直线与方程章节复习

合集下载

高三文科数学直线与方程知识点复习

高三文科数学直线与方程知识点复习

直线与方程一、倾斜角当直线与X轴相交时,取X轴为基准,叫做直线得倾斜角。

当直线与X轴平行或重合时,规定直线得倾斜角为,因此,直线得倾斜角得取值范围就是。

二、斜率(1)定义:一条直线得倾斜角得叫做这条直线得斜率;当直线得倾斜角时,该直线得斜率;当直线得倾斜角等于时,直线得斜率。

(2)过两点得直线得斜率公式:过两点得直线得斜率公式。

若,则直线得斜率,此时直线得倾斜角为。

练习:1、已知下列直线得倾斜角,求直线得斜率(1)(2)(3)(4)2、求经过下列两点直线得斜率,并判断其倾斜角就是锐角还就是钝角(1) (2)(3) (4)3,判断正误(1)直线得倾斜角为任意实数。

( )(2)任何直线都有斜率。

( )(3)过点得直线得倾斜角就是。

( )(4)若三点共线,则得值就是-2、( )三、注:必记得特殊三角函数值表四、直线得常用方程1、直线得点斜式: 适用条件就是:斜率存在得直线。

2、斜截式:3、截距式: ,为x轴与y轴上得截距。

4、两点式: ()5、直线得一般式方程:练习:1、写出下列直线得点斜式方程(1)经过点A(3,-1),斜率为(2)经过点倾斜角就是(3)经过点C(0,3),倾斜角就是(4)经过点D(-4,-2),倾斜角就是2、写出下列直线得斜截式方程(1)斜率就是在轴上得截距就是-2(2)斜率就是-2,在y轴上得截距就是43、填空题(1)已知直线得点斜式方程就是则直线得斜率就是_________,经过定点________,倾斜角就是______________;(2)已知直线得点斜式方程就是则直线得斜率就是_________,经过定点________,倾斜角就是______________;4、判断(1)经过顶点得直线都可以用方程表示。

( )(2)经过顶点得直线都可以用方程表示。

( )(3)不经过原点得直线都可以用表示。

( )(4)经过任意两个不同得点得直线都可以用方程表示。

( )直线得一般式方程为:,当B不等于0时直线得斜率为_________一般求完直线方程后化成一般式。

知识讲解 直线与方程全章复习与巩固 基础

知识讲解 直线与方程全章复习与巩固 基础

《直线与方程》全章复习与巩固【学习目标】1.在平面直角坐标系中,结合具体图形,探索确定直线位置的几何要素;2.理解直线的倾斜角和斜率的概念,经历用代数方法刻画直线斜率的过程,掌握过两点的直线斜率的计算公式;3.能根据斜率判定两条直线平行或垂直;4.根据确定直线位置的几何要素,探索并掌握直线方程的几种形式:点斜式、两点式及一般式,体会斜截式与一次函数的关系;5.能用解方程组的方法求两条直线的交点坐标;6.探索并掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离.【知识络】【要点梳理】要点一:直线的倾斜角与斜率??(0,18090))(90,在范围内时,直线的斜率大于零;当)由斜率的定义可知,当在范围(1???90??0?时,直线的斜率不存在.直线时,直线的斜率为零;当内时,直线的斜率小于零;当??,(90180)90,900和)(范围内分别与倾斜角的的斜率与直线的倾斜角为一一对应关系,且在除外???,180)(90,090或即倾斜角越大则斜率越大,反之亦然.因此若需在范围内比较倾变化方向一致,?斜角的大小只需比较斜率的大小即可,反之亦然.2)斜率公式(PP)y,y,)P(x),Py(PPx,)(xy(xx的直线的斜率,且、已知点与轴不垂直,过两点、21221111211222y?y12?k.公式x?x12要点二:直线方程的几种形式(1)直线方程的几种表示形式中,除一般式外都有其适用范围,任何一种表示形式都有其优越性,需要根据条件灵活选用.(2)在求解与直线方程有关的问题中,忽视对斜率不存在时的直线方程的讨论是常见的错误,应特别警惕.(3)确定直线方程需要且只需两个独立条件,利用待定系数法求直线方程是常用方法.常用的直线方程有:y?y?k(x?x);①00y?kx?b;②220)?A?B?By?C?0(Ax③;要点诠释:在直线方程的各种形式中,点斜式与斜截式是两种常用的直线方程形式,要注意在这两种形式中都≠x≠y),y要求直线存在斜率,两点式是点斜式的特例,其限制条件更多(x,应用时若采用2211―y)―(x―x)(y―y)=0的形式,(y即可消除局限性.―)(xx截距式是两点式的特例,在使用截距式时,112121首先要判断是否满足“直线在两坐标轴上的截距存在且不为零”这一条件.直线方程的一般式包含了平面上的所有直线形式.一般式常化为斜截式与截距式.若一般式化为点斜式,两点式,由于取点不同,得到的方程也不同.要点三:两条直线的位置关系1.特殊情况下的两直线平行与垂直.090当两条直线的斜率都不存在时,两直线的倾斜角都为,互相平行;(1)00900),另一条直线的倾斜角为时,两直线互相垂直。

直线与方程复习题答案

直线与方程复习题答案

直线与方程复习题答案一、选择题1. 直线方程 \( y = mx + b \) 中,\( m \) 表示直线的斜率,\( b \) 表示直线与y轴的交点。

A. 正确B. 错误答案:A2. 下列哪个方程表示的是过点 (1,2) 且斜率为3的直线?A. \( y = 3x + 1 \)B. \( y = 3x - 1 \)C. \( y = 3x + 2 \)D. \( y = 3x - 2 \)答案:C3. 直线 \( x + 2y - 6 = 0 \) 与 \( x - y + 5 = 0 \) 的交点坐标为:A. (1,3)B. (3,1)C. (-1,-3)D. (-3,-1)答案:A二、填空题1. 直线 \( ax + by + c = 0 \) 的斜截式方程是 \( y = \frac{-a}{b}x + \frac{c}{b} \)。

答案:\( \frac{-a}{b} \),\( \frac{c}{b} \)2. 若直线 \( l \) 与直线 \( 3x - 4y + 5 = 0 \) 平行,则直线\( l \) 的斜率为 \( \frac{3}{4} \)。

答案:\( \frac{3}{4} \)三、解答题1. 求过点 (2,3) 且垂直于直线 \( 2x - 3y + 6 = 0 \) 的直线方程。

解:已知直线 \( 2x - 3y + 6 = 0 \) 的斜率为 \( \frac{2}{3} \),垂直于它的直线斜率为 \( -\frac{3}{2} \)。

代入点斜式方程\( y - y_1 = m(x - x_1) \) 得:\( y - 3 = -\frac{3}{2}(x - 2) \)化简得:\( 3x + 2y - 12 = 0 \)2. 已知直线 \( l \) 经过点 (1,0) 和 (0,1),求直线 \( l \) 的方程。

