调节阀流量系数计算公式和选择数据
调节阀的计算选型
调节阀的计算选型调节阀的计算选型是指在选用调节阀时,通过对流经阀门介质的参数进行计算,确定阀门的流通能力,选择正确的阀门型式、规格等参数,包括公称通径,阀座直径,公称压力等,正确的计算选型是确保调节阀使用效果的重要环节。
1.调节阀流量系数计算公式 1.1 流量系数符号:Cv —英制单位的流量系数,其定义为:温度60°F (15.6℃)的水,在16/in 2(7KPa)压降下,每分钟流过调节阀的美加仑数。
Kv —国际单位制(SI 制)的流量系数,其定义为:温度5~40℃的水,在105Pa 压降下,每小时流过调节阀的立方米数。
注:Cv ≈1.16 Kv1.2 不可压缩流体(液体)Kv 值计算公式式中:P 1—阀入口绝对压力KPa P 2—阀出口绝对压力KPaQ L —液体流量 m 3/h ρ—液体密度g/cm 3 F L —压力恢复系数,与调节阀阀型有关,附后 F F —流体临界压力比系数,C V FP P F /28.096.0-=P V —阀入口温度下,介质的饱和蒸汽压(绝对压力KPa ) P C —物质热力学临界压力(绝对压力KPa )注:如果需要,本公司可提供部分介质的P V 值和P C 值 1.2.2 高粘度液体Kv 值计算当液体粘度过高时,按一般液体公式计算出的Kv 值误差过大,必须进行修正,修正后的流量系数为R VF K V K ='式中:K ′V—修正后的流量系数 K V —不考虑粘度修正时计算的流量系数 F R —粘度修正系数 (FR 值从F R ~Rev 关系曲线图中确定)计算雷诺数Rev 公式如下:对于只有一个流路的调节阀,如单座阀、套筒阀、球阀等:VL L K F Q v 70700Re =对于有二个平行流路的调节阀,如双座阀,蝶阀,偏心旋转阀等:VL L K F VQ v 49490Re =式中:P 1—阀入口绝对压力KPa P 2—阀出口绝对压力KPaQg —气体流量 Nm 3/h G —气体比重(空气=1)t —气体温度℃ Z —高压气体(PN >10MPa )的压缩系数 注:当介质工作压力≤10MPa 时,Z=1;当介质工作压力>10MPa 时,Z >1,具体值查有关资料。
调节阀流量系数计算公式和选择数据
调节阀流量系数计算公式和选择数据调节阀是工业生产过程中常用的一种流量控制设备,通过改变阀门开度实现流量的调节和控制。
调节阀的流量特性是一个非线性曲线,通常通过流量系数来描述。
流量系数是指,在单位压差下,通过阀门所能流过的液体的流量与阀门的开度之间的关系。
调节阀流量系数计算公式通常包含两个主要参数:阀门的开度和压差。
常见的调节阀流量系数计算公式有两种:流量系数计算公式和修正流量系数计算公式。
1.流量系数计算公式流量系数计算公式通常为以下形式:Cv=Q/√ΔP其中,Cv是调节阀的流量系数,Q是通过调节阀的液体流量,ΔP是压差。
2.修正流量系数计算公式修正流量系数计算公式是对流量系数计算公式进行修正,考虑了液体的特性、密度、黏度等因素,通常为以下形式:Cv=Q/√(SG*ΔP)其中,Cv是修正流量系数,Q是通过调节阀的液体流量,ΔP是压差,SG是液体的相对密度。
选择数据通常包括以下几个方面:1.流量范围根据实际工艺要求和流体特性,确定调节阀的流量范围。
包括最小流量、额定流量和最大流量。
2.压差范围根据实际工艺情况和管路布局,确定调节阀的压差范围。
包括最小压差、额定压差和最大压差。
3.流体特性根据液体的物理、化学特性,选择适合的调节阀型号。
包括液体的温度、压力、粘度、相对密度等参数。
4.调节特性根据实际工艺要求,选择适合的调节阀调节特性。
常见的调节特性有线性、等百分比、快开、快关等。
5.阀门材质根据液体的化学性质,选择适合的阀门材质。
