微积分曹定华课后题答案第二章习题详解

合集下载

《微积分》课后答案(复旦大学出版社(曹定华 李建平 毛志强 著))第三章

《微积分》课后答案(复旦大学出版社(曹定华 李建平 毛志强 著))第三章

(3) y x x 3 x
2
y ( x 6 )
6. 讨论函数 y= 3 x 在 x=0 点处的连续性和可导性. 解: lim 3 x 0 f (0)
x 0
lim
x 0
3 f ( x) f (0) x 0 1 lim lim x 0 x 0 3 2 x0 x x
t
此文档由天天learn()为您收集整理。
解:(1) lim
x 0
f ( x0 x) f ( x0 ) f [ x0 ( x)] f ( x0 ) lim f ( x0 ) x 0 x x
A f ( x0 )
tt

2 3
1
1 5 1 x 6 6 6 6 x5
le
5 2
x2
;(3) y=
x6
1
ar
x2
3
x2
x5
n.

2
天天learn()为您提供大学各个学科的课后答案、视频教程在线浏览及下载。
ne
t
f ( x0 h) f ( x0 h) h 0 h [ f ( x0 h) f ( x0 )] [ f ( x0 h) f ( x0 )] lim h 0 h f ( x0 h) f ( x0 ) f [ x0 (h)] f ( x0 ) lim lim h 0 h 0 h h
解:为使 f ( x) 在 x 1 处连续,必须 f (1 0) f (1 0) f (1) ,
le
为了使 f ( x) 在 x 1 处可导,必须 f (1) f (1)
f (1) lim
f ( x) f (1) ax b 1 ax a lim lim a x 1 x 1 x 1 x 1 x 1

《微积分》课后答案(复旦大学出版社(曹定华_李建平_毛志强_著))第7章

《微积分》课后答案(复旦大学出版社(曹定华_李建平_毛志强_著))第7章
故 a b b c c a
3 . 2
4. 在 xOy 坐标面上求向量 a,使其垂直于向量 b=4i-3j+5k,且|a|=2|b|. 解:设向量 a ( x, y, 0) ,由 a b 得 a b 0 即 4x 3y 0 , 由 | a | 2 | b | 得 解方程组
(6,10, 2) (6, 6, 6) (16, 4, 12) (16, 0, 20)
5.已知两点 M1(0,1,2)和 M2(1,-1,0),求向量 M 1M 2 ,并求 M 1M 2 及与 M 1M 2 平 行的单位向量. 解: M 1M 2 (1 0)i (1 1) j (0 2)k i 2 j 2k (1, 2, 2)


2.试用向量证明:如果平面上一个四边形的对角线互相平分,则该四边形是平行 四边形. 证: (如上题图) ,依题意有 AM MC , DM MB. 于是 AB AM MB MC DM DC. 故 ABCD 是平行四边形. 3.已知向量 a=i-2j+3k 的始点为(1,3,-2),求向量 a 的终点坐标. 解:设 a 的终点坐标为( x, y, z ),则
即与 M 1M 2 平行的单位向量为 ,

1 3
2 2 1 2 2 , 或 , , . 3 3 3 3 3
习题 7-3
) 1. 已知 a =2, b =1, (a,b
解: (1) a a | a | 4
2
,求(1) a·a,(2) a·b,(3) (2a+3b)·(3a-b). 3 ) 2 1 cos π 1 (2) a a | a | | b | cos(a,b 3

