椭圆的第二定义含解析

合集下载

椭圆的第二定义及简单几何性质

椭圆的第二定义及简单几何性质

二、椭圆的简单几何性质一、知识要点椭圆的第二定义:当点M 与一个定点的距离和它到一条定直线的距离的比是常数)10(<<=e ace 时,这个点的轨迹是椭圆.定点是椭圆的焦点,定直线叫做椭圆的准线,常数e 是椭圆的离心率.可见椭圆的离心率就是椭圆上一点到焦点的距离与到相应准线距离的比,这就是离心率的几何意义.e dMF =||∴准线方程:对于椭圆12222=+b y a x ,相应于焦点)0,(c F 的准线方程是c a x 2=.根据对称性,相应于焦点)0,(c F ′的准线方程是c a x 2-=.对于椭圆12222=+b x a y 的准线方程是ca y 2±=.焦半径公式:由椭圆的第二定义可得:右焦半径公式为ex a c a x e ed MF -|-|||2===右; 左焦半径公式为ex a ca x e ed MF +===|)-(-|||2左二、典型例题例1、求椭圆1162522=+y x 的右焦点和右准线;左焦点和左准线;练习:椭圆81922=+y x 的长轴长为_________,短轴长为_________,半焦距为_________,离心率为_________,焦点坐标为_________,顶点坐标为__________________,准线方程为____________.例2、已知椭圆方程13610022=+y x ,P 是其上一点,21,F F 分别为左、右焦点,若81=PF ,求P 到右准线的距离.例3、已知点M 为椭圆1162522=+y x 的上任意一点,1F 、2F 分别为左右焦点;且)2,1(A 求||35||1MF MA +的最小值.变式、若椭圆:3 \* MERGEFORMAT 13422=+y x 内有一点3 \* MERGEFORMAT )1-,1(P ,3 \* MERGEFORMAT F 为右焦点,椭圆上有一点3 \* MERGEFORMAT M ,使3 \* MERGEFORMATMF MP 2+值最小,求:点3 \* MERGEFORMAT M 的坐标。

椭圆的第二定义及简单几何性质

椭圆的第二定义及简单几何性质

二、椭圆的简单几何性质一、知识要点椭圆的第二定义:当点M 与一个定点的距离和它到一条定直线的距离的比是常数)10(<<=e ace 时,这个点的轨迹是椭圆.定点是椭圆的焦点,定直线叫做椭圆的准线,常数e 是椭圆的离心率.可见椭圆的离心率就是椭圆上一点到焦点的距离与到相应准线距离的比,这就是离心率的几何意义.e dMF =||∴准线方程:对于椭圆12222=+b y a x ,相应于焦点)0,(c F 的准线方程是c a x 2=.根据对称性,相应于焦点)0,(c F ′的准线方程是c a x 2-=.对于椭圆12222=+b x a y 的准线方程是ca y 2±=.焦半径公式:由椭圆的第二定义可得:右焦半径公式为ex a c a x e ed MF -|-|||2===右; 左焦半径公式为ex a ca x e ed MF +===|)-(-|||2左二、典型例题例1、求椭圆1162522=+y x 的右焦点和右准线;左焦点和左准线;练习:椭圆81922=+y x 的长轴长为_________,短轴长为_________,半焦距为_________,离心率为_________,焦点坐标为_________,顶点坐标为__________________,准线方程为____________.例2、已知椭圆方程13610022=+y x ,P 是其上一点,21,F F 分别为左、右焦点,若81=PF ,求P 到右准线的距离.例3、已知点M 为椭圆1162522=+y x 的上任意一点,1F 、2F 分别为左右焦点;且)2,1(A 求||35||1MF MA +的最小值.变式、若椭圆:3 \* MERGEFORMAT 13422=+y x 内有一点3 \* MERGEFORMAT )1-,1(P ,3 \* MERGEFORMAT F 为右焦点,椭圆上有一点3 \* MERGEFORMAT M ,使3 \* MERGEFORMATMF MP 2+值最小,求:点3 \* MERGEFORMAT M 的坐标。

椭圆的第二定义(含解析)

椭圆的第二定义(含解析)

课题:椭圆的第二定义【1】【学习目标】1、掌握椭圆的第二定义;2、能应用椭圆的第二定义解决相关问题;一、椭圆中的基本元素(1).基本量: a 、b 、c 、e几何意义:a-半长轴、b-半短轴、c-半焦距,e-离心率;相互关系: ac e b a c =-=,222 (2).基本点:顶点、焦点、中心(3).基本线: 对称轴二.椭圆的第二定义的推导 问题:点()M x y ,与定点(0)F c ,的距离和它到定直线2:a l x c =的距离的比是常数(0)c a c a>>,求点M 的轨迹. 解:设d 是点M 到直线l 的距离,根据题意,所求轨迹就是集合MF c P M d a ⎧⎫⎪⎪==⎨⎬⎪⎪⎩⎭|c a =. 将上式两边平方,并化简得22222222()()a c x a y a a c -+=-.设222a cb -=,就可化成22221(0)x y a b a b +=>>. 这是椭圆的标准方程,所以点M 的轨迹是长轴长为2a ,短轴长为2b 的椭圆.由此可知,当点M 与一个定点的距离和它到一条定直线的距离的比是常数(01)c e e a=<<时,这个点的轨迹是椭圆,一般称为椭圆的第二定义,定点是椭圆的焦点,定直线叫做椭圆的准线,常数e 是椭圆的离心率. 对于椭圆22221(0)x y a b a b +=>>,相应于焦点(0)F c ,的准线方程是2a x c=.根据椭圆的对称性,相应于焦点(0)F c '-,的准线方程是2a x c=-,所以椭圆有两条准线. 可见椭圆的离心率就是椭圆上一点到焦点的距离与到相应准线的距离的比,这就是离心率的几何意义.【注意】:椭圆的几何性质中,有些是依赖坐标系的性质(如:点的坐标\线的方程),有些是不依赖坐标系、图形本身固有的性质(如:距离\角),要注意区别。

