高中数学必修五1-1-1课件
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对正弦定理的理解: (1)适用范围:正弦定理对任意的三角形都成立. (2)结构形式:分子为三角形的边长,分母为相应边所对角的 正弦的连等式. (3)揭示规律:正弦定理指出的是三角形中三条边与对应角的 正弦之间的一个关系式,它描述了三角形中边与角的一种数量关 系. (4)主要功能:正弦定理的主要功能是实现三角形中边角关系 的转化.
第一章
第 1 课时 正弦定理
第一章 解三角形
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修5
课前自主预习 课堂典例讲练
名师辨误做答 课后强化作业
第一章 1.1 第1课时
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修5
课前自主预习
第一章 1.1 第1课时
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修5
第一章 1.1 第1课时
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修5
有关正弦定理的叙述: ①正弦定理只适用于锐角三角形; ②正弦定理不适用于钝角三角形; ③在某一确定的三角形中,各边与它的对角的正弦的比是定 值; ④在△ABC 中,sinA B C=a b c.
第一章 1.1 第1课时
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修5
(2)sinA=asibnB=__a_si_cn_C_, sinB=bsianA=__b_s_icn_C__, sinC=csianA=_c_s_ibn_B__. (3)a:b:c=___s_in_A__:s_i_n_B_:_si_n_C____.
2R=sincC=sin145°=
2,得
R=
2 2.
所以,b=
22,△ABC
外接圆的wenku.baidu.com径
R=
2 2.
第一章 1.1 第1课时
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修5
3.解三角形 (1)定义:一般地,把三角形三个角 A、B、C 和它们的对边 a、 b、c 叫做三角形的元素.已知三角形的几个元素求其他元素的过 程叫做_解__三__角__形__. (2)利用正弦定理可以解决的两类解三角形问题: ①已知任意两角与一边,求其他两边和一角. ②已知任意两边与其中一边的对角,求另一边的对角(从而进 一步求出其他的边和角).
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修5
其中正确的个数是( )
A.1
B.2
C.3
D.4
[答案] B
[解析] 正弦定理适用于任意三角形,故①②均不正确;由正 弦定理可知,三角形一旦确定,则各边与其所对角的正弦的比就 确定了,故③正确;由比例性质和正弦定理可推知④正确.故选 B.
第一章 1.1 第1课时
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修5
(4)边化角公式:a=2RsinA,b=2RsinB,c=2RsinC. (5)角化边公式:sinA=2aR,sinB=2bR,sinC=2cR.
a+b+c
(6)sianA=sibnB=sincC=___si_n_A_+__s_in__B_+__s_in_C___=2R.其中,R 为 △ABC 外接圆的半径.
②在△ABC 中,已知 a、b 和 A,以点 C 为圆心,以边长 a 为 半径画弧,此弧与除去顶点 A 的射线 AB 的公共点的个数即为三角 形的个数,解的个数见下表:
A 为钝角 A 为直角
A 为锐角
a>b a=b
一解 无解
一解 无解
一解 一解
a>bsinA 两解
第一章 1.1 第1课时
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修5
2.正弦定理的变形公式 (1)a=bssiinnBA=__css_iin_nC_A_, b=assiinnAB=_c_ss_iin_nC_B_, c=assiinnAC=_b_ss_iin_nB_C_.
第一章 1.1 第1课时
温故知新
在初中,我们学习过直角三角形中的边角关系,那么在 Rt△ ABC 中(如图),有________、________、________.
[答案]
ac=sinA
bc=sinB
c csinC
第一章 1.1 第1课时
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修5
新课引入
“无限风光在险峰”,在充满象征色彩的诗意里,对险峰的 慨叹跃然纸上,成为千古之佳句.对于难以到达的险峰应如何测 出其海拔高度呢?能通过在水平飞行的飞机上测量飞机下方的险 峰海拔高度吗?在本节中,我们将学习正弦定理,借助已学的三 角形的边角关系解决类似于上述问题的实际问题.
第一章 1.1 第1课时
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修5
在△ABC 中,B=30°,C=45°,c=1,求边 b 的长及△ABC 外接圆的半径 R.
[解析] 已知 B=30°,C=45°,c=1.
由正弦定理,得sibnB=sincC=2R,
所以 b=cssiinnCB=1×sinsi4n53°0°= 22,
欢迎来到数学课堂
成才之路·数学
人教A版 ·必修5
路漫漫其修远兮 吾将上下而求索
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修5
第一章
解三角形
第一章 解三角形
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修5
第一章
1.1 正弦定理和余弦定理
第一章 解三角形
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修5
第一章 1.1 第1课时
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修5
(3)已知两边及其中一边对角,判断三角形解的个数的方法: ①应用三角形中大边对大角的性质以及正弦函数的值域判断解的 个数.
