高中数学必修五1-1-1课件
高中数学必修五北师大版 余弦定理课件(30张)
a c 方法一 由正弦定理sin A=sin C得: 3 5× 2 csin A 5 3 sin C= a = 7 = 14 . 5 3 ∴最大角 A 为 120° ,sin C= . 14 a2+b2-c2 72+32-52 11 解法二 ∵cos C= = = , 2ab 2×7×3 14 ∴C 为锐角,∴sin C= 1-cos C=
[ 分析 ] 可先由大边对大角,确定出最大的角,再由正、余弦定 理求出最大角及sin C.
[解析] ∵a>c>b,∴A 为最大角.
由余弦定理变形得: b2+c2-a2 32+52-72 1 cos A= 2bc = =-2. 2×3×5 又∵0° <A<180° ,∴A=120° . 3 ∴sin A=sin 120° =2.
)
2a2 = 2a =a=2.
答案:C
2.在△ABC中,如果sin A∶sin B∶sin C=2∶3∶4,那么cos C等
于________.
解析:由条件可设 a=2t,b=3t,c=4t a2+b2-c2 4t2+9t2-16t2 1 cos C= 2ab = =-4. 2×2×3t2
1 答案:-4
1.2 余弦定理
第1课时 余弦定理
பைடு நூலகம்
1.能证明余弦定理,了解并可以从向量方 法、解析方法和三角方法等多种途径证 明余弦定理; 重点:余弦定理的理 解和简单应用.
2.能够应用余弦定理及其推论解三角形; 难点:余弦定理的推 3.了解余弦定理与勾股定理之间的联系, 导及解决简单的三角 知道解三角形问题的几种情形及其基本 解法. 形度量问题.
1 3 3 解法二 由 b<c,B=30° ,b>csin 30° =3 3×2= 2 知本题有两解. 1 3 3×2 csin B 3 由正弦定理 sin C= = = , b 3 2 ∴C=60° 或 120° , 当 C=60° 时,A=90° , 由勾股定理 a= b2+c2= 32+3 32=6,
新教材高中数学第5章复数1复数的概念及其几何意义1-1复数的概念课件北师大版必修第二册
【对点练习】❷ m 取何实数时,复数 z=m2m-+m3-6+(m2-2m-15)i. (1)是实数? (2)是虚数? (3)是纯虚数?
[解析] (1)由条件得mm2+-32≠m0-,15=0, ∴mm= ≠-5或3.m=-3, ∴当 m=5 时,z 是实数. (2)由条件得mm2+-32≠m0-. 15≠0, ∴mm≠ ≠5-且3m. ≠-3, , ∴当 m≠5 且 m≠-3 时,z 是虚数.
[解析] 由 m2+5m+6=0 得,m=-2 或 m=-3,由 m2-2m-15 =0 得 m=5 或 m=-3.
(1)当 m2-2m-15=0 时,复数 z 为实数,∴m=5 或-3. (2)当 m2-2m-15≠0 时,复数 z 为虚数, ∴m≠5 且 m≠-3. (3)当mm22- +25mm- +165=≠00. , 时,复数 z 是纯虚数,∴m=-2. (4)当mm22- +25mm- +165==00. , 时,复数 z 是 0,∴m=-3.
基础自测
1.辨析记忆(对的打“√”,错的打“×”)
(1)若a,b为实数,则z=a+bi为虚数.
(×)
(2)若a为实数,则z=a一定不是虚数.
(√)
(3)如果两个复数的实部的差和虚部的差都等于0,那么这两个复数
的相等.
(√)
[解析] (1)当b=0时,z=a+bi为实数.
(3)如果两个复数的实部的差和虚部的差都等于0,则这两个复数的
a2-3a-1=3, ∴a2-5a-6=0. 解得 a=-1.
4.若复数z=(m+1)+(m2-9)i<0,则实数m的值等于__-__3__. m2-9=0
[解析] ∵z<0,∴m+1<0 ,∴m=-3.
5.实数m分别取什么数值时,复数z=(m2+5m+6)+(m2-2m-15)i
北师大版高中数学必修第一册 第五章 1-《方程解的存在性及方程的近似解》课件PPT
随堂小测
1.已知函数()的图象如图,其中零点的个数及可以用二分法求其零点的个数分别为( D )
A.4,4
B.3,4
C.5,4
D.4,3
解析 由题图知函数()与轴有4个公共点,因此零点个数为4,从左往右数第4个公共
点横坐标的左右两侧的函数值同号,因此不能用二分法求该零点,而其余3个均可使用二
不能用二分法求解.
3.二分法的步骤的记忆口诀:
定区间,找中点,中值计算两边看;
同号去,异号算,零点落在异号间;
周而复始怎么办?精确度上来判断.
即时巩固
1.下列函数图象与x轴均有公共点,其中不能用二分法求图中函数零点的是( B )
2.若函数() = − 3 + log3的一个零点附近的函数值用二分法逐次计算,参考数据如下:
分法来求.故选D.
2.用二分法求函数() = −3 − 3 + 5的近似零点时的初始区间是( B )
A.(-3,1)
B.(1,2)
C.(-2,-1)
D.(-3,-2)
解析 本题考查对用二分法求函数零点近似值的理解及初始区间的选择.
∵(1) = 1, (2) = −9, (−1) = 9, (−2) = 19, (−3) = 41,
格”的游戏形式,将各类商品和大规模的互动体验结合起来,充分激发了观众的参与热情.每位选手只要
在规定时间内猜出的某商品价格在主持人展示的区间内,就可以把它拿走.当选手说出一个价格不在规
定区间内时,主持人会提示“高了”或“低了”.
如果选手想用尽可能少的次数猜对价格,应该采用什么样的猜价方法呢?