解:直线 \( l \) 经过点 (1,0) 和 (0,1),其斜率为\( \frac{1 - 0}{0 - 1} = -1 \)。

必修2第3章直线与方程单元复习课件人教新课标

必修2第3章直线与方程单元复习课件人教新课标

l1
x
x
l1//l2 k1 k2
k1
k2
l1//l2 ,
或l1和l
重合
2
2.直线的点斜式、斜截式、两点式、截距式、 一般式的灵活应用.
点斜式:y - y0 k(x,x0 )
斜截式: y kx b 两点式:y y1 x x1
y2 y1 x2 x1
截距式: x y 1
ab
3.应用直线方程求两条直线的交点坐标.
3.1.1倾斜角与斜率
1、直线的倾斜角定义及其范围:0 180
2、直线的斜率定义: k tan a (a 90 )
3、斜率k与倾斜角α 之间的关系:
α 0 k tan0 0
0 α 90 k tanα 0
α
90
ta nαa n α(不
k不 不 存
90 α 180 k tanα 0
1.直线方程的两种情势: 点斜式:y y1 k(x x1) 斜截式:y kx b.
2.两种特殊情况:过点P(x0,y0)且与坐标轴平行的 直线的方程分别是:y=y0和x=x0.
3.1.2两条直线平行与垂直的判定
直线的两点式方程(x1≠x2 ,y1≠y2 )
y y1 x x1 y2 y1 x2 x1
3.3.1两条直线的交点坐标
用代数方法求两条直线的交点坐标,只需 写出这两条直线的方程,然后联立求解.
A1x B1y C10 A2x B2y C2 0
唯一解 无穷多解
无解
两直线相交 两直线重合 两直线平行
3.3.2两点间的距离
1、平面内两点P1(x1,y1), P2(x2,y2) 的距离公式是: | P1P2 | (x 2 x1 )2 (y 2 y1 )2y来自l1Al2

2025届高三数学专题复习:直线方程重难点专题(解析版)

2025届高三数学专题复习:直线方程重难点专题(解析版)

直线的方程重难点专题常考结论及公式结论一:两直线平行与垂直的充要条件若l 1:y =k 1x +b 1,l 2:y =k 2x +b 2;①l 1∥l 2⇒k 1=k 2⇒≠b 2;②l 1⊥l 2⇔k 1k 2=-1.若l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,且A 1、A 2、B 1、B 2都不为零.①l 1∥l 2⇒A 1A 2=B 1B 2≠C 1C 2;l 1与l 2重合⇒A 1A 2=B 1B 2=C1C 2;②l 1⊥l 2⇔A 1A 2+B 1B 2=0.结论二:到角公式和夹角公式(1)l 1到l 2的角公式①tan α=k 2-k 11+k 2k 1.(l 1:y =k 1x +b 1,l 2:y =k 2x +b 2,k 1k 2≠-1);②tan α=A 1B 2-A 2B 1A 1A 2+B 1B 2(l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,A 1A 2+B 1B 2≠0)(2)夹角公式①tan α=k 2-k 11+k 1k 2.(l 1:y =k 1x +b 1,l 2:y =k 2x +b 2,k 1k 2≠-1);②tan α=A 1B 2-A 2B 1A 1A 2+B 1B 2.(l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,A 1A 2+B 1B 2≠0)直线l 1⊥l 2时,直线l 1与l 2的夹角是π2.结论三:四种常用直线系方程(1)定点直线系方程:经过定点P 0(x 0,y 0)的直线系方程为y -y 0=k (x -x 0)(除直线x =x 0),其中k 是待定的系数;经过定点P 0(x 0,y 0)的直线系方程为A (x -x 0)+B (y -y 0)=0,其中A 、B 是待定的系数.(2)共点直线系方程:经过两直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0的交点的直线系方程为l 1:(A 1x +B 1y +C 1)+λ(A 2x +B 2y +C 2)=0(除l 2),其中λ是待定的系数.(3)平行直线系方程:直线y =kx +b 中当斜率k 一定而b 变动时,表示平行直线系方程.与直线Ax +By +C =0平行的直线系方程是Ax +By +λ=0(λ≠0),λ是参变量.(4)垂直直线系方程:与直线Ax +By +C =0(A ≠0,B ≠0)垂直的直线系方程是Bx -Ay +λ=0,λ是参变量.结论四:与对称有关的一些结论(1)点P (u ,v )关于点Q (s ,t )的对称点的坐标为:(2s -u ,2t -v ),特别地,点P (u ,v )关于原点的对称点的坐标为:(2×0-u ,2×0-v ),即(-u ,-v ).(2)直线Ax +By +C =0关于点P (-u ,-v )对称的直线的方程为:(2u -x )+B (2v -y )+C =0.(3)直线Ax +By +C =0关于原点、x 轴、y 轴对称的直线的方程分别为:A (-x )+B (-y )+C =0,Ax +B (-y )+C =0,A (-x )+By +C =0.(4)直线Ax +By +C =0关于直线x =u ,y =v 对称的直线的方程分为:A (2u -x )+By +C =0,Ax +B (2v -y )+C =0.(5)曲线f (x ,y )=0关于点P (u ,v )对称的直线的方程为:f (2u -x ,2v -y )=0.(6)点P (s ,t )关于直线Ax +By +C =0的对称点的坐标为:s -2A ∙As +Bt +C A 2+B 2,t -2B ∙As +Bt +CA 2+B2.特别地,当A =B ≠0时,点P (s ,t )关于直线Ax +By +C =0的对称点的坐标为:-Bt +C A,-As +CB .点P (s ,t )关于x 轴、y 轴,直线x =u ,直线y =v 的对称点的坐标分别为(s ,-t ),(-s ,t ),(2u -s ),(s ,2v -t ).题型一直线的倾斜角与斜率关系问题例1.直线x cos θ+y sin θ=0,θ∈0,5π6的斜率的取值范围为()A.-∞,3B.2,+∞C.-∞,0 ∪0,3D.-∞,2【答案】A【分析】求出直线的斜率的表达式,通过角的范围求解斜率的范围即可.【详解】由x cos θ+y sin θ=0,θ∈0,5π6 可得直线的斜率为:k =-cos θsin θ=-1tan θ.因为θ∈0,5π6 ,所以tan θ∈-∞,-33 ∪0,+∞ ,所以k =-1tan θ∈-∞,0 ∪0,3 当θ=π2时,易得k =0。

《直线与方程》复习课件(17张ppt)

《直线与方程》复习课件(17张ppt)

方程组:
A1x+B1y+C1=0
A2x+B2y+C2=0的解
一组 无数解
无解
两条直线L1,L2的公共点 一个 无数个 零个
直线L1,L2间的位置关系 相交 重合
平行
5、3种距离
(1).两点距离公式 | AB | (x1 x2)2 ( y1 y2)2
(2)点线距离公式 设点(x0,y0),直线Ax+By+C=0,
a=1或-3
求满足下列条件的直线方程: (1)经过点P(2,-1)且与直线2x+3y+12=0平行;
2x+3y-1=0
(2)经过点Q(-1,3)且与直线x+2y-1=0垂直; 2x-y+5=0
.
(3)经过点R(-2,3)且在两坐标轴上截距相等; x+y-1=0或3x+2y=0
直线的交点个数与直线位置的关系
6
D.
π
6
B
3、直线的5种方程
名 称 已知条件
标准方程 适用范围
点斜式 点P1(x1,y1)和斜率k y y1 k(x x1) 不垂直于x轴的直线
斜截式 斜率k和y轴上的截距 y kx b 不垂直于x轴的直线
两点式 点P1(x1,y1)和点P2(x2,y2) 截距式 在x轴上的截距a
在y轴上的截距b
d | Ax0 By0 C | A2 B2
(3)两平行线距离:l1:Ax+By+C1=0,l2:Ax+By+C2=0 d | C1 C2 | A2 B2
点(1,3)到直线3x 4 y 4 0的距离为
中点坐标公式
x0
y0