常见的阀门材质有铸钢、不锈钢、铸铁、黄铜等。
调节阀的流量系数与计算
N1 FP FR
P
式中
FP-管道的几何形状系数,无量纲,当没有附接管件时, FP =1; FR-雷诺系数,无量纲,在紊流体状态时, FR =1; -相对密度,在15.5℃时, =1.0; 0 0
N1-数字常数,采用法定计量单位N=1。 根据计算理论,在计算液体流量系数时,按三种情况分别计算: 非阻塞流、阻塞流、低雷诺数。在用判别式判定后, 用不同的公式进行计算。
KV
或
10QL
L
(4-15)
(4-16)
2 FL (P 1 FF P V )
KV
FL2 P 1 FF P V
10 2 WL
⑶低雷诺数液体的计算。 流量参数KV是在适当的雷诺数,紊流情况现测定的。 随着雷诺数Re增大, KV值变化不大,然而当雷诺数变小 时, KV值会变小,因此对雷诺数偏低的流体对KV值计算 公式要进行校正。修正后的流量参数为KV’ 即 KV ' KV (4-17) FR
•
• 或 •
kv
KV
Qg 2.9 p1
Qg 13 .9 p1
Z
kX T
T1MZ kX T
(4-26)
(4-27)
• 或 • • 3.蒸汽 •
KV
Qg 2.58 p1
T1GZ kX T
(4-28)
• •
(1)非阻塞流 (X<FKXT)时
WS KV 3.16Y 1 XP1 s
图4-1流体流过节流孔时压力和 速度的变化
图4-2单座阀与球阀的压力 恢复比较
根据流体的能量守衡定律可知,在阀芯、阀座由与 节流作用而在附近得 下游处产生一个缩流(见图4-1), 其流体速度最大,但静压最小,在远离缩流处,随着阀门 流通面积得 增大,流体的速度减小,由与相互摩擦,部 分能量转变成内能,大部分静压被恢复但已不能恢复到P1 值。 当介质为气体(可压缩)时,当阀的压差达到某 一 临界值得时,通过调节阀的流量将达到极限。即使进一步 增加压差,流量也不会再增加。 当介质为液体(不可压缩)时,一但压差增大到是以 引起液体汽化,即产生闪蒸和空化作用时,也会出现这种 极限的流量。这种极限流量为阻塞流。由图4-1可知,阻 塞流产生于缩流处及其下游。产生阻塞流时的压差为ΔPT。 为说明这一特性,可以用压力恢复系数FL来描述:
调节阀口径计算
1、调节阀流量系数C V定义:阀处于全开状态,两端压差为1磅/英寸2(0.07kg/cm2)的条件下,60℉(15.6℃)的清水,每分钟通过阀的美加仑数.2、压差:调节阀两端压差与整个系统压损失之比(Pr)是评定调节阀性能好坏的标准.如果流量波动幅度较大,这个压降比(Pr)数值也应大些,同样,波动幅度较小时, Pr也应小些.一般来说, Pr大小最好限制在15~30%之内.3、调节阀径计算公式液体(英制)CV=Q/(P1-P2)=Q式中Q=最大流量 gpm(美加仑)G=比重(水=1)P1=进口压力 psiP1=出口压力 psi=p1-p2 (p1和p2为最大流量时的压力)说明:cv=1.17kv是我国调节阀流量系数的符号。
4、流量选取调节阀口径所采用最大流量应比工艺流程的最在流量大25%~60%,这是一个必可缺少的安全系数,这样可避免调节阀在全开位置上运行。
然而,当最大流量已包括了这个安全系数,则可以不予考虑。
5、气体1、<p1/2时如果标准状态即760mmHg(14.7psia)和15.6℃条件下最大流量,下列公式不需经过修正,可直接计算.CV=Q/963 CV=Q/2872、 >p1/2时CV=Q CV=Q6、水蒸气1、<p1/2时CV=WK/2.12 CV=WK/13.672、 >p1/2时CV=WK/1.84P1 CV=WK/11.9P1W=最大流量LB/H W=最大流量KG/H 7、其他蒸气CV=W/89.6 CV=W/1210<p1/2时应用P1/2代替V2要用P1/2时相对应的值W=最大流量LB/H W=最大流量KG/H。