一、二分法
北师大版高二数学上册必修5第一章数列第一课数列的概念课件(共21张PPT)
昨日的明天是今天。明天的昨日是今天。为什么要计较于过去呢(先别急着纠正我的错误,你确实可以在评判过去中学到许多)。但是我发现有的人过分地瞻前顾后了。为 何不想想“现在”呢?为何不及时行乐呢?如果你的回答是“不”,那么是时候该重新考虑一下了。成功的最大障碍是惧怕失败。这些句子都教育我们:不要惧怕失败。如 果你失败了他不会坐下来说:“靠,我真失败,我放弃。”并且不是一个婴儿会如此做,他们都会反反复复,一次一次地尝试。如果一条路走不通,那就走走其他途径,不 断尝试。惧怕失败仅仅是社会导致的一种品质,没有人生来害怕失败,记住这一点。宁愿做事而犯错,也不要为了不犯错而什么都不做。不一定要等到时机完全成熟才动手。 开头也许艰难,但是随着时间的流逝,你会渐渐熟悉你的事业。世上往往没有完美的时机,所以当你觉得做某事还不是时候,先做起来再说吧。喜欢追梦的人,切记不要被 梦想主宰;善于谋划的人,切记空想达不到目标;拥有实干精神的人,切记选对方向比努力做事重要。太阳不会因为你的失意,明天不再升起;月亮不会因为你的抱怨,今 晚不再降落。蒙住自己的眼睛,不等于世界就漆黑一团;蒙住别人的眼睛,不等于光明就属于自己!鱼搅不浑大海,雾压不倒高山,雷声叫不倒山岗,扇子驱不散大雾。鹿 的脖子再长,总高不过它的脑袋。人的脚指头再长,也长不过他的脚板。人的行动再快也快不过思想!以前认为水不可能倒流,那是还没有找到发明抽水机的方法;现在认 为太阳不可能从西边出来,这是还没住到太阳从西边出来的星球上。这个世界只有想不到的,没有做不到的!不是井里没有水,而是挖的不够深;不是成功来的慢,而是放 弃速度快。得到一件东西需要智慧,放弃一样东西则需要勇气!终而复始,日月是也。死而复生,四时是也。奇正相生,循环无端,涨跌相生,循环无端,涨跌相生,循环 无穷。机遇孕育着挑战,挑战中孕育着机遇,这是千古验证了的定律!种子放在水泥地板上会被晒死,种子放在水里会被淹死,种子放到肥沃的土壤里就生根发芽结果。选
高中数学必修5优质课件:基本不等式
第七页,编辑于星期日:二十三点 三十九分。
解得 x=1- 22,y= 2-1,∴当 x=1- 22,y= 2 -1 时,1x+1y有最小值 3+2 2.
法二:1x+1y=1x+1y·1=1x+1y(2x+y)=3+2yx+xy≥3 +2 xy·2yx=3+2 2,
以下同解法一.
第八页,编辑于星期日:二十三点 三十九分。
A.最大值为 0
B.最小值为 0
Байду номын сангаасC.最大值为-4
D.最小值为-4
解析:∵x<0,∴f(x)=--x+-1x-2≤-2-2=-4, 当且仅当-x=-1x,即 x=-1 时取等号. 答案:C
第二十二页,编辑于星期日:二十三点 三十九 分。
2.若 a>b>0,则下列不等式成立的是( ) A.a>b>a+2 b> ab B.a>a+2 b> ab>b C.a>a+2 b>b> ab D.a> ab>a+2 b>b
[解] (1)∵m,n>0 且 m+n=16, 所以由基本不等式可得 mn≤m+2 n2=1262=64, 当且仅当 m=n=8 时,mn 取到最大值 64.∴12mn 的最大值为 32.
第六页,编辑于星期日:二十三点 三十九分。
(2)∵x>3,∴x-3>0,x-4 3>0,于是 f(x)=x+x-4 3=x-3
基本不等式
【知识梳理】
1.重要不等式 当 a,b 是任意实数时,有 a2+b2≥ 2ab ,当且仅当 a=b 时,等号成立. 2.基本不等式
a+b (1)有关概念:当 a,b 均为正数时,把 2 叫做正 数 a,b 的算术平均数,把 ab 叫做正数 a,b 的几何平均数.
第一页,编辑于星期日:二十三点 三十九分。
第三页,编辑于星期日:二十三点 三十九分。
高中数学人教版必修五:基本不等式(共23张PPT)
ab
a
b 2
(第一课时)
2019/10/5
一、情境创设 导入课题
第24届国际数学家大会(ICM2002)的会标
问题 :你能在这个图中找出一些相等关系或不 等关系吗?
二、自主探究 推导公式
问题 1:在正方形 ABCD 中有4个全等的直角三角形.设直角三角形的
两条直角边长为a,b,正方形ABCD的面积为 S ,4个直角三角形的面积和
2
又称为基本不等式
4、从数列角度看:
把
ab 2
看做两个正数a,b 的等差中项,
ab 看做正数a,b的等比中项,
那么上面不等式可以叙述为:
两个正数的等差中项不小于它们的等比 中项。
还有没有其它的证明方法证明均值 不等式呢?
二、自主探究 推导公式 探究:如图,AB 是圆的直径,点 C 是 AB上一点,
显然,④是成立的.当且仅当 a b 时,④中的等号成立.