(完整版)直线与方程知识点归纳,推荐文档

(完整版)直线与方程知识点归纳,推荐文档

答案:B
26.过点(1,2)且与原点距离最大的直线方程是( )
A.x+2y-5=0
B.2x+y-4=0
我去人C也.x就+3y有-7=人0 !为URD.扼3x腕+y-入5=站0 内信不存在向你偶同意调剖沙
解析:所求为过 A(1,2),且垂直 OA 的直线,
1 ∴k=-2,
1
建议收藏下载本文,以便随时学习! ∴y-2=-2(x-1),即 x+2y-5=0. 答案:A
Q1(a1,b1),Q2(a2,b2)的直线方程是( )
A.3x+2y=0
B.2x-3y+5=0
C.2x+3y+1=0
D.3x+2y+1=0
答案:C
建议收藏下载本文,以便随时学习! 21.两直线 3ax-y-2=0 和(2a-1)x+5ay-1=0 分别过定点 A,B,则|AB|等于( )
89
D.2|ab|
xy
11
11 1 1
建议收藏下载本文,以便随时学习! 解析:直线 ax+by=1 可化为a+b=1,故其围成的三角形的面积为 S=2 |a| |b|=2|ab|. 答案:D
12.过点(-1,3)且垂直于直线 x-2y+3=0 的直线方程为( )
A.2x+y-1=0
B.2x+y-5=0
3.2.1 直线的点斜式方程
1、
直线的点斜式方程:直线 l 经过点 P0 (x0 , y0 ) ,且斜率为 k
y y0 k(x x0 )
2、、直线的斜截式方程:已知直线 l 的斜率为 k ,且与 y 轴的交点为 (0,b)
y kx b
3.2.2 直线的两点式方程
1、直线的两点式方程:已知两点 P1 (x1, x2 ), P2 (x2 , y2 ) 其中 (x1 x2 , y1 y2 )

《直线与方程》复习课件

《直线与方程》复习课件

求直线的截距
总结词:截距是直线与 y轴或x轴交点的坐标值 ,用于确定直线在坐标
轴上的位置。
01
当直线与y轴相交时, 交点的y坐标称为y截距

03
截距可以通过将y或x设 为0并解方程得到。
05
详细描述
02
当直线与x轴相交时, 交点的x坐标称为x截距

04
求直线上的点
详细描述
总结词:通过给定的条件和 方程,可以求解直线上的点
斜率的性质
斜率是表示直线倾斜程度的量, 当斜率为正时,直线向上倾斜; 当斜率为负时,直线向下倾斜; 当斜率为0时,直线垂直于x轴。
直线的倾斜角
倾斜角的定义
倾斜角与斜率的关系
直线倾斜角是指直线与x轴正方向之间 的夹角,通常用α表示。
直线的斜率等于直线倾斜角的正切值 。
倾斜角的取值范围
直线倾斜角的取值范围是[0°, 180°), 也可以表示为[0, π)。
忽略斜率不存在的情况
在解题过程中,需要注意直线的斜率 是否存在,避免出现错误的结果。
计算错误
在求解直线方程时,需要注意计算的 准确性和细节,避免因为计算错误导 致答案不正确。
理解题意不准确
在阅读题目时,需要准确理解题目的 要求和已知条件,避免因为理解错误 导致解题方向错误。
没有检验答案
在得到答案后,需要将答案代入原方 程进行检验,确保答案的正确性。
详细描述:截距式方程中的a和b分别是直线与x轴和y 轴的交点的坐标,可以明确直线的位置关系。
02
CATALOGUE
直线的斜率与倾斜角
直线的斜率
斜率的定义
直线斜率是定义为直线倾斜角的 正切值,即直线倾斜角的正切值

第十讲 直线方程全章复习

第十讲  直线方程全章复习

第十讲 直线方程全章复习与综合训练知识提要1.直线的倾斜角()90αα≠的正切值称为该直线的斜率,记为tan k α=.倾斜角为90时,直线的斜率不存在.2.两直线平行和垂直的充要条件. 3.直线方程的几种形式:⑴点斜式:()00y y k x x -=-,其中()00,x y 是直线上的一个已知点,k 是直线的斜率; ⑵斜截式:y kx b =+,其中k 是直线的斜率,b 是该直线在y 轴上的截距;⑶两点式:()1112122121,y y x x x x y y y y x x --=≠≠--,其中()()1122,,,x y x y 是直线上的两个点;⑷截距式:()10x yab a b+=≠,其中,a b 分别是直线在x 轴,y 轴上的截距;⑸一般式:()2200Ax By C A B ++=+≠;直线也还有一些其它的形式,要合理的选用形式方便计算,同时还要注意适用范围,然后用待定系数法求出直线方程.4.直线1l :1110A x B y C ++=与不重合的直线2l :2220A x B y C ++=平行与垂直的判定:⑴直线1l //212210l A B A B ⇔-=(或12k k =且12b b ≠); ⑵直线1212120l l A A B B ⊥⇔+=(或121k k ⨯=-).5.直线1l :1110A x B y C ++=与直线2l :2220A x B y C ++=的交点与方程组11122200A xB yC A x B y C ++=⎧⎨++=⎩的解的关系:⑴两条直线有唯一交点⇔方程组有唯一解;⑵两条直线无交点(平行)⇔方程组无解; ⑶两条直线有无数个交点(重合)⇔方程组有无数个解.6.点()00,P x y 到直线l :0Ax By C ++=的距离:d =.7.两平行直线1l :10Ax By C ++=与直线2l :20Ax By C ++=之间的距离:d =8.设点()00,P x y 是直角坐标系内任意一点,则点P⑴关于x 轴的对称点为()00,x y -;关于y 轴的对称点为()00,x y -;关于原点的对称点为()00,x y --;⑵关于直线x a =的对称点为()002,a x y -;关于直线y a =的对称点为()00,2x a y -; ⑶关于直线y x =的对称点为()00,y x ;关于直线y x =-的对称点为()00,y x --;⑷关于直线y x m =+的对称点为()00,y m x m -+;关于直线y x n =-+的对称点为()00,n y n x --;⑸关于点(),A a b 的对称点为()002,2a x b y --;⑹关于直线0Ax By C ++=的对称点为()11,x y ,则()11,x y 是方程组()()010********0x x y y A B C A y y B x x ++⎧⨯+⨯+=⎪⎨⎪-+-=⎩的解. 9.直线0Ax By C ++=关于点(),P a b 的对称的直线方程为:()220Ax By aA bB C +-++=.例题讲解例1、若直线230x my +-=与直线()3150m x my --+=互相平行,求m 的值。