调节阀流量系数计算公式与选择数据
1、流量系数计算公式表示调节阀流量系数的符号有C、Cv、Kv等,它们运算单位不同,定义也有不同。
C-工程单位制(MKS制)的流量系数,在国内长期使用。
其定义为:温度5-40℃的水,在1kgf/cm2(0.1MPa)压降下,1小时内流过调节阀的立方米数。
Cv-英制单位的流量系数,其定义为:温度60℃F (15.6℃)的水,在1b/in2(7kpa)压降下,每分钟流过调节阀的美加仑数。
Kv-国际单位制(SI制)的流量系数,其定义为:温度5-40℃的水,在10Pa(0.1MPa)压降下,1小时流过调节阀的立方米数。
注:C、Cv、Kv之间的关系为Cv=1.17Kv,Kv=1.01C 国内调流量系数将由C系列变为Kv系列。
(1)Kv值计算公式(选自《调节阀口径计算指南》)①不可压缩流体(液体)(表1-1)Kv值计算公式与判不式(液体)低雷诺数修正:流经调节阀流体雷诺数Rev小于104时,其流量系数Kv需要用雷诺数修正系数修正,修正后的流量系数为:在求得雷诺数Rev值后可查曲线图得FR值。
计算调节阀雷诺数Rev公式如下:关于只有一个流路的调节阀,如单座阀、套筒阀,球阀等:关于有五个平行流路调节阀,如双座阀、蝶阀、偏心施转阀等文字符号讲明:P1--阀入口取压点测得的绝对压力,MPa;P2--阀出口取压点测得的绝对压力,MPa;△P--阀入口和出口间的压差,即(P1-P2),MPa;Pv--阀入口温度饱和蒸汽压(绝压),MPa;Pc--热力学临界压力(绝压),MPa;F F--液体临界压力比系数,F R--雷诺数系数,依照ReV值可计算出;F L--液体压力恢复系数QL--液体体积流量,m3/h P L--液体密度,Kg/cm3ν--运动粘度,10-5m2/s W L--液体质量流量,kg/h,②可压缩流体(气体、蒸汽)(表1-2)Kv值计算公式与判不式(气体、蒸气)表1-2文字符号讲明:X-压差与入口绝对压力之比(△P/P1);X T-压差比系数;K-比热比;Qg-体积流量,Nm3/hWg-质量流量,Kg/h; P1-密度(P1,T1条件),Kg/m3T1-入口绝对温度,K;M-分子量;Z-压缩系数;Fg-压力恢复系数(气体);f(X,K)-压差比修正函数; P1-阀入口取压点测得的绝对压力,MPa;PN-标准状态密度(273K,1.0.13×102kPa),Kg/Nm3;③两相流(表1-3)Kv值计算公式(两相流)表1-3。
调节阀的流量系数及其计算
综合上述三式(4-1),(4-2),(4-3),可得 调节阀的流量方程式为:
Q A 2 P1 P2
(4-4)
若上述方程式各项系数采用如下单位: A-㎝2 ; ρ-g/ ㎝2 (即 10-5N·s2/ ㎝4 ); ΔP-100KPa( 10N/ ㎝2 );
P1,P2- 100KPa( 10N/ ㎝2 );
即
KV'
KV FR
(4-17)
式中 KV' -修正后的流量系数; KV-紊流条件时,按(4-13)-(4-16)计算
的流量系数;
FR-雷诺数修正系数,可按雷诺数Re大小从图中 查出。
雷诺数可以根据阀的结构和粘度等因素由下列公 式求得:
a.对具有两个平行流路的 调节阀,如直通双座阀、 蝶阀、偏心旋转阀等雷诺数为:
只能把开始产生阻塞流时的阀压降 P 作为计算用压 降。
对于不可压缩液体,它产生阻塞流时, PVC值与液体介 质的物理性质有关。
即 式中
PVC =FF·PV
(4-10)
PV -液体的饱和蒸汽压力
FF -液体的临界压力比系数
FF值可用下式计算:(也可以从图中查出)
FF 0.96 0.28 PV PC (4-11)