2019/10/5
析 : a 0,b 0,
a b ab a b 2 ab ( a b)2 0
2
2
2
即 a b ab 2
当且仅当 a b即a b等号成立
上面所证结论通常称为均值不等式
(2)设矩形的长、宽分别为x(m),y(m),
依题意有2(x+y)=36,即x+y=18, 因为x>0,y>0,所以, xy ≤ x y
2
因此 xy ≤9
将这个正值不等式的两边平方,得xy≤81, 当且仅当x=y时,式中等号成立,此时x=y=9,
因此,当这个矩形的长与宽都是9m时,它的 面积最大,最大值是81m2。
高中数学北师大版必修五1.2.1【教学课件】《等差数列 》
阅读教材 P10~P11 例 1 以上部分,完成下列问题。 等差数列的概念
从第 2 项起,每一项与它前一项的 差 等于 同一个常数 ,这 文字语 样的数列就叫做等差数列.称这个常数为等差数列的公差 , 言 通常用字母 d 表示 符号语 若 an-an-1=d(n≥2) ,则数列{an}为等差数列 言
北京师范大学出版社 | 必修五
第一单元 · 数列
等差数列
北京师范大学出版社 | 必修五
新课导入
1.复习数列的概念以及通项公式 2.观察几个数列如: 数列 1,2,3,4,5,…, 数列 0,0,0,0,0,…, 数列 0,2,4,6,8,10,…等。
北京师范大学出版社 | 必修五
探索新知
1. 等差数列的概念
例3: 已知等差数列{a },a =1,d= 2 ,求通项 a n n 1
根据等差数列的通项公式直接写出通项即可。 解:
an =1+(n-1)× 2
= 2n- 2+1。
北京师范大学出版社 | 必修五
方法小结:
1.总结回顾这节课都学习了哪些知识?要注意的是什么?都用 到了哪些数学思想方法?你在这节课里最大的收获是什么? 2.本节学习的重点内容是等差数列的定义及通项公式,等差数 列的基本性质是“等差”。这是我们研究有关等差数列的主要 出发点,是判断、证明一个数列是否为等差数列和解决其他问 题的一种基本方法,要注意这里的“等差”是对任意相邻两项 来说的。
当 当 当
d>0
d<0 d=0
时,{an}为 递增数列 ,如图甲所示。 时,{an}为 递减数列 ,如图乙所示。 时,{an}为
解:
北京师范大学出版社 | 必修五
变式训练2
已知数列的通项公式an=6n-1,问这个数列是等差数列吗?若是等差数 列,其首项与公差分别是多少? 解:
2020秋新版高中数学人教A版必修5课件:第一章解三角形 1.2.4 .pptx
在三角形中,当涉及两边的和、两边的积或两边的平方和或三角
形的面积时,常用余弦定理解答.
-11-
第4课时 几何计算问题
目标导航
Z Z D 知识梳理 HISHISHULI
重难聚焦
HONGNANJUJIAO
典例透析
IANLITOUXI
题型一 题型二 题型三 题型四
【变式训练1】 设△ABC的内角A,B,C所对的边长分别为a,b,c,且
(1)若△ABC 的面积等于 3, 求������, ������的值;
(2)若sin C+sin(B-A)=2sin 2A,求△ABC的面积. 分析(1)利用余弦定理和面积公式列关于a,b的方程组求解; (2)先利用正弦定理得a与b的关系,再利用余弦定理得a与b的另一 个关系,列方程组求解a,b,进而求面积.
第4课时 几何计算问题 题型一 题型二 题型三 题型四
目标导航
Z Z D 知识梳理 HISHISHULI
重难聚焦
HONGNANJUJIAO
典例透析
IANLITOUXI
反思1.有关长度问题,要有方程意识.设未知数,列方程求解是经常 用到的方法.列方程时,要注意一些隐含关系的应用.
2.要灵活运用正、余弦定理及三角形面积公式.
-18-
第4课时 几何计算问题 题型一 题型二 题型三 题型四
目标导航
Z Z D 知识梳理 HISHISHULI
重难聚焦
HONGNANJUJIAO
典例透析
IANLITOUXI
解(1)由余弦定理及已知条件得a2+b2-ab=4.
又因为△ABC 的面积等于 3,
所以
1 2
������������sin
高中数学必修五全册课件PPT(全册)人教版
变式练习:两灯塔A、B与海洋观察站C的距离都 等于a km,灯塔A在观察站C的北偏东30o,灯塔B 在观察站C南偏东60o,则A、B之间的距离为多 少?
练习2.自动卸货汽车的车厢采用液压机构。设计时需要计算
油泵顶杆BC的长度.已知车厢的最大仰角是60°,油泵顶点B 与车厢支点A之间的距离为1.95m,AB与水平线之间的夹角为 6°20’,AC长为1.40m,计算BC的长(精确到0.01m).
(按角A分类)
A的范围
a,b关系
解的情况
A为钝角或直角
a>b a≤b
一解 无解
a<bsinA
无解
A为锐角
a=bsinA bsinA<a<b
一解 两解
a≥b
一解
思考 : 在ABC中, a x, b 2, A 450,若这个三角形有
两解,则x的取值范围是 _____2_,_2____
正弦定理的推论: =2R (R为△ABC外接圆半径) (边换角)
(2)方位角:指北方向线顺时针旋转到目标方向线
所成的角叫方位角。
B 30°北
点A在北偏东60°,方位角60°.
A 60°
点B在北偏西30°,方位角330°. 西
东
点C在南偏西45°,方位角225°. C 点D在南偏东20°,方位角160°.
45°20° 南D
3.水平距离、垂直距离、坡面距离。
垂
坡面距离
C ba
AB a=bsinA 一解
C b aa
C
C
b
a
a
b
A B2 B1 A
B
bsinA<a<b 两解
一解
A
人教版高中数学必修五等差数列的前n项和课件 (1)
解析: 数列{an}的公差d=a1177--a11=-121-7--1 60=3, ∴an=a1+(n-1)d=-60+(n-1)×3=3n-63. 由an<0得3n-63<0,解得n<21. ∴数列{an}的前20项是负数,第20项以后的项都为非负 数. 设Sn,S′n分别表示数列{an}和{|an|}的前n项和, 当n≤20时,S′n=-Sn=--60n+nn2-1×3 =-32n2+1223n;
可利用配方法求出二次函数的最值来确定Sn的最值,但应注意
n∈N*. ,
2.(1)在数列{an}中,已知an=2n-49,则Sn取 得最小值时,n=( )
A.26
B.25
C.24 D.23
(2)若等差数列{an}的前n项和为Sn,且a1= 29,5a8=a5-8,则Sn的最大值为________.
解析: (1)由an=2n-49知a1=-47,d=2>0. Sn=na1+nn2-1d=-47·n+nn2-1×2 =n2-48n=(n-24)2-242 ∴当n=24时,Sn取得最小值.
解析: 利用等差数列的性质求解. ∵{an}是等差数列,∴a2+a4=2a3=1+5,∴a3=3, ∴S5=5a12+a5=5×22a3=5a3=5×3=15.
答案: B
3.在等差数列{an}中,a1=1,a3+a5=14,其 前n项和Sn=100,则n=____________.
解析: ∵a3+a5=a1+a7=14,∴a7=13. 又a7=a1+(7-1)d,∴d=13- 6 1=2. Sn=na1+nn-2 1d. ∴n×1+nn2-1×2=100. 解得n=10或n=-10(舍).