第三章 直线与方程知识点归纳及练习题

第三章 直线与方程知识点归纳及练习题

1.直线的倾斜角与斜率(1)倾斜角与斜率从“形”和“数”两方面刻画了直线的倾斜程度,但倾斜角α是角度(0°≤α<180°),是倾斜度的直接体现;斜率k是实数(k∈(-∞,+∞)),是倾斜程度的间接反映.在解题的过程中,用斜率往往比用倾斜角更方便.(2)倾斜角与斜率的对应关系:当α=90°时,直线的斜率不存在;当α≠90°时,斜率k=tan α,且经过两点A(x1,y1),B(x2,y2)(x1≠x2)的直线的斜率k AB=y2-y1 x2-x1.(3)当α由0°→90°→180°(不含180°)变化时,k由0(含0)逐渐增大到+∞(不存在),然后由-∞(不存在)逐渐增大到0(不含0).2.解题时要根据题目条件灵活选择,注意其适用条件:点斜式和斜截式不能表示斜率不存在的直线,两点式不能表示与坐标轴垂直的直线,截距式不能表示与坐标轴垂直和过原点的直线,一般式虽然可以表示任何直线,但要注意A2+B2≠0,必要时要对特殊情况进行讨论.3.由两直线的方程判断两条直线是否平行或垂直时,要注意条件的限制;同时已知平行或垂直关系求直线的方程或确定方程的系数关系时,要根据题目条件设出合理的直线方程.4.学习时要注意特殊情况下的距离公式,并注意利用它的几何意义,解题时往往将代数运算与几何图形直观分析相结合.5.直线系方程直线系方程是解析几何中直线方程的基本内容之一,它把具有某一共同性质的直线族表示成一个含参数的方程,然后根据直线所满足的其他条件确定出参数的值,进而求出直线方程.直线系方程的常见类型有:(1)过定点P (x 0,y 0)的直线系方程是:y -y 0=k (x -x 0)(k 是参数,直线系中未包括直线x =x 0),也就是平常所提到的直线的点斜式方程;(2)平行于已知直线Ax +By +C =0的直线系方程是:Ax +By +λ=0(λ是参数,λ≠C );(3)垂直于已知直线Ax +By +C =0的直线系方程是:Bx -Ay +λ=0(λ是参数);(4)过两条已知直线l 1:A 1x +B 1y +C 1=0和l 2:A 2x +B 2y +C 2=0的交点的直线系方程是:A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0(λ是参数,当λ=0时,方程变为A 1x +B 1y +C 1=0,恰好表示直线l 1;当λ≠0时,方程表示过直线l 1和l 2的交点,但不含直线l 2).6.“对称”问题的解题策略对称问题主要有两大类:一类是中心对称,一类是轴对称.(1)中心对称①两点关于点对称,设P 1(x 1,y 1),P (a ,b ),则P 1(x 1,y 1)关于P (a ,b )对称的点为P 2(2a -x 1,2b -y 1),即P 为线段P 1P 2的中点.特别地,P (x ,y )关于原点对称的点为P ′(-x ,-y ).②两直线关于点对称,设直线l 1,l 2关于点P 对称,这时其中一条直线上任一点关于点P 对称的点在另一条直线上,并且l 1∥l 2,P 到l 1,l 2的距离相等.(2)轴对称①两点关于直线对称,设P 1,P 2关于直线l 对称,则直线P 1P 2与l 垂直,且线段P 1P 2的中点在l 上,这类问题的关键是由“垂直”和“平分”列方程.②两直线关于直线对称,设l 1,l 2关于直线l 对称.当三条直线l 1,l 2,l 共点时,l 上任意一点到l 1,l 2的距离相等,并且l 1,l 2中一条直线上任意一点关于l 对称的点在另外一条直线上;当l 1∥l 2∥l 时,l 1与l 间的距离等于l 2与l 间的距离.题型一 直线的倾斜角和斜率倾斜角和斜率分别从“形”和“数”两个方面刻画了直线的倾斜程度.倾斜角α与斜率k 的对应关系和单调性是解题的易错点,应引起特别重视.(1)对应关系①α≠90°时,k =tan α.②α=90°时,斜率不存在.(2)单调性当α由0°→90°→180°(不含180°)变化时,k 由0(含0)逐渐增大到+∞,然后由-∞逐渐增大到0(不含0).经过A (x 1,y 1),B (x 2,y 2)(x 1≠x 2)两点的直线的斜率公式k =y 2-y 1x 2-x 1(x 1≠x 2),应注意其适用的条件x 1≠x 2,当x 1=x 2时,直线斜率不存在.例1 已知坐标平面内的三点A (-1,1),B (1,1),C (2,3+1).(1)求直线AB ,BC ,AC 的斜率和倾斜角;(2)若D 为△ABC 的边AB 上一动点,求直线CD 的斜率k 的取值范围.跟踪训练1 求经过A (m,3)、B (1,2)两点的直线的斜率,并指出倾斜角α的取值范围.题型二 直线方程的五种形式直线方程的五种形式在使用时要根据题目的条件灵活选择,尤其在选用四种特殊形式的方程时,注意其适用条件,必要时要对特殊情况进行讨论.求直线方程的方法一般是待定系数法,在使用待定系数法求直线方程时,要注意直线方程形式的选择及适用范围,如点斜式、斜截式适合直线斜率存在的情形,容易遗漏斜率不存在的情形;两点式不含垂直于坐标轴的直线;截距式不含垂直于坐标轴和过原点的直线;一般式适用于平面直角坐标系中的任何直线.因此,要注意运用分类讨论的思想.在高考中,题型以选择题和填空题为主,与其他知识点综合时,一般以解答题的形式出现.例2 求与直线y =43x +53垂直,并且与两坐标轴围成的三角形的面积为24的直线l 的方程.跟踪训练2 过点P (-1,0),Q (0,2)分别作两条互相平行的直线,使它们在x 轴上截距之差的绝对值为1,求这两条直线的方程.题型三直线的位置关系两条直线的位置关系有相交(特例垂直)、平行、重合三种,主要考查两条直线的平行和垂直.通常借助直线的斜截式方程来判断两条直线的位置关系.解题时要注意分析斜率是否存在,用一般式方程来判断,可以避免讨论斜率不存在的情况.例3已知两条直线l1:ax-by+4=0,l2:(a-1)x+y+b=0,求分别满足下列条件的a、b的值.(1)直线l1过点(-3,-1),并且直线l1与直线l2垂直;(2)直线l1与直线l2平行,并且坐标原点到l1、l2的距离相等.跟踪训练3(1)求经过两直线l1:x-2y+4=0和l2:x+y-2=0的交点P,且与直线l3:3x-4y+5=0垂直的直线l的方程;(2)已知直线l1:mx+8y+n=0与l2:2x+my-1=0互相平行,且l1,l2之间的距离为 5.求直线l1的方程.题型四最值问题方法梳理1.构造函数求解最值:利用函数的定义域、奇偶性、周期性、单调性等性质特征及复合函数的结构特征求解函数的最值.2.结合直线方程的相关特征,保证在符合条件的范围内求解最值.3.结合图象,利用几何性质帮助解答.数学思想函数思想:通常情况下求解最值问题可以转化为对函数的研究,函数思想给我们一种最严谨的眼光来看待问题,是一种探求普遍真理的思想,本章中求最大距离、最大面积等问题时常常会用到函数思想.例4已知△ABC,A(1,1),B(m,m)(1<m<4),C(4,2).当m为何值时,△ABC的面积S最大?跟踪训练4 如图,一列载着危重病人的火车从O 地出发,沿北偏东α度(射线OA )方向行驶,其中sin α=1010.在距离O 地5a (a 为正常数)千米,北偏东β度的N 处住有一位医学专家,其中sin β=35,现120指挥中心紧急征调离O 地正东p 千米B 处的救护车,先到N 处载上医学专家,再全速赶往乘有危重病人的火车,并在C 处相遇.经计算,当两车行驶的路线与OB 所围成的三角形OBC 的面积S 最小时,抢救最及时.(1)在以O 为原点,正北方向为y 轴的直角坐标系中,求射线OA 所在的直线方程;(2)求S 关于p 的函数关系式S =f (p );(3)当p 为何值时,抢救最及时?题型五 分类讨论思想分类讨论思想其实质就是将整体问题化为部分问题来解决.在解题过程中,需选定一个标准,根据这个标准划分成几个能用不同形式解决的小问题,从而使问题得到解决.在本章中涉及到分类讨论的问题主要是由直线的斜率是否存在及直线的点斜式、斜截式、两点式、截距式的局限性引起的分类讨论问题.例5 设直线l 的方程为(a +1)x +y +2-a =0(a ∈R )在两坐标轴上的截距相等,求直线l 的方程.题型六 数形结合思想根据数学问题的条件和结论的内在联系,将抽象的数学语言与直观的图形相结合,使抽象思维与形象思维相结合. 例6 已知直线l 过点P (-1,2),且与以A (-2,-3),B (3,0)为端点的线段相交,求直线l 的斜率的取值范围.1.在平面解析几何中,用代数知识解决几何问题时应首先挖掘出几何图形的几何条件,把它们进一步转化为代数方程之间的关系求解.2.关于对称问题,要充分利用“垂直平分”这个基本条件,“垂直”是指两个对称点的连线与已知直线垂直,“平分”是指:两对称点连成线段的中点在已知直线上,可通过这两个条件列方程组求解.3.涉及直线斜率问题时,应从斜率存在与不存在两方面考虑,防止漏掉情况.。