中心到准线的距离:d=c a 2焦点到准线的距离:d=c a 2-c 两准线间的距离:d=2ca 2三.第二定义的应用1、求下列椭圆的焦点坐标和准线(1)13610022=+y x (2)8222=+y x2、椭圆13610022=+y x 上一点P 到右准线的距离为10,则:点P 到左焦点的距离为( ) A.14 B.12 C.10 D.83、若椭圆的两个焦点把两准线间的距离三等分,则:离心率e=______;4、离心率e=22,且两准线间的距离为4的椭圆的标准方程为________________________;5、若椭圆的短轴长为2,长轴是短轴的2倍,则:中心到准线的距离为____________;6、求中心在原点,一条准线方程是x=3,离心率为35 的椭圆标准方程.7、椭圆方程为16410022=+y x ,其上有一点P ,它到右焦点的距离为14,求P 点到左准线的距离.8、已知椭圆22143x y +=内有一点(11)P F -,,是椭圆的右焦点,在椭圆上有一点M ,使2MP MF +的值最小,求M 的坐标.(如图)分析:若设()M x y ,,求出2MP MF +,再计算最小值是很繁的.由于MF 是椭圆上一点到焦点的距离,由此联想到椭圆的第二定义,它与到相应准线的距离有关,故有如下解法.解:设M 在右准线l 上的射影为1M .由椭圆方程可知12312a b c e ====,,,.根据椭圆的第二定义,有112MFMM =,即112ME MM =.12MP MF MP MM +=+∴. 显然,当1P M M ,,三点共线时,1MP MM +有最小值.过P 作准线的垂线1y =-.由方程组2234121x y y ⎧+=⎨=-⎩,,解得1M ⎫-⎪⎪⎝⎭.即M的坐标为1⎫-⎪⎪⎝⎭.。

2.2.2椭圆的第二定义

2.2.2椭圆的第二定义

4.已 知 椭 圆 1的 一 条 准 线 方 程 是 y ,则 m4 9 2
3.已知椭圆中心在原点, 长轴在 x轴上,一条准线方程是 x 3, 2 2 x y 5 离 心 率 为 , 则 该 椭 圆 的 方 程 为 5 20 1 。 3 9 x2 y2 9
m的值是( A )
将上式两边平方 , 并化简得
若点M ( x, y )与定点F (c, 0)的距离和它到定直线 探究:
a2 c l : x 的距离的比是常数 (a c 0),求点M的轨迹。 c a
解:设d是点M直线l的距离,根据题意,所 求轨迹就是集合
MF c P M , 由此可得: d a
A.1 B.2 C .3 D.7
应用: 1、求下列椭圆的准线方程:
x y + =1 ② 16 81
2 2
2 2
①x2+4y2=4
x y + = 1 2.已知P是椭圆 100 36 上的点,P
到右准线的距离为 8 ,则P到左焦点 的距离为_________.
x y 3、已知P点在椭圆 25 + 16 =1 上,且P到
问:对于椭圆C1 : 9 x y 36与椭圆C :
2 2
C2 。 更接近于圆的是
x2 2 16
y2 12
2,
x y 1 (4)P为椭圆 上任意一点,F1、F2是焦点, 4 3
2
2
则∠F1PF2的最大值是
.
5 5 设 P(x,y), 则 | PF1 | a ex 3 x, | PF2 | a ex 3 x 3 3 5 2 x 1 | PF1 |2 | PF2 |2 | F1 F2 |2 由余弦定理,有 cos F1 PF2 9 5 2 2 | PF1 | | PF2 | 2(9 x ) 9 5 2 x 1 F1PF2为钝角1 cos F1 PF2 0,即 1 9 0 2 5x 2(9 ) 9 35 35 解之得 x . 法二 5 5

椭圆性质第二定义及焦半径

椭圆性质第二定义及焦半径
椭圆性质第二定义及焦半 径
• 椭圆性质第二定义 • 焦半径 • 椭圆的焦点性质 • 椭圆与焦半径的关系 • 椭圆的实际应用
01
椭圆性质第二定义
椭圆的第二定义
椭圆上任一点P到两个焦点F1和F2的 距离之和等于常数,即PF1+PF2=2a。
椭圆上任一点P到两个焦点F1和F2的 乘积最小值为0,即PF1*PF2=0。
焦半径的几何意义
01
连接椭圆上任意一点与两个焦点形成的线段即为焦半径。
02
焦半径是确定椭圆形状和大小的重要参数,通过焦半径可 以计算出椭圆的离心率、偏心率等参数。
03
在几何作图和解析几何中,焦半径的应用十分广泛,如在求解 椭圆的标准方程、判断直线与椭圆的位置关系等问题中都需要
用到焦半径的概念。
03
详细描述
在桥梁设计中,桥梁的承重结构常常采用椭圆形截面,这是因为椭圆具有较高的承载能力和稳定性。在建筑结构 分析中,椭圆的性质可用于分析结构的受力情况和稳定性,从而提高建筑的安全性和可靠性。
THANKS
感谢观看
焦半径与椭圆方程的关系
总结词
焦半径与椭圆的方程之间存在一定的关系,通过椭圆的方程可以推导出焦半径的表达式。
详细描述
椭圆的方程通常表示为x²/a²+y²/b²=1,其中a和b分别表示长半轴和短半轴的长度。通 过椭圆的方程,我们可以推导出焦半径的表达式。对于椭圆上的任意一点P(x0,y0),其 到两个焦点的距离PF1和PF2可以通过椭圆的方程计算得出。具体来说,PF1=a+ex0, PF2=a-ex0,其中e为离心率。因此,通过椭圆的方程可以方便地计算出焦半径的值。
VS
椭圆上任一点P到两个焦点的乘积最 小值为0,即PF1*PF2=0。这意味着 在椭圆上任意一点与两焦点形成的角 都是直角,即椭圆上任意一点与两焦 点构成的线段互相垂直。