2a1+5d=19, (2)由题设可得5a1+552-1d=40, 即a21a+1+2d5=d=8,19, 解得da=1=32,, 故 a10=2+3×(10-1)=29.
高中数学人教A版必修五教学课件:第一章 《解三角形》 1.1.2 余弦定理
三角形中任何一边的平方等于其他两边的平方的和 减去 这两边与它们的夹角的余弦的积的 二 倍 在△ABC 中,
符号 语言
a2=b2+c2-2bccos A, b2=c2+a2-2accos B,
2 2 c2= a +b -2abcos C .
在△ABC 中, 推论 b2+c2-a2 c2+a2-b2 cos A= ,cos B= , 2bc 2ac
)
a2+c2-b2 1 解析:由题意知,cos B= =cos 120° =- ,∴a2+c2-b2 2ac 2 =-ac,∴a2+c2+ac-b2=-ac+ac=0.
答案:C
1 3.在△ABC 中,设角 A,B,C 的对边分别为 a,b,c,且 cos A= . 4 若 a=4,b+c=6,且 b<c,求 b,c 的值.
[解]
设 BD=x.在△ABD 中, 根据余弦定理, AB2=AD2+BD2-2AD· BDcos
∠BDA, ∴142=102+x2-2×10×xcos 60° ,………………………………3 分 即 x2-10x-96=0, 解得 x1=16,x2=-6(舍去),∴BD=16. ………………………6 分 ∵AD⊥CD,∠BDA=60° ,∴∠CDB=30° . ……………………9 分 在△BCD 中,由正弦定理, BC BD = , sin∠CDB sin ∠BCD
答案:120°
探究三
利用正余弦定理判断三角形的形状
[典例 3] 在△ABC 中,若 B=60° ,2b=a+c,试判断△ABC 的形状.
[解析] ∵B=60° , ∴b2=a2+c2-2accos 60° , 1 ∴ (a+c)2=a2+c2-ac, 4 ∴(a-c)2=0, ∴a=c, ∴a=b=c. 故△ABC 为等边三角形.
高中数学第一章解三角形1.2应用举例第2课时高、角问题课件新人教A版必修5[1]
CDsin ∠BDC s·sin β
所以 BC=
=
.
sin∠CBD sin (α+β)
s·tanθ sin β
在 Rt△ABC 中,AB=BCtan∠ACB=
.
sin (α+β)
第二十七页,共51页。
类型 3 角度问题 [典例 3] 如图所示,在坡度一定的山坡上的一点 A 测得山顶上一建筑物顶端 C 对于山坡的斜度为 15°,向山 顶前进了 100 米后到达 B 点,又从 B 点测得建筑物顶端 C 对于山坡的斜度为 45°,已知建筑物的高度为 50 m,求 此山坡相对于水平面的倾斜角 θ 大小(精确到 1°).
故山的高度为 15(1+ 3)(米).
第二十页,共51页。
类型 2 用正弦定理求空间中高度问题 [典例 2] 如下图所示,一辆汽车在一条水平的公路 上向正东行驶,到 A 处时测得公路南侧远处一山脚 C 在 东偏南 15°的方向上,行驶 5 km 后到达 B 处,测得此山 脚在东偏南 30°的方向上,且山顶 D 的仰角为 8°,求此 山的高度 CD(精确到 1 m,参考数据:tan 8°≈0.140 5).
C.d1>20 m
D.d2<20 m
解析:仰角大说明距离小,仰角小说明距离大,即 d1<d2.
答案:B
第九页,共51页。
4.某校运动会开幕式上举行升旗仪式,旗杆正好处 在坡角为 15°的看台的某一列的正前方,从这一列的第一 排和最后一排测得旗杆顶部的仰角分别为 60°和 30°,第 一排和最后一排的距离为 10 6 米(如图所示),旗杆底部 与第一排在一个水平面上.若国歌长度约为 50 秒钟,则 升旗手匀速升旗的速度为________.
高中数学第1章数列111数列的概念课件北师大版必修5
3.是否所有的数列都有通项公式?若有,通项公式是否唯 一?
答:①不是,如π的不足近似值组成的数列 1,1.4,1.41, 1.414,……就没有通项公式.
②若一个数列有通项公式,也不一定唯一,如数列:-1,1, -1,1,……的通项公式可以写成 an=(-1)n,也可以写成 an=(- 1)n+2,也可以写成 an=- 1(1n为(偶n为数奇).数),
(5)将数列各项写为93,939,9399,….
第17页
【解析】 所给五个数列的通项公式分别为 (1)an=2n2-n 1; (2)an=n22; (3)an=1+(2-1)n; (4)an=- 3n 1n((nn==22kk-)1,)其,中k∈N*
第18页
由于 1=2-1,3=2+1,所以数列的通项公式可合写成 an =(-1)n·2+(n-1)n;
第24页
【解析】 (1)an=n(n+1)=600=24×25,所以 n=24. (2)①a4=3×42-28×4=-64, a6=3×62-28×6=-60. ②由 3n2-28n=-49,解得 n=7 或 n=37(舍).所以-49 是 该数列的第 7 项;由 3n2-28n=68 解得 n=-2 或 n=334,均不 合题意,所以 68 不是该数列的项.
B.9
C.6
D.20
答案 C
第32页
3.数列 2, 5,2 2, 11,…,则 2 5是该数列的( )
A.第 6 项
B.第 7 项
C.第 10 项
D.第 11 项
答案 B
第33页
4.数列{n2+n}中的项不能是( )
A.56
B.72
C.60
D.132
答案 C
第34页
高中数学人教A版必修5课件:2.3.1 等差数列的前n项和
-4-
第1课时 等差数列的 前n项和
1 2
M 目标导航
UBIAODAOHANG
Z 知识梳理
HISHI SHULI
Z 重难聚焦
HONGNAN JVJIAO
D典例透析
IANLI TOUXI
2.等差数列{an}的前 n 项和 设等差数列{an}的公差是 d,则 Sn=
������(������1+������������ ) 2
������(������1 +������������ ) 2
=
������ 6-2 2
53
= −5, 解得n=15.∴a15 =
=
8(4+������8 ) 2
= 172, 解得a8=39.