第一章 1.1 第1课时
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修5
第一章 1.1 第1课时
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修5
自主预习
1.正弦定理 在一个三角形中,各边和它所对角的正弦的比相等,即 ___si_an_A_=__s_ibn_B__=__s_inc_C_____.
第一章 1.1 第1课时
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修5
第一章
第 1 课时 正弦定理
第一章 解三角形
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修5
课前自主预习 课堂典例讲练
名师辨误做答 课后强化作业
第一章 1.1 第1课时
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修5
课前自主预习
第一章 1.1 第1课时
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修5
第一章 1.1 第1课时
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修5
有关正弦定理的叙述: ①正弦定理只适用于锐角三角形; ②正弦定理不适用于钝角三角形; ③在某一确定的三角形中,各边与它的对角的正弦的比是定 值; ④在△ABC 中,sinA B C=a b c.
第一章 1.1 第1课时
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修5
(2)sinA=asibnB=__a_si_cn_C_, sinB=bsianA=__b_s_icn_C__, sinC=csianA=_c_s_ibn_B__. (3)a:b:c=___s_in_A__:s_i_n_B_:_si_n_C____.
2R=sincC=sin145°=
2,得
R=
2 2.
所以,b=
22,△ABC
外接圆的wenku.baidu.com径
R=
2 2.
第一章 1.1 第1课时
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修5
3.解三角形 (1)定义:一般地,把三角形三个角 A、B、C 和它们的对边 a、 b、c 叫做三角形的元素.已知三角形的几个元素求其他元素的过 程叫做_解__三__角__形__. (2)利用正弦定理可以解决的两类解三角形问题: ①已知任意两角与一边,求其他两边和一角. ②已知任意两边与其中一边的对角,求另一边的对角(从而进 一步求出其他的边和角).
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修5
其中正确的个数是( )
A.1
B.2
C.3
D.4
[答案] B
[解析] 正弦定理适用于任意三角形,故①②均不正确;由正 弦定理可知,三角形一旦确定,则各边与其所对角的正弦的比就 确定了,故③正确;由比例性质和正弦定理可推知④正确.故选 B.
第一章 1.1 第1课时
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修5
(4)边化角公式:a=2RsinA,b=2RsinB,c=2RsinC. (5)角化边公式:sinA=2aR,sinB=2bR,sinC=2cR.
a+b+c
(6)sianA=sibnB=sincC=___si_n_A_+__s_in__B_+__s_in_C___=2R.其中,R 为 △ABC 外接圆的半径.
②在△ABC 中,已知 a、b 和 A,以点 C 为圆心,以边长 a 为 半径画弧,此弧与除去顶点 A 的射线 AB 的公共点的个数即为三角 形的个数,解的个数见下表:
A 为钝角 A 为直角
A 为锐角
a>b a=b
一解 无解
一解 无解
一解 一解
a>bsinA 两解
第一章 1.1 第1课时
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修5
2.正弦定理的变形公式 (1)a=bssiinnBA=__css_iin_nC_A_, b=assiinnAB=_c_ss_iin_nC_B_, c=assiinnAC=_b_ss_iin_nB_C_.
第一章 1.1 第1课时
温故知新
在初中,我们学习过直角三角形中的边角关系,那么在 Rt△ ABC 中(如图),有________、________、________.
[答案]
ac=sinA
bc=sinB
c csinC
第一章 1.1 第1课时
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修5
新课引入
“无限风光在险峰”,在充满象征色彩的诗意里,对险峰的 慨叹跃然纸上,成为千古之佳句.对于难以到达的险峰应如何测 出其海拔高度呢?能通过在水平飞行的飞机上测量飞机下方的险 峰海拔高度吗?在本节中,我们将学习正弦定理,借助已学的三 角形的边角关系解决类似于上述问题的实际问题.
第一章 1.1 第1课时
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修5
在△ABC 中,B=30°,C=45°,c=1,求边 b 的长及△ABC 外接圆的半径 R.
[解析] 已知 B=30°,C=45°,c=1.
由正弦定理,得sibnB=sincC=2R,
所以 b=cssiinnCB=1×sinsi4n53°0°= 22,
欢迎来到数学课堂
成才之路·数学
人教A版 ·必修5
路漫漫其修远兮 吾将上下而求索
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修5
第一章
解三角形
第一章 解三角形
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修5
第一章
1.1 正弦定理和余弦定理
第一章 解三角形
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修5
第一章 1.1 第1课时
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修5
(3)已知两边及其中一边对角,判断三角形解的个数的方法: ①应用三角形中大边对大角的性质以及正弦函数的值域判断解的 个数.
第一章 1.1 第1课时
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修5
第一章 1.1 第1课时
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修5
自主预习
1.正弦定理 在一个三角形中,各边和它所对角的正弦的比相等,即 ___si_an_A_=__s_ibn_B__=__s_inc_C_____.
第一章 1.1 第1课时
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修5