微积分曹定华修订版课后题答案习题详解

微积分曹定华修订版课后题答案习题详解

第9章习题9-11. 判定下列级数的收敛性:(1) 115n n a ∞=⋅∑(a >0); (2) ∑∞=-+1)1(n n n ;(3) ∑∞=+131n n ; (4) ∑∞=-+12)1(2n nn ; (5) ∑∞=+11ln n n n ; (6) ∑∞=-12)1(n n;(7) ∑∞=+11n nn ; (8) 0(1)21n n n n ∞=-⋅+∑.解:(1)该级数为等比级数,公比为1a ,且0a >,故当1||1a <,即1a >时,级数收敛,当1||1a≥即01a <≤时,级数发散. (2)(1n S n =++++∴1n ∞=∑发散.(3)113n n ∞=+∑是调和级数11n n ∞=∑去掉前3项得到的级数,而调和级数11n n ∞=∑发散,故原级数113n n ∞=+∑发散.(4)1112(1)1(1)222n n nn n n n ∞∞-==⎛⎫+--=+ ⎪⎝⎭∑∑ 而1112n n ∞-=∑,1(1)2m nn ∞=-∑是公比分别为12的收敛的等比级数,所以由数项级数的基本性质知111(1)22n n n n ∞-=⎛⎫-+ ⎪⎝⎭∑收敛,即原级数收敛.(5)lnln ln(1)1nn n n =-++ 于是(ln1ln 2)(ln 2ln 3)[ln ln(1)]n S n n =-+-+-+故lim n n S →∞=-∞,所以级数1ln 1n nn ∞=+∑发散.(6)2210,2n n S S +==-∴ lim n n S →∞不存在,从而级数1(1)2nn ∞=-∑发散.(7)1lim lim10n n n n U n→∞→∞+==≠∴ 级数11n n n ∞=+∑发散. (8) (1)(1)1, lim 21212n n n n n n U n n →∞--==++∴ lim 0n x U →∞≠,故级数1(1)21n n nn ∞=-+∑发散.2. 判别下列级数的收敛性,若收敛则求其和:(1) ∑∞=⎪⎭⎫ ⎝⎛+13121n n n ; (2) ※∑∞=++1)2)(1(1n n n n ;(3) ∑∞=⋅12sin n n n π; (4) 0πcos 2n n ∞=∑.解:(1)1111, 23n n n n ∞∞==∑∑都收敛,且其和分别为1和12,则11123n n n ∞=⎛⎫+ ⎪⎝⎭∑收敛,且其和为1+12=32.(2)11121(1)(2)212n n n n n n ⎛⎫=-+ ⎪++++⎝⎭1lim 4n n S →∞=故级数收敛,且其和为14. (3)πsin 2n U n n =,而πsinππ2lim lim 0π222n n n U n→∞→∞=⋅=≠,故级数1πsin2n n n ∞=⋅∑发散. (4)πcos 2n n U =,而4lim limcos2π1k k k U k →∞→∞==,42lim limcos(21)π1k k k U k +→∞→∞=+=-故lim n n U →∞不存在,所以级数πcos2n n ∞=∑发散. 3※. 设1nn U∞=∑ (U n >0)加括号后收敛,证明1nn U∞=∑亦收敛.证:设1(0)nn n UU ∞=>∑加括号后级数1n n A ∞=∑收敛,其和为S .考虑原级数1n n U ∞=∑的部分和1n k k S U ∞==∑,并注意到0(1,2,)k U k >=,故存在0n ,使又显然1n n S S +<对一切n 成立,于是,{}n S 是单调递增且有上界的数列,因此,极限lim n n S →∞存在,即原级数1nn U∞=∑亦收敛.习题9-21. 判定下列正项级数的收敛性:(1) ∑∞=++1n n n )2)(1(1; (2) ∑∞=+1n n n1;(3) ∑∞=++1n n n n )2(2; (4) ∑∞=+1n n n )5(12;(5) 111nn a ∞=+∑ (a >0); (6) ∑∞=+1n n ba 1(a , b >0); (7)()∑∞=--+1n a n a n22(a >0); (8) ∑∞=-+1n n n 1214; (9) ∑∞=⋅1n nn n 23; (10) ※∑∞=1n n n n !; (11) ∑∞=+⋅⋅⋅⋅+⋅⋅⋅⋅1n n n )13(1074)12(753 ; (12) ∑∞=1n n n3;(13) ※∑∞=1n n n 22)!(2; (14) ∑∞=⎪⎭⎫⎝⎛+1n nn n 12;(15)∑∞=1πn nn3sin2; (16) ∑∞=1πn n n n 2cos 32.解:(1)因为211(1)(2)n n n <++而211n n ∞=∑收敛,由比较判别法知级数11(1)(2)n n n ∞=++∑收敛.(2)因为lim 10n n n U →∞==≠,故原级数发散. (3)因为21(1)(1)1n n n n n n n +>=+++,而111n n ∞=+∑发散,由比较判别法知,级数12(1)n n n n ∞=++∑发散.(4)321n<=,而1n ∞=是收敛的p -级数3(1)2p =>,由比较判别法知,级数1n ∞=收敛.(5)因为111lim lim lim(1)111n n n n n n n n a a a aa→∞→∞→∞+==-++ 而当1a >时,11n n a ∞=∑收敛,故111nn a ∞=+∑收敛;当1a =时,11n n a ∞=∑= 11n ∞=∑发散,故111nn a∞=+∑发散; 当01a <<时1lim101n n a →∞=≠+,故1lim1nn a →∞+发散; 综上所述,当01a <≤时,级数1lim 1n n a →∞+发散,当1a >时,1lim 1nn a →∞+收敛. (6)因为1lim lim lim(1)1n n n n n n n n b aa b a b a bb→∞→∞→∞+==-++ 而当1b >时, 11n n b ∞=∑收敛,故11nn a b ∞=+∑收敛; 当1b =时,1111n n n b ∞∞===∑∑发散,故而由0a >, 101a <<+∞+,故11nn a b ∞=+∑也发散; 当01b <<时,11lim 0n n a b a →∞=≠+故11n n a b ∞=+∑发散; 综上所述知,当01b <≤时,级数11n n a b ∞=+∑发散;当b >1时,级数11nn a b∞=+∑收敛. (7)因为lim 1n n n→∞=而11n n ∞=∑发散,故级数10)n a ∞=>∑发散. (8)因为434431121lim lim 1212n n n n n n n n →∞→∞++-==-而311n n∞=∑收敛,故级数21121n n n ∞=+-∑收敛.(9)因为1113233lim lim lim 1(1)232(1)2n n n n n n n n nU n n U n n +++→∞→∞→∞⋅⋅==>+⋅+由达朗贝尔比值判别法知,级数132n nn n ∞=⋅∑发散.(10)因为11(1)!1lim lim lim(1)1(1)!n nn n n n n nU n n e U n n n ++→∞→∞→∞+=⋅=+=>+,由达朗贝尔比值判别法知,级数1!n n n n ∞=∑发散.(11)因为1357(21)(23)4710(31)limlim 4710(31)(34)357(21)n n n nU n n n U n n n +→∞→∞⋅⋅⋅⋅+⋅+⋅⋅⋅⋅+=⋅⋅⋅⋅⋅+⋅+⋅⋅⋅⋅+232lim1343n n n →∞+==<+,由达朗贝尔比值判别法知原级数收敛.(12)因为111311lim lim lim 1333n n n n n n nU n n U n n ++→∞→∞→∞++=⋅==<,由达朗贝尔比值判别法知,级数13n n n ∞=∑收敛.(13)因为22221221(1)[(1)!]2(1)lim lim lim (!)22n n n n n n n nU n n U n +++→∞→∞→∞++=⋅= 由2212121(1)2(1)1lim lim lim 222ln 22ln 2x x x x x x x x x +++→∞→+∞→+∞+++==⋅⋅2121lim 022(ln 2)x x +→+∞==⋅知2121(1)lim lim 012n n n n nU n U ++→∞→∞+==<由达朗贝尔比值判别法知,级数221(!)2n n n ∞=∑收敛.(14)因为1lim 1212n n n n →∞==<+,由柯西根值判别法知级数121nn n n ∞=⎛⎫ ⎪+⎝⎭∑收敛. (15)因为ππ2sinsin 33lim lim 1π2π33n n nn n n n n→∞→∞==⋅而112233nn n n n ∞∞==⎛⎫= ⎪⎝⎭∑∑是收敛的等比级数,它的每项乘以常数π后新得级数12π3n n n ∞=⋅∑仍收敛,由比较判别法的极限形式知,级数1π2sin3n n n ∞=∑收敛. (16)因为2πcos 322n n n n n ≤而与(12)题类似地可证级数12nn n ∞=∑收敛,由比较判别法知级数1πcos 32n n n n ∞=∑收敛.2. 试在(0,+∞)内讨论x 在什么区间取值时,下列级数收敛:(1) ∑∞=1n n n x ; (2) nn x n ∑∞=⎪⎭⎫⎝⎛123.解:(1)因为11lim lim lim 11n n n n n n nU x n nxx U n x n ++→∞→∞→∞=⋅==++由达朗贝尔比值判别法知,当1x >时,原级数发散;当01x <<时,原级数收敛; 而当1x =时,原级数变为调11n n ∞=∑,它是发散的.综上所述,当01x <<时,级数1nn x n ∞=∑收敛.(2)因为1313(1)2limlim 22n n n n n nx n U xU x n ++→∞→∞⎛⎫+⋅ ⎪⎝⎭==⎛⎫⋅ ⎪⎝⎭,由达朗贝尔比值判别法知,当12x >即2x >时,原级数发散; 当012x<<即02x <<时,原级收敛. 而当12x =即 2x =时,原级数变为31n n ∞=∑,而由3lim n n →∞=+∞知31n n ∞=∑发散,综上所述,当02x <<时,级数31()2nn xn ∞=∑收敛.习题9-31. 判定下列级数是否收敛,如果是收敛级数,指出其是绝对收敛还是条件收敛:(1) ∑∞=--1121)1(n nn ; (2) 11(1)2(1)2n n nn ∞-=-+-⋅∑; (3) ∑∞=12sin n n nx ; (4) 111π(1)sin πn n n n ∞+=-∑; (5) ∑∞=-⎪⎭⎫ ⎝⎛-11210121n n n ; (6) ∑∞=+-1)1(n n x n ;(7) ∑∞=⋅1!)2sin(n n n x .解:(1)这是一个交错级数121n U n =-, 1lim lim 021n n n U n →∞→∞==-, 1112121n n U U n n +=>=-+ 由莱布尼茨判别法知11(1)21nn n ∞=--∑. 又1111(1)2121nn n n n ∞∞==-=--∑∑,由1121lim 12n n n→∞-=,及11n n ∞=∑发散,知级数1121n n ∞=-∑发散,所以级数11(1)21nn n ∞=--∑条件收敛. (2)因为2111(1)211(1)22(1)2n n n n n ----+-=+-⋅-⋅,故 而112n n ∞=∑收敛,故132n n ∞=∑亦收敛,由比较判别法知11(1)2(1)2n n nn ∞-=-+-⋅∑收敛,所以级数11(1)2(1)2n n n n ∞-=-+-⋅∑绝对收敛.(3)因为22sin 1,nx n n ≤而级数211n n∞=∑收敛,由比较判别法知21sin n nx n ∞=∑收敛,因此,级数21sin n nxn ∞=∑绝对收敛.(4)因为121ππ|(1)sin |sin πlimlim 11πn n n n n n n n+→∞→∞-==而211n n∞=∑收敛,由比较判别法的极限形式知,级数111π|(1)sin |πn n n n ∞+=-∑收敛,从而级数11π(1)sin πn n n +-绝对收敛.(5)因为212121111111210210210n n n n n n ----≤+=+,而级数112nn ∞=∑收敛的等比级数1()2q =;由比值判别法,易知级数211110n n ∞-=∑收敛,因而21111210n n n ∞-=⎛⎫+ ⎪⎝⎭∑收敛,由比较判别法知级数21111210n n n ∞-=-∑收敛,所以原级数21111210n n n ∞-=-∑绝对收敛. (6)当x 为负整数时,级数显然无意义;当x 不为负整数时,此交错级数满足莱布尼茨判别法的条件,故它是收敛的,但因11n x n ∞=+∑发散,故原级数当x 不为负整数时仅为条件收敛. (7)因为sin(2)1!!n x n n ⋅≤由比值判别法知11!n n ∞=∑收敛(1(1)!lim 01!n n n →∞+=),从而由比较判别法知1sin(2)!n n x n ∞=⋅∑收敛,所以级数1sin(2)!n n x n ∞=⋅∑,绝对收敛. 2. 讨论级数∑∞=--111)1(n pn n 的收敛性(p >0). 解:当1p >时,由于11111(1)n p p n n n n ∞∞-==-=∑∑收敛,故级数111(1)n p n n ∞-=-∑绝对收敛. 当01p <≤时,由于111,(1)n n p p u u n n +=>=+ lim 0n n u →∞=,由莱布尼茨判别法知交错级数111(1)n p n n ∞-=-∑收敛,然而,当01p <≤时,11111(1)n p p n n n n ∞∞-==-=∑∑发散,故此时,级数111(1)n p n n ∞-=-∑条件收敛. 综上所述,当01p <≤时,原级数条件收敛;当p >1时,原级数绝对收敛.3※. 设级数∑∞=12n na及∑∞=12n nb都收敛,证明级数∑∞=1n nn ba 及()∑∞=+12n n nb a也都收敛.证:因为2222||||110||222n n n n n n a b a b a b +≤≤=+ 而由已知1nn a ∞=∑及21n n b ∞=∑都收敛,故221111,22n n n n a b ∞∞==∑∑收敛,从而2211122n n n a b ∞=⎛⎫+ ⎪⎝⎭∑收敛,由正项级数的比较判别法知1n nn a b∞=∑也收敛,从而级数1n nn a b∞=∑绝对收敛.又由222()2,n n n n n n a b a a b b +=++及2211,n nn n a b∞∞==∑∑,以及1n nn a b∞=∑收敛,利用数项级数的基本性质知,221(2)nn n n n aa b b ∞=++∑收剑,亦即21()n n n a b ∞=+∑收敛.习题9-41. 指出下列幂级数的收敛区间:(1) ∑∞=0!n n n x (0!=1); (2) ∑∞=0!n nn x nn ;(3) ∑∞=⋅022n n n n x ; (4) ∑∞=++-01212)1(n n n n x . (5) ∑∞=⋅+02)2(n n n n x ; (6) ∑∞=-0)1(2n n nx n. 解:(1)因为111(1)!limlim lim 011!n n n n na n p a n n +→∞→∞→∞+====+,所以收敛半径r =+∞,幂级数1!n n x n ∞=∑的收敛区间为(,)-∞+∞.(2)因为-111lim lim lim 1e 11n nn n n n na n p a n n +→∞→∞→∞⎛⎫===-= ⎪++⎝⎭,所以收敛半径1e r p ==. 当x =e 时,级数01!!e n n n n n n n n x n n ∞∞===∑∑,此时11(1)n n n u e u n+=+,因为1(1)n n +是单调递增数列,且1(1)nn +<e所以1n nu u +>1,从而lim 0n n u →∞≠,于是级数当x =e 时,原级数发散.类似地,可证当x =-e 时,原级数也发散(可证lim ||0n n u →∞≠),综上所述,级数0!nnn n x n∞=∑的收敛区间为(-e,e). (3)因为2111limlim ()212n n n n a n p a n +→∞→∞===+,所以收敛半径为r =2. 当2x =时,级数221012n n n n x n n∞∞===⋅∑∑是收敛的p 一级数(p =2>1);当x =-2时,级数22011(1)2n nn n n x n n ∞∞===-⋅⋅∑∑是交错级数,它满足莱布尼茨判别法的条件,故它收敛.综上所述,级数202nn n x n∞=⋅∑的收敛区间为[-2,2].(4)此级数缺少偶次幂的项,不能直接运用定理2求收敛半径,改用达朗贝尔比值判别法求收敛区间.令21(1)21n nn x u n +=-+,则22121lim lim 23n n n nu n x x u n +→∞→∞+=⋅=+.当21x <时,即||1x <时,原级数绝对收敛.当21x >时,即||1x >时,级数0||n n u ∞=∑发散,从而210(1)21n nn x n +∞=-+∑发散,当1x =时,级数变为01(1)21nn n ∞=-+∑;当1x =-时,级数变为11(1)21n n n ∞+=-+∑;它们都是交错级数,且满足莱布尼茨判别法的条件,故它们都收敛. 综上所述,级数21(1)21n nn x n +∞=-+∑的收敛区间为[-1,1].(5)此级数为(x +2)的幂级数. 因为11limlim 2(1)2n n n n a n p a n +→∞→∞===+. 所以收敛半径12r p==,即|2|2x +<时,也即40x -<<时级数绝对收敛.当|2|2x +>即4x <-或0x >时,原级数发散.当4x =-时,级数变为1(1)nn n∞=-∑是收敛的交错级数, 当x =0时,级数变为调和级数11n n∞=∑,它是发散的. 综上所述,原级数的收敛区间为[-4,0).(6)此级数(x -1)的幂级数 故收敛半径12r =.于是当1|1|2x -<即1322x <<时,原级数绝对收敛. 当1|1|2x ->即12x <或32x >时,原级数发散.当32x =时,原级数变为01n n ∞=∑是调和级数,发散.当12x =时,原级数变为11(1)n n n ∞=-∑,是收敛的交错级数.综上所述,原级数的收敛区间为13,22⎡⎫⎪⎢⎣⎭. 2. 求下列幂级数的和函数:(1) ∑∞=-1)1(n n nn x ; (2) ∑∞=-1122n n nx ;(3) nn x n n ∑∞=+1)1(1; (4) ∑∞=+0)12(n n x n . 解:(1)可求得所给幂级数的收敛半径r =1.设1()(1)n nn x S x n ∞==-∑,则1111()(1)(1)1n n n n n n x S x x n x ∞∞-=='⎡⎤'=-=-=-⎢⎥+⎣⎦∑∑ 又当x =1时,原级数收敛,且()S x 在x =1处连续.(2)所给级数的收敛半经r =1,设211()2n n S x nx∞-==∑,当||1x <时,有于是22222()1(1)x x s x x x '⎛⎫== ⎪--⎝⎭又当1x =±时,原级数发散.故2122122 (||1)(1)n n xnx x x ∞-==<-∑(3)可求所给级数的收敛半径为1.令1111()(0)(1)(1)n n n n x x s x x n n x n n +∞∞====≠++∑∑ 令11()(1)n n x g x n n +∞==+∑,则111()1n n g x x x ∞-=''==-∑所以0()ln(1)d ln(1)ln(1)xg x x x x x x x =--=+---⎰;所以1()11ln(1),||1,S x x x x ⎛⎫=+--< ⎪⎝⎭且0x ≠. 当1x ±时,级数为11(1)n n n ∞=+∑和11(1)(1)n n n n ∞=-+∑,它们都收敛.且显然有(0)0S =. 故111ln(1)(1,0)(0,1)()00,1x x S x x x x ⎧⎛⎫+--∈-⋃⎪ ⎪=⎝⎭⎨⎪=±⎩. (4)可求得所给级数的收敛半径为r =1且1x ±时,级数发散,设10()n n S x nx ∞-==∑,则001()d .1xn n s x x x x∞===-∑⎰ 于是211()()1(1)S x x x '==--,即1211(1)n n nx x ∞-==-∑. 所以1101(21)2n n n n n n n xx nx x ∞∞∞-===+=+∑∑∑ 3. 求下列级数的和: (1) ∑∞=125n n n ; (2) ∑∞=-12)12(1n n n ; (3) ∑∞=--112212n n n ; (4) 1(1)2n n n n ∞=+∑. 解:(1)考察幂级数21n n n x ∞=∑,可求得其收敛半径1r = ,且当1x ±时,级数的通项2n n u n x =,2lim ||lim n n n u n →∞→∞==+∞,因而lim 0n n u →∞≠,故当1x ±时,级数21n n n x ∞=∑发散,故幂级数21n n n x ∞=∑的收敛区间为(-1,1).设21() (||1)n n S x n x x ∞==<∑,则211()n n S x x n x ∞-==∑ 令2111()n n S x n x∞-==∑,则11011()d x n n n n S x x nx x nx ∞∞-====∑∑⎰. 再令121()n n S x nx∞-==∑,则201()d 1x n n x S x x x x∞===-∑⎰. 故221()(||1)1(1)x S x x x x '⎛⎫==< ⎪--⎝⎭,从而有120()d (1)x x S x x x =-⎰.于是 213()() (||1)(1)x x S x xS x x x +==<- 取15x =,则223111()11555()5532115n n n S ∞=+===⎛⎫- ⎪⎝⎭∑. (2)考察幂级数21121n n x n ∞=-∑,可求得收敛半径r =1,设 令21111()21n n S x x n ∞-==-∑,则221211()1n n S x x x ∞-='==-∑. 即 1111()(0)ln (,(0)0)21x S x S s x+-==-. 于是 111()ln ,(||<1)21x S x x x +=-,从而取x =则11(21)21n n S n ∞===--∑(3)考察幂级数211(21)n n n x∞-=-∑,可求得其级数半经为r =1,因为 令2111()2n n S x nx∞-==∑,则221201()d 1x n n x S x x xx ∞===-∑⎰. 所以212222() (||1)1(1)x x S x x x x '⎛⎫==< ⎪--⎝⎭,于是 取12x =,得 3212111()121102212291()2n n n S ∞-=+-⎛⎫=== ⎪⎛⎫⎝⎭- ⎪⎝⎭∑. (4)考察幂级数1(1)n n n n x∞=+∑,可求得其收敛半径r =1. 设1()(1) (||1)n n S x n n xx ∞==+<∑ 则121011()d xn n n n S x x nx x nx ∞∞+-====∑∑⎰.又设111()n n S x nx∞-==∑则101()d 1x n n x S x x x x∞===-∑⎰. 从而121()1(1)x S x x x '⎛⎫== ⎪--⎝⎭, 取12x =,则 习题9-51. 将下列函数展开成x 的幂级数: (1) 2cos 2x ; (2) 2sin x ; (3) 2x x -e ; (4) 211x -; (5)πcos()4x -. 解:(1)2201cos 11cos (1)2222(2)!n n n x x x n ∞=+==+-∑ (2)2101sin (1) ()2(21)!2n n n x x x n +∞=⎛⎫=--∞<<+∞ ⎪+⎝⎭∑ (3)22210011e ()(1) ()!!x n n n n n x x x x x n n ∞∞-+===-=--∞<+∞∑∑ (4)211111211x x x ⎡⎤=+⎢⎥--+⎣⎦(5)πππcos cos cos sin sin 444x x x ⎛⎫-=+ ⎪⎝⎭ 2. 将下列函数在指定点处展开成幂级数,并求其收敛区间: (1)x -31,在x 0=1; (2) cos x,在x 0=3π; (3) 3412++x x ,在x 0=1; (4) 21x, 在x 0=3. 解:(1)因为11113212x x =⋅---,而 0111 (||112212nn x x x ∞=--⎛⎫=< ⎪-⎝⎭-∑即13x -<<). 所以100111(1) (13)3222nnn n n x x x x ∞∞+==--⎛⎫=⋅=-<< ⎪-⎝⎭∑∑. 收敛区间为:(-1,3).(2)πππ2π2cos cos ()cos cos()sin sin()333333x x x x ⎡⎤=+-=---⎢⎥⎣⎦ 收敛区间为(,)-∞+∞.(3)211111111()1143213481124x x x x x x =-=⋅-⋅--++++++ 由112x -<且114x -<得13x -<<,故收敛区间为(-1,3) (4)因为011113(1)()333313n n n x x x ∞=-=⋅=-⋅-+∑ 而21011(3)(1)3n n n n x x x ∞+=''⎡⎤-⎛⎫=-=-- ⎪⎢⎥⎝⎭⎣⎦∑ 由313x -<得06x <<. 故收敛区间为(0,6).。