又 a8=4+(8-1)d=39,∴d=5. (3)由 ������������ = ������1 + (������-1)������, ������������ = ������������1 + ������ = 7, ������ = 5, 解方程组得 或 ������1 = 3 ������1 = -1.
-12-
第1课时 等差数列的 前n项和
题型一 题型二 题型三
M 目标导航
题型四
UBIAODAOHANG
Z 知识梳理
HISHI SHULI
Z 重难聚焦
HONGNAN JVJIAO
D典例透析
IANLI TOUXI
(2)设数列{an}的前 n 项和为 Sn,点
������
������������ ������, ������
D典例透析
IANLI TOUXI
【变式训练1】 (1)已知数列{an}的前n项和为Sn,且Sn=3· 2n+1,则 an= . 解析:当n=1时,a1=S1=7; 当n≥2时,an=Sn-Sn-1=3· 2n+1-3· 2n-1-1=3· 2n-3· 2n-1=3· 2n-1(21)=3· 2n-1. 当n=1时,不满足上式. 7,������ = 1, ∴an= 3· 2������ -1 ,������ ≥ 2. 7,������ = 1, 答案: 3· 2������ -1 ,������ ≥ 2
2014-2015学年 高中数学 人教A版必修五 第一章 1.1.1(一)正弦定理(一)
研一研·问题探究、课堂更高效
1.1.1(一)
探究1 在锐角△ABC中,根据右图证明: a b c = = . sin A sin B sin C
本 讲 栏 目 开 关
证明 根据三角函数的定义, CD CD sin A= ,sin B= . b a a b ∴CD=bsin A=asin B.∴ = . sin A sin B b c 同理,在△ABC中,sin B=sin C. a b c ∴sin A=sin B=sin C成立.
研一研·问题探究、课堂更高效
探究 2 在钝角△ABC 中(不妨设 A 为钝角), a b c 根据右图证明: = = . sin A sin B sin C 证明 过C作CD⊥AB,垂足为D,D是BA
延长线上一点,根据正弦函数的定义知: CD -A) b =sin∠CAD=sin(180° CD =sin A, a =sin B. a b ∴CD=bsin A=asin B.∴sin A=sin B. b c a b c 同理,sin B=sin C.故sin A=sin B=sin C.
=2R恒成立.
研一研·问题探究、课堂更高效
【典型例题】
1.1.1(一)
例1 在△ABC中,角A、B、C的对边分别是a、b、c,若 A∶B∶C=1∶2∶3,则a∶b∶c等于 A.1∶2∶3
本 讲 栏 目 开 关
(
)
B.2∶3∶4 D.1∶ 3∶2
C.3∶4∶5
解析 ∵A+B+C=π,A∶B∶C=1∶2∶3, π π π ∴A=6,B=3,C=2,
填一填·知识要点、记下疑难点
1.1.1(一)
本 讲 栏 目 开 关
π A B C 1.在△ABC中,A+B+C= π , + + = 2 . 2 2 2 π a b 2.在Rt△ABC中,C= ,则c = sin A , c= sin B . 2
高中数学必修五第一章《正弦定理和余弦定理》1.1.2 第1课时余弦定理及其直接应用
1.1.2 余弦定理第1课时 余弦定理及其直接应用学习目标 1.掌握余弦定理的两种表示形式及证明余弦定理的向量方法.2.会运用余弦定理解决两类基本的解三角形问题.知识点一 余弦定理思考1 根据勾股定理,在△ABC 中,C =90°,则c 2=a 2+b 2=a 2+b 2-2ab cos C .① 试验证①式对等边三角形还成立吗?你有什么猜想? 答案 当a =b =c 时,C =60°,a 2+b 2-2ab cos C =c 2+c 2-2c ·c cos 60°=c 2,即①式仍成立,据此猜想,对一般△ABC ,都有c 2=a 2+b 2-2ab cos C .思考2 在c 2=a 2+b 2-2ab cos C 中,ab cos C 能解释为哪两个向量的数量积?你能由此证明思考1的猜想吗? 答案 ab cos C =|CB →||CA→CB →,CA →=CB →·CA →.∴a 2+b 2-2ab cos C =CB →2+CA →2-2CB →·CA →=(CB →-CA →)2=AB →2=c 2. 猜想得证.梳理 余弦定理的公式表达及语言叙述特别提醒:余弦定理的特点(1)适用范围:余弦定理对任意的三角形都成立.(2)揭示的规律:余弦定理指的是三角形中的三条边与其中一个角的余弦之间的关系,它含有四个不同的量,知道其中的三个量,就可求得第四个量. 知识点二 适宜用余弦定理解决的两类基本的解三角形问题思考1 观察知识点一梳理表格第一行中的公式结构,其中等号右边涉及几个量?你认为可用来解哪类三角形?答案 每个公式右边都涉及三个量,两边及其夹角.故如果已知三角形的两边及其夹角,可用余弦定理解三角形.思考2 观察知识点一梳理表格第三行中的公式结构,其中等号右边涉及几个量?你认为可用来解哪类三角形?答案 每个公式右边都涉及三个量,即三角形的三条边,故如果已知三角形的三边,也可用余弦定理解三角形.梳理 余弦定理适合解决的问题:(1)已知两边及其夹角,解三角形;(2)已知三边,解三角形.1.勾股定理是余弦定理的特例.(√)2.余弦定理每个公式中均涉及三角形的四个元素.(√)3.在△ABC 中,已知两边及夹角时,△ABC 不一定唯一.(×)类型一 余弦定理的证明例1 已知△ABC ,BC =a ,AC =b 和角C ,求c 的值. 考点 余弦定理及其变形应用 题点 余弦定理的理解解 如图,设CB →=a ,CA →=b ,AB →=c ,由AB →=CB →-CA →,知c =a -b , 则|c |2=c ·c =(a -b )·(a -b ) =a ·a +b ·b -2a ·b =a 2+b 2-2|a ||b |cos C . 所以c 2=a 2+b 2-2ab cos C , 即c =a 2+b 2-2ab cos C .反思与感悟 所谓证明,就是在新旧知识间架起一座桥梁.桥梁架在哪儿,要勘探地形,证明一个公式,要观察公式两边的结构特征,联系已经学过的知识,看有没有相似的地方. 跟踪训练1 例1涉及线段长度,能不能用解析几何的两点间距离公式来研究这个问题? 考点 余弦定理及其变形应用 题点 余弦定理的理解解 如图,以A 为原点,边AB 所在直线为x 轴建立直角坐标系,则A (0,0),B (c ,0), C (b cos A ,b sin A ),∴BC 2=b 2cos 2A -2bc cos A +c 2+b 2sin 2A , 即a 2=b 2+c 2-2bc cos A . 同理可证b 2=c 2+a 2-2ca cos B , c 2=a 2+b 2-2ab cos C . 