Re 49490 QL
KV
(4-18)
b.对只有一个流路的调节阀,如直通单座阀、 套筒阀、球阀、角阀、隔膜阀等,雷诺数为:
Re 70700 QL (4-19)
kV
式中 ν-流体在流动温度下的运动粘度,mm2/s。 2.可压缩流体 ⑴非阻塞流
公式当为:X<FkXT时,采用法定计量单位制,则计算
KV
P2-调节阀阀后的压力
ρ-流体密度
g-重力加速度
调节阀的可调范围计算公式
调节阀的可调范围计算公式在工业生产中,调节阀是一种常用的流体控制装置,用于调节流体的流量、压力、温度等参数。
调节阀的可调范围是指它能够实际调节的参数范围,通常由工作范围和调节精度两个方面来描述。
在实际工程中,我们需要根据流体的性质和工艺要求来选择合适的调节阀,并且需要计算其可调范围,以确保其能够满足工艺要求。
调节阀的可调范围计算公式可以通过流体力学原理和调节阀的结构参数来推导。
一般来说,调节阀的可调范围与其阀口的开度和流体的流速有关。
下面我们将介绍调节阀的可调范围计算公式,并举例说明其在工程中的应用。
首先,我们来看一下调节阀的基本结构和工作原理。
调节阀通常由阀体、阀芯、阀座、执行机构等部件组成。
当执行机构作用于阀芯时,阀芯的开度会发生变化,从而改变阀口的流通面积,进而影响流体的流量。
调节阀的可调范围通常由阀口的最大开度和最小开度来确定,同时还受到流体的流速限制。
其次,我们来推导调节阀的可调范围计算公式。
假设调节阀的阀口的最大开度为Dmax,最小开度为Dmin,流体的密度为ρ,流速为v,流体的动力粘度为μ。
根据流体力学原理,流体的流量Q与阀口的开度D和流速v之间存在着一定的关系。
通常来说,流量与阀口的开度呈线性关系,与流速呈二次方关系。
因此,我们可以得到调节阀的可调范围计算公式如下:Q = k D v^2。
其中,Q为流量,k为调节阀的流量系数,D为阀口的开度,v为流速。
根据流体力学的基本原理,我们可以将调节阀的流量系数k表示为:k = π (Dmax^2 Dmin^2) / 4。
将k代入流量计算公式中,我们可以得到调节阀的可调范围计算公式为:Q = π (Dmax^2 Dmin^2) / 4 D v^2。
这个公式可以用来计算调节阀在不同开度和流速下的流量,从而确定其可调范围。
在实际工程中,我们可以根据流体的性质和工艺要求来选择合适的流速和阀口开度,然后通过这个公式来计算调节阀的可调范围,以确保其能够满足工艺要求。
调节阀流量系数计算公式及数据选择
调节阀流量系数计算公式及数据选择调节阀的流量系数(Cv)是指在给定的压差下,调节阀能够通过的流体的体积流量。
它是衡量调节阀性能的重要参数之一、通常情况下,调节阀流量系数的计算公式为:Cv = Q / sqrt(ΔP)其中,Cv为流量系数,Q为流量,ΔP为压差。
在实际应用中,选择合适的流量系数对于调节阀的性能至关重要。
以下是一些常用的数据选择方法和公式。
1.流量系数计算公式:根据调节阀的使用场景和流体介质的特性,可以选择不同的流量系数计算公式。
常见的计算公式包括:- 标准流量系数公式:Cv = Q / sqrt(ΔP)- 输入流量系数公式:Cv = Q / sqrt(△h * g)- 出口流量系数公式:Cv = Q / sqrt(△z)2.流量系数选择方法:为了选择合适的流量系数,需要考虑以下因素:-流量需求:首先需要确定所需的流量范围,包括最小和最大流量。
-压差需求:根据流量要求和管道系统的特性,确定所需的压差范围。
-流体介质:不同的流体介质对调节阀的流量系数有不同的要求,例如气体和液体,不同的密度和黏度对流量系数具有影响。
-系统要求:根据系统的性能要求,选择合适的流量系数。
