmc 与m kmc +即得11+++m k mc =1++m kmc +m kmc +,依此再将组合数1++m kmc 分为两类可得1++m k m c =11+-+m k m c +m k m c 1-+,不断将组合数上标为1+m 的项进行如此分类即得公式1。

公式20mc .k n c +1m c .1-k n c +2m c .2-k n c +……+m m c m k n c -=kn m c + 此公式可由下面方法推得。

从放在一个盒中的m 个不同黑球与n 个不同白球中任取出k 的球的方法种数为kn m c +,将取出的k 个球按所含白球数分类,分为含白球数为0个,1个,2个….k 个共k+1类,取法种数分别为0m c .kn c ,1m c .1-k n c ,2m c .2-k n c ,……,mmc mk nc -即得公式2。

下面举例说明以上两个公式在数列求和方面的应用。

例1n s =1×2+2×3+3×4+….. +n ×(n+1) 求n s解:1×2+2×3+3×4+….. +n ×(n+1)= 2(22c +23c +24c +…+21+n c ) ∴n s =232+n c =3)1)(2(nn n ++例2 求n s =12+22+32+……+n 2解:∵21+n c =2)1(n n + ∴221+n c =n 2+n ∴2(22c +23c +24c +…+21+n c )=n s +2)1(n n +∴232+n c =n s +2)1(n n + 得3)1)(2(n n n ++=n s +2)1(n n +整理得n s =6)12)(1(++n n n例3求n s =13+23+33+……+n 3解:∵32+n c =6)1)(2(n n n ++ ∴632+n c =n 3+3n 2+2n6(33c +34c +35c +…+32+n c )=n s +36)12)(1(++n n n +22)1(n n +∴643+n c =n s +36)12)(1(++n n n +22)1(n n + 解出n s 并整理得n s =4)1(22n n + 用类似的方法可求出a n =n 4,a n =n 5,…的和。

例4 一盒有大小相同的黑球M 个,白球N 个,从中任取m 个球(m ≤M ,m ≤N ),求含有白球的个数ξ的数学期望。

∴E ξ=mNM c +1(11-m M N c c +222-m M N c c +…+(m-1)11M m N c c -+m 0M m N c c )E ξ=m NM c N+(N 111-m M N c c +N 222-m M N c c +…+N m 1-11M m N c c -+Nm 0M m N c c ) E ξ=mNM c N+(11--m M N c c +211--m M N c c +…+121M m N c c --+011M m N c c --)(∵Nm m N c =11--m N c ) ∴E ξ=m NM c N+11--+m M N c =mNM c N+M N m +mMN c +=NM Nm +(此为超几何分布的数学期望) 8、二项式定理的应用:题型一:二项式定理的逆用;例:12321666 .n n n n n n C C C C -+⋅+⋅++⋅=L解:012233(16)6666n n nn n n n n C C C C C +=+⋅+⋅+⋅++⋅L 与已知的有一些差距,123211221666(666)6n n nn n n n n n n n C C C C C C C -∴+⋅+⋅++⋅=⋅+⋅++⋅L L 0122111(6661)[(16)1](71)666n n n n n n n n C C C C =+⋅+⋅++⋅-=+-=-L练:1231393 .n nn n n n C C C C -++++=L 解:设1231393n nn n n n n S C C C C -=++++L ,则122330122333333333331(13)1n n n nn n n n n n n n n n n S C C C C C C C C C =++++=+++++-=+-L L (13)14133n n n S +--∴==题型二:利用通项公式求n x 的系数;例:在二项式n的展开式中倒数第3项的系数为45,求含有3x 的项的系数? 解:由条件知245n nC -=,即245n C =,2900n n ∴--=,解得9()10n n =-=舍去或,由2102110343411010()()r r rrrr r T C x x C x--+--+==,由题意1023,643r r r --+==解得, 则含有3x 的项是第7项6336110210T C x x +==,系数为210。

练:求291()2x x-展开式中9x 的系数? 解:291821831999111()()()()222r r r r r r r rr r r T C x C x x C x x ----+=-=-=-,令1839r -=,则3r =故9x 的系数为339121()22C -=-。

相关文档
最新文档