微积分二课后题答案

微积分二课后题答案

第五章习题5-11.求下列不定积分:125)x -d x ; 2 2⎰x ; 3 3e x x ⎰d x ; 4 2cos2x⎰d x ; 5 23523x x x⋅-⋅⎰d x ; 6 22cos 2d cos sin x x x x ⎰.解 5151732222222210(1)5)(5)573d d d d x x x x x x x x x x C -=-=-=-+⎰⎰⎰2. 解答下列各题:1 一平面曲线经过点1,0,且曲线上任一点x ,y 处的切线斜率为2x -2,求该曲线方程;2 设sin x 为fx 的一个原函数,求()f x '⎰d x ;3 已知fx 的导数是sin x ,求fx 的一个原函数;4 某商品的需求量Q 是价格P 的函数,该商品的最大需求量为1000即P=0时,Q =1000,已知需求量的变化率边际需求为Q ′P =-10001()3Pln3,求需求量与价格的函数关系. 解 1设所求曲线方程为y =fx ,由题设有f′x =2x -2,又曲线过点1,0,故f 1=0代入上式有1-2+C =0得C =1,所以,所求曲线方程为2()21f x x x =-+.2由题意有(sin )()x f x '=,即()cos f x x =, 故 ()sin f x x '=-, 所以()sin sin cos d d d f x x x x x x x C '=-=-=+⎰⎰⎰.3由题意有()sin f x x '=,则1()sin cos d f x x x x C ==-+⎰于是12()(cos )sin d d f x x x C x x C x C=-+=-++⎰⎰.其中12,C C 为任意常数,取120C C ==,得()f x 的一个原函数为sin x -. 注意 此题答案不唯一.如若取121,0C C ==得()f x 的一个原函数为sin x x --. 4由1()1000()ln 33PQ P '=-得 将P =0时,Q =1000代入上式得C =0所以需求量与价格的函数关系是1()1000()3P Q P =.习题5-21.在下列各式等号右端的空白处填入适当的系数,使等式成立: 1 d x = d ax +ba ≠0; 2 d x = d7x -3; 3 x d x = d52x ; 4 x d x = d1-2x ; 5 3x d x = d3x 4-2; 6 2e x d x = d 2e x; 7 2ex -d x = d1+2ex -; 8d xx= d5ln |x |;= d1-arcsin x = d112d 19x x += darctan3x ; 12 2d 12xx += darctan x ;13 32x -2d x = d2x -3x ; 14 cos 23x -1d x = dsin 23x -1.解 1(1)()(0)()d d d d ax b a x a x ax b a+=≠∴=+2.求下列不定积分:1 5e d t t ⎰;2 3(32)x -⎰d x ;3d12xx -⎰; 45t ; 6 d ln ln ln x x x x ⎰; 7 102tan sec d x x x ⎰; 8 2ed x x x -⎰;9dsin cos x x x ⎰; 10 ⎰; 11de e x xx-+⎰; 12 x ; 13 343d 1x x x -⎰; 14 3sin d cos x x x ⎰; 15x ⎰; 16 32d 9x x x +⎰; 172d 21xx -⎰; 18 d (1)(2)x x x +-⎰; 19 2cos ()d t t ωϕ+⎰; 20 2cos ()sin()d t t t ωϕωϕ++⎰;21 sin2cos3d x x x ⎰; 22 cos cosd 2x x x ⎰; 23 sin5sin 7d x x x ⎰; 24 3tan sec d x x x ⎰;25x ; 26 ;27ln tan d cos sin xx x x⎰; 28 21ln d (ln )x x x x +⎰; 292,0x a >; 30 ⎰31x⎰; 32 ;33⎰; 34,0x a >⎰; 352d x x ⎰; 36 2d x x⎰; 372sec ()d 1tan x x x+⎰; 38 (1)d (1e )x x x x x ++⎰提示:令xt e =. 解 5555111(1)5(5)555e d e d e d e tt t tt t t C =⋅==+⎰⎰⎰ 利用教材§例16及公式20可得:原式=22211arcsin arcsin arcsin 2222x a x a x a C C a a a --=-. 30令tan ,(,)22ππx t t =∈-,则2sec d d x t t =. 所以2sec cos sin sec d d d d tt t t t t C t ====+⎰⎰tan ,sin 原式x t t C =∴=∴=.31令3sec ,(0,)2πx t t =∈,可求得被积函数在x >3上的不定积分,此时 故223tan 3sec tan 3tan 3(sec 1)3sec d d d d tx t t t t t t t x t=⋅⋅==-⎰⎰⎰⎰ 3tan 3t t C =-+.由3sec ,(0,)2πx t t =∈得tan t =,又由3sec x t =得33sec ,cos ,arccos 3x tt t x x===, 又令x =3sec t ,类似地可得被积函数在x <-3上的不定积分. 综上所述有33arccos d x C x x=+⎰. 32令sin ,(,)22ππx t t =∈-,则cos d d x t t =. 33令sin ,(,)22ππx t t =∈-,则cos ,d d x t t =3421(2d d x a x x a =+=⎰arcsin xa C a=⋅. 35令2sin ,(,),2cos 22ππd d x t t x t t =∈-=,所以2222cos 2cos cot csc 4sin d d d d tx t t t t t t t t=⋅==-⎰⎰⎰⎰⎰cot arcsin 2x t t C C x =--+=--+.3622d d x x x x ==+⎰⎰ 由被积函数知x ≤-2或x >0,令1x t=, 当x >0时,此时t >0 当x ≤-2时,此时102t -≤<综上所述:原式= ln1C x -++. 37 2222sec sec 11()(1tan )1tan (1tan )(1tan )1tan d d d x x x x x C x x x x==+=-+++++⎰⎰⎰. 38令e x=t ,则x =ln t ,d x =1td t .习题5-31.求下列不定积分:1 sin d x x x ⎰;2 e d xx x -⎰; 3 arcsin d x x ⎰; 4 e cos d xx x -⎰;5 2esin d 2xxx -⎰; 6 2tan d x x x ⎰;7 2e d t t t -⎰; 82(arcsin )d x x ⎰;9 2e sin d x x x ⎰; 10 x ⎰;11cos(ln )d x x ⎰; 122(1)sin 2d x x x -⎰;13ln(1)d x x x -⎰; 1422cosd 2x x x ⎰; 1532ln d xx x⎰; 16sin cos d x x x x ⎰;172cot csc d x x x x ⎰; 18 22(1)e d x x x x +⎰;191(ln ln )d ln x x x+⎰; 20e ln(1e )d x x x +⎰; 21 23sin d cos x x x ⎰; 22x ; 232e d (1)x x x x +⎰; 24arctan 322e d (1)xx x x +⎰. 解 (1)sin cos cos cos cos sin d d d x x x x x x x x x x x x C =-=-+=-++⎰⎰⎰而cos 2cos 2cos 22sin 2cos 22sin 2e d de e e d e de x x x x x xx x x x x x x x ==+=+⎰⎰⎰⎰10t =,则32,3d d x t x t t ==11令ln x =t ,则,e d e d ttx x t ==,于是 213sin 2tan sec ln sec tan cos d xx x x C x x x =-++⎰, 所以 23sin 11tan sec ln sec tan cos 22d x x x x C x x x =-++⎰.22211(22)ln(()211121ln(12(1)2d d d x x xx x x x =-+=++++=-++⎰⎰令x =tan t , (,)22ππt ∈-,则d x =sec 2t d t∴原式C +.于是arctan arctan 13222(1)e e d x xx x C x =++⎰,所以arctan arctan 322(1)e e d x x x x C x =+⎰.习题5-4求下列不定积分:1 21d 1x x +⎰; 2 5438d x x x x x +--⎰; 3sin d 1sin x x x +⎰; 4 cot d sin cos 1xx x x ++⎰.解 1令322111(1)(1)11A Bx C x x x x x x x +==+++-++-+ 则 2331()()()11A B x B C A x A C x x +++-++=++ 从而 001A B B C A A C +=⎧⎪+-=⎨⎪+=⎩ 解得 131323A B C ⎧=⎪⎪⎪=-⎨⎪⎪=⎪⎩于是注 本题亦可用万能代换法4令tan 2xt =,则 则。