高二数学椭圆的第二定义

高二数学椭圆的第二定义
r2 PF2
2 a2 a 准线l1 : x l2 : x c c
两焦半径r 1 PF 1
() 1 r1 r2 2a
r1 r2
F1 F2 c e a r1 r2
y
N1 K1 P
B2
O F2
(2) e d P l1 d P l2
r1 ed P l1 a ex0 r ed a ex 2 P l 0 2
MA MF2
M
A
3 MF1 2 MA
F1
O
F2
X
解:椭圆的方程为
() 1 MF1 MF2 6 MF2 6 MF 1 MA MF2 6 MA MF 1
p p 2 l2 : x e F1 (2,0) F2 (2, 0) l1 : x 2 2 3
1 2
4. P103 习题8.2
9 ,10







;九目妖 ;
国尪,绝美の面颊红扑扑の.战申榜排位赛决赛阶段,还在继续之中.只是,有鞠言战申和卢冰战申呐场对战在前,其他战申の对战,就很难引起大家太多の关注了.哪怕是其他混元无上级存在の搏杀,似乎也失色了很多.押注大厅,顶层!林岳大臣,匆匆の来到鲍一公爵面前.“公爵大人!”林岳 大臣对鲍一公爵拱了拱手.“嗯,有哪个事?”鲍一公爵坐在椅子上,抬眉问道.“鞠言战申与卢冰战申の对战,已经结束,有结果了.”林岳大臣微微低头说道.林岳大臣の声音发颤,他很激动兴奋.“卢冰战申获胜了?”鲍一公爵也全部没去想鞠言战申有获胜の可能,很自然の就认为是卢冰战申 获胜了:“鞠言战申,还活着吧?”“公爵大人,是鞠言战申胜了.卢冰战申,被当场斩杀.从大斗场传来の消息说,鞠言战申是炼体与道法双善王.”林岳大臣颤音说道.“哪个?”鲍一公爵陡然站起身,整个人气势不经意の爆了一下,眼睛瞪圆.“怎么可能!”鲍一公爵の第一反应,就是觉得不现 实.“公爵大人,鞠言战申真是太强大了.呐一次鞠言战申の盘口压保,俺们押注大厅能从中赚取大量白耀翠玉.就算去掉分给波塔尪国の部分,也有可观の收获.啧啧,波塔尪国真是走了大运!”林岳大臣赞叹の模样道.波塔尪国,确实是走大运了.波塔尪国接连在鞠言盘口压保,鞠言战申接连获 胜,让波塔尪国从中赢取了泊量の白耀翠玉,同事还得到鞠言战申盘口惊人の押注积分.通过呐一届排位赛,波塔尪国便能得到下一届战申榜排位赛大量の盘口名额.甚至,可能会有超过拾个押注盘口名额,无疑是大丰收.“俺们の王尪大人,果然是真知灼见,竟能预料到鞠言战申会在此战获 胜.”鲍一公爵崇拜の语气缓缓说道,他以为仲零王尪先前就判断鞠言战申会击败卢冰战申,所以才会放开卢冰战申の盘口压保限额.(本章完)第三零三二章过意不去(补思)鲍一公爵以为仲零王尪是未卜先知,而实际上仲零王尪也根本就没想到鞠言战申能击败卢冰战申.放开盘口压保限额呐 个决定,是基于鞠言愿意为法辰王国效历万年の事间.大斗场上,决赛第一轮持续进行之中.波塔尪国の贺荣国尪等人,笑得合不拢嘴.呐一群人,都没有刻意压制自身内心中琛琛の喜悦.由于,先前廉心国尪等人让他们有些憋闷,轮到他们反击了.“陛下,呐下子俺们波塔尪国真真の发了.”申肜 公爵眉笑颜开道.“决赛阶段第一轮,鞠言战申和卢冰の盘口,压保额七拾多亿白耀翠玉!呐一下子,俺们波塔尪国就能获得七拾多亿押注积分.”另一名公爵也笑着说道.“哈哈,卢冰战申应该早点认输才是.早点认输,至少能活下来.蓝泊国尪,俺说得对不对?”贺荣国尪看向蓝泊国尪道.蓝泊 国尪看了贺荣国尪一眼,心中将贺荣国尪祖宗拾八代都骂了一遍.“呵呵,鞠言战申已经进入战申榜,他取代了卢冰战申の位置,暂事是第拾陆名.”仲零王尪笑着说道.鞠言击败了卢冰战申,在战申榜上自动取代卢冰战申の排名,而卢冰战申如果活着,那他の名次就是第拾七名.“不知道,鞠言战 申下一轮会挑战哪一位战申.”万江王尪眯着眼说道.“可能是……玄秦尪国の肖常崆战申?俺看鞠言战申呐性子,也不是好相与の呢.”秋阳王尪看向廉心国尪随意の语气道.玄秦尪国与鞠言也有矛盾,而玄秦尪国の肖常崆战申,在战申榜上排名第拾,按照规则鞠言战申是能够在下一轮决赛中 挑战肖常崆战申の.廉心国尪の脸色变了变.若是在鞠言战申杀死卢冰战申之前,廉心国尪自是巴不得鞠言挑战肖常崆战申.可现在,她の想法变了.委实是,鞠言の表现太过离奇.肖常崆战申の排名,虽然比卢冰战申高出几位,但二者在实历上,差距其实并不很大.肖常崆战申即便稍稍强出那么一 点点,可两人交手の话,肖常崆战申也不是一定能击败卢冰战申.一旦鞠言战申挑战肖常崆战申,那结果怕也难说.难道,要肖常崆战申主动认输?此事の鞠言战申,回到了纪沄国尪の身边.“鞠言战申,你已经登上战申榜了.拾陆名!”纪沄国尪兴奋の语气对鞠言说道.“俺们龙岩国,也出名了.” 纪沄国尪高兴得像个孩子,若不是由于呐里有太多人,她可能会在鞠言面前跳起来.“出名了,但俺们龙岩国还是太弱.陛下,俺们得尽快让尪国强大起来.就算不能成为顶级尪国,起码也得成为著名尪国.”鞠言笑着说道.“呐……太难了啊!著名尪国,一共只有二百个.俺们龙岩国,太弱小了.” 纪沄国尪摇头,那些著名尪国,基本上也都是很枯老の国度,每一个国家,都有大量善王级强者.龙岩国の善王,数量太少了.“只要资源足够,也并不是不能快速壮大扩罔.”鞠言笑道.“招揽善王级强者,需要の资源可就太多了.而且,就算有资源,善王也未必愿意加入呢.”纪沄国尪想一想其中 の难度,都觉得无历.“以前难,但以后会容易很多.之前是龙岩国没有名气,以后就不一样了.信任,会有不少善王,会主动の要加入龙岩国の.而且,俺们龙岩国可是有一头混鲲兽,呐吸引历对寻常善王可不小.”鞠言看着纪沄国尪道.混鲲兽!那是混元无上级强者都很在乎の叠要资源.虽是说, 混元无上级强者能够杀死混鲲兽,但并不是说混元无上级善王去了永恒之河就能猎杀到混鲲兽.想杀死混鲲兽,那需要多个条件都同事满足才行.首先,混鲲兽若是在永恒之河内不出来,那你就算一群混元无上级强者也无计可施.在永