类型二 用余弦定理解三角形 命题角度1 已知两边及其夹角例2 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若a =3,b =2,cos(A +B )=13,则c 等于( ) A.4 B.15 C.3D.17考点 用余弦定理解三角形 题点 已知两边及其夹角解三角形 答案 D解析 由三角形内角和定理可知 cos C =-cos(A +B )=-13,又由余弦定理得c 2=a 2+b 2-2ab cos C =9+4-2×3×2×⎝⎛⎭⎫-13=17, 所以c =17.反思与感悟 已知三角形两边及其夹角时,应先从余弦定理入手求出第三边,再利用正弦定理求其余的角.跟踪训练2 在△ABC 中,已知a =2,b =22,C =15°,求A . 考点 用余弦定理解三角形 题点 已知两边及其夹角解三角形解 由余弦定理,得c 2=a 2+b 2-2ab cos C =8-43, 所以c =6- 2.由正弦定理,得sin A =a sin C c =12,因为b >a ,所以B >A , 所以A 为锐角,所以A =30°. 命题角度2 已知三边例3 在△ABC 中,已知a =26,b =6+23,c =43,求A ,B ,C . 考点 用余弦定理解三角形 题点 已知三边解三解形解 根据余弦定理,cos A =b 2+c 2-a 22bc=(6+23)2+(43)2-(26)22×(6+23)×(43)=32. ∵A ∈(0,π),∴A =π6,cos C =a 2+b 2-c 22ab=(26)2+(6+23)2-(43)22×26×(6+23)=22, ∵C ∈(0,π),∴C =π4.∴B =π-A -C =π-π6-π4=7π12,∴A =π6,B =7π12,C =π4.反思与感悟 已知三边求三角,可利用余弦定理的变形cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =b 2+a 2-c 22ba 先求一个角,求其余角时,可用余弦定理也可用正弦定理.跟踪训练3 在△ABC 中,sin A ∶sin B ∶sin C =2∶4∶5,判断三角形的形状. 考点 用余弦定理解三角形 题点 已知三边解三角形解 因为a ∶b ∶c =sin A ∶sin B ∶sin C =2∶4∶5, 所以可令a =2k ,b =4k ,c =5k (k >0). c 最大,cos C =(2k )2+(4k )2-(5k )22×2k ×4k <0,所以C 为钝角,从而三角形为钝角三角形.1.一个三角形的两边长分别为5和3,它们夹角的余弦值是-35,则三角形的第三边长为( )A.52B.213C.16D.4 考点 用余弦定理解三角形 题点 已知两边及其夹角解三角形 答案 B解析 设第三边长为x ,则x 2=52+32-2×5×3×⎝⎛⎭⎫-35=52,∴x =213. 2.在△ABC 中,a =7,b =43,c =13,则△ABC 的最小角为( ) A.π3 B.π6 C.π4 D.π12考点 用余弦定理解三角形 题点 已知三边解三角形 答案 B解析 ∵a >b >c ,∴C 为最小角且C 为锐角, 由余弦定理,得cos C =a 2+b 2-c 22ab=72+(43)2-(13)22×7×43=32. 又∵C 为锐角,∴C =π6.3.如果等腰三角形的周长是底边长的5倍,那么它的顶角的余弦值为( ) A.518 B.34 C.32 D.78 考点 用余弦定理解三角形 题点 已知三边解三角形 答案 D解析 设顶角为C ,周长为l ,因为l =5c ,所以a =b =2c , 由余弦定理,得cos C =a 2+b 2-c 22ab =4c 2+4c 2-c 22×2c ×2c =78.4.在△ABC 中,a =32,b =23,cos C =13,则c 2= .考点 用余弦定理解三角形 题点 已知两边及其夹角解三角形 答案 30-4 6解析 c 2=a 2+b 2-2ab cos C =(32)2+(23)2-2×32×23×13=30-4 6.5.在△ABC 中,若b =1,c =3,C =2π3,则a = .考点 余弦定理及其变形应用 题点 用余弦定理求边或角的取值范围 答案 1解析 ∵c 2=a 2+b 2-2ab cos C , ∴(3)2=a 2+12-2a ×1×cos 2π3,∴a 2+a -2=0,即(a +2)(a -1)=0.∴a =1或a =-2(舍去).∴a =1.1.利用余弦定理可以解决两类有关三角形的问题 (1)已知两边和夹角,解三角形. (2)已知三边求三角形的任意一角.2.余弦定理与勾股定理的关系:余弦定理可以看作是勾股定理的推广,勾股定理可以看作是余弦定理的特例.(1)如果一个三角形两边的平方和大于第三边的平方,那么第三边所对的角是锐角. (2)如果一个三角形两边的平方和小于第三边的平方,那么第三边所对的角是钝角. (3)如果一个三角形两边的平方和等于第三边的平方,那么第三边所对的角是直角.一、选择题1.在△ABC 中,已知a =2,则b cos C +c cos B 等于( ) A.1 B. 2 C.2 D.4 考点 余弦定理及其变形应用 题点 余弦定理的变形应用 答案 C解析 b cos C +c cos B =b ·a 2+b 2-c 22ab +c ·c 2+a 2-b 22ca =2a 22a =a =2.2.在△ABC 中,已知B =120°,a =3,c =5,则b 等于( ) A.4 3 B.7 C.7 D.5 考点 用余弦定理解三角形 题点 已知两边及其夹角解三角形 答案 C解析 ∵b 2=a 2+c 2-2ac cos B =32+52-2×3×5×cos 120°=49,∴b =7. 3.边长为5,7,8的三角形的最大角与最小角的和是( ) A.90° B.120° C.135° D.150° 考点 用余弦定理解三角形 题点 已知三边解三角形答案 B解析 设中间角为θ,则θ为锐角,cos θ=52+82-722×5×8=12,θ=60°,180°-60°=120°为所求.4.在△ABC 中,已知b 2=ac 且c =2a ,则cos B 等于( ) A.14 B.34 C.24 D.23 考点 余弦定理及其变形应用 题点 余弦定理的变形应用 答案 B解析 ∵b 2=ac ,c =2a ,∴b 2=2a 2, ∴cos B =a 2+c 2-b 22ac =a 2+4a 2-2a 22a ×2a=34.5.若△ABC 的三边长分别为AB =7,BC =5,CA =6,则AB →·BC →的值为( ) A.19 B.14 C.-18 D.-19 考点 余弦定理及其变形应用 题点 余弦定理的变形应用 答案 D解析 设三角形的三边分别为a ,b ,c , 依题意得,a =5,b =6,c =7.∴AB →·BC →=|AB →|·|BC →|·cos(π-B )=-ac ·cos B . 由余弦定理得b 2=a 2+c 2-2ac ·cos B ,∴-ac ·cos B =12(b 2-a 2-c 2)=12(62-52-72)=-19,∴AB →·BC →=-19.6.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .若a =4,b =5,c =6,则sin 2A sin C 等于( )A.1B.2C.12D.34考点 用余弦定理解三角形 题点 已知三边解三角形 答案 A解析 由余弦定理得cos A =b 2+c 2-a 22bc =25+36-162×5×6=34,所以sin 2A sin C =2sin A cos A sin C =2a cos Ac=4cos A3=1.7.如图,某住宅小区的平面图呈圆心角为120°的扇形AOB ,C 是该小区的一个出入口,小区里有一条平行于AO 的小路CD .已知某人从点O 沿OD 走到点D 用了2 min ,从点D 沿DC 走到点C 用了3 min.若此人步行的速度为50 m/min ,则该扇形的半径为( ) A.50 m B.45 m C.507 m D.47 m 考点 用余弦定理解三角形 题点 已知两边及其夹角解三角形 答案 C解析 依题意得OD =100 m , CD =150 m , 连接OC ,易知∠ODC =180°-∠AOB =60°, 因此由余弦定理,得OC 2=OD 2+CD 2-2OD ×CD ×cos ∠ODC , 即OC 2=1002+1502-2×100×150×12,解得OC =507(m).8.若△ABC 的内角A ,B ,C 所对的边a ,b ,c 满足(a +b )2-c 2=4,且C =60°,则ab 的值为( )A.43B.8-4 3C.1D.23 考点 余弦定理及其变形应用 题点 余弦定理的变形应用 答案 A解析 (a +b )2-c 2=a 2+b 2-c 2+2ab =4, 又c 2=a 2+b 2-2ab cos C =a 2+b 2-ab ∴a 2+b 2-c 2=ab ,∴3ab =4,∴ab =43.二、填空题9.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若a 2+b 2<c 2,且sin C =32,则C = .考点 余弦定理及其变形应用 题点 用余弦定理求边或角的取值范围 答案2π3解析 因为a 2+b 2<c 2,所以cos C =a 2+b 2-c 22ab <0,所以三角形是钝角三角形,且C >π2.又因为sin C =32,所以C =2π3. 10.在△ABC 中,A =60°,最大边长与最小边长是方程x 2-9x +8=0的两个实根,则边BC 的长为 .考点 余弦定理及其变形应用题点 余弦定理与一元二次方程结合问题 答案57解析 设内角B ,C 所对的边分别为b ,c .∵A =60°,∴可设最大边与最小边分别为b ,c .由条件可知b +c =9,bc =8,∴BC 2=b 2+c 2-2bc cos A =(b +c )2-2bc -2bc cos A =92-2×8-2×8×cos 60°=57,∴BC =57.11.在△ABC 中,AB =2,AC =6,BC =1+3,AD 为边BC 上的高,则AD 的长是 . 考点 余弦定理解三解形 题点 已知三边解三角形 答案3解析 ∵cos C =BC 2+AC 2-AB 22×BC ×AC=22,∵C ∈⎝⎛⎭⎫0,π2,∴sin C =22.∴AD =AC ·sin C =3. 三、解答题12.在△ABC 中,已知A =120°,a =7,b +c =8,求b ,c . 考点 余弦定理及其变形应用 题点 余弦定理的变形应用解 由余弦定理,得a 2=b 2+c 2-2bc cos A =(b +c )2-2bc (1+cos A ),所以49=64-2bc ⎝⎛⎭⎫1-12,即bc =15, 由⎩⎪⎨⎪⎧ b +c =8,bc =15,解得⎩⎪⎨⎪⎧ b =3,c =5或⎩⎪⎨⎪⎧ b =5,c =3. 13.在△ABC 中,a 2+c 2=b 2+2ac .(1)求B 的大小;(2)求2cos A +cos C 的最大值.考点 用余弦定理解三角形题点 余弦定理解三角形综合问题解 (1)由a 2+c 2=b 2+2ac 得a 2+c 2-b 2=2ac ,由余弦定理得cos B =a 2+c 2-b 22ac =2ac 2ac =22. 又0<B <π,所以B =π4. (2)A +C =π-B =π-π4=3π4,所以C =3π4-A,0<A <3π4. 所以2cos A +cos C =2cos A +cos ⎝⎛⎭⎫3π4-A=2cos A +cos3π4cos A +sin 3π4sin A =2cos A -22cos A +22sin A =22sin A +22cos A =sin ⎝⎛⎭⎫A +π4. ∵0<A <3π4,∴π4<A +π4<π, 故当A +π4=π2, 即A =π4时,2cos A +cos C 取得最大值1. 四、探究与拓展14.已知a ,b ,c 是△ABC 的三边长,若直线ax +by +c =0与圆x 2+y 2=1无公共点,则△ABC 的形状是( )A.锐角三角形B.钝角三角形C.直角三角形D.不能确定考点 判断三角形形状 题点 利用余弦定理判断三角形形状答案 B解析 ∵直线ax +by +c =0与圆x 2+y 2=1无公共点,∴圆心(0,0)到直线ax +by +c =0的距离d =|c |a 2+b2>1,即a 2+b 2-c 2<0,∴cos C =a 2+b 2-c 22ab <0, 又C ∈(0,π),∴C 为钝角.故△ABC 为钝角三角形.15.在△ABC 中,已知BC =7,AC =8,AB =9,则AC 边上的中线长为 . 考点 用余弦定理解三角形题点 已知三边解三角形答案 7解析 由条件知cos A =AB 2+AC 2-BC 22×AB ×AC =92+82-722×9×8=23, 设中线长为x ,由余弦定理,知x 2=⎝⎛⎭⎫AC 22+AB 2-2×AC 2×AB cos A =42+92-2×4×9×23=49, 所以x =7.所以AC 边上的中线长为7.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
成才之路·数学
人教A版 ·必修5
路漫漫其修远兮 吾将上下而求索
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修5
第一章
解三角形
第一章 解三角形
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修5
第一章
1.1 正弦定理和余弦定理
第一章 解三角形
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修5
第一章
第 1 课时 正弦定理
第一章 解三角形
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修5
课前自主预习 课堂典例讲练
名师辨误做答 课后强化作业
第一章 1.1 第1课时
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修5
课前自主预习
第一章 1.1 第1课时
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修5
第一章 1.1 第1课时
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修5
在△ABC 中,B=30°,C=45°,c=1,求边 b 的长及△ABC 外接圆的半径 R.