《微积分》课后答案(复旦大学出版社(曹定华_李建平_毛志强_著))第四章

《微积分》课后答案(复旦大学出版社(曹定华_李建平_毛志强_著))第四章

f (0) 0 ,依题意知 f ( x0 ) 0 .即有 f (0) f ( x0 ) .由罗尓定理,至少存在一点 (0, x0 ) ,使
得 f ( ) 0 成立,即
a0 n n 1 a1 (n 1) n 2 … an 1 0
成立,这就说明 是方程 a0 nx n 1 a1 (n 1) x n 2 an 1 0 的一个小于 x0 的正根. 7. 设 f(a) = f(c) = f(b),且 a<c<b, f ″(x)在 [a,b] 上存在, 证明在(a,b)内至少存在一点ξ, 使 f ″(ξ) = 0. 证: 显 然 f ( x ) 分 别 在 a , c 和 c, b 上 满 足 罗 尓 定 理 的 条 件 , 从 而 至 少 存 在
x x x
由 e 在 , 上连续,可导, f ( x) 在 a, b 上连续,在 a, b 内可导,知 F ( x) 在 a, b 上连
x
续,在 a, b 内可导,而且 F ( a ) e f ( a ) 0, F (b) e f (b) 0, 即F ( a ) F (b) ,
(4) lim
(a x) x a x ,(a>0); x 0 x2
(6) lim sin x ln x ;
x 0
1 ln(1 ) x ; (7) lim x arc cot x
(9) lim(1 sin x) x ;
x 0
1
(8) lim(
x 0
ex 1 ); x ex 1
x 0

f ( x) 在 0,π 上不连续,
显 然 f ( x) 在
0, π

经济数学基础 微积分 第二章习题解答

经济数学基础      微积分    第二章习题解答

1 ex x0 15.设有函数f ( x) a x x 0
解: e 0 lim
x 0 1 x x 0
问常数a为何值时, f ( x)存在? lim
x0
lim (a x) a
当a 0时, f ( x)存在. lim
x0
16.求下列极限: tan 2 x 2 arctan 5 x 3x sin 3 x (2) lim (3) lim 5 (1) lim lim 6 x 0 sin 5 x x 0 arcsin x x 0 x 0 x x 5 sin 2 2 1 x2 sin x2 (5) lim 1 lim 4 x 1 x 0 (4) lim x sin lim 2 x x 0 x 2 sin ( ) x ( ) x x 1 2 2 x tan 2 x sin x tan 2 x sin x 2 1 1 (6) lim lim lim x 0 x 0 x 0 x x x
e 4
x x x 1 2 3 lim (17 ) lim ln(1 x x x ) x 0 x 0 x x
2
3
1
1
1 n 2 n 3 n n n n n n (18) lim(1 2 3 4 ) lim 4 [1 ( ) ( ) ( ) ] 4 x x 4 4 4 17.求下列极限:
x 1 x 1
1 或 lim 2 0 n x
y
解:lim f ( x) lim f ( x) 2 f (1)
x 2是第一类可去间断点
0
x
若f (1) 2, 则为连续 .
(2) x 0第二类无穷间断点 (3) x 0第一类跳跃间断点 (4) x 0第一类可去间断点 x 1第二类无穷间断点 (5) x 0第一类跳跃间断点 (6) x 0第一类可去间断点

《微积分》课后答案(复旦大学出版社(曹定华_李建平_毛志强_著))第三章

《微积分》课后答案(复旦大学出版社(曹定华_李建平_毛志强_著))第三章

第三章习题3-11.设s =12gt 2,求2d d t s t =.解:22221214()(2)2lim lim 22t t t g g ds s t s dt t t t →→=-⨯-==--21lim (2)22t g t g →=+=2.设f (x )=1x,求f '(x 0)(x 0≠0).解:1211()()()f x x x x--'''===00201()(0)f x x x '=-≠3.试求过点(3,8)且与曲线2y x =相切的直线方程。

解:设切点为00(,)x y ,则切线的斜率为002x x y x ='=,切线方程为0002()y y x x x -=-。

由已知直线过点(3,8),得00082(3)y x x -=-(1)又点00(,)x y 在曲线2y x =上,故200y x =(2)由(1),(2)式可解得002,4x y ==或004,16x y ==,故所求直线方程为44(2)y x -=-或168(4)y x -=-。

也即440x y --=或8160x y --=。

4.下列各题中均假定f ′(x 0)存在,按照导数定义观察下列极限,指出A 表示什么:(1)0limx ∆→00()()f x x f x x-∆-∆=A ;(2)f (x 0)=0,0limx x →0()f x x x-=A ;(3)0limh →00()()f x h f x h h+--=A .解:(1)0000000()()[()]()limlim ()x x f x x f x f x x f x f x xx →-→--+--'=-=-- 0()A f x '∴=-(2)000000()()()limlim ()x x x x f x f x f x f x x x x x →→-'=-=--- 0()A f x '∴=-(3)000()()limh f x h f x h h→+-- 00000[()()][()()]lim h f x h f x f x h f x h→+----=000000()()[()]()lim lim h h f x h f x f x h f x h h →-→+-+--=+-000()()2()f x f x f x '''=+=02()A f x '∴=5.求下列函数的导数:(1)y;(2)y;(3)y2.解:(1)12y x==11221()2y x x -''∴===(2)23y x-=225133322()33y x x x ----''∴==-=-=(3)2152362y x x xx-==15661()6y x x -''∴===6.讨论函数y在x =0点处的连续性和可导性.解:00(0)x f →==000()(0)0lim lim 0x x x f x f x x →→→--===∞-∴函数y =在0x =点处连续但不可导。

微积分(曹定华)(修订版)课后题答案第二章习题详解

微积分(曹定华)(修订版)课后题答案第二章习题详解

第二章习题2-11. 试利用本节定义5后面的注(3)证明:若lim n →∞x n =a ,则对任何自然数k ,有lim n →∞x n +k =a .证:由lim n n x a →∞=,知0ε∀>,1N ∃,当1n N >时,有n x a ε-<取1N N k =-,有0ε∀>,N ∃,设n N >时(此时1n k N +>)有n k x a ε+-<由数列极限的定义得 lim n k x x a +→∞=.2. 试利用不等式A B A B -≤-说明:若li m n →∞x n =a ,则lim n →∞∣x n ∣=|a|.考察数列x n =(-1)n ,说明上述结论反之不成立.证:lim 0,,.使当时,有n x n x aN n N x a εε→∞=∴∀>∃>-<而 n n x a x a -≤- 于是0ε∀>,,使当时,有N n N ∃>n n x a x a ε-≤-< 即 n x a ε-<由数列极限的定义得 lim n n x a →∞=考察数列 (1)nn x =-,知lim n n x →∞不存在,而1n x =,lim 1n n x →∞=,所以前面所证结论反之不成立。

3. 利用夹逼定理证明:(1) lim n →∞222111(1)(2)n n n ⎛⎫+++ ⎪+⎝⎭=0; (2) lim n →∞2!nn =0.证:(1)因为222222111112(1)(2)n n nn n n n n nn++≤+++≤≤=+而且 21lim0n n →∞=,2lim 0n n→∞=, 所以由夹逼定理,得222111lim 0(1)(2)n n n n →∞⎛⎫+++= ⎪+⎝⎭. (2)因为22222240!1231n n n n n<=<-,而且4lim 0n n →∞=,所以,由夹逼定理得2lim 0!nn n →∞= 4. 利用单调有界数列收敛准则证明下列数列的极限存在. (1) x n =11ne +,n =1,2,…;(2) x 1,x n +1n =1,2,…. 证:(1)略。