椭圆第二定义是什么

椭圆第二定义是什么

椭圆第二定义是什么
---------------------------------------------------------------------- 椭圆的第二定义:平面上到定点F的距离与到定直线的距离之比为常数e(即椭圆的离心率,e=c/a)的点的集合(定点F不在定直线上,该常数为小于1的正数)。

1、椭圆的第二定义:
平面上到定点F的距离与到定直线的距离之比为常数e(即椭圆的离心率,e=c/a)的点的集合(定点F不在定直线上,该常数为小于1的正数),其中定点F为椭圆的焦点,定直线称为椭圆的准线(该定直线的方程是x=土a 2/c<焦点在X轴上>或者y=士a ~2/c<焦点在Y轴上>)。

2、参数方程:
x=acos 0 , y=bsin 0 。

求解椭圆上点到定点或到定直线距离的最值时,用参数坐标可将问题转化为三角函数问题求解:
x=a×cos β , y=b×sin β a为长轴长的一半b为短轴长的一半。

椭圆第二定义内容

椭圆第二定义内容

椭圆第二定义概述
哎呀,说起这个椭圆嘞第二定义,咱们得先从椭圆是个啥子东西讲起。

椭圆啊,就像个压扁了的圆圈圈,两头宽中间窄,看起安逸得很。

它的第二定义,嘿,有点绕,但咱四川人讲起来,保证你一听就懂。

简单来说,椭圆的第二定义就是讲它上面随便取个点,然后从这个点到椭圆两个焦点中随便挑一个,连条线,再作条垂直于这条线、并且过另一个焦点的直线,跟椭圆交于另一点。

这两点之间的线段,你量一下,再除以那个点到选定的焦点的距离,嘿,结果是个定值!这个定值啊,跟椭圆的形状有关系,圆不圆、扁不扁的,都影响它。

换句话说,就是椭圆上的点,跟它两个焦点的关系特别,不管你咋个动那点,只要按照上面的方法去量、去算,那个比值总是那么几个数,不变!这就像咱们四川的火锅,不管你是涮毛肚还是烫鸭血,只要锅底的料调好了,那味道,巴适得很,始终如一!
所以嘞,椭圆的第二定义,就是讲它这种特殊的、不变的性质。

学数学嘛,就是要找这些个规律,用起来才得心应手。

就像咱们过日子,摸清了门道,啥事儿都能整得巴巴适适的。

第10讲椭圆及双曲线的第二定义

第10讲椭圆及双曲线的第二定义

第10讲 椭圆及双曲线的第二定义一. 椭圆1. 第二定义:动点M 到定点F 的距离和它到定直线l (F 不在l 上)的距离之比等于常数e (0<e<1),则动点M的轨迹叫做椭圆。

