排列数、组合数公式与二项式定理的应用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
排列数、组合数及二项式定理整理
慈济中学全椒
1、排列数公式
m n A =)1()1(+--m n n n Λ=!!
)(m n n -.(n ,m ∈N*,且m n ≤).
2、排列恒等式
(1)
1(1)m
m n
n A n m A
-=-+;(2)
1m
m
n n n A A n m -=
-;(3)11m m n n A nA --=; (4)11n n n n n n nA A A ++=-;
(5)
1
1m m m n n n
A A mA -+=+.(6) 1!22!33!!(1)!1n n n +⋅+⋅++⋅=+-L .
3、组合数公式
m n C =m n m m A A =m m n n n ⨯⨯⨯+--ΛΛ21)1()1(=!!!)(m n m n -⋅(n ∈N*,m N ∈,且m n ≤).
4、组合数的两个性质 (1)
m n C =m
n n
C - ; (2) m n C +1
-m n C =m n C 1
+.
5、排列数与组合数的关系
m m
n n
A m C =⋅! .
6、二项式定理:
011()()n n n r n r r n n n n n n a b C a C a b C a b C b n N --*+=+++++∈L L
【注】:
1.基本概念:
①二项式展开式:右边的多项式叫做()n
a b +的二项展开式。 ②二项式系数:展开式中各项的系数r
n C (0,1,2,,)r n =⋅⋅⋅. ③项数:共(1)r +项,是关于a 与b 的齐次多项式 ④通项:展开式中的第1r +项r
n r
r n C a b -叫做二项式展开式的通项。用1r n r r
r n T C a b -+=表示。
2.注意关键点:
①项数:展开式中总共有(1)n +项。
②顺序:注意正确选择a ,b ,其顺序不能更改。()n
a b +与()n
b a +是不同的。
③指数:a 的指数从n 逐项减到0,是降幂排列。b 的指数从0逐项减到n ,是升幂排列。
各项的次数和等于n .
④系数:注意正确区分二项式系数与项的系数,二项式系数依次是0
1
2
,,,,,,.
r
n
n n n n n C C C C C ⋅⋅⋅⋅⋅⋅项的系数是a 与b 的系数(包括二项式系数)。
3.常用的结论:
令1,,a b x == 0122(1)()n r r n n n n n n n x C C x C x C x C x n N *+=++++++∈L L 令1,,a b x ==- 0122(1)(1)()n r r n n n n n n n n x C C x C x C x C x n N *
-=-+-+++-∈L L
4.性质:
①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即
0n n n C C =,···1k k n n C C -=
②二项式系数和:令
1a b ==,则二项式系数的和为
0122r n
n n n n n n C C C C C ++++++=L L ,
变形式1221r n n
n n n n C C C C +++++=-L L 。
③奇数项的二项式系数和=偶数项的二项式系数和:
在二项式定理中,令1,1a b ==-,则0123(1)(11)0n n n
n n n n n C C C C C -+-++-=-=L ,
从而得到:0242132111222
r r n
n n n n n n n n C C C C C C C +-++⋅⋅⋅++⋅⋅⋅=++++⋅⋅⋅=
⨯=L ④奇数项的系数和与偶数项的系数和:
00112220120120011222021210
01230123()()1, (1)1,(1)n n n n n n
n n n n n n n n n n n n n n n n n n n n n n a x C a x C a x C a x C a x a a x a x a x x a C a x C ax C a x C a x a x a x a x a x a a a a a a x a a a a a a ----+=++++=+++++=++++=++++=++++=+---------=--+-++=-----L L L L L L 令则①令则024135(1)(1),()
2
(1)(1),()
2
n n n n n
n a a a a a a a a a a a a ----++-++++=+---+++=L L ②①②得奇数项的系数和①②得偶数项的系数和
⑤二项式系数的最大项:如果二项式的幂指数n 是偶数时,则中间一项的二项式系数2n n
C 取得最大值。 如果二项式的幂指数n 是奇数时,则中间两项的二项式系数12n n
C -,12n n
C
+同时取
得最大值。
⑥系数的最大项:求()n
a bx +展开式中最大的项,一般采用待定系数法。设展开式中各项
系数分别