(精品)直线与方程经典复习讲义(完整资料).doc

(精品)直线与方程经典复习讲义(完整资料).doc

此文档下载后即可编辑直线与方程专题复习一、基础知识回顾 1.倾斜角与斜率知识点1:当直线l 与x 轴相交时, x 轴正方向与直线l 向上方向之间所成的角α叫做直线l 的倾斜角.注意: 当直线与x 轴平行或重合时,我们规定它的倾斜角为0度. 知识点2:直线的倾斜角(90)αα≠︒的正切值叫做这条直线的斜率.记为tan k α=.注意: 当直线的倾斜角90οα=时,直线的斜率是不存在的知识点3:已知直线上两点111222(,),(,)P x y P x y 12()x x ≠的直线的斜率公式:2121y y k x x -=-.知识点4:两条直线有斜率且不重合,如果它们平行,那么它们的斜率相等;反之,如果它们的斜率相等,则它们平行,即12//l l ⇔1k =2k .知识点5:两条直线都有斜率,如果它们互相垂直,则它们的斜率互为负倒数;反之,如果它们的斜率互为负倒数,则它们互相垂直.即12l l ⊥⇔121k k =-⇔121k k =-注意:1.1212//l l k k ⇔=或12,l l 的斜率都不存在且不重合.2.12121l l k k ⊥⇔=-或10k =且2l 的斜率不存在,或20k =且1l 的斜率不存在.2.直 线 的 方 程知识点6:已知直线l 经过点00(,)P x y ,且斜率为k ,则方程00()y y k x x -=-为直线的点斜式方程. 注意:⑴x 轴所在直线的方程是 ,y 轴所在直线的方程是 .⑵经过点000(,)P x y 且平行于x 轴(即垂直于y 轴)的直线方程是 .⑶经过点000(,)P x y 且平行于y 轴(即垂直于x 轴)的直线方程是 .知识点7:直线l 与y 轴交点(0,)b 的纵坐标b 叫做直线l 在y 轴上的截距.直线y kx b =+叫做直线的斜截式方程.注意:截距b 就是函数图象与y 轴交点的纵坐标.知识点8:已知直线上两点112222(,),(,)P x x P x y 且1212(,)x x y y ≠≠,则通过这两点的直线方程为1112122121(,)y y x x x x y y y y x x --=≠≠--,由于这个直线方程由两点确定,叫做直线的两点式方程. 知识点9:已知直线l 与x 轴的交点为(,0)A a ,与y 轴的交点为(0,)B b ,其中0,0a b ≠≠,则直线l 的方程为1=+bya x ,叫做直线的截距式方程. 注意:直线与x 轴交点(a ,0)的横坐标a 叫做直线在x 轴上的截距;直线与y 轴交点(0,b )的纵坐标b 叫做直线在y 轴上的截距. 知识点10:关于,x y 的二元一次方程0Ax By C ++=(A ,B 不同时为0)叫做直线的一般式方程. 注意:(1)直线一般式能表示平面内的任何一条直线 (2)点00(,)x y 在直线0Ax By C ++=上⇔00Ax By +0C += 3、直线的交点坐标与距离知识点11: 两直线的交点问题.一般地,将两条直线的方程联立,得方程组1112220A xB yC A x B y C ++=⎧⎨++=⎩,若方程组有唯一解,则两直线相交;若方程组有无数组解,则两直线重合;若方程组无解,则两直线平行.知识点12:已知平面上两点111222(,),(,)P x y P x y ,则12PP =特殊地:(,)P x y与原点的距离为OP =知识点13:已知点00(,)P x y 和直线:0l Ax By C ++=,则点P 到直线l 的距离为:d =.知识点14:已知两条平行线直线1l 10Ax By C ++=,2:l 20Ax By C ++=,则1l 与2l的距离为d知识点15:巧妙假设直线方程:(1)与10Ax By C ++=平行的直线可以假设成:20Ax By C ++=(C 1和C 2不相等)(2)与0Ax By C ++=垂直的直线可以假设成:Bx -Ay+m=0 (3)过1l :A 1x+B 1y+C 1=0和2:l A 2x+B 2y+C 2=0交点的直线可以假设成A 1x+B 1y+C 1+λ(A 2x+B 2y+C 2)=0(该方程不包括直线2:l ) 知识点16:1l :A 1x+B 1y+C 1=0和2:l A 2x+B 2y+C 2=0垂直等价于:A 1A 2+B 1B 2=0(A 1和B 1不全为零;A 2和B 2不全为零;) 知识点17:中点坐标公式:1122(,),(,)A x y B x y ,则AB 的中点(,)M x y ,则2121,22x x y y x y ++==.例题解析例1. 在第一象限的ABC ∆中,(1,1),(5,1)A B ,60,45O O A B ∠=∠=.求 ⑴AB 边的方程;⑵AC 和BC 所在直线的方程.例2.点(3,9)关于直线3100x y +-=对称的点的坐标是( ). A .(1,3)-- B.(17,9)- C .(1,3)- D .(17,9)-例3. 求经过直线3260x y ++=和2570x y +-=的交点,且在两坐标轴上的截距相等的直线方程.例4.方程(1)210()a x y a a R --++=∈所表示的直线( ). A .恒过定点(2,3)- B .恒过定点(2,3) C .恒过点(2,3)-和(2,3) D .都是平行直线例5.已知直线12:220,:1l x ay a l ax y +--=+-a -0=. ⑴若12//l l ,试求a 的值; ⑵若12l l ⊥,试求a 的值例6 .已知两直线1:40l ax by -+=,2:(1)l a x y -+0b +=,求分别满足下列条件的,a b 的值.⑴直线1l 过点(3,1)--,并且直线1l 与直线2l 垂直;⑵直线1l 与直线2l 平行,并且坐标原点到12,l l 的距离相等.例7. 过点(4,2)P 作直线l 分别交x 轴、y 轴正半轴于,A B 两点,当AOB ∆面积最小时,求直线l 的方程.例8点P(x,y)在x+y-4=0上,则x 2+y 2最小值为多少?一、基础巩固练习:1.已知点(3,)m 到直线40x -=的距离等于1,则m =( ).A .B .C . D2.已知(3,)P a 在过(2,1)M -和(3,4)N -的直线上,则a = .3.将直线2)y x =-绕点(2,0)按顺时针方向旋转30o ,所得的直线方程是 .4.两平行直线12,l l 分别过点1(1,0)P 和(0,5)P , ⑴若1l 与2l 的距离为5,求两直线的方程; ⑵设1l 与2l 之间的距离是d ,求d 的取值范围。