定点F 是椭圆的焦点,定直线l 叫椭圆的准线(ca 2x :l ±=),常数e 是椭圆的离心率。

2. 焦半径:椭圆上任一点和焦点的连线段的长称为焦半径设椭圆焦点在x 轴上,F 1,F 2分别为椭圆的左右焦点,P(x 0,y 0)是椭圆上任一点,则0201a ,a ex PF ex PF -=+=。

(简记为:左+右-) 3. 焦点弦:过椭圆焦点的弦称为椭圆的焦点弦。

设过椭圆的焦点F 1(-c,0)的弦为AB ,其中A(x 1,y 1),B(x 2,y 2),则)(2a AB 21x x e ++=4. 通径:过椭圆的焦点与椭圆的长轴垂直的直线被椭圆所截得的线段称为椭圆通径,其长a2212b H H = 例1. 椭圆16410022=+y x 上有一点P ,它到右焦点的距离为14,求点P 到左准线的距离。

例2. 若椭圆13422=+y x 内有一点P(1,-1),F 为右焦点,在该椭圆上求一点M ,使得MF MP 2+最小,并且求最小值例3. 已知椭圆192522=+y x ,若椭圆上有一点P 到右焦点的距离是1,则点P 的坐标为多少二. 双曲线1. 第二定义:动点M 到定点F 的距离和它到定直线l (F 不在l 上)的距离之比等于常数e (e>1),则动点M 的轨迹叫做双曲线。

定点F 是双曲线的焦点,定直线l 叫双曲线的准线(ca 2x :l ±=),常数e 是双曲线的离心率。

2. 焦半径:双曲线上任一点和焦点的连线段的长称为焦半径设双曲线焦点在x 轴上,F 1,F 2分别为双曲线的左右焦点,若P(x 0,y 0)是双曲线左支上任一点,则0201a ,--a ex PF ex PF -==。

高中数学课件____2.2.2椭圆的简单几何性质2-第二定义

高中数学课件____2.2.2椭圆的简单几何性质2-第二定义

这是椭圆的标准方程, 所以点M的轨迹是长轴、短轴长
分别为2a、 2b的椭圆.
椭圆的第二定义:
椭圆是平面内与 一个定点的距 离和它到一条 c 定直线的距离 的 比 是 常 数e (0 e 1) a 的点的轨迹。
注:我们一般把这个定义称为椭圆的第二定义,
定点是椭圆的焦点,定直线叫做椭圆的准线。
解:设d是点M直线l的距离,根据题意,所 求轨迹就是集合 MF c P M , d a 由此可得:
( x - c )2 y 2 a2 -x c
c . a
将上式两边平方,并化 简,得
(a 2 - c 2 ) x 2 a 2 y 2 a 2 (a 2 - c 2 ). 设a 2 - c 2 b 2 , 则方程可化成 x2 y2 2 1(a b 0). 2 a b
a2=b2+c2
巩固练习
1、若椭圆的焦距长等于它的短轴长,则其离心率

2 2

2、若椭圆的 的两个焦点把长轴分成三等分,则其
离心率为
1 3

3、若某个椭圆的长轴、短轴、焦距依次成等差数
3 列,则其离心率e=__________ 5
25 例 2:点M (x, y )与定点F (4, 0)的距离和它到直线l : x 4 4 的距离的比是常数 ,求点M 的轨迹. 25 5
(3)若点M ( x, y )与定点F (-c, 0)的距离和它到定直线 a2 c l : x - 的距离的比是常数 (a c 0),此时点M的 c a 轨迹还是同一个椭圆吗 ? a2 (4)当定点改为 F (0, - c ),定直线改为 l : y - 时,对应 c 的轨迹方程又是怎样呢 ?

《椭圆的第二定义》课件

《椭圆的第二定义》课件

天文观测
椭圆形状的天体,如彗星 和星系,可以用椭圆来描 述其运动轨迹。
哈勃太空望远镜
哈勃太空望远镜的轨道是 椭圆形,用于观测遥远的 天体和星系。
椭圆在物理学中的应用
粒子加速器
粒子加速器中的粒子轨迹 是椭圆形,通过改变电场 和磁场来加速粒子。
核磁共振成像
核磁共振成像中的磁场是 椭圆形,用于检测人体内 的氢原子核。
焦半径的应用
在解决与椭圆相关的几何问题时,利用焦半径的 性质可以简化计算过程。
THANKS
感谢观看
离心率e的范围是0<e<1,当e接近0时,表示椭圆接近圆;当e接 近1时,表示椭圆变得扁平。
离心率与形状关系
离心率e决定了椭圆形状的扁平程度,是描述椭圆形状的重要参数 。
椭圆的焦半径
焦半径定义
从椭圆上的任意一点P引出到两ቤተ መጻሕፍቲ ባይዱ焦点的连线段, 称为焦半径。
焦半径长度
根据椭圆的性质,焦半径PF1和PF2的长度满足 PF1+PF2=2a。
椭圆的范围
总结词
椭圆的范围是由其两个焦点和椭圆上任意一点之间的距离关 系决定的。
详细描述
椭圆的两个焦点到椭圆上任意一点的距离之和等于一个常数 ,这个常数等于两个焦点之间的距离。因此,椭圆被限制在 一个由两个焦点和椭圆上任意一点组成的平面内。
椭圆的光滑性
总结词
椭圆的光滑性是指其在平面上是连续且没有折线的曲线。
电子显微镜
电子显微镜中的电子轨迹 也是椭圆形,用于观察微 小物体。
椭圆在工程学中的应用
桥梁设计
桥梁的支撑结构常常采用椭圆形 ,以承受更大的负载和分散压力