3.流量系数常用值:根据实际经验和行业标准,一些常用的流量系数值如下:-常规控制阀:Cv=0.01~10-高流量控制阀:Cv=10~50-小流量控制阀:Cv<0.01-紧急切断阀:Cv>504.其他因素的考虑:流量系数的选择还需要考虑其他因素,如调节阀的类型、阀座直径和开启程度等。
不同类型的调节阀可能需要不同的流量系数。
综上所述,在选择调节阀的流量系数时,需要根据流量需求、压差需求、流体介质和系统要求等因素进行评估。
在实际应用中,可以根据常见的流量系数计算公式和经验值来进行选择,并结合实验数据进行调整和优化。
燃气调节阀计算公式
燃气调节阀计算公式燃气调节阀是工业生产中常用的一种阀门,它通过控制燃气的流量和压力,来实现对燃气的调节和控制。
在实际应用中,我们需要根据具体的工况和要求来选择合适的燃气调节阀,并进行相应的计算。
本文将介绍燃气调节阀的计算公式及其应用。
首先,我们需要了解燃气调节阀的基本参数,包括燃气的流量、压力、温度等。
在进行计算时,我们需要根据这些参数来确定燃气调节阀的流量系数和调节范围。
燃气调节阀的流量系数是指在单位压差下,燃气通过阀门的实际流量与理论流量的比值。
而调节范围则是指燃气调节阀能够实现的最大和最小流量之间的比值。
在实际应用中,我们通常会根据燃气的流量和压力来选择合适的燃气调节阀。
为了方便计算,我们可以使用以下的计算公式来确定燃气调节阀的流量系数和调节范围:流量系数 K = Q / (Cv √ΔP)。
其中,K为流量系数,Q为燃气的流量,Cv为燃气调节阀的流量系数,ΔP为燃气的压差。
调节范围 R = Qmax / Qmin。
其中,R为调节范围,Qmax为燃气的最大流量,Qmin为燃气的最小流量。
通过以上的计算公式,我们可以根据燃气的流量和压力来确定燃气调节阀的流量系数和调节范围,从而选择合适的燃气调节阀。
在实际应用中,我们还需要考虑燃气调节阀的启闭时间、密封性能、耐压性能等参数,以确保燃气调节阀能够稳定可靠地工作。
除了上述的计算公式外,我们还需要注意燃气调节阀的安全使用和维护。
在使用燃气调节阀时,我们需要确保其安装位置正确,阀门启闭灵活,密封性能良好,无泄漏现象。
另外,我们还需要定期对燃气调节阀进行检查和维护,以确保其正常工作。
总之,燃气调节阀是工业生产中常用的一种阀门,通过控制燃气的流量和压力,来实现对燃气的调节和控制。
在选择燃气调节阀时,我们需要根据燃气的流量和压力来确定其流量系数和调节范围,并确保其安全使用和维护。
希望本文对大家了解燃气调节阀的计算公式及其应用有所帮助。
调节阀的流量系数与计算
是否形成阻塞流的判断条件,显然 FL 2 P 1P VC 即为产
生阻塞流时的阀压降,因此,当
P F L 2P 1P VC
即 P F L 2P 1F F P V 时,为阻塞流情况
对于可压缩液体,引入一个称为压差比X的系数
X P P1
也就是说,阀门压降ΔP与入口压力P1的比称为压差 比。若以空气作用试验流体,对于一个特定的调节阀,当
在安装条件下,为了使流量系数计算公式能适用于各
种单位,并考虑到念度,管道等的影响,可把公式演变为
如下的形式:
C Q
0
N1FPFR- P
(4-12)
式中
FP-管道的几何形状系数,无量纲,当没有附接管件时, FP =1;
FR-雷诺系数,无量纲,在紊流体状态时, FR =1;
-相对密度,在15.5℃时, =1.0;
调节阀的流量系数及其计算
㈠ 调节阀计算的理论基础
1. 调节阀节流原理和流量系数
调节阀是一个局部阻力可改变的节流元件
如果调节阀前后的管道直径一致,流速相同。根
据流体的能量守恒原理,不可压缩流体流经调节阀的
能量损失为: H P1 P2 g
(4-1)
式中 H-单位重量流体流过调节阀的能量损失;
P1-调节阀阀前的压力
式中 Q-流体的体积流量 A-调节阀连接管的横截面积
-