《微积分》上册部分课后习题答案

《微积分》上册部分课后习题答案

微积分上册 一元函数微积分与无穷级数第2章 极限与连续2.1 数列的极限1.对于数列n x ,若a x k →2(∞→k ),a x k →+12(∞→k ),证明:a x n → (∞→n ). 证. 0>∀ε, a x k →2 (∞→k ), Z K ∈∃∴1, 只要122K k >, 就有ε<-a x k 2; 又因a x k →+12(∞→k ), Z K ∈∃∴2, 只要12122+>+K k , 就有ε<-+a x k 12. 取{}12,2m ax 21+=K K N , 只要N n >, 就有ε<-a x n , 因此有a x n → (∞→n ). 2.若a x n n =∞→lim ,证明||||lim a x n n =∞→,并举反例说明反之不一定成立.证明: a x n n =∞→lim ,由定义有:N ∃>∀,0ε,当N n >时恒有ε<-||a x n又 ε<-≤-||||||a x a x n n对上述同样的ε和N ,当N n >时,都有ε<-||||a x n 成立 ∴ ||||lim a x n n =∞→反之,不一定成立.如取 ,2,1,)1(=-=n x nn显然 1||lim =∞→n n x ,但n n x ∞→lim 不存在.2.2 函数的极限1. 用极限定义证明:函数()x f 当0x x →时极限存在的充要条件是左、右极限各自存在且相等.证: 必要性. 若()A x f x x =→0lim , 0>∀ε, 0>∃δ, 当δ<-<00x x 时, 就有()ε<-A x f . 因而, 当δ<-<00x x 时, 有()ε<-A x f , 所以()A x f x x =+→0lim ; 同时当δ<-<x x 00时, 有()ε<-A x f , 所以()A x f x x =-→0lim .充分性. 若()A x f x x =+→0lim ,()A x f x x =-→0lim . 0>∀ε, 01>∃δ, 当100δ<-<x x 时, 就有()ε<-A x f , 也02>∃δ, 当200δ<-<x x 时, 有()ε<-A x f . 取{}21,m in δδδ=,则当δ<-<00x x 时, 就有()ε<-A x f . 所以()A x f x x =→0lim .2.写出下列极限的精确定义:(1)A x f x x =+→)(lim 0,(2)A x f x =-∞→)(lim ,(3)+∞=+→)(lim 0x f x x ,(4)-∞=+∞→)(lim x f x ,(5)A x f x =+∞→)(lim .解:(1)设R x U f →)(:0是一个函数,如果存在一个常数R A ∈,满足关系:0,0>∃>∀δε,使得当δ<-<00x x 时,恒有ε<-|)(|A x f ,则称A 是)(x f 当+→0x x 时的极限,记作A x f x x =+→)(lim 0或 )()(0+→=x x A x f . (2)设R f D f →)(:是一函数,其中0,),,()(>>--∞⊃αααR f D .若存在常数R A ∈,满足关系:0)(,0>∈∃>∀R X ε,使得当X x -<时,恒有ε<-|)(|A x f 成立,则称A 是)(x f 当-∞→x 时的极限,记作:A x f x =-∞→)(lim 或 A x f =)()(-∞→x .(3)设R x U f →)(:0是任一函数,若0>∀M ,0>∃δ,使得当δ<-<00x x 时,恒有M x f >)(,则称当+→0x x 时)(x f 的极限为正无穷大,记作+∞=+→)(lim 0x f x x 或 +∞=)(x f )(0+→x x . (4)设R f D f →)(:是一函数,其中R f D ∈>+∞⊃ααα,0),,()(,若存在常数R A ∈,满足关系:0>∀M ,0)(>∈∃R X ,使得当X x >时,恒有M x f -<)(则称当+∞→x 时)(x f 的极限为负无穷大,记作:-∞=+∞→)(lim x f x 或 -∞=)(x f )(+∞→x .(5)设R f D f →)(:是一函数,其中R f D ∈>+∞⊃ααα,0),,()(,若存在常数R A ∈,满足关系:0,0>∃>∀X ε,使得当X x >时,恒有ε<-|)(|A x f 成立,则称A是)(x f 当+∞→x 时的极限,记作:A x f x =+∞→)(lim 或 A x f =)()(+∞→x .2.3 极限的运算法则1.求∑=∞→+⋯++Nn N n 1211lim. 解. ()()⎪⎭⎫ ⎝⎛+-=+=+=+⋯++111212211211n n n n n n n⎪⎭⎫ ⎝⎛+-=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+-++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=+⋯++∑=1112111312121122111N N N n Nn 21112lim 211lim1=⎪⎭⎫ ⎝⎛+-=+⋯++∴∞→=∞→∑N nN Nn N 2.求xe e xxx 1arctan11lim110-+→. 解. +∞=+→x x e 10lim , 0lim 10=-→xx e,,21arctan lim 11lim 1arctan11lim 0110110π=-+=-++++→--→→x ee x e e x xxx xxx ,21arctan lim 11lim 1arctan11lim 0110110π=-+=-+---→→→x e e x e e x x xx x x x 21arctan 11lim 110π=-+∴→x e e x xx3.设)(lim 1x f x →存在,)(lim 2)(12x f x x x f x →+=,求)(x f . 解:设 )(lim 1x f x →=A ,则A x x x f ⋅+=2)(2再求极限:A A A x x x f x x =+=⋅+=→→21)2(lim )(lim 211⇒ 1-=A∴ x x xA x x f 22)(22-=+=.4.确定a ,b ,c ,使 0)1(3)1()1(lim 2221=-+-+-+-→x x c x b x a x 成立.解:依题意,所给函数极限存在且 0)1(lim 21=-→x x∴ 0]3)1()1([lim 221=+-+-+-→x c x b x a x ⇒ 2=c∴ 上式左边=])32)(1(11[lim ))1(321(lim 21221++-+--+=-+-+-+→→x x x x b a x x x b a x x])32)(1(1)32([lim 221++---+++=→x x x x b a x同理有 0]1)32([lim 21=--++→x x b x ⇒ 21=b ∴ 163)23)(1(8)1(3lim )32)(1(1)32(21lim221221=++---=++---++-=→→x x x x x x xx a x x 故 2,21,163===c b a 为所求.2.4 极限存在准则1. 设1x =10,n n x x +=+61,( ,2,1=n ).试证数列{n x }的极限存在,并求此极限. 证: 由101=x , 4612=+=x x , 知21x x >. 假设1+>k k x x , 则有21166+++=+>+=k k k k x x x x . 由数学归纳法知, 对一切正整数n , 有1+>n n x x ,即数列{n x }单调减少. 又显然, () ,2,10=>n x n , 即{n x }有界. 故n n x ∞→lim 存在.令a x n n =∞→lim , 对n n x x +=+61两边取极限得a a +=6, 从而有062=--a a ,,3=∴a 或2-=a , 但0,0≥∴>a x n , 故3lim =∞→n n x2.证明数列 nn n x x x x ++=<<+3)1(3,3011收敛,并求其极限.证明:利用准则II ,单调有界必有极限来证明.∴301<<x ,由递推公式33312131213213)1(30111112=++<++=++=++=<x x x x x x∴ 302<<x 同理可证:30<<n x 有界又 03)3)(3(333)1(311112111112>++-=+-=-++=-x x x x x x x x x x∴ 12x x > 同理 23x x > ,… ,1->n n x x ∴数列 }{n x 单调递增,由准则II n n x ∞→lim 存在,设为A ,由递推公式有:AA A ++=3)1(3 ⇒ 3±=A (舍去负数)∴ 3lim =∞→n n x .3.设}{n x 为一单调增加的数列,若它有一个子列收敛于a ,证明a x n n =∞→lim .证明:设}{k n x 为}{n x 的一子列,则}{k n x 也为一单调增加的数列,且a x k k n n =∞→lim对于1=ε,N ∃,当N n >时有1||<-a x k n 从而||1||||||||a a a x a a x x k k k n n n +<+-≤+-=取|}|1|,|,|,max {|1a x x M N n n += ,对一切k n 都有 M x k n ≤|| 有界.由子列有界,且原数列}{n x 又为一单调增加的数列,所以,对一切n 有M x n ≤||有界,由准则II ,数列}{n x 极限存在且a x n n =∞→lim .2.5 两个重要极限1. 求]cos 1[cos lim n n n -++∞→.解: 原式 =21sin 21sin2lim nn n n n -+++-+∞→⎪⎪⎭⎫⎝⎛++=-+=-+-+-+++-=+∞→n n n n n n nn nn nn n 1110212121sin21sin2lim 2. 求)1sin(lim 2++∞→n n π.解. 原式=()()n nn n n nn n -+-=-+++∞→+∞→1sin 1lim )1sin(lim 22ππππ()()()()0111sin 1lim 222=-+⋅-+-+-=+∞→n nn n nnnn πππ3. 求x x xx )1cos 1(sinlim +∞→. 解. 原式=()[]()e t t t tttt tt xt =⎥⎦⎤⎢⎣⎡+=+=→→=22sin 2sin 10212012sin 1lim cos sin lim 令4. 设 ⎩⎨⎧+-=32)cos 1(2)(x x x x f 00≥<x x 求 20)(lim x x f x →. 解: 1lim )(lim 232020=+=++→→x x x x x f x x ,1)cos 1(2lim )(lim 2020=-=--→→x x x x f x x ∴ 1)(lim2=→xx f x .2.6 函数的连续性1. 研究函数()[]x x x g -=的连续性,并指出间断点类型. 解. n x =,Z n ∈ (整数集)为第一类 (跳跃) 间断点.2. 证明方程)0(03>=++p q px x 有且只有一个实根.证. 令()()()0,0,3>∞+<∞-++=f f q px x x f , 由零点定理, 至少存在一点ξ使得()0=ξf , 其唯一性, 易由()x f 的严格单调性可得.3.设⎪⎩⎪⎨⎧≤<-+>=-01),1ln(0 ,)(11x x x e x f x ,求)(x f 的间断点,并说明间断点的所属类型. 解. )(x f 在()()()+∞-,1,1,0,0,1内连续, ∞=-→+111lim x x e,0lim 111=-→-x x e, ()00=f , 因此,1=x 是)(x f 的第二类无穷间断点; (),lim lim 1110--→→==++e ex f x x x()()01ln lim lim 00=+=--→→x x f x x , 因此0=x 是)(x f 的第一类跳跃间断点.4.讨论nx nxn e e x x x f ++=∞→1lim )(2的连续性.解. ⎪⎩⎪⎨⎧<=>=++=∞→0,0,00,1lim)(22x x x x x e e x x x f nxnxn , 因此)(x f 在()()+∞∞-,0,0,内连续, 又()()00lim 0==→f x f x , ()x f ∴在()+∞∞-,上连续.5.设函数),()(+∞-∞在x f 内连续,且0)(lim=∞→xx f x ,证明至少存在一点ξ,使得0)(=+ξξf .证:令x x f x F +=)()(,则01]1)([lim )(lim>=+=∞→∞→x x f x x F x x ,从而0)(>xx F .由极限保号性定理可得,存在01>x 使0)(1>x F ;存在02<x 使0)(2<x F .)(x F 在],[12x x 上满足零点定理的条件,所以至少存在一点ξ使得0)(=ξF ,即0)(=+ξξf .6.讨论函数nnx x x x f 2211lim )(+-=∞→的连续性,若有间断点,判别其类型.解: ⎪⎩⎪⎨⎧-=101)(x f 1||1||1||>=<x x x ,显然 1±=x 是第一类跳跃间断点,除此之外均为连续区间.7.证明:方程)0,0(sin >>+=b a b x a x 至少有一个正根,且不超过b a +. 证明:设b x a x x f --=sin )(,考虑区间],0[b a +0)0(<-=b f ,0))sin(1()(≥+-=+b a a b a f ,当0))sin(1()(=+-=+b a a b a f 时,b a x +=是方程的根;当0))sin(1()(>+-=+b a a b a f 时,由零点定理,至少),0(b a +∈∃ξ使0)(=ξf ,即 0sin =--b a ξξ成立,故原方程至少有一个正根且不超过b a +.2.7 无穷小与无穷大、无穷小的比较1. 当0→x 时,下面等式成立吗?(1))()(32x o x o x =⋅;(2))()(2x o xx o =;(3) )()(2x o x o =. 解. (1)()()()002232→→=⋅x xx o x x o x , ()()()032→=⋅∴x x o x o x (2) ()()()0)(,00)()(2222→=∴→→=x x o x x o x x x o xxx o(3) ()2xx o不一定趋于零, )()(2x o x o =∴不一定成立(当0→x 时) 2. 当∞→x 时,若)11(12+=++x o c bx ax ,则求常数c b a ,,.解. 因为当∞→x 时,若)11(12+=++x o c bx ax , 所以01lim 111lim 22=+++=++++∞→+∞→c bx ax x x c bx ax x x , 故c b a ,,0≠任意.3.写出0→x 时,无穷小量3x x +的等价无穷小量.解: 11lim 1lim lim303630=+=+=+→→→x xx xxx x x x∴ 当0→x ,3x x +~6x第3章 导数与微分3.1 导数概念1. 设函数)(x f 在0x 处可导,求下列极限值. (1)hh x f h x f h )3()2(lim000--+→;(2)000)()(lim 0x x x xf x f x x x --→.解.(1) 原式()()()000000533)3(22)2(lim x f h x f h x f h x f h x f h '=⎥⎦⎤⎢⎣⎡⋅---+⋅-+=→(2) 原式()[]()()()()00000000)(limx f x f x x x x x x f x f x f x x x -'=----=→2.设函数R f →+∞),0(:在1=x 处可导,且),0(,+∞∈∀y x 有)()()(y xf x yf xy f += 试证:函数f 在),0(+∞内可导,且)1()()(f xx f x f '+='. 解:令1==y x ,由()()()y xf x yf xy f +=有()()121f f =得()01=f .()+∞∈∀,0x ,()()()()()()()()()()xx f f x x f xx f x x f x x f x f x x x x xf x x f x x x f x x f x x f x f x x x x +'=+∆-⎪⎭⎫⎝⎛∆+=∆-⎪⎭⎫ ⎝⎛∆++⎪⎭⎫ ⎝⎛∆+=∆-⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∆+=∆-∆+='→∆→∆→∆→∆111lim 11lim 1lim lim 0000 故()x f 在()+∞,0内处处可导,且()()()xx f f x f +'='1. 3.设()f x 在(,)-∞+∞内有意义,且(0)0f =,(0)1f '=, 又121221()()()()()f x x f x x f x x ϕϕ+=+,其中22()cos xx x x e ϕ-=+, 求()f x '.解: ()()()()()()()()x x f x x f x x f x x f x x f x f x x ∆-∆+∆=∆-∆+='→∆→∆ϕϕ00lim lim()()()()()()()()()001lim 0lim 00ϕϕϕϕ'+'=∆-∆+∆-∆=→∆→∆x f x f xx x f x x f x f x x ()x e x x x 22cos -+==ϕ4.设函数0)(=x x f 在处可导,且21arctan lim )(0=-→x f x e x,求)0(f '.解:由已知,必有0]1[lim )(0=-→x f x e,从而0)(lim 0=→x f x ,而0)(=x x f 在连续,故0)0(=f .于是)0(1)0()(1lim )(lim 1arctan lim200)(0f xf x f x f x e x x x x f x '=-==-=→→→. 故21)0(='f .5.设)(x f 具有二阶导数,)(,sin )()2(lim )(2x dF t xx f t x f t x F t 求⎥⎦⎤⎢⎣⎡-+=∞→.解: 令t h 1=,则)(2 sin )()2(lim)(0x f x hhxh x f h x f x F t '=⋅-+=→.从而)(2)(2)(x f x x f x F ''+'=',dx x f x x f dx x F x dF )]()([2)()(''+'='=.6.设f 是对任意实数y x ,满足方程 22)()()(xy y x y f x f x f +++= 的函数,又假设1)(lim=→xx f x ,求:(1))0(f ;(2))0(f '; (3))(x f '. 解:(1)依题意 R y x ∈∀,,等式 22)()()(xy y x y f x f y x f +++=+ 成立令0==y x 有 )0(2)0(f f = ⇒ 0)0(=f(2)又 1)(lim=→x x f x ,即 )0(10)0()(lim 0f x f x f x '==--→,∴ 1)0(='f(3)xx f x x f x f x ∆-∆+='→∆)()(lim )(0x x f x x x x x f x f x ∆-∆⋅+∆⋅+∆+=→∆)()()()(lim 220 x x x x x x f x ∆∆⋅+∆⋅+∆=→∆220)()(lim ])([lim 20x x x xx f x ∆⋅++∆∆=→∆ ]1)0(22x x f +=+'=∴ 21)(x x f +='.7.设曲线)(x f y =在原点与x y sin =相切,试求极限 )2(lim 21nf nn ∞→. 解:依题意有 1)0()0(='='f y 且0)0(=f∴ 222)0()2(lim )2(lim 2121=⋅-⋅=⋅∞→∞→n nf n f n nf n n n .8.设函数)(x f 在0=x 处可导且0)0(,0)0(='≠f f ,证明1])0()1([lim =∞→nn f n f .证:n n n n f f n f f n f ])0()0()1(1[lim ])0()1([lim -+=∞→∞→.=10)0(11)0()01(lim )0()0()1(lim ===⋅-+-∞→∞→e ee f nf n f f f n f n n n .1.计算函数baxax xb ab y )()()(= (0,0>>b a )的导数.解. a xb bx a b a x xb a b a a x b a x a b x b x b a a x x b a b a b y )(1)()()()(ln )(121⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎪⎭⎫⎝⎛+='-- ⎥⎦⎤⎢⎣⎡+-=x b x a a b a x x b a b b a x ln )()()( 2.引入中间变量,1)(2x x u +=计算1111ln 411arctan 21222-+++++=x x x y 的导数dx dy .解. 引入,1)(2x x u += 得11ln 41arctan 21-++=u u u y ,于是dxdudu dy dx dy ⋅=, 又 ()()4242422111111111141121x x x u u u u du dy +-=+-=-=⎪⎭⎫ ⎝⎛--+++=,21xx dx du +=, 则()22242121121xx x x x x x dx dy ++-=+⋅⎪⎭⎫⎝⎛+-= 3.设y y x +=2,232)(x x u +=,求dudy. 解. dudxdx dy du dy ⋅= , 又()()1223,12212++=+=x x x dx du y dy dx ,得121+=y dx dy , ()x x x du dx ++=21232, 则得()()xx x y du dy +++=2121232 4.已知 2arctan )(),2323(x x f x x f y ='+-=,求=x dx dy .解:22)23(12)2323arctan()2323()2323(+⋅+-='+-⋅+-'='x x x x x x x f y π43)23(12)2323arctan(02200=+⋅+-='=∴===x x x x x x y dxdy .1. 计算下列各函数的n 阶导数. (1) 6512-+=x x y ; (2) x e y xcos =. 解 (1)⎪⎭⎫⎝⎛+--=611171x x y ,()()()()()()⎥⎦⎤⎢⎣⎡+---=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+-⎪⎭⎫⎝⎛-=∴++1161117!1611171n n nn n n x x n x x y (2) ()⎪⎭⎫ ⎝⎛+=⎥⎦⎤⎢⎣⎡-=-='4cos 2sin 21cos 212sin cos πx e x x e x x e y x x x()⎪⎭⎫ ⎝⎛⋅+=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+=''42cos 24sin 4cos 22πππx ex x e y xx由此推得 ()()⎪⎭⎫ ⎝⎛⋅+=4cos 2πn x eyxnn2. 设x x y 2sin 2=, 求()50y .解 ()()()()()()()()()()"+'+=248250249150250502sin 2sin 2sin x x C x x C x x y⎪⎭⎫ ⎝⎛⋅+⋅⨯+⎪⎭⎫ ⎝⎛⋅+⋅+⎪⎭⎫ ⎝⎛⋅+=2482sin 2249502492sin 2502502sin 24950250πππx x x x xx x x x x 2sin 212252cos 2502sin 24950250⋅+⋅+-= ()[]x x x x 2cos 1002sin 212252249+-=3. 试从y dy dx '=1, 0≠'y , 其中y 三阶可导, 导出()322y y dy x d '''-=, ()()52333y y y y dy x d '''''-''= 解 y dy dx '=1 ,()()322211y y y y y dy dx y dx d dyx d '''-='⋅'-''=⋅⎪⎪⎭⎫ ⎝⎛'=∴ ()()()()()()52623333313y y y y y y y y y y y dy dx y y dx d dy x d '''''-''='⋅'''⋅'⋅''+''''-=⋅⎪⎪⎭⎫ ⎝⎛'''-=∴ 4. 设()x f 满足()()0 312≠=⎪⎭⎫⎝⎛+x xx f x f , 求()()()()x f x f x f n ,,'.解 以x 1代x ,原方程为()x x f x f 321==⎪⎭⎫ ⎝⎛,由()()⎪⎪⎩⎪⎪⎨⎧=+⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛+x x f x f x x f x f 321 312,消去⎪⎭⎫⎝⎛x f 1,求得()x x x f 12-=,且得()212xx f +=',()()()()2!111≥-=++n x n x f n n n . 5.设()arcsin f x x =,试证明()f x 满足 (1)2(1)()()0x f x xf x '''--= (2) ,1,0,0)()()12()()1()(2)1()2(2==-+--++n x f n x xf n x f x n n n(3)求()(0)n f解 (1)()211x x f -=',()()()22221112211xx xx x x x f --=-⋅--='', ()()()012='-''-∴x f x x f x ,(2)上式两边对x 求n 阶导数得()()[]()()[]()()()()()()()()()()()()()()()[]x f n x xf x f n n x f x n x f x x f x x f x n n n n n nn⋅⋅+-⋅-⋅---+-='-''-=+++1221211021222即 ()()()()()()()()01212122=-+--++x f nx xf n x f xn n n 。