隧道设计
隧道的截面形状常常是椭圆形,以 减少工程难度和成本。

高二数学椭圆的第二定义

高二数学椭圆的第二定义

3)特例:e =0,则 a = b,则 c=0,两个焦点重合,椭 圆方程变为(?) 动画演示
椭圆的第二定义
例1:设M(x,y)与定点F(c,0)的距离和它到直线
l:x a2 的距离的比是常数 c ,求点M的轨迹。
c
a
y
l
Md
H
o
F
x
椭圆的第二定义:点M与一个定点距离和它到 一条定直线距离的比是一个小于1的正常数, 这个点的轨迹是椭圆。定点是椭圆的焦点。
4、椭圆离心率的两种表示方法:
e

c a

椭圆上任意一点P至焦点F的距离 P至与F对应的准线的距离
a 准线方程为:
2
x c
椭圆焦点在x轴
y a2
c
椭圆焦点在y轴
例2.设AB是过椭圆右焦点的弦,那么以 AB为直径的圆必与椭圆的右准线( )
A.相切 B.相离 C.相交 D.相交或相切
小结
定直线叫椭圆的准线,常数e是椭圆的离心率。
l1
y
l2
Md
H
左准线
o
F1 左焦点
x a2
c
a F2
右焦点
x
右准线 2
x
c
例1.点P与定点A(2,0)的距离
和它到定直线x=5的距离的比是1:2, 求点P的轨迹;
注意:1、定点必须在直线外。 2、比值必须小于1。 3、符合椭圆第二定义的动点轨迹肯定 是椭圆,但它不一定具有标准方程形式。
复习回顾
y
o
x
一、椭圆的范围

x2 a2

y2 b2
1
x2 a2

1和
y2 b2

椭圆的第二定义

椭圆的第二定义

l'
y
l
F1O
.
.
M F2
.
d
x
2 2 y x 对 于 椭 圆2 2 1 ( a b 0 ) a b 2 a 上 焦 点 F ( 0 , c ) , 对 应 的 上 准 线 方 程 是 y 2 c
2 a 下 焦 点 F ( c , 0 ) 对 应 的 下 准 线 方 程 是 y 1 c


b)


b ,0 ),(0,
c,0)
(0,
c)

a)
长半轴长为a,短半轴长为b.
焦距为2c;
e c a
a,b,c关系 离 心 率
a2=b2+c2
(0<e<1)
什么是椭圆的第 二定义?
L H M
MF c e MH a
F
1.椭圆的第二定义是:
当点M与一个定点的距离和它到一条定直线的 c 距离的比是常数e = (0<e<1)时,这个点的轨迹 a 是椭圆。
y x 1 (a 0 ,b 0 ) a b
x a 或 x a , y R
y a 或 y a , x R
关于x轴、y轴、原点对称
A1(- a,0),A2(a,0)
关于x轴、y轴、原点对称
A1(0,-a),A2(0,a)
c e a
(e 1 )
b y x a
c e a
(e 1 )
a y x b
双曲线的第二定义:
当点M与一个定点的距离和它到一条定直线的 c 距离的比是常数e = (e>1)时,这个点的轨迹是 a 双曲线。
幻灯片 4
“三定”: 定点是焦点; 定直线是准线; 常数e是离心率.(定点不在定直线上)

高二数学椭圆的第二定义(2019)

高二数学椭圆的第二定义(2019)
复习回顾
y
o
x
一、椭圆的范围

x2 a2

y2 b2
1
x2 a2

1和
y2 b2
1
即 x a和 y b
y
说明:椭圆位于直
线X=±a和y=±b所
o
x
围成的矩形之中。
二、椭圆的对称性
y
方程:
x2 a2

y2 b2
1(a
b 0)
3、对称性:
o
x
从图形上看,椭圆关于x轴、y轴、原点
对称。
从方程上看:
(1)把x换成-x方程不变,图象关于y轴对称;
(2)把y换成-y方程不变,图象关于-y方程不变,图象关于原 点成中心对称。
; https:///%e6%be%b3%e6%b4%b2%e8%ae%ba%e6%96%87%e4%bb%a3%e5%86%99/ 澳洲代写推荐 澳洲代写 ;
以候神人於执期 ”於是王翦将兵六十万人 可不勉与 甘泉则作益延寿观 公子刻攻魏首垣 善赵将李齐 上怒曰:“纵以我为不复行此道乎 夺之权 恐其有变 甘心於外国 秋 明汉王之信於天下 威动万里 秦文公东猎汧渭之间 天子所以赏赐者数十巨万 掩定襄狱中重罪轻系二百馀人 为关内侯 命曰 “畤”;使人人奉职 秦昭王後悔出孟尝君 故令人谓韩王曰:“秦召西周君 交易有无之路通 左 转祸而说秦 今王头至 固以为常 取东周 如冠玉耳 居妫水北 以为十四县 监郯下军 婴已而试补县吏 置前 如此而魏亦关内侯矣 私家富重於王室 危亡之术也 今乃於毛先生而失之也 又阴痿 皆去其 业 自子夏 齐大夫黎鉏言於景公曰:“鲁用孔丘 灵公太子蒉聩得过南子 始皇七年 及薨 鄡单字子家 六月壬申 布衣也 鲁昭公之二十年 里中持羊酒贺两家 ”於是少女缇萦伤父之言

高二数学讲义椭圆标准方程(精品-原创有答案)

高二数学讲义椭圆标准方程(精品-原创有答案)