综合上述三式(4-1),(4-2),(4-3),可得 调节阀的流量方程式为:
Q A 2P1P2
(4-4)
若上述方程式各项系数采用如下单位:
A-㎝2 ;
ρ-g/ ㎝2 (即 10-5N·s2/ ㎝4 );
ΔP-100KPa( 10N/ ㎝2 );
调节阀口径的公式
调节阀流量系数的计算公式
一.流量系数的定义
1,各类流通系数的定义
C值:工程单位制的流量,定义如下:温度5~40℃的水,再1kgf/cm2(0.1Mpa)压降下,1小时流过调节阀的流量数。
Cv值:英制单位的流量系数,定义如下:温度60F(15.6℃)的水,在1lb/in2(7Kpa)压降下,每分钟流过调节阀的美加仑数。
Kv值:国际单位制(SI制)的流量系数,定义如下:温度5~40℃的水,再105Pa(约1kgf/cm2)压降下,每小时流过调节阀的立方米数
2,各类流通系数的关系
Cv=1.167C; Kv=1.01C
二.调节阀参考计算公式
1,参考计算公式表
表1
注1:一般安全系数:等百分比特性 1.8~2.0 线性特性 1.4 注2:开度计算公式:等百分比特性C
C K i lg 48.11
1+
= 线性特性C
C K i
=
其中 K: 调节阀开度
Ci :调节阀计算流量系数 C :调节阀选用流量系数 一般K 的范围:10%<K <90%
三.其他参考计算公式
过热温度:进口侧绝对压力(P
1)下饱和温度(T
S
)和介质入口温度(T
1
)之差(T
1
-T
S
)。
饱和蒸汽场合的过热温度为0。
调节阀流量系数Kv的计算公式
调节阀流量系数Kv的计算公式调节阀最重要参数是流量系数Kv,它反映调节阀通过流体的能力,也就是调节阀的容量。
根据调节阀流量系数Kv的计算,就可以确定选择调节阀的口径。
为了正确选择调节阀的口径,必须正确计算出调节阀的额定流量系数Kv值。
调节阀额定流量系数Kv的定义是:在规定条件下,即阀的两端压差为10P a,流体的密度为lg/cm,额定行程时流经调节阀以m/h或t/h的流量数。
1.一般液体的K v值计算a.非阻塞流判别式:△P<FL(P1-FFPV)计算公式:Kv=10QL式中:FL-压力恢复系数,见附表FF-流体临界压力比系数,FF=0.96-0.28PV-阀入口温度下,介质的饱和蒸汽压(绝对压力),kPaPC-流体热力学临界压力(绝对压力),kPaQL-液体流量m/hρ-液体密度g/cmP1-阀前压力(绝对压力)kPaP2-阀后压力(绝对压力)kPab.阻塞流判别式:△P≥FL(P1-FFPV)计算公式:Kv=10QL式中:各字符含义及单位同前2.气体的Kv值计算a.一般气体当P2>0.5P1时当P2≤0.5P1时式中:Qg-标准状态下气体流量Nm/hPm-(P1+P2)/2(P1、P2为绝对压力)kPa△P=P1-P2G -气体比重(空气G=1)t -气体温度℃b.高压气体(PN>10MPa)当P2>0.5P1时当P2≤0.5P1时式中:Z-气体压缩系数,可查GB/T 2624-81《流量测量节流装置的设计安装和使用》3.低雷诺数修正(高粘度液体K V值的计算)液体粘度过高或流速过低时,由于雷诺数下降,改变了流经调节阀流体的流动状态,在Rev<2300时流体处于低速层流,这样按原来公式计算出的KV值,误差较大,必须进行修正。
此时计算公式应为:式中:Φ―粘度修正系数,由Rev查F R-Rev曲线求得;QL-液体流量m/h对于单座阀、套筒阀、角阀等只有一个流路的阀对于双座阀、蝶阀等具有二个平行流路的阀式中:Kv′―不考虑粘度修正时计算的流量系ν ―流体运动粘度mm/sFR -Rev关系曲线FR-Rev关系图4.水蒸气的Kv值的计算a.饱和蒸汽当P2>0.5P1时当P2≤0.5P1时式中:G―蒸汽流量kg/h,P1、P2含义及单位同前,K-蒸汽修正系数,部分蒸汽的K值如下:水蒸汽:K=19.4;氨蒸汽:K=25;氟里昂11:K=68.5;甲烷、乙烯蒸汽:K=37;丙烷、丙烯蒸汽:K=41.5;丁烷、异丁烷蒸汽:K=43.5。