微积分(曹定华)(修订版)课后题答案第二章习题详解

微积分(曹定华)(修订版)课后题答案第二章习题详解

微积分(曹定华)(修订版)课后题答案第二章习题详解本文将详细解答曹定华《微积分》修订版第二章的课后习题。

第二章主要涉及导数的基本概念和基本公式,包括导数定义、可导性、导数计算公式等。

本章共计43道习题,以下将一一解答。

2.1 导数的定义及其物理隐含义习题2.11. 求函数f(x)=3x2+2的导数。

根据导数公式,对于幂函数y=xn,其导数为y’=nxn-1。

因此,对于本题中的函数f(x)=3x2+2,其导数为f’(x)=6x。

2. 求函数f(x)=x3-5x+1在x=2处的导数。

同样地,根据导数公式,对于幂函数y=xn,其导数为y’=nxn-1。

因此,对于本题中的函数f(x)=x3-5x+1,其导数为f’(x)=3x2-5。

将x=2代入,则得到f’(2)=3*(22)-5=7。

习题2.21. 用导数的定义证明函数f(x)=2x在任意一点处的导数为2。

根据导数的定义,对于函数f(x)在x=a处的导数,有f’(a)=lim(h->0) [(f(a+h)-f(a))/h]。

因此,代入本题中的函数f(x)=2x,得到f’(a)=lim(h->0) [(2(a+h)-2a)/h],化简可得f’(a)=2。

因此,函数f(x)=2x在任意一点处的导数均为2。

2. 求f(x)=x2+3x的可导性,并说明理由。

对于函数f(x)=x2+3x,在任意一点x处的导数为f’(x)=2x+3。

因此,对于任意值x,均存在导数f’(x)。

因此,函数f(x)在定义域内可导。

2.2 基本导数公式习题2.31. 求函数f(x)=sin(x)在x=π/6处的导数。

根据导数公式,对于正弦函数y=sin(x),其导数为y’=cos(x)。

因此,对于本题中的函数f(x)=sin(x),其导数为f’(x)=cos(x)。

将x=π/6代入,则得到f’(π/6)=cos(π/6)=√3/2。

2. 求函数f(x)=2x在x=0处的导数。

微积分(曹定华)(修订版)课后题答案第四章习题详解

微积分(曹定华)(修订版)课后题答案第四章习题详解

习题 4-11.验证函数f (x )=lnsin x 在[π5π,66]上满足罗尔定理的条件,并求出相应的ξ,使f ′(ξ)=0.解: 显然()ln sin f x x =在5π,66x ⎡⎤⎢⎥⎣⎦上连续,在π5π,66⎛⎫⎪⎝⎭内可导,且π5π()()ln 266f f ==-,满足罗尓定理的条件. 令cos ()cot 0sin xf x x x '===,则π2x =即存在ππ5π(,)66ξα=∈,使()0f ξ'=成立.2. 下列函数在指定区间上是否满足罗尔定理的三个条件?有没有满足定理结论中的ξ ?[][][]2(1)()1,;(2)(),;1,10,21sin ,0π(3)()0,π1,exf x f x x x x f x x =-=--<≤⎧=⎨=⎩解: (1) 2()1e x f x =-在[]1,1-上连续,在()1,1-内可导,且(1)1,(1)1,e e f f -=-=- 即 (1)(1)f f-= () f x ∴在[]1,1-上满足罗尓定理的三个条件. 令 2()20e x f x x '==得 0x =, 即存在0(1,1)ξ=∈-,使()0f ξ'=.(2) 101()1112xx f x x x x -≤<⎧==-⎨-≤≤⎩显然()f x 在(0,1),(1,2)内连续,又1111(10)lim ()lim (1)0,(10)lim ()lim (1)0,(10)(10)(1)0,即x x x x f f x x f f x x f f f --++→→→→-==-=+==-=-=+==所以()f x 在1x =处连续,而且22(00)lim ()lim (1)1(0),(20)lim ()lim (1)1(2),x x x x f f x x f f f x x f ++--→→→→+==-==-==-==即()f x 在0x =处右连续,在2x =处左连续,所以()f x 在[]0,2 上连续.又1111()(1)1(1)lim lim 1,11()(1)1(1)lim lim 111x x x x f x f x f x x f x f x f x x --++-→→+→→--'===-----'===--(1)(1)(f f f x -+''∴≠∴在1x =处不可导,从而()f x 在(0,2)内不可导. 又 (0)(2)1f f ==又由 101()112x f x x -<<⎧'=⎨<<⎩ 知 ()0f x '≠综上所述,函数()f x 满足罗尓定理的条件(1),(3)不满足条件(2),没有满足定理结论的ξ. (3) 由0(00)lim sin 0(0)1x f x f +→+==≠=知()f x 在0x =不右连续,() f x ∴在[]0,π上不连续,显然()f x 在()0,π上可导,又(0)1,(π)0f f ==,即(0)(π)f f ≠,且()cos (0,π) f x x x '=∈,取π(0,π)2ξ=∈,有π()cos cos02f ξξ'===.综上所述,函数()f x 满足罗尓定理的条件(2),不满足条件(1),(3),有满足定理结论的ξ,ξ=π2.3. 不用求出函数()(1)(2)(3)f x x x x =---的导数,说明方程()0f x '=有几个实根,并指出它们所在的区间.解: 显然()f x 在[]1,2上连续,在()1,2内可导,且(1)(2)0f f ==,由罗尓定理知,在()1,2内至少存在一点1ξ,使1()0f ξ'=,即()0f x '=在()1,2内至少有一个实根.同理 ()0f x '=在()2,3内也至少有一个实根2ξ.又()0f x '=是二次方程,最多有两个实根,故()0f x '=有两个实根,分别在区间()1,2和()2,3内.4. 验证拉格朗日中值定理对函数3()2f x x x =+在区间[0,1]上的正确性.解: 显然3()2f x x x =+在[0,1]上连续,在()0,1内可导,满足拉格朗日中值定理的条件.若令2(1)(0)()32310f f f x x-'=+==-则3x =±,取3ξ=,即存在(0,1)3ξ=,使得(1)(0)()10f f f ξ-=-成立.从而拉格朗日中值定理对函数3()2f x x x =+在[0,1]上成立.5※. 设()f x '在[a ,b ]上连续,在[a ,b ]内可导,f ′(a ) = 0,f ′′(x ) > 0,证明:f ′(a )> f (b )。

微分几何(第三版)第二章课后题答案[1]

微分几何(第三版)第二章课后题答案[1]

第二章曲面论§ 1曲面的概念1.求正螺面r ={ u cos v ,u sin v , bv }的坐标曲线.解u-曲线为r ={u cos v0,u sin v0,bv 0}= {0,0 , bv0} + u { cos v0, sinv0,0}, 为曲线的直母线;v-曲线为r ={ u0cos v , u0 sin v ,bv }为圆柱螺线.2 .证明双曲抛物面r ={ a (u+v) , b (u-v ) ,2uv }的坐标曲线就是它的直母线。