直线与方程知识点总结(实用4篇)

直线与方程知识点总结(实用4篇)

直线与方程知识点总结第1篇空间两条直线只有三种位置关系。

1、按是否共面可分为两类:(1)共面:平行、相交(2)异面:异面直线的定义:不同在任何一个平面内的两条直线或既不平行也不相交。

异面直线判定定理:用平面内一点与平面外一点的直线,与平面内不经过该点的直线是异面直线。

两异面直线xxx的角:范围为(0,90)esp。

空间向量法两异面直线间距离:公垂线段(有且只有一条)esp。

空间向量法2、若从有无公共点的角度看可分为两类:(1)有且仅有一个公共点相交直线;(2)没有公共点平行或异面直线与方程知识点总结第2篇常见的三角函数包括正弦函数、余弦函数和正切函数。

有些学生仍然在遇到三角函数题目的时候画直角三角形协助理解,这是十分危险的,也是我们所不提倡的。

三角函数的定义在引入了实数角和弧度制之后,已经发生了革命性的变化,sinA中的A不一定是一个锐角,也不一定是一个钝角,而是一个实数弧度制的角。

有了这样一个思维上的飞跃,三角函数就不再是三角形的一个附属产品(初中三角函数很多时候依附于相似三角形),而是一个具有独立意义的函数表现形式。

既然三角函数作为一种函数意义的理解,那么,它的知识结构就可以完全和函数一章联系起来,函数的精髓,就在于图象,有了图象,就有了所有的性质。

对于三角函数,除了图象,单位圆作为辅助手段,也是非常有效就好像配方在二次函数中应用广泛是一个道理。

三角恒等变形部分,并无太多诀窍,从教学中可以看出,学生听懂公式都不难,应用起来比较熟练的都是那些做题比较多的同学。

题目做到一定程度,其实很容易发现,高一考察的三角恒等只有不多的几种题型,在课程与复习中,我们也会注重给学生总结三角恒等变形的统一论,把握住降次,辅助角和万能公式这些关键方法,一般的三角恒等迎刃而解。

关键是,一定要多做题。

直线与方程知识点总结第3篇①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。

直线的斜率xxx 表示。

必修2《直线与方程___知识点_总结》及习题

必修2《直线与方程___知识点_总结》及习题

直线与方程 知识点 总结一、概念理解:1、倾斜角:①找α:直线向上方向、x 轴正方向; ②平行:α=0°;③范围:0°≤α<180° 。

2、斜率:①找k :k=tan α (α≠90°); ②与x 轴垂直:斜率k 不存在; ③范围: 斜率 k ∈ R 。

3、斜率与坐标:12122121tan x x y y x x y y k --=--==α ①构造直角三角形(数形结合); ②斜率k 值与两点先后顺序无关; ③注意下标的位置对应。

4、直线与直线的位置关系:222111:,:b x k y l b x k y l +=+= ①相交:斜率21k k ≠(前提是斜率都存在)特例----垂直时:<1> 0211=⊥k k x l 不存在,则轴,即; <2> 斜率都存在时:121-=∙k k 。

②平行:<1> 斜率都存在时:2121,b b k k ≠=; <2> 斜率都不存在时:两直线都与x 轴垂直。

③重合: 斜率都存在时:2121,b b k k ==; 二、方程与公式: 1、直线的五个方程:①点斜式:)(00x x k y y -=- 将已知点k y x 与斜率),(00直接带入即可;②斜截式:b kx y += 将已知截距 k b 与斜率 直接带入即可; ③两点式:),(2121121121y y x x x x x x y y y y ≠≠--=--其中, 将已知两点),(),,(2211y x y x 直接带入即可;④截距式:1=+bya x 将已知截距坐标),0(),0,(b a 直接带入即可;⑤一般式:0=++C By Ax ,其中A 、B 不同时为0 在距离公式当中会经常用到直线的“一般式方程”。