[解析] 已知 B=30°,C=45°,c=1.
由正弦定理,得sibnB=sincC=2R,
所以 b=cssiinnCB=1×sinsi4n53°0°= 22,
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修5
(2)sinA=asibnB=__a_si_cn_C_, sinB=bsianA=__b_s_icn_C__, sinC=csianA=_c_s_ibn_B__. (3)a:b:c=___s_in_A__:s_i_n_B_:_si_n_C____.
对正弦定理的理解: (1)适用范围:正弦定理对任意的三角形都成立. (2)结构形式:分子为三角形的边长,分母为相应边所对角的 正弦的连等式. (3)揭示规律:正弦定理指出的是三角形中三条边与对应角的 正弦之间的一个关系式,它描述了三角形中边与角的一种数量关 系. (4)主要功能:正弦定理的主要功能是实现三角形中边角关系 的转化.
第一章 1.1 第1课时
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修5
自主预习
1.正弦定理 在一个三角形中,各边和它所对角的正弦的比相等,即 ___si_an_A_=__s_ibn_B__=__s_inc_C_____.
第一章 1.1 第1课时
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修5
第一章 1.1 第1课时
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修5
2.正弦定理的变形公式 (1)a=bssiinnBA=__css_iin_nC_A_, b=assiinnAB=_c_ss_iin_nC_B_, c=assiinnAC=_b_ss_iin_nB_C_.
第一章 1.1 第1课时
第一章 1.1 第1课时
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修5
(4)边化角公式:a=2RsinA,b=2RsinB,c=2RsinC. (5)角化边公式:sinA=2aR,sinB=2bR,sinC=2cR.
a+b+c
(6)sianA=sibnB=sincC=___si_n_A_+__s_in__B_+__s_in_C___=2R.其中,R 为 △ABC 外接圆的半径.
第一章 1.1 第1课时
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修5
有关正弦定理的叙述: ①正弦定理只适用于锐角三角形; ②正弦定理不适用于钝角三角形; ③在某一确定的三角形中,各边与它的对角的正弦的比是定 值; ④在△ABC 中,sinA B C=a b c.
第一章 1.1 第1课时
2R=sincC=sin145°=
2,得
R=
2 2.
所以,b=
22,△ABC
外接圆的半径
R=
2 2.
第一章 1.1 第1课时
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修5
3.解三角形 (1)定义:一般地,把三角形三个角 A、B、C 和它们的对边 a、 b、c 叫做三角形的元素.已知三角形的几个元素求其他元素的过 程叫做_解__三__角__形__. (2)利用正弦定理可以解决的两类解三角形问题: ①已知任意两角与一边,求其他两边和一角. ②已知任意两边与其中一边的对角,求另一边的对角(从而进 一步求出其他的边和角).
温故知新
在初中,我们学习过直角三角形中的边角关系,那么在 Rt△ ABC 中(如图),有________、________、________.
[答案]
ac=sinA
bc=sinB
c csinC
第一章 1.1 第1课时
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修5
新课引入
“无限风光在险峰”,在充满象征色彩的诗意里,对险峰的 慨叹跃然纸上,成为千古之佳句.对于难以到达的险峰应如何测 出其海拔高度呢?能通过在水平飞行的飞机上测量飞机下方的险 峰海拔高度吗?在本节中,我们将学习正弦定理,借助已学的三 角形的边角关系解决类似于上述问题的实际问题.
②在△ABC 中,已知 a、b 和 A,以点 C 为圆心,以边长 a 为 半径画弧,此弧与除去顶点 A 的射线 AB 的公共点的个数即为三角 形的个数,解的个数见下表:
A 为钝角 A 为直角
A 为锐角
a>b a=bபைடு நூலகம்
一解 无解
一解 无解
一解 一解
a>bsinA 两解
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修5
其中正确的个数是( )
A.1
B.2
C.3
D.4
[答案] B
[解析] 正弦定理适用于任意三角形,故①②均不正确;由正 弦定理可知,三角形一旦确定,则各边与其所对角的正弦的比就 确定了,故③正确;由比例性质和正弦定理可推知④正确.故选 B.
第一章 1.1 第1课时
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修5
(3)已知两边及其中一边对角,判断三角形解的个数的方法: ①应用三角形中大边对大角的性质以及正弦函数的值域判断解的 个数.
第一章 1.1 第1课时
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修5