证u-曲线为r ={ a (u+v。

), b (u-v。

),2u v o}={ a v。

,b v。

,0}+ u{a,b,2 v。

} 表示过点{ a v。

,b v。

,。

}以{a,b,2 v。

}为方向向量的直线;v-曲线为「= {a ( u0 +v) , b ( u 0 -v ) ,2 u 0 v} = {a u。

,b u。

,。

} +v{a,-b,2 u。

} 表示过点(a u。

, b u。

,。

)以{a,-b,2 u。

}为方向向量的直线。

3.求球面r ={acos ;:sin「,a cos;: sin ;:, a si n二}上任意点的切平面和法线方程。

saa. n解r ={ -a sin 二cos「,-a sinsin ::,acos「:} , r .匸{-a cossin ::, a coscos 「,0}x - a cos、:cos「y - a cos 二sin「z - a sin 二任意点的切平面方程为- a sin 二cos ::「:-a sinsin「 a cos=0「a cos、:sin「 a cos、:cos「0即xcos :cos + ycos :sin + zsin 二-a = 0 ;x a cos、:cos「y a cos、:sin「z a sin 二。

cos 二cos「cossin「sin 二2 24.求椭圆柱面令斗=1在任意点的切平面方程,并证明沿每一条直母线,此 a b 曲面只有一个切平面。

微积分第二版习题二答案

微积分第二版习题二答案

微积分第二版习题二答案微积分是数学中的一门重要学科,它研究的是变化的规律和量的计算方法。

而微积分的学习过程中,习题是非常重要的一环。

本文将为大家提供《微积分第二版》习题二的详细答案,希望能帮助大家更好地掌握微积分的知识。

第一题:计算函数 f(x) = 3x^2 - 2x + 1 在 x = 2 处的导数。

解答:首先,我们需要求函数 f(x) 的导数。

对于多项式函数,我们可以使用求导法则来计算导数。

根据求导法则,我们有:f'(x) = d/dx (3x^2) - d/dx (2x) + d/dx (1)= 6x - 2将 x = 2 代入上式,我们得到:f'(2) = 6(2) - 2= 12 - 2= 10所以,函数 f(x) 在 x = 2 处的导数为 10。

第二题:计算函数 g(x) = e^x - x 在 x = 1 处的导数。

解答:函数 g(x) 包含了指数函数和多项式函数的运算。

对于指数函数 e^x,它的导数仍然是 e^x。

而对于多项式函数 -x,它的导数是 -1。

因此,我们可以得到函数 g(x) 的导数为:g'(x) = d/dx (e^x) - d/dx (x)= e^x - 1将 x = 1 代入上式,我们得到:g'(1) = e^1 - 1= e - 1所以,函数 g(x) 在 x = 1 处的导数为 e - 1。

第三题:计算函数 h(x) = ln(x^2 + 1) 在 x = 0 处的导数。

解答:函数 h(x) 是一个复合函数,它包含了对数函数和多项式函数的运算。

对于对数函数 ln(x),它的导数是 1/x。

而对于多项式函数 x^2 + 1,它的导数是 2x。

因此,我们可以得到函数 h(x) 的导数为:h'(x) = d/dx (ln(x^2 + 1))= 1/(x^2 + 1) * d/dx (x^2 + 1)= 2x/(x^2 + 1)将 x = 0 代入上式,我们得到:h'(0) = 2(0)/(0^2 + 1)= 0所以,函数 h(x) 在 x = 0 处的导数为 0。

微积分II课后答案详解

微积分II课后答案详解
x
2 4 4 4 = + + = )1,1,1( | z u + y u + x u ∴ 3 3 2 1
3
z + y + x +1 = zu z3
2 2
3
z + y + x +1 = yu y2
2
3
z + y + x +1 = x u �解 1
2
z
u + y u + x u求处� � 1 � 11 �点在 ,) 3 z + 2 y + x + 1(nl = u 设�3
z2
) yx (nl y 2 yx 2 y∂ = x. . 2 ]) yx (nl[ = 1 1 1− 1 z∂ ) yx (nl x 2 yx 2 x∂ = y . . 2 ]) yx (nl[ = �解 1 1 1− 1 z∂ y∂ x∂ , 求 , ) yx (nl = z ② z∂ z∂
2
yx 3 − 3 x =
�y + x � )y + x ( 2 )y + x ( y + x � x∂ y∂ y∂x∂ 2 � y∂ + + = = + = y x = ) ( n l ) ( y x−0 z∂ ∂ z2 ∂ 1 � x � ∂
)y + x ( 2 )y + x ( y + x x∂ y +x x∂ x∂ x∂ 2 = + =) + ) y + x (nl( = ) ( = 2 y2 + x x−y +x x ∂ z∂ ∂ z2 ∂ 1 y +x x∂ .x + ) y + x (nl = �解 z∂ 1 y∂x∂ 2 x∂ 求 ,) y + x (nl x = z ③ , ∂ z2 ∂

微积分第二章习题参考答案

微积分第二章习题参考答案

,
y
3 2(1)3 (t 2)4
3 2(1)3 (t 1)4
,
y(n)
n!(1)n (t 2)n1
n!(1)n (t 1)n1
n!(1)n ( (t
1 2)n1
(t
1 1)n1
).
四.求下列函数所指定阶的导娄数.
1. y sh , y(100) . y sh ch , y 2ch sh , y 3sh ch , y(4) 4ch sh,
五.(1)
1 dy dx d arctan y dx 1 y2 dy,
x0
x0
x
x
2时,f ( x)在x 0处连续.
六.
设f
(
x
)存在,
求下列函数y的二阶时数
d2y dx 2
.
(1) y f (e x ).
y e x f (e x ),
y e x f (e x ) e2x f (e x ),
(2) f ( x) 0, y ln f ( x).
y f ( x) . f (x)
2.当 1时,函数在x 0处可导,
当 1时,函数在x 0处不可导.
三.解. f (1) f (1 0) 1, f (1 0) a b,
b 1 a;

f(1)
lim
x10
x2 1 x1
2,
f
(1)
lim
x 1 0
(ax b) x1
1
(ax 1 a) 1
lim
a,
2. tan t ;
3. 2 ln(1 x) dx; 1 x
4. 8tan(1 2 x2 )sec2(1 2 x2 ) xdx;
(t )(1 t ) (t )

微积分上第二章习题参考答案

微积分上第二章习题参考答案
2 2 dy sin x 2. (1 x 2 )sin x 2 x[cos x 2 ln(1 x 2 ) ] ; 2 dx 1 x
微积分第二章习题参考答案
16
x e x sin e x cos 0 x 三.解: , 2 3 2 0 y
1 S | 2 x0 | | 2 y0 | 2a 2为常数,与切点无关. 2
微积分第二章习题参考答案 6
§2.2求导法则(21-22)
一.1. 2cos x sec x, 3cos x 2sec x; x e sin 2. cos e , ; 2x 1 e
2 2
x 2 x cos2 x sin2 x 1 2 3. , e ( cos3 x 3sin3 x ); 2 x 2
微积分第二章习题参考答案 26

(n)
2
n 1

2. y xe .
x x x x y e xe e ( x 1),
y e x ( x 1) e x e x ( x 2),
t2 2 t2
3. y
1 1 x
2
, y
x (1 x )
2 3 2
;
4. y ( n ) n ! 2n e 2 x 1 ;
5. y e (sin cos ) 2e sin(


4
);
微积分第二章习题参考答案

20
2 dy d y 2 2 2 2 6. 2tf ( t ) , 2 2 f ( t ) 4t f ( t ) ; dt dx
lim f (cos x )( sin x )
x 0

微积分II课程微积分2答案

微积分II课程微积分2答案

I 10.令 x = asect第四章 不定积分答案2 24. I = sin x sinxdx = - 1-cosxdcosx 、填空题 2.F x |亠 C 3.1 二-cosx — \ 3 1 31 3 cos x J ■ C cos x-cosx C3 3x C 5.4. -C In 2 」x 335.一丄Cxxe (e x ) +1dx 二一de _2 二 arctang XC ’1+(e x ) 6. 6e x C 7.-3sin x C I 二 t 2—1 t 2tdt =2 t 4 -t 2 dt8. 3x x arcta n x C 39.x r 2 C1-In 3x + 2x +C 2 1 2 10. In 2x C 2 -cos2x C 12. le 7x C7114. 丄 In 1+2x+C 2 13. 7. 令 t = 6x11.15.1—2x C 1 316. 「cosx cos x C 3 8. 17. e" 1 x C 18. 6"dt t 123t 2—6t +6ln t +1 +C1 13x^ -6x® +6 In x令 x= si nt3I =1 - sin 2t 2costdt - I i cost dt二、 单项选择题 1 . C 2 . A 3 . D 4 7 . D 8 . D 9 . 12.B 三、 计算题 1 .A10.A.B11.Bx二 sec 2 tdt 二 tant CCTT79 .令 x =ta ntseC tdt (1+tan 2t j2 .■sec 4-dt二 costdt sec t2 -.2 -x 2d 2 -x2 -x 2 C2. 1 x 2 = l n 1 x 2 C-exd ;1 111 cos2t dt t —sin2t C2 2 4 11 1x t sintcost C arctanx 2 C 2 2 21 x 23.1-e" C.a2 sect -1 asectantdt =a tarn tdtasec=a lise^t -1 dt =a tant -t Cf'-2—2 、x -a aarccos a x4C=Jx2 217. a-a -aarccos Cx2x 2 _xI = - x de = x e_ 2xe*dx-x2e» -2 xde^-x2e» -2xe" 2 e^dx_x2 _2x_2 e」C11. I =dx2、厂1_ 1 sect tant3 ta nt22令x^sect secttantdt 18.=1J322Jsec t -1dt^1sectdt31=Tn sect +tant 3 C = 】ln33x站4219.12.1 d 3x-1 _J(3X-12+6 3=]| n j9x2-6x+7+3x-1+C13. 2 2I =xln 1 X - xdln 1 x2 =xln 1 x2 =xln 1 x -x^dx;_2x 2arctanx C20.14.xde x = xe x - e x dx =xe x-e x C15.I = x arccosx - xd arccosxx arccosx dx1-x21「1 ,2 .= xarccosx-—J ;2d(1-x )21.16.x arccosx - 1 - x2 CI = lnxdl 」一hx ^dx — Sx」C x x x x x4 4二(ln x)2d£4(ln x)2-4 41 3x ln xdx = — (ln x)21 4| 1x ln x8 81 4 1 4--x ln x x C8 324x 2(ln x)44=—(ln x)24x4 (ln x)4=sin xde xx41(2ln x)—dx44 x4、4 1 .x dxx=e x sin x - e x cosxdx=e x sin x - cosxde xX ・x x .=e sin x -e cosx e dcosx= e x(sin x-cosx) - ' e x sin xdxe x sin xdx = - e x(sin x -cosx) C2I = sec x secxdx = secxd tan x=secxtanx- 'tanx tanx secxdx=secxtanx- '(sec x-1)secxdx=secxtan x- sef xdx亠i secxdx3=secxtanx- Jsec xdx + In secx +31[sec xdx = —(secxtanx + ln secx +2x-8 ln xdx4tanxtanx C令t=, xI二.eStdt = 2 tdd =2td -2 ddt= 2td -2& C =2 =e x-2e x C22. l=Jlnlnxdlnx =(lnlnx)nx —J Inxd(lnlnx) 21.=lnlnx lnx- lnx —-dxlnx x =lnlnx lnx-lnx C 23.24.F b —F a1e --e22.5ln623.d cos2x = 4 xcos2x sin2xC4 825.1 26. JI227. e-2 28.4 29. 2,3-2arctan f 3 - arctan f 124. l = ln xd3 1 3x lnx x ——■C3 9第五章定积分及其应用答案32.5633.e 34. _135.<36. 1 37. 38. 12 2 3兀 139. 一2 _2二单项选择题30.0 31.0、填空题[f (x pxb a4.2.03.5.负6.正7. l1>l28. 1. A 2 . D 3 . B 4 . C 5 . A 6 . C7. C 8 . B9 . A 10.C 11.C 12.D 13.C 14.C 15.B 16.C17.A 18.B 19.B 20.A 21.B22.C 23.B 24.A 25.C 26.A三、证明题1冃2 9. l1>l2 证:令u=a, b-a,则10.- 11. 12. baf x dx du 二b-a dx,所以13. 2xe x14. sin xb - a ] I f || a b - a x dx =1 1f u du = 0 f x dx-x sin3fi x 16.10,1 2x1 cos2 x215.2.证:令u)]17.1 18.fx3f (x2=x2,则du = 2xdx ,所以1 a2.d^=- 0 uf udu=? 0 1 a220xf x dx19. f 12f0=03 20. 3.证:令u -二-x,则du - -dx,则IT- -2:xf sinxdx 二:】灵-u f sin u du 二負「x f sinx dx 23x2sin 1 x3 31 u 2所以 o xf sinx dx 二 o 2xf sinx dx - xf sin0 0 5fnxdx 飞2x -3-2x x-1x-2 e , x 二 = 二 02xf sinx ck 02 二-x f sinxck v 02得fin^dx 一1:: 0, f 2 二 e* 0, e JI 4.证:x 4令,有。