高二数学讲义第六讲 椭圆的标准方程知识梳理1. 椭圆定义:(1)第一定义:平面内与两个定点21F F 、的距离之和为常数|)|2(222F F a a >的动点P 的轨迹叫椭圆,其中两个定点21F F 、叫椭圆的焦点.当21212F F a PF PF >=+时, P 的轨迹为椭圆 ; 当21212F F a PF PF <=+时, P 的轨迹不存在;当21212F F a PF PF ==+时, P 的轨迹为 以21F F 、为端点的线段;12220220022a c a c F F a c >>⇔⎫⎪=>⇔↔⎬⎪<<⇔⎭椭圆线段无意义,轨迹不存在 数形结合 (2)椭圆的第二定义:平面内到定点F 与定直线l (定点F 不在定直线l 上)的距离之比是常数e (10<<e )的点的轨迹为椭圆,(椭圆的焦半径公式:|PF 1|=a+ex 0, |PF 2|=a-ex 0)。

(利用第二定义,可以实现椭圆上的动点到焦点的距离与到相应准线的距离相互转化). 2.椭圆的方程与几何性质:○2、参数方程:cos sin x a y b φφ=⎧⎨=⎩),(00y x P 与椭圆)0(12222>>=+b a by a x 的位置关系:当12222>+b y a x 时,点P 在椭圆外; 当12222>+b y a x 时,点P 在椭圆内; 当12222=+by a x 时,点P 在椭圆上;直线与椭圆相交0>∆⇔;直线与椭圆相切0=∆⇔;直线与椭圆相离0<∆⇔5.几个概念: ①通径:2b 2a ; ③点与椭圆的位置关系: ④22221x y a b+=上任意一点P 与两焦点21,F F 构成的三角形可称为椭圆的焦点三角形. ⑤弦长公式:;⑥椭圆在点P (x 0,y 0)处的切线方程:00221x x y ya b+=; ○7基本三角形:中心焦点短轴顶点这三点构成椭圆的基本三角形。

22.23椭圆的第二定义精品PPT课件

22.23椭圆的第二定义精品PPT课件

椭圆的简单几何性质(2)
-----椭圆的第二定义
I’
l
F’ o F
x
标准方程

习图

x2 y2 1(a b 0) a2 b2
x2 b2
y2 a2
1(a
b
0)


对称性 顶点坐标 焦点坐标 半轴长
焦距
a,b,c关系 离心率
|x|≤ a,|y|≤ b
|x|≤ b,|y|≤ a
关于x轴、y轴成轴对称;关于原点成中心对称。
( a ,0 ),(0, b)
( b ,0 ),(0, a)
( c,0)
(0, c)
长半轴长为a,短半轴长为b.
焦距为2c;
e c a2=b2+c2 a
引例 点M (x, y)与定点F (4,0)的距离和它到直线
l : x 25 的距离的比是常数 4 ,求点M的轨迹。
4
5
解:设d是点M到直线l : x 25的距离,根据题意,
When You Do Your Best, Failure Is Great, So Don'T Give Up, Stick To The End
感谢聆听
不足之处请大家批评指导
Please Criticize And Guide The Shortcomings
演讲人:XXXXXX 时 间:XX年XX月XX日
x2 a2
y2 b2
1
(a b 0)
点 M 的轨迹是长轴、短轴长分别为 2a、2b的椭圆 .
椭圆的第二定义:
动点 M与一个定点F的距离和它到一条定直线l的距离的比
是常数 e c (0 e 1),则这个点的轨迹是椭圆 .

椭圆的第二定义

椭圆的第二定义

椭圆的第二定义今天我们研究椭圆的第二定义:平面内与一个定点的距离和它到一条定直线的距离之比是常数(介于0与1之间)的动点M 的轨迹叫做椭圆。

定点为椭圆的一个焦点,定直线为椭圆的相应准线。

先看例题:例:点()y x M ,与定点()0,c F 的距离和它到定直线cax l 2:=的距离的比是常数ac ()0>>c a ,求点M 的轨迹。

解:设d 是点M 到直线l 的距离,根据题意得=M F c da整理得:()ac xcay c x =-+-222两边同时平方,并化简,得()()22222222caaya xca -=+-,令222b ca=-,得轨迹的方程为12222=+by ax ()0>>b a如图所示:归纳整理: 椭圆的第二定义:平面内与一个定点()0,c F 的距离和它到一条定直线cax l 2:=的距离之比是常数(01)c e e a=<<的动点M 的轨迹叫做椭圆,定点为椭圆的一个焦点,定直线为椭圆的准线,常数e 是椭圆的离心率。

注意: ①对于椭圆方程22221(0)x y a b ab+=>>对应于右焦点2(0)Fc ,的准线称为右准线,方程为2ax c =对应于左焦点1(0)F c -,的准线为左准线,方程为2ax c=-②e 的几何意义:椭圆上一点到焦点的距离与到相应准线的距离的比。

再看一个例题,加深印象例:到定点(2,0)的距离与到定直线x =8的距离之比为22的动点的轨迹方程是解:设动点(,)M x y=2两边平方整理得0568222=-++x y x .注意:本题中椭圆中心不在原点。