调节阀的流量系数及其计算
Qg 5.19P1Y
T1N z
X
(4-20)
或 或 式中
kV
Qg 24.6P1Y
T1MZ X
kV
Qg 4.57P1Y
T1GZ X
(4-21) (4-22)
Qg—气体标准体积流量,N·m3/h; ΡN-气体标准状态下密度,Kg/N·m3 P1-阀前绝对压力,KPa; X-压差比(x=ΔP/P1); Y-膨胀系数; T1-入口绝对温度,K; M-气体分子量;
调节阀的流量系数及其计算
㈠ 调节阀计算的理论基础
1. 调节阀节流原理和流量系数
调节阀是一个局部阻力可改变的节流元件
如果调节阀前后的管道直径一致,流速相同。根
据流体的能量守恒原理,不可压缩流体流经调节阀的
能量损失为: H P1 P 2 g
(4-1)
式中 H-单位重量流体流过调节阀的能量损失;
P1-调节阀阀前的压力
T1Z kXT M
(4-32)
• 式中 Ws-蒸汽的质量流量,Kg/h;
•
ρs-阀前入口蒸汽的密度,Kg/m3;
• 如果是过热蒸汽,应代入过热条件下的实际密度。
• 4.两相流体
• (1)流体于非液化性气体
• 先决条件:液体ΔP<FL2(P1-P2)气体X<FKXT两条件 都能满足。
• •
KV
Wg 3.16
Re 49490 QL
KV
(4-18)
b.对只有一个流路的调节阀,如直通单座阀、 套筒阀、球阀、角阀、隔膜阀等,雷诺数为:
Re 70700 QL (4-19)
kV
式中 ν-流体在流动温度下的运动粘度,mm2/s。 2.可压缩流体 ⑴非阻塞流
调节阀的流量系数及其计算
• (4-33)进行计算。对液体占绝大部分的两相混合体,
计算公式为:
•
K WgWL V 3.16FL mP1(1FF) (4-37)
• 式中ρm-两相流密度
•
m
Wg WL
Wg
g
WL
10 3
L
(4-38)
•或
WgWL
m
TWg
2.64P1N
1W 03LL
(4-39)
•或 •
WgWL m 8.5T1Wg WL MP1 103L
T1Z kXTM
(4-32)
• 式中 Ws-蒸汽的质量流量,Kg/h;
•
ρs-阀前入口蒸汽的密度,Kg/m3;
• 如果是过热蒸汽,应代入过热条件下的实际密度。
• 4.两相流体
• (1)流体于非液化性气体 • 先决条件:液体ΔP<FL2(P1-P2)气体X<FKXT两条件
都能满足。
• •
KV
Wg WL
即
K
' V
KV FR
(4-17)
式中
K
' V
-修正后的流量系数;
KV-紊流条件时,按(4-13)-(4-16)计算 的流量系数;
FR-雷诺数修正系数,可按雷诺数Re大小从图中 查出。
雷诺数可以根据阀的结构和粘度等因素由下列公 式求得:
a.对具有两个平行流路的 调节阀,如直通双座阀、 蝶阀、偏心旋转阀等雷诺数为:
T1GZ kXT
(4-28)
• 3.蒸汽 •
• (1)非阻塞流 (X<FKXT)时
•
•或 •
KV
WS 3.16Y
1
XP1s
KV
调节阀的流量系数与计算.ppt
从式(4-9)可见,只要求得 PVC便可得到不可压缩液体
是否形成阻塞流的判断条件,显然
? F
2 L
P1 ?
PVC ? 即为产
生阻塞流时的阀压降,因此,当
?P
?
? F
2 L
P1 ?
? PVC
即 ? P ? ? FL2 P1 ? FF PV ? 时,为阻塞流情况
对于可压缩液体,引入一个称为压差比 X的系数
即:
FL ?
P1? P2 P 1 ? P VC
(4-8)
? ? ? P T ?
F
2 L
P1 ?