《微积分》课后答案(复旦大学出版社(曹定华_李建平_毛志强_著))第7章

《微积分》课后答案(复旦大学出版社(曹定华_李建平_毛志强_著))第7章

M 3 (0, 0,5) ,则点 M (4, 3,5) 到 x 轴,y 轴,z 轴的距离分别为:
d x | MM 1 | (4 4) 2 (3 0) 2 (5 0) 2 34. d y | MM 2 | (4 0) 2 (3 3) 2 (5 0) 2 41. d z | MM 3 | (4 0) 2 (3 0) 2 (5 5) 2 5.
5. 在 yOz 面上,求与三个已知点 A(3,1,2),B(4,-2,2)和 C(0,5,1)等距离的点. 解:设所求点 P (0, b, c) ,则 | PA || PB || PC | 即 9 (b 1) (c 2) 16 (b 2) (c 2)
2 2 2 2
| AB || AC | ,且 | AB |2 | AC |2 | BC |2
所以 ABC 是等腰直角三角形. 习题 7-2 1.在平行四边形 ABCD 内,设 AB a , AD b ,M 为对角线的交点,试用向量 a 和 b 表示向量 MA, MB, MC 和 MD . 解: (如图) DC AB a, BC AD b,


2.试用向量证明:如果平面上一个四边形的对角线互相平分,则该四边形是平行 四边形. 证: (如上题图) ,依题意有 AM MC , DM MB. 于是 AB AM MB MC DM DC. 故 ABCD 是平行四边形. 3.已知向量 a=i-2j+3k 的始点为(1,3,-2),求向量 a 的终点坐标. 解:设 a 的终点坐标为( x, y, z ),则 源自
a ( x 1)i ( y 3) j ( z 2)k ,
而 a i 2 j 3k , 从而有
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章习题2-11、 试利用本节定义5后面的注(3)证明:若lim n →∞x n =a ,则对任何自然数k ,有lim n →∞x n +k =a 、证:由lim n n x a →∞=,知0ε∀>,1N ∃,当1n N >时,有n x a ε-<取1N N k =-,有0ε∀>,N ∃,设n N >时(此时1n k N +>)有n k x a ε+-<由数列极限的定义得 lim n k x x a +→∞=、2、 试利用不等式A B A B -≤-说明:若lim n →∞x n =a ,则lim n →∞∣x n ∣=|a|、考察数列x n =(-1)n ,说明上述结论反之不成立、证:lim 0,,.使当时,有n x n x aN n N x a εε→∞=∴∀>∃>-<Q而 n n x a x a -≤- 于就是0ε∀>,,使当时,有N n N ∃>n n x a x a ε-≤-< 即 n x a ε-<由数列极限的定义得 lim n n x a →∞=考察数列 (1)nn x =-,知lim n n x →∞不存在,而1n x =,lim 1n n x →∞=,所以前面所证结论反之不成立。

3、 利用夹逼定理证明:(1) lim n →∞222111(1)(2)n n n ⎛⎫+++ ⎪+⎝⎭L =0; (2) lim n →∞2!n n =0、 证:(1)因为222222111112(1)(2)n n n n n n n n n n++≤+++≤≤=+L 而且 21lim0n n →∞=,2lim 0n n→∞=, 所以由夹逼定理,得222111lim 0(1)(2)n n n n →∞⎛⎫+++= ⎪+⎝⎭L 、 (2)因为22222240!1231n n n n n<=<-g g g L g g ,而且4lim 0n n →∞=, 所以,由夹逼定理得2lim 0!nn n →∞= 4、 利用单调有界数列收敛准则证明下列数列的极限存在、 (1) x n =11ne +,n =1,2,…;(2) x 1,x n +1n =1,2,…、 证:(1)略。

(2)因为12x =,不妨设2k x <,则12k x +=<=故有对于任意正整数n ,有2n x <,即数列{}n x 有上界,又 1n n x x +-=,而0n x >,2n x <,所以 10n n x x +-> 即 1n n x x +>, 即数列就是单调递增数列。

综上所述,数列{}n x 就是单调递增有上界的数列,故其极限存在。

习题2-21※、 证明:0lim x x →f (x )=a 的充要条件就是f (x )在x 0处的左、右极限均存在且都等于a 、证:先证充分性:即证若0lim ()lim ()x x x x f x f x a -+→→==,则0lim ()x x f x a →=、 由0lim ()x x f x a -→=及0lim ()x x f x a +→=知: 10,0εδ∀>∃>,当010x x δ<-<时,有()f x a ε-<,20δ∃>当020x x δ<-<时,有()f x a ε-<。

取{}12min ,δδδ=,则当00x x δ<-<或00x x δ<-<时,有()f x a ε-<, 而00x x δ<-<或00x x δ<-<就就是00x x δ<-<,于就是0,0εδ∀>∃>,当00x x δ<-<时,有()f x a ε-<, 所以 0lim ()x x f x a →=、再证必要性:即若0lim ()x x f x a →=,则0lim ()lim ()x x x x f x f x a -+→→==, 由0lim ()x x f x a →=知,0,0εδ∀>∃>,当00x x δ<-<时,有()f x a ε-<,由00x x δ<-<就就是 00x x δ<-<或00x x δ<-<,于就是0,0εδ∀>∃>,当00x x δ<-<或00x x δ<-<时,有()f x a ε-<、所以 0lim ()lim ()x x x x f x f x a -+→→== 综上所述,0lim x x →f (x )=a 的充要条件就是f (x )在x 0处的左、右极限均存在且都等于a 、2、 (1) 利用极限的几何意义确定0lim x → (x 2+a ),与0lim x -→1e x; (2) 设f (x )= 12e ,0,,0,xx x a x ⎧⎪<⎨⎪+≥⎩,问常数a 为何值时,0lim x →f (x )存在、解:(1)因为x 无限接近于0时,2x a +的值无限接近于a ,故2lim()x x a a →+=、当x 从小于0的方向无限接近于0时,1e x 的值无限接近于0,故10lim e 0xx -→=、 (2)若0lim ()x f x →存在,则00lim ()lim ()x x f x f x +-→→=, 由(1)知 22lim ()lim()lim()x x x f x x a x a a +--→→→=+=+=, 1lim ()lim e 0xx x f x --→→== 所以,当0a =时,0lim ()x f x →存在。

3、 利用极限的几何意义说明lim x →+∞sin x 不存在、解:因为当x →+∞时,sin x 的值在-1与1之间来回振摆动,即sin x 不无限接近某一定直线y A =,亦即()y f x =不以直线y A =为渐近线,所以lim sin x x →+∞不存在。

习题2-31、 举例说明:在某极限过程中,两个无穷小量之商、两个无穷大量之商、无穷小量与无穷大量之积都不一定就是无穷小量,也不一定就是无穷大量、解:例1:当0x →时,tan ,sin x x 都就是无穷小量,但由sin cos tan xx x=(当0x →时,cos 1x →)不就是无穷大量,也不就是无穷小量。

例2:当x →∞时,2x 与x 都就是无穷大量,但22xx=不就是无穷大量,也不就是无穷小量。

例3:当0x +→时,tan x 就是无穷小量,而cot x 就是无穷大量,但tan cot 1x x =g 不就是无穷大量,也不就是无穷小量。

2、 判断下列命题就是否正确:(1) 无穷小量与无穷小量的商一定就是无穷小量; (2) 有界函数与无穷小量之积为无穷小量; (3) 有界函数与无穷大量之积为无穷大量; (4) 有限个无穷小量之与为无穷小量; (5) 有限个无穷大量之与为无穷大量;(6) y =x sin x 在(-∞,+∞)内无界,但lim x →∞x sin x ≠∞;(7) 无穷大量的倒数都就是无穷小量; (8) 无穷小量的倒数都就是无穷大量、 解:(1)错误,如第1题例1; (2)正确,见教材§2、3定理3;(3)错误,例当0x →时,cot x 为无穷大量,sin x 就是有界函数,cot sin cos x x x =g 不就是无穷大量;(4)正确,见教材§2、3定理2;(5)错误,例如当0x →时,1x 与1x -都就是无穷大量,但它们之与11()0x x+-=不就是无穷大量;(6)正确,因为0M ∀>,∃正整数k ,使π2π+2k M >,从而ππππ(2π+)(2π+)sin(2π+)2π+2222f k k k k M ==>,即sin y x x =在(,)-∞+∞内无界,又0M ∀>,无论X 多么大,总存在正整数k ,使π>k X ,使(2π)πsin(π)0f k k k M ==<,即x →+∞时,sin x x 不无限增大,即lim sin x x x →+∞≠∞;(7)正确,见教材§2、3定理5;(8)错误,只有非零的无穷小量的倒数才就是无穷大量。

零就是无穷小量,但其倒数无意义。

3、 指出下列函数哪些就是该极限过程中的无穷小量,哪些就是该极限过程中的无穷大量、(1) f (x )=234x -,x →2; (2) f (x )=ln x ,x →0+,x →1,x →+∞; (3) f (x )= 1e x,x →0+,x →0-; (4) f (x )=2π-arctan x ,x →+∞;(5) f (x )=1x sin x ,x →∞; (6) f (x )= 21xx →∞、解:(1)22lim(4)0x x →-=因为,即2x →时,24x -就是无穷小量,所以214x -就是无穷小量,因而234x -也就是无穷大量。

(2)从()ln f x x =的图像可以瞧出,1lim ln ,limln 0,lim ln x x x x x x +→→+∞→=-∞==+∞,所以,当0x +→时,x →+∞时,()ln f x x =就是无穷大量;当1x →时,()ln f x x =就是无穷小量。

(3)从1()e xf x =的图可以瞧出,110lim e ,lim e 0x xx x +-→→=+∞=, 所以,当0x +→时,1()e xf x =就是无穷大量; 当0x -→时,1()e xf x =就是无穷小量。

(4)πlim (arctan )02x x →+∞-=Q ,∴当x →+∞时,π()arctan 2f x x =-就是无穷小量。

(5)Q 当x →∞时,1x就是无穷小量,sin x 就是有界函数, ∴1sin x x就是无穷小量。

(6)Q 当x →∞时,21x就是无穷小量,∴习题2-41、若0lim x x →f (x )存在,0lim x x →g (x )不存在,问0lim x x →[f (x )±g (x )], 0lim x x →[f (x )·g (x )]就是否存在,为什么?解:若0lim x x →f (x )存在,0lim x x →g (x )不存在,则(1)0lim x x →[f (x )±g (x )]不存在。

因为若0lim x x →[f (x )±g (x )]存在,则由()()[()()]g x f x f x g x =--或()[()()]()g x f x g x f x =+-以及极限的运算法则可得lim x x →g (x ),与题设矛盾。

相关文档
最新文档