2、求两条直线的交点坐标:直接将两直线方程联立,解方程组即可(可简记为“方程组思想”)。

3、距离公式:①两点间距离:22122121)()(y y x x P P -+-=推导方法:构造直角三角形“勾股定理”; ②点到直线距离:2200B A C By Ax d +++=推导方法:构造直角三角形“面积相等”;③平行直线间距离:2221BA C C d +-=推导方法:在y 轴截距),0(1C 代入②式;4、中点坐标公式:已知两点),(),,(2211y x B y x A ①AB 中点),(00y x :)2,2(2121y y x x ++ 推导方法:构造直角“相似三角形”;一.选择题1.(安徽高考) 过点(1,0)且与直线x-2y=0平行的直线方程是( ) A.x-2y-1=0 B. x-2y+1=0 C. 2x+y-2=0 D. x+2y-1=02. 过点(1,3)P -且垂直于直线032=+-y x 的直线方程为( )A. 012=-+y xB. 052=-+y xC. 052=-+y xD. 072=+-y x 3. 已知过点(2,)A m -和(,4)B m 的直线与直线012=-+y x 平行,则m 的值为( ) A. 0 B. 8- C. 2 D. 104.(安徽高考)直线过点(-1,2),且与直线2x-3y+4=0垂直,则直线的方程是( ) A . 3x+2y-1=0 B. 3x+2y+7=0 C. 2x-3y+5=0 D. 2x-3y+8=05.设直线ax+by+c=0的倾斜角为θ,且sin cos 0θθ+=则a,b 满足 ( ) A. a+b=1 B. a-b=1 C. a+b=0 D. a-b=06. 如果直线ax+2y+2=0与直线3x-y-2=0平行,则系数a= A 、 -3 B 、-6 C 、23- D 、327.点P (-1,2)到直线8x-6y+15=0的距离为( ) A 2 B 21 C 1 D 278. 直线mx-y+2m+1=0经过一定点,则该点的坐标是 A (-2,1) B (2,1) C (1,-2) D (1,2)9. (上海文,15)已知直线12:(3)(4)10,:2(3)230,l k x k y l k x y -+-+=--+=与平行,则k 得值是( ) A. 1或3 B.1或5 C.3或5 D.1或210、若图中的直线L 1、L 2、L 3的斜率分别为K 1、K 2、K 3则( )A 、K 1﹤K 2﹤K 3B 、K 2﹤K 1﹤K 3C 、K 3﹤K 2﹤K 1D 、K 1﹤K 3﹤K 211.(北京卷)“m =21”是“直线(m +2)x +3my +1=0与直线(m -2)x +(m +2)y -3=0相互垂直”的( ) (A )充分必要条件 (B )充分而不必要条件(C )必要而不充分条件 (D )既不充分也不必要条件 12、与直线2x+3y-6=0关于点(1,-1)对称的直线是( )A.3x-2y-6=0B.2x+3y+7=0C. 3x-2y-12=0D. 2x+3y+8=0 13. 若直线ax + by + c = 0在第一、二、三象限,则( )A. ab >0,bc >0B. ab >0,bc <0C. ab <0,bc >0D. ab <0,bc <0 14.(北京文)“m=21”是“直线(m+2)x+3my+1=0与直线(m -2)x+(m+2)y -3=0相互垂直”的 ( )A.充分必要条件B.充分而不必要条件C.必要而不充分条件D.既不充分也不必要条件15. 如果直线 l 经过两直线2x - 3y + 1 = 0和3x - y - 2 = 0的交点,且与直线y = x 垂直,则原点到直线 l 的距离是( )A. 2B. 1C. 2 D 、22 16. 原点关于x - 2y + 1 = 0的对称点的坐标为( )A. ⎪⎭⎫ ⎝⎛52 ,54- B. ⎪⎭⎫ ⎝⎛54 ,52- C. ⎪⎭⎫ ⎝⎛52 ,54 D. ⎪⎭⎫ ⎝⎛54 ,52- 二、填空题1. 点(1,1)P -到直线10x y -+=的距离是________________.2.已知A(-4,-6),B(-3,-1),C(5,a)三点共线,则a 的值为( )3.经过两直线11x+3y -7=0和12x+y -19=0的交点,且与A (3,-2),B (-1,6)等距离的直线的方程是 。

必修2-直线与方程知识点归纳总结

必修2-直线与方程知识点归纳总结

第三章 直线与方程直线的斜率①直线的斜率就是直线倾斜角的正切值,而倾斜角为090的直线斜率不存在。

②经过两点),(),,(222111y x P y x P (21x x ≠)的直线的斜率公式是1212x x y y k --=(21x x ≠) ③每条直线都有倾斜角,但并不是每条直线都有斜率。

2、两条直线平行与垂直的判定 (1)两条直线平行对于两条不重合的直线12,l l ,其斜率分别为12,k k ,则有1212//l l k k ⇔=。

特别地,当直线12,l l 的斜率都不存在时,12l l 与的关系为平行。

(2)两条直线垂直如果两条直线12,l l 斜率存在,设为12,k k ,则12121l l k k ⊥⇔=-注:两条直线12,l l 垂直的充要条件是斜率之积为-1,这句话不正确;由两直线的斜率之积为-1,可以得出两直线垂直,反过来,两直线垂直,斜率之积不一定为-1。

如果12,l l 中有一条直线的斜率不存在,另一条直线的斜率为0时,12l l 与互相垂直。

二、直线的方程1、直线方程的几种形式 名称方程的形式已知条件局限性点斜式 )(11x x k y y -=- ),(11y x 为直线上一定点,k 为斜率不包括垂直于x 轴的直线斜截式 b kx y +=k 为斜率,b 是直线在y 轴上的截距不包括垂直于x 轴的直线两点式121121x x x x y y y y --=--),(2121y y x x ≠≠其中),(),,(2211y x y x 是直线上两定点不包括垂直于x 轴和y 轴的直线截距式 1=+by a xa 是直线在x 轴上的非零截距,b 是直线在y 轴上的非零截距不包括垂直于x 轴和y 轴或过原点的直线一般式 0=++C By Ax )不同时为其中0,(B A A ,B ,C 为系数无限制,可表示任何位置的直线注:过两点),(),,(222111y x P y x P 的直线是否一定可用两点式方程表示?(不一定。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

直线与方程章节复习【考纲知识梳理】一、直线的倾斜角与斜率 1、直线的倾斜角与斜率 (1)直线的倾斜角①关于倾斜角的概念要抓住三点:ⅰ.与x 轴相交; ⅱ.x 轴正向; ⅲ.直线向上方向. ②直线与x 轴平行或重合时,规定它的倾斜角为. ③倾斜角的范围. (2)直线的斜率①直线的斜率就是直线倾斜角的正切值,而倾斜角为的直线斜率不存在。

②经过两点的直线的斜率公式是③每条直线都有倾斜角,但并不是每条直线都有斜率。

2、两条直线平行与垂直的判定 (1)两条直线平行对于两条不重合的直线,其斜率分别为,则有。

特别地,当直线的斜率都不存在时,的关系为平行。

(2)两条直线垂直如果两条直线斜率存在,设为,则注:两条直线垂直的充要条件是斜率之积为-1,这句话不正确;由两直线的斜率之积为-1,可以得出两直线垂直,反过来,两直线垂直,斜率之积不一定为-1。

如果中有一条直线的斜率不存在,另一条直线的斜率为0时,互相垂直。

二、直线的方程 1、直线方程的几种形式0α00180α≤<09012,l l 12,k k 1212//l l k k ⇔=12,l l 12l l 与12,l l 12,k k 12121l l k k ⊥⇔=-12,l l 12,l l 12l l 与名称方程的形式已知条件局限性点斜式为直线上一定点,k 为斜率不包括垂直于x 轴的直线斜截式k为斜率,b是直线在y轴上的截距不包括垂直于x轴的直线两点式是直线上两定点不包括垂直于x轴和y轴的直线截距式a是直线在x轴上的非零截距,b是直线在y轴上的非零截距不包括垂直于x轴和y轴或过原点的直线一般式A,B,C为系数无限制,可表示任何位置的直线注:过两点的直线是否一定可用两点式方程表示?(不一定。

(1)若,直线垂直于x轴,方程为;(2)若,直线垂直于y轴,方程为;(3)若,直线方程可用两点式表示)2、线段的中点坐标公式若点的坐标分别为,且线段的中点M的坐标为(x,y),则此公式为线段的中点坐标公式。

三、直线的交点坐标与距离公式1.两条直线的交点设两条直线的方程是,两条直线的交点坐标就是方程组的解,若方程组有唯一解,则这两条直线相交,此解就是交点的坐标;若方程组无解,则两条直线无公共点,此时两条直线平行;反之,亦成立。

2.几种距离(1)两点间的距离平面上的两点间的距离公式特别地,原点O (0,0)与任一点P (x,y )的距离(2)点到直线的距离点到直线的距离;(3)两条平行线间的距离两条平行线间的距离注:(1)求点到直线的距离时,直线方程要化为一般式;(2)求两条平行线间的距离时,必须将两直线方程化为系数相同的一般形式后,才能套用公式计算。