P VC
(4-9)
上式中ΔPT=P1-P2, PVC表示产生阻塞流时缩流断面的 压力。
FL值是阀体内部几何形状的函数。一般 FL =0.5~0.98 , FL越小, ΔP 比P1 - PVC小得越多,即恢复越大。
当介质为气体(可压缩)时,当阀的压差达到某 一 临界值得时,通过调节阀的流量将达到极限。即使进一步 增加压差,流量也不会再增加。
当介质为液体(不可压缩)时,一但压差增大到是以 引起液体汽化,即产生闪蒸和空化作用时,也会出现这种 极限的流量。这种极限流量为阻塞流。由图 4-1可知,阻 塞流产生于缩流处及其下游。产生阻塞流时的压差为 ΔPT。 为说明这一特性,可以用压力恢复系数 FL来描述:
许多采用英制单位的国家用 CV表示流量系数。 CV的定 义为:用 40°~60°F的水,保持阀门两端的压差为 阀门全开状态下每分钟流过的水的美加仑数。
KV 和CV的换算如下: C V =1.167 K V
2.压力恢复和压力恢复系数 当流体流过调节阀时,其压力变化情况见图 4-1和4-2
所示
图4-1流体流过节流孔时压力和 速度的变化
调节阀流量系数的计算
调节阀流量系数的计算:
流量系数是选择调节阀口径的一个重要因素。
流量系数KV 不完全表示为阀的流量,唯一在当介质为常温水,压差为100KPa 时,KV 才是流量Q ;同样KV 值下,r 、△P 不同,通过的流量不同。
⑴一般液体:
21Q Kv
P P Q :液体流量 m 3/h
:液体密度 g/cm 3
P 1:阀前压力 kgf/cm
2 P 2:阀后压力 kgf/cm
2 粘度修正:液体粘度大于100SSU (赛波特秒)或者大于20CST (厘斯)时应进行粘度修正。
闪蒸修正:当饱和温度的热水或者接近饱和温度的热水流经调节阀节流口压力会降低,出口处流出的水中可能会有水蒸汽,这时计算流量系数应进行闪蒸修正。
⑵一般气体:
a 、 P 2>0.5P 1
Kv=380Q ))(()273(21
21P P P P t Q :气体流量 Nm 3/h
:气体比重(空气=1)
t :气体温度℃
b 、 P 2≤0.5P
1Kv=
330Q 1)273(P t 对高压气体(P ≥100 kgf/cm 2)计算流量系数应引入压缩系数Z ,对上述公式进行修正。
⑶饱和水蒸汽:
a 、P 2>0.5P 1
Kv=
))((1162121P P P P G G :水蒸汽流量 kg/h
b 、 P 2≤0.5P 18.13K G v
⑷过热水蒸汽:
a 、 P 2>0.5P 1
))((0013.0116K 2121p p p p t G v
△t :水蒸汽过热度℃b 、 P 2≤0.5P 1
18.13)
0013.01(Kv P t G。
调节阀的流量系数及其计算
(4-24)
由Pr,Tr查图可得压缩系数Z
b.膨胀系数
膨胀系数Y用来校正从阀的入口到阀的缩流出气体
密度的变化,在可压缩流情况下,由于紊流几乎始终存
在,所以雷诺数的影响极小,可忽略。其它因素与Y 的
整理ppt
19
关系可以表示如下:
Y 1 X 3FK XT
(4-25)
式中
XT-临界压差比; X-压差比;
• (1)流体于非液化性气体
• 先决条件:液体ΔP<FL2(P1-P2)气体X<FKXT两条件 都能满足。
• •
KV
Wg WL
3.16整理ppPt e
(4-33)
23
• 式中 •
e
Wg WL
Wg
gY 2
1
WL
03 L
•或 •
e
Wg WL
TWg
2.64Y2P1NZ
1W 03L L
•或
• •
Wg WL
P2-调节阀阀后的压力
ρ-流体密度
g-重力加速度 整理ppt
1
如果调节阀的开度不变,流经调节阀的流体不可压缩,
则流体的密度不变,那么,单位重量的流体的能量损失
与流体的动能成正比,即
H 2
2g
(4-2)
式中 ω-流体的平均速度;
g-重力加速度;
ζ-调节阀的阻力系数
流体调节阀中的平均速度为:
Q
A
(4-3)
Y-膨胀系数;
T1-入口绝对温度,K;
M-气体分子量整理;ppt
18
G-气体的相对密度(空气为1);
Z-压缩系数。
a.压缩系数
压缩系数Z是比压力和逼问度的函数