如果误认为椭圆中心在原点,而直接使用相应的a ,b ,c 直接计算,就会产生错误。

所以解决问题,要从题目条件本身出发,不能自己“创造”条件。

总结:1.了解椭圆的第二定义中的各常量a ,b ,c ,ca ,2a c几何意义。

认识到离心率c a在第二定义中的关键作用。

12.3.4椭圆的第二定义解析

12.3.4椭圆的第二定义解析

F2

N
y F2 •
x M
椭圆焦半径公式的两种形式与焦点位置有关,
2 2
y x (2) 2 2 1(a b 0) a b PF1 a ey0 (下焦半径) PF2 a ey0 (上焦半径)
•P
o x
F1 •
N
2 2 x y 1、证明椭圆 1(a b 0) 上任意三点的横坐标成等 2 2 a b
| PF1 | | PF2 | 2a
F1
o
F2
x
即 ( x c )2 y 2 ( x c )2 y 2 2a
( x c )2 y 2 2a ( x c )2 y 2
则( x c )2 y 2 4a 2 4a ( x c )2 y 2 ( x c )2 y 2
| PF1 |
c2 2 2 x 2 cx a 0 2 0 a
a x0 a,
| PF1 | a ex0,
c | a x0 | a c a x0 a c 0 a 又 | PF1 | | PF2 | 2a
P(x0,y0) r1 F1 r2 F2
?
2 (x+c) + y2
a2 x+ c
c a
【说明】
1、椭圆的第二定义与第一定义是等价的,它是椭圆两种不同 的定义方式。 2、椭圆的第二定义隐含着条件“定点在定直线外”,否则动 点 轨迹不存在。隐含着离心率e的几何意义。 3、椭圆的准线方程:椭圆的准线方程有两条,这两条准 线在椭圆外部,与短轴平行,且关于短轴对称
2 2 a x2 y2 a 左准线 右准线 l 2 : x 1 l1 : x 2 2 c a b c (a b 0) 2 2 2 2 y x a a 对于 2 2 1 下准线 l1 : y 上准线 l 2 : y a b c c
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题:椭圆的第二定义
【学习目标】
1、掌握椭圆的第二定义;
2、能应用椭圆的第二定义解决相关问题;
一、椭圆中的基本元素
(1).基本量: a 、b 、c 、e
几何意义: a-半长轴、b-半短轴、c-半焦距,e-离心率;
相互关系: a
c e b a c =-=,222 (2).基本点:顶点、焦点、中心
(3).基本线: 对称轴
二.椭圆的第二定义的推导
问题:点()M x y ,与定点(0)F c ,的距离和它到定直线2:a l x c =的距离的比是常数(0)c a c a
>>,求点M 的轨迹.
解:设d 是点M 到直线l 的距离,根据题意,所求轨迹就是集合MF c P M d a ⎧⎫⎪⎪==⎨⎬⎪⎪⎩⎭
|
,由此得c a
=. 将上式两边平方,并化简得22222222()()a c x a y a a c -+=-.
设222
a c
b -=,就可化成22221(0)x y a b a b +=>>. 这是椭圆的标准方程,所以点M 的轨迹是长轴长为2a ,短轴长为2b 的椭圆.
由此可知,当点M 与一个定点的距离和它到一条定直线的距离的比是常数(01)c e e a
=<<时,这个点的轨迹是椭圆,一般称为椭圆的第二定义,定点是椭圆的焦点,定直线叫做椭圆的准线,常数e 是椭圆的离心率. 对于椭圆22221(0)x y a b a b +=>>,相应于焦点(0)F c ,的准线方程是2a x c =.根据椭圆的对称性,相
应于焦点(0)F c '-,的准线方程是2a x c =-,所以椭圆有两条准线.
可见椭圆的离心率就是椭圆上一点到焦点的距离与到相应准线的距离的比,这就是离心率的几何意义.
【注意】:椭圆的几何性质中,有些是依赖坐标系的性质(如:点的坐标\线的方程),有些是不依赖坐标系、图形本身固有的性质(如:距离\角),要注意区别。

中心到准线的距离:d=c a 2 焦点到准线的距离:d=c a 2-c 两准线间的距离:d=2c
a 2
三.第二定义的应用
1、求下列椭圆的焦点坐标和准线
(1)136
1002
2=+y x (2)8222=+y x
2、椭圆 136
1002
2=+y x 上一点P 到右准线的距离为10,则:点P 到左焦点的距离为( ) .12 C
3、若椭圆的两个焦点把两准线间的距离三等分,则:离心率e=______;
4、离心率e=
2
2,且两准线间的距离为4的椭圆的标准方程为________________________;
5、若椭圆的短轴长为2,长轴是短轴的2倍,则:中心到准线的距离为____________;
6、求中心在原点,一条准线方程是x=3,离心率为
3
5 的椭圆标准方程.
7、椭圆方程为16410022=+y x ,其上有一点P ,它到右焦点的距离为14,求P 点到左准线的距离. 8、已知椭圆22143x y +=内有一点(11)P F -,,是椭圆的右焦点,在椭圆上有一点M ,使2MP MF +的值最小,求M 的坐标.(如图)
分析:若设()M x y ,,求出2MP MF +,再计算最小值是很繁二定的.由于MF 是椭圆上一点到焦点的距离,由此联想到椭圆的第义,它与到相应准线的距离有关,故有如下解法.
解:设M 在右准线l 上的射影为1M .
由椭圆方程可知1
2312a b c e ====,,,.
根据椭圆的第二定义,有112MF
MM =,即11
2ME MM =.12MP MF MP MM
+=+∴.
显然,当1P M M ,,三点共线时,1MP MM +有最小值.过P 作准线的垂线1y =-. 由方程组22
34121x y y ⎧+=⎨=-⎩,,解得261M ⎛⎫- ⎪ ⎪⎝⎭,.即M 的坐标为261
⎛⎫- ⎪ ⎪⎝⎭,.。

相关文档
最新文档