【热点难点精析】一、直线的倾斜角与斜率 (一)直线的倾斜角 ※相关链接※2.已知斜率k 的范围,求倾斜角的范围时,若k 为正数,则的范围为的子集,且k=tan为增函数;若k 为负数,则的范围为的子集,且k=tan 为增函数。

若k 的范围有正有负,则可所范围按大于等于0或小于0分为两部分,针对每一部分再根据斜率的增减性求倾斜角范围。

※例题解析※〖例1〗已知直线的斜率k=-cos (∈R ).求直线的倾斜角的取值范围。

(二)直线的斜率及应用αα(0,)2παα(,)2ππαααβ※相关链接※ 1、斜率公式:与两点顺序无关,即两点的横纵坐标在公式中前后次序相同;2、求斜率的一般方法:(1)已知直线上两点,根据斜率公式 求斜率;(2)已知直线的倾斜角或的某种三角函数根据来求斜率; 3、利用斜率证明三点共线的方法:已知若,则有A 、B 、C 三点共线。

注:斜率变化分成两段,是分界线,遇到斜率要谨记,存在与否需讨论。

※例题解析※〖例2〗设是互不相等的三个实数,如果在同一直线上,求证:(三)两条直线的平行与垂直〖例3〗已知点M (2,2),N (5,-2),点P 在x 轴上,分别求满足下列条件的P 点坐标。

(1)∠MOP=∠OPN (O 是坐标原点); (2)∠MPN 是直角。

二、直线的方程 (一)直线方程的求法 ※相关链接※1、求直线方程应先选择适当的直线方程形式并注意各种形式的适用条件。

基本方法包括利用条件直接求直线的基本量和利用待定系数法求直线的基本量。

2121y y k x x -=-212121()y y k x x x x -=≠-ααtan k α=112233(,),(,),(,),A x y B x y C x y 123AB AC x x x k k ===或090,,a b c 333(,)(,)(,)A a a B b b C c c 、、0a b c ++=用待定系数法求直线方程的步骤:(1)设所求直线方程的某种形式;(2)由条件建立所求参数的方程(组); (3)解这个方程(组)求参数;(4)把所求的参数值代入所设直线方程。

2、求直线方程时,首先分析具备什么样的条件;然后恰当地选用直线方程的形式准确写出直线方程。

要注意若不能断定直线具有斜率时,应对斜率存在与不存在加以讨论。

在用截距式时,应先判断截距是否为0。

若不确定,则需分类讨论。

※例题解析※〖例4〗求过点P (2,-1),在x 轴和y 轴上的截距分别为a 、b,且满足a=3b 的直线方程。

(二)用一般式方程判定直线的位置关系 ※相关链接※两条直线位置关系的判定已知直线,,则(1)(2) (3)(4)※例题解析※1111:0l A x B y C ++=2222:0l A x B y C ++=12122112211221111222222//00(0)(0).l l A B A B AC A C B C B C A B CA B C A B C ⇔-=-≠-≠=≠且或或记为:、、不为121212//0.l l A A B B ⇔+=〖例5〗已知直线和直线,(1)试判断与是否平行;(2)⊥时,求的值。

(三)直线方程的应用 ※相关链接※利用直线方程解决问题,可灵活选用直线方程的形式,以便简化运算。

一般地,已知一点通常选择点斜式;已知斜率选择斜截式或点斜式;已知截距或两点选择截距式或两点式。

另外,从所求的结论来看,若求直线与坐标轴围成的三角形面积或周长,常选用截距式或点斜式。

注:(1)点斜式与斜截式是两种常见的直线方程形式,要注意在这两种形式中所要求直线的斜率存在。

(2)“截距”并非“距离”,可以是正的,也可以是负的,还可以是0。

※例题解析※〖例6〗如图,过点P (2,1)作直线,分别为交x 、y 轴正半轴于A 、B 两点。

(1)当⊿AOB 的面积最小时,求直线的方程; (2)当|PA |·|PB |取最小值时,求直线的方程。

三、直线的交点坐标与距离公式1:260l ax y ++=22:(1)10l x a y a +-+-=1l 2l 1l 2l a l l l(一)有关距离问题 ※相关链接※1、点到直线的距离公式和两平行线间的距离公式是常用的公式,应熟练掌握。

2、点到几种特殊直线的距离(1)点到x 轴的距离。

(2)点到y 轴的距离.(3)点到与x 轴平行的直线y=a 的距离。

(4)点到与y 轴平行的直线x=b 的距离.注:点到直线的距离公式当A=0或B=0时,公式仍成立,但也可不用公式而直接用数形结合法来求距离。

※例题解析※〖例7〗已知点P (2,-1)。

(1)求过P 点且与原点距离为2的直线的方程;(2)求过P 点且与原点距离最大的直线的方程,最大距离是多少?(3)是否存在过P 点且与原点距离为6的直线?若存在,求出方程;若不存在,请说明理由。

(二)有关对称问题 ※相关链接※ 常见的对称问题: (1)中心对称①若点及关于对称,则由中点坐标公式得②直线关于点的对称,其主要方法是:在已知直线上取两点,利用中点坐标公式求出它们关于已知点对称的两点坐标,再由两点式求出直线方程,或者求出一个对称点,再利用,由点斜式得到所求00(,)P x y 0||d y =00(,)P x y 0||d x =00(,)P x y 0||d y a =-00(,)P x y 0||d x a =-l l直线方程。

(2)轴对称 ①点关于直线的对称 若两点关于直线:Ax+By+C=0对称,则线段的中点在对称轴上,而且连接的直线垂直于对称轴上,由方程组可得到点1P 关于对称的点2P 的坐标()22,x y (其中120,A x x ≠≠) ②直线关于直线的对称此类问题一般转化为点关于直线的对称来解决,有两种情况:一是已知直线与对称轴相交;二是已知直线与对称轴平行。

※例题解析※〖例8〗求直线关于直线对称的直线的方程。

(三)解析法(坐标法)应用〖例9〗如图,已知P 是等腰三角形ABC 的底边BC 上一点,P M ⊥AB 于M ,PN ⊥AC 于N ,用解析法证明|PM|+|PN|为定值。

l ll l 1:23l y x =+:1l y x =+2l【感悟高考真题】1.过点(1,0)且与直线x-2y-2=0平行的直线方程是()(A )x-2y-1=0 (B)x-2y+1=0 (C)2x+y-2=0 (D )x+2y-1=02.圆的圆心到直线的距离 。

3.已知圆C 过点(1,0),且圆心在x 轴上,直线:1l y x =-补圆C所截得的弦长为,则过圆心有与直线l 垂直的直线的方程为4.已知,则直线通过( ) A. 第一、二、三象限 B. 第一、二、四象限 C. 第一、三、四象限D. 第二、三、四象限5.若方程表示一条直线,则实数满足( ) A. B.C. D. ,,22:2440C x y x y +--+=3440x y ++=d =0,0ab bc <<ax by c +=014)()32(22=+--+-+m y m m x m m m 0≠m 23-≠m 1≠m 1≠m 23-≠m 0≠m。

相